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Abstract. This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow

probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes,

including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily

precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter

calculation from observed data) and in a inverse estimation mode (maximum likelihood estimation). The performance of the5

linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural

variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a

notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical

model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with

summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model’s encoding of10

discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in

this paper, the presence of snow- or icemelt is accommodated by a relative increase of the discharge-generating frequency, a

key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological

conditions is left for future research.

1 Introduction15

Knowledge of the availability and variability of daily discharges in a given stream section proves useful for many engineering

applications (e.g. the design of hydro-power plants or water supply systems), as well as for studies about stream ecology

alterations and sediment transport or about water quality and allocation (Basso et al., 2015; Ceola et al., 2010; Searcy, 1959;

Vogel and Fennessey, 1995). For many such applications, knowledge of the probability distribution of daily discharges rather

than of their exact temporal occurrence is sufficient.20
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In hydrology, the probability distribution of daily discharges is traditionally not represented as a probability density function

(pdf) but in terms of flow duration curves (FDCs) that associate an exceedance probability to each discharge value (Vogel and

Fennessey, 1994) and that correspond to the complement of the cumulative distribution function (cdf).

Different methods exist to estimate FDCs (ie. to estimate their shape), the most straightforward method being the assignment

of empirical probabilities to observed ranked data (yielding empirical FDCs) (Vogel and Fennessey, 1994). FDCs can also be5

obtained from statistical methods that relate the FDC shape to catchment characteristics (Castellarin et al., 2013).

An important category of FDC models are process-based models that combine climate controls and catchment characteristics

to estimate the shape of FDCs. Such models describe the shape of FDCs either based on long term simulations of the system

behavior or based on a direct parameterization of the FDC shape as a function of key hydrological controls. One such model is

the model developed by Botter et al. (2007c), who derived an analytical description of streamflow distributions as the result of10

subsurface flow pulses triggered by stochastic rainfall and censored by the soil moisture dynamics. The resulting streamflow

distribution is characterized by only a few parameters: the mean rainfall depth and the frequency of rainfall events that produce

discharge, the area of the catchment and the mean residence time of the catchment.

This modelling framework has been applied successfully for a range of case studies in Italy (Botter et al., 2007c, 2009;

Ceola et al., 2010; Schaefli et al., 2013), Switzerland (Basso et al., 2015; Doulatyari et al., 2017; Schaefli et al., 2013) and the15

US (Botter et al., 2007a, 2013; Ceola et al., 2010). Müller et al. (2014) expanded the framework to seasonally dry climates

with an application in Nepal. According to Müller and Thompson (2016), the benefits of such a process-based approach, as

opposed to purely statistical or empirical methods, can be summarized as follows: i) it provides an explicit link between the

FDC shape, rainfall characteristics and catchment recession characteristics rather than an empirical or statistical link to regional

FDC shapes; ii) the method is applicable to periods characterized by different meteorological conditions, thanks to the explicit20

treatment of rainfall and evapotranspiration characteristics.

The original model framework was developed for rainfall-driven catchments that show a linear recession behavior. Besides

the aforementioned extension to seasonally dry climates, the framework has namely been extended to nonlinear recessions

(Botter et al., 2009) and to the description of winter low flow resulting from seasonal snow accumulation (Schaefli et al.,

2013).25

In the previous applications of the model, the focus was generally on the study of signatures of discharge regimes under

different climates and landscape conditions (Botter et al., 2007a, 2013), where the shape of the pdf was more important than the

accuracy of the predicted discharge probabilities. Furthermore, all previous applications deliberately excluded all catchments

or seasons that where snowmelt affected (Botter et al., 2007a, 2013; Ceola et al., 2010; Doulatyari et al., 2015).

The objective of this research is to assess and compare the performance of the model in its linear and nonlinear forms for30

summer streamflows for a range of Alpine discharge regimes. The selected set of case studies covers all Swiss catchments that

have a natural (unperturbed) discharge regime and long term discharge monitoring. Compared to existing studies (eg. Basso

et al., 2015; Ceola et al., 2010; Doulatyari et al., 2017), this paper provides a systematic analysis of all model parameters and

of their seasonality, and a comprehensive analysis of a wide range of discharge regimes, including namely rainfall-driven and
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snowfall-influenced regimes. This allows a first detailed view on the suitability of the modeling framework for Alpine summer

discharges (influenced by rain and snow) and an assessment of the model performance as a function of the discharge regime.

The paper is organized as follows: Section 2 provides a description of the analytical model, together with the methods

adopted in this paper to estimate the model parameters and to assess the model performance, followed by a presentation of

the Swiss case studies (Section 3). The obtained results for the linear and nonlinear model versions (Section 4) are discussed5

in Section 5 with a particular focus on the model performance under different hydrological regimes. The conclusions are

summarized in Section 6.

2 Methods

Hereafter, we first give a short overview over the used analytic modelling framework, followed by the two different methods

adopted for parameter estimation and for model performance assessment. All methods are applied only to the summer season10

(June 1st to August 31st, see also Section 3). The model evaluation framework adopted here is synthesized in Figure 1, starting

from the empirical cdfs as references for performance evaluation. Next, the precipitation frequency λp (Section 2.1) is estimated

from precipitation and the discharge-producing frequency λ from observed discharge (Equation 7, Section 2.2). The recession

parameters are obtained in forward mode (Section 2.2) or inverse mode (Section 2.3). Based on these parameters, the model cdf

is calculated from the linear model (Equation 4) or from the nonlinear model (Equation 6). The model performance is evaluated15

based on two classical performance indicators and by comparison to the natural variability of the observed cdfs (Section 2.4).

2.1 Model framework

The analytical modelling framework of Botter et al. (2007c) for probabilistic characterization of rainfall-driven daily discharges

is based on a soil moisture model originally proposed by Rodriguez-Iturbe et al. (1999). This point-scale model represents the

dynamics of soil moisture as the result of a deterministic, state-dependent loss function, combined with stochastic increments20

triggered by rainfall events. Rodriguez-Iturbe et al. (1999) showed that the corresponding spatially averaged soil moisture s(t)

can be obtained from the water balance equation as follows:

ds(t)

dt
=−ρ[s(t)] + ξt, (1)

where−ρ[s(t)] is the loss function, due to evapotranspiration, surface runoff and deep percolation, and where ξt represents the

stochastic instantaneous increments due to infiltration from rainfall.25

Botter et al. (2007c) proposed to describe the dynamics of daily streamflow with a similar stochastic differential equation,

supposing that rainfall acts as a stochastic forcing for discharge production and that, at the catchment-scale, the water is released

following a linear decay:

dQ(t)

dt
=−kQ(t) + ξt”, (2)
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where Q is the daily streamflow, k is the inverse of the time constant associated with the loss function and ξt” is the stochastic

process associated to discharge-producing precipitation events (i.e. the sequence of events that trigger a flow response in the

river).

It is assumed hereby that discharge Q is the result of a series of rainfall inputs (ξt”) that deliver enough water to fill the

water deficit in the soil, i.e. that deliver enough water to raise the soil moisture level above its retention capacity. The excess of5

water is removed from the soil as subsurface runoff and becomes river discharge. This description of the streamflow response

neglects any direct surface flow.

The rainfall forcing ξt” is modeled as a marked Poisson process with frequency λp and exponentially distributed rainfall

depths with average α (average rainfall on raindays). Not all the rainfall events trigger a streamflow response, i.e. the frequency

of discharge-producing events corresponds to λ < λp, where λ is influenced by the soil storage capacity and soil drying time10

and can be written as (Botter et al., 2007a):

λ= η
exp(−γ)γ

λp
η

Γ(λp/η,γ)
, (3)

where Γ(a,b) is a lower incomplete Gamma function with parameters a and b, η = E/(nZr(s1−sw)), γ = γpnZr(s1−sw)

and γp = 1/α. E is the maximum evapotranspiration rate and nZr(s1− sw) synthesizes the soil volume liable to be filled by

water before drainage starts; n is the porosity of the soil, Zr is the effective soil depth, s1 is the retention capacity and sw the15

permanent wilting point.

As discussed in detail by Botter et al. (2007c), this framework results in the following probability distribution of daily

discharges at the catchment-scale:

p(Q,t→∞) =
1

Γ
(
λ
k

) 1

Q

(
Q

αkA

)λ
k

exp

(
− Q

αkA

)
, (4)

where A is the catchment area. This corresponds to a Gamma distribution with shape parameter λ/k and a scale parameter20

αkA. The corresponding expected mean discharge equals Q= λα. The model is suitable for steady state conditions, at the

annual or seasonal scale, depending on the temporal variability of the model parameters (Botter et al., 2007a).

Nonlinear storage-discharge relations at the catchment-scale are commonly observed (Botter et al., 2009; Brutsaert and

Nieber, 1977; Mutzner et al., 2013). Accordingly, Botter et al. (2009) proposed an extension of the above modeling framework

assuming that:25

dQ(t)

dt
=−knQ(t)a + ξt”, (5)

where kn and a are the constants of the nonlinear recession. As for the linear model, it is possible to obtain an equation for the

pdf of the daily discharges:

p(Q,t→∞) = C

{
1

Qa
exp

[
− Q2−a

αkn(2− a)
+

Q1−aλ

kn(1− a)

]}
, (6)
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where C is a normalizing constant (Botter et al., 2009).

2.2 Parameter estimation 1: forward estimation

We use the term "forward parameter estimation" to emphasize that the parameters are estimated directly from observed data,

without calibration. This method is generally used in the context of this modelling framework for the estimation of the pa-

rameters related to the stochastic inputs (λp, α, λ), and this method is always used for these parameters in the present paper.5

However, the recession parameters (k, kn and a) are either estimated in a forward mode (Botter et al., 2007c, 2009; Ceola et al.,

2010; Schaefli et al., 2013) or in an inverse mode (Ceola et al., 2010) (see Section 2.3).

The computation of the precipitation parameters first involves the computation of a reference catchment-scale precipitation

time series (here obtained from gridded data, see Section 3). Then interception losses (I) are subtracted from the observed

daily precipitation depths. These losses are in fact evaporated (or sublimated in case of snow) before participating to soil10

moisture dynamics. Following Rodriguez-Iturbe et al. (1999), previous model applications generally assumed that these losses

are accounted for when the frequency of precipitation events is corrected to the frequency of discharge-producing events. In

view of understanding how the model parameters vary in space, it was decided here to treat interception losses explicitly with

minimal assumptions about this process: different maximum interception depths are attributed to four different land covers: 4

mm for forests, 2 mm, for low vegetation, 1 mm for impervious areas, 0 mm for water bodies (Gerrits, 2010). The catchment-15

scale maximum interception depth is obtained as the land use-weighted average of these values, but a minimum interception

depth of 1 mm is imposed. This catchment-scale interception depth is subtracted from daily precipitation depths, assuming that

at a daily time step, all intercepted water re-evaporates during the same time step.

Instead of correcting the frequency of precipitation events λp according to Equation 3, the frequency of discharge-producing

events λ is estimated directly from the theoretical relationship between the mean discharge and the precipitation parameters,20

Q= λα (see Equation 4). Replacing the mean modelled discharge Q with the mean observed discharge Q̃, it follows that

λ=
α

Q̃
. (7)

Estimating λ from the above equation rather than directly from the soil properties as in Equation 3, has been shown by Ceola

et al. (2010) to provide much better results, and this method was used by the majority of studies since then (e.g. Ceola et al.,

2010; Botter et al., 2013; Basso et al., 2015).25

The recession parameter for the linear model is calculated directly from observed daily discharge based on a classical

Brutsaert-Nieber recession analysis (Brutsaert and Nieber, 1977; Biswal and Marani, 2010, 2014; Mutzner et al., 2013), con-

sidering, however, only discharges below a certain threshold, fixed to 95%. The nonlinear recession parameters, kn and a are

also obtained based from a recession analysis, using the same discharge threshold via linear regression of the logarithm of

(−dQ/dt) versus the logarithm of Q, where a is the slope and kn the intercept.30
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2.3 Parameter estimation 2: inverse estimation

To objectively compare the potential of the linear and the nonlinear model formulations to capture observed flow-duration

curves, the recession parameters for the linear model (k) and for the nonlinear model (kn,a) are also estimated in a classical

inverse estimation mode where the model parameters are obtained by maximizing the likelihood function formulated for the

model. For the linear model, the likelihood function is obtained from the model as follows:5

L(k|Q̃,θ) =

N∏
j=1

p(Q̃j |k,θ), (8)

where the probability p(.) is obtained from Equation 4 and θ = [α,A,λ] is the parameter vector containing all parameters that

are estimated directly from observed data (i.e. not maximized). For the nonlinear case, the likelihood is obtained analogously

by replacing k with kn and a and using p(.) from Equation 6.

2.4 Model evaluation criteria10

To objectively compare different models, we propose to use the Kolmogorov-Smirnov distance between the cdfs corresponding

to different models (Ceola et al., 2010; Schaefli et al., 2013), i.e. the maximum difference between the values of the empirical

and the modeled cumulative distributions:

cKS = sup
x
|F (Q̃)−F (Q)|, (9)

where F (Q̃) corresponds to the empirical cumulative distribution of the discharges and F (Q) to the modeled cumulative15

distribution of the discharges. A good model should have a low cKS value.

This comparison of the cdfs overcomes an important limitation inherent in the comparison of analytic pdfs and empirical

pdfs. In fact, the choice of the number of classes for the calculation of the empirical pdf from observed data (via a so-called

frequency polygon, Naghettini, 2016) can change the shape of the empirical pdf. The problem does not arise for cdfs given

their cumulative nature.20

Since the nonlinear model formulation has an additional parameter, the linear and the nonlinear models are also compared

based on the Akaike information criterion (Burnham and Anderson, 2004; Ceola et al., 2010; Laio et al., 2009):

cAIC = 2n− ln(L̂), (10)

where n is the number of parameters of the model and ln(L̂) is the logarithm of the maximum likelihood function obtained by

maximizing Equation 8. As for cKS, a good model should have a low cAIC value.25

Based on the above criterion, we measure the relative performance increase from the linear to the nonlinear model as follows:

rAIC =−
(cAIC

n − cAIC
l

cAIC
l

)
, (11)
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where cnAIC is the Akaike criterion for the nonlinear model and cAIC
l for the linear model. Taking the opposite of the relative

difference between the Akaike criteria ensures that a higher rAIC value indicates a stronger performance increase (recall that

the Akaike criterion is to be minimized).

In addition to assess the performance difference between different models, the obtained models are compared to the natural

variability of the observed discharge cdfs. Therefore, an empirical long term cdf is constructed, obtained by ranking the ob-5

served data in ascending order and dividing the rank numbers by the total sample size. Furthermore, to assess the natural yearly

variability, individual cdfs are constructed for each summer season of each civil year (Vogel and Fennessey, 1994). From this

collection of annual cdfs, envelopes are obtained based on the maximum and minimum values of discharge for each probability

class of the annual cdfs. A reliable model should yield a cdf contained between these curves and should be as close as possible

to the long term cdf.10

3 Case studies

In this paper, we analyze 25 Swiss catchments with areas ranging from 1.05 km2 to 377 km2 and with mean elevations ranging

from 615 m asl. (meters above sea level) to 2945 m asl. (Table 1, Figure 3). These catchments correspond to all streamflow

gauging stations run by the Swiss Federal Office for the Environment (FOEN) (FOEN, 2017) and that have unperturbed

discharges (i.e. minimal anthropogenic influence).15

The average precipitation at the country scale is around 1300 mm yr−1 (Blanc and Schädler, 2013). The complex topography

leads to a high diversity of hydrologic regimes (Weingartner and Aschwanden, 1992), which can be grouped into i) pluvial

or rainfall-driven regimes, ii) snow-dominated regimes and iii) glacier regimes. Pluvial regimes are rainfall-dominated with

sporadic snowfall events during winter; these regimes occur on the Swiss Plateau and in the Jura region (Figure 3). Snow-

dominated regimes result from a seasonal snow cover, roughly at elevations above 900 m asl. In these catchments, solid20

precipitation accumulates during several weeks up to several months during the cold season (winter) and is entirely released in

the following spring and early summer. Glacier regimes result from perennial snow and ice accumulation at elevations roughly

beyond 3000 m asl. Most snow-dominated and glacier regimes are located in the Alps region (Figure 3), few of them are

located in the South of Alps region, which overall has a warmer climate and presents higher precipitation than the other two

regions.25

Most Swiss discharge regimes show a strong seasonality (Weingartner and Aschwanden, 1992), illustrated in Figure 2 for

typical examples of the three regime main types; air temperature is shown here as a proxy for snow and evapotranspiration

processes. The pluvial Goldach river (GOL) shows the typical summer low flow resulting from evapotranspiration; the Dis-

chmabach shows a snow regime with high summer flows resulting from the release of snowmelt stored in the subsurface during

the main snowmelt period (spring) and from residual snowmelt during summer. The Rhône river (RHG) with its 50% glacier30

cover shows a glacier regime, with significant ice melt during summer, and with monthly discharge peaking for the same month

as air temperature (July).
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It is noteworthy that surface runoff processes can play a certain role for extreme events in all regions of Switzerland (Bernet

et al., 2017), but all hydrologic regimes are dominated by subsurface runoff processes, a pre-condition for the application of

the modelling framework developed by Botter et al. (2007c).

Besides observed daily discharge, the model requires catchment-scale daily precipitation as input. Most of the previous

applications of the models used precipitation from one or several meteorological stations as input (Botter et al., 2007c, a, 2013;5

Ceola et al., 2010; Basso et al., 2015; Schaefli et al., 2013). Here, we use the relatively new spatial precipitation data set of

MeteoSwiss with a nominal resolution of 2.2 km and an effective resolution between 15 km and 20 km and extending back

to 1961 (MeteoSwiss, 2014a). This data set can be assumed to give relatively good estimates of area-averaged precipitation

(Paschalis et al., 2014; Addor and Fischer, 2015), even in mountainous areas where there are only few meteorological stations.

Corresponding catchment-scale average precipitation time series per case study catchment are obtained by averaging the daily10

precipitation time series of all pixels contained in the catchment (a list of pixels per catchment is included in the Supplementary

Material). In addition, we also used the corresponding gridded temperature data set (MeteoSwiss, 2014b) to support the analysis

of parameter seasonality. As for precipitation, the catchment-scale average temperature data set is obtained by averaging the

daily time series of all pixels.

Before estimating rainfall frequency (λp) and average rainfall depth on raindays (α), the catchment-scale precipitation time15

series are pre-processed to remove losses from interception. This step requires information about land use. Of the retained

25 case study catchments, 22 are part of what is called "hydrological study areas" and have an associated extended data set,

including land use (Aschwanden, 1996). For the other catchments (i.e. the Areuse, Rhône-Gletsch and Venoge), land use is

obtained from the Swiss land use database (for Statistics, 2001) Details about the land use estimation are available in the

Supplementary Material accompanying this article).20

4 Results

4.1 Discharge regimes and parameter seasonality

To gain further insights into the hydrological processes underlying the different regimes, Figure 4 shows the within-year

variability of the model parameters obtained by estimating the parameters in forward mode for moving and overlapping 90-day

windows. The precipitation parameters α and λp do not show strong seasonal patterns, except for a few catchments such as the25

Goldach river (Figure 4a). For snow and glacier regimes, the frequency of discharge-producing events, λ, increases strongly at

the beginning of spring (Figure 4b and c), which indicates the release of water from snow- or icemelt.

The inverse of the linear recession coefficient τ = k−1 shows a coherent annual cycle for all catchments, independent of the

underlying discharge regime (Figure 5). This seasonal pattern with consistently low τ values during summer for all catchments

clearly justifies the choice of a common summer season (June, July, August) for all regimes. The amplitude of the annual cycle30

(the difference between high and low τ values) is stronger for snow or glacier regimes, which reflects the fact that in these

regimes, parts of the catchment are effectively dormant during the winter (Schaefli et al., 2013).

8



4.2 Linear model

All estimated parameters for both forward and inverse estimations are summarized in Table 2, together with the values of the

performance indicator cKS. It can be noted that for 11 catchments (i.e. Rein da Sumvitg, Dischmabach, Alpbach, Grosstalbach,

Rhône à Gletsch, Massa, Verzasca, Riale di Calneggia, Krumbach, Poschiavino and Ova da Cluozza), λ exceeds λp, contra-

dicting the original description of the model (Botter et al., 2007b), which states that the discharge-producing frequency λ is5

smaller than the precipitation frequency λp. Such an exceedance of λ over λp should only happen in catchments or seasons

with an additional source of water (additional to rainfall), which in the present case is snow- or icemelt. The exceedance of λ

over λp increases with mean catchment elevation (Figure 6), the limit of λ= λp being at around 1500 m asl. This important

result is further discussed in Section 5.

The cdfs obtained from all estimated parameters are presented in Figure 7 for the three example case studies. For the10

catchment with rainfall-driven discharges (GOL), it can be seen that the probabilities of occurrence of low flows are largely

overestimated with forward estimation (Figure 7a). This is a typical indication that the recession time scale is underestimated.

The model values even exceed the envelopes that represent the natural variability of the discharges. In the presence of snow,

the linear model in forward estimation mode tends to underestimate low flows, with satisfactory results for some cases, such

as the Dischmabach (Figure 7b).15

Overall, there is a strong increasing trend of the linear model performance with mean catchment elevation (Figure 9a).

Despite of this, the results of the linear model are not satisfactory for the forward estimation method for any of the regimes.

The inverse estimation of the model parameters improves the results significantly, but the cKS performance indicator shows

relatively high values and the curves are visually not accurate, especially for pluvial regimes. This suggests that the model with

a linear discharge decay is overall not suitable for the studied catchments.20

4.3 Nonlinear models

The results obtained from inverse parameter estimation for the nonlinear model are very good (Figure 8, Table 2), and the

nonlinear model outperforms the linear model for all catchments, both in terms of the KS performance and in terms of the

Akaike criterion (Table 2). The relative model performance increase (as measured by rAIC) shows furthermore a strong inverse

trend with mean catchment elevation (Figure 10), which results from the increasing performance of the linear model with25

increasing elevation (Figure 9b). It is noteworthy that the two catchments for which the performance increase of the nonlinear

model over the linear models exceeds 20% are the two catchments that have a strongly karst-influenced regime (Scheulte at

Vicques and Venoge at Ecublens).

As for the linear model, the forward estimation mode gives less good results than the inverse estimation mode. For some

catchments (i.e. Murg-Wängi, Gürbe, Sense, Ilfis, and Grosstalbach), the forward estimation mode gives nevertheless very30

good results with cKS below 0.1. In general, for the catchments where the discrepancies between modeled and observed cdfs

are due to an underestimation of τ , the nonlinear model yields a significant improvement. For catchments where the recession

time scale is overestimated with the linear model, the nonlinear model in forward model leads to a performance decrease.
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5 Discussion

Our results show that analytical modelling framework for streamflow distributions proposed by Botter et al. (2007c) performs

well for the 25 Swiss catchments across all studied discharge regimes. A detailed comparison between the performance of

the linear and the nonlinear models considering the optimized parameters obtained from the inverse approach shows that the

results for the nonlinear model are always better than for the linear model. This underlines that the nonlinear recession suits5

better the hydrological conditions of all studied catchments, which is inline with previous results (Basso et al., 2015; Ceola

et al., 2010).

In forward estimation mode, the linear model outperforms the nonlinear model for catchments with summer high flows; the

nonlinear model outperforms the linear model for catchments with rainfall-driven regimes (i.e. summer low flows). This results

from the fact that for regimes with summer high flow, the linear model overestimates the recession time scale (resulting in a10

underestimation of the discharge variance). For regimes with summer low flow, the linear model in exchange underestimates

the recession time scale. Given that the nonlinear model yields longer recessions, the nonlinear model shows accordingly a

better performance for regimes with summer low flow.

The comparison between the forward and inverse estimation methods shows a clear underestimation of kn for most of the

catchments, which was already discussed by Dralle et al. (2015) and which is inline with previous work that tried to improve15

the results of the model in forward estimation mode, for the linear and the nonlinear formulation (Basso et al., 2015; Ceola

et al., 2010). There is clearly a need to further improve the methods to estimate the recession parameters. Our results pinpoint

that a key hereby might be the detailed investigation of recession analysis methods along elevational gradients and related

hydrologic regimes.

Overall, the good model performance in many different catchments with different regimes indicates that the modelling20

framework is suitable for the prediction of FDCs in Switzerland. A more detailed model temporal model validation (e.g. with

a split sample test, Klemeš, 1986) is not possible for this framework since the model parameters are obtained directly from

observed data for each time period (i.e. they vary from period to period). The obtained model performances are comparable to

the results obtained in previous studies, e.g. in the work of Ceola et al. (2010). They obtained for different case studies in Italy

and the US cKS values varying between 0.030 and 0.409 for the nonlinear model using different methods of forward estimation,25

and cKS values between 0.021 to 0.051 for inverse estimation. For the linear model, Ceola et al. (2010) obtained cKS values

between 0.054 and 0.567. Basso et al. (2015) and Doulatyari et al. (2017) studied some case studies that are included in the

present paper (Sitter at Appenzell and Murg at Wängi). Recomputing their results with their model parameters yields slightly

different cKS values for the nonlinear model for the Sitter (0.12 compared to our 0.19) and for the Murg (0.05 to 0.06 compared

to our 0.06). These differences are small and can be explained by different data periods and by the methodological choices in30

the calculation of parameters.

The most remarkable result of the presented analysis is the fact that the modelling framework is applicable in its original

formulation to catchments where summer flow is influenced by snow processes. The additional source of water from snow

or icemelt is accommodated by increasing the frequency λ of discharge-producing events. This is inline with a common
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assumption in catchment-scale precipitation-runoff modeling (e.g. Schaefli et al., 2005), which is that runoff from snowmelt can

be modeled with exactly the same functional relationships as for rainfall, by simply feeding so-called equivalent precipitation

(sum of rainfall and simulated snowmelt) into the runoff generation module.

The increase of the discharge-producing frequency to account for snow or icemelt is furthermore also coherent with the

original description of the analytic modelling framework, which incorporates losses as a decrease of the discharge-producing5

frequency. This type of behavior can be identified in previous studies. Basso et al. (2015) obtained for the Sitter at Appenzell

λ values that are close to the precipitation frequency λp during spring; for the Thur at Jonschwil they obtain λ= λp for

spring. Both catchments have a mean elevation above 1000 m asl., which suggests the presence of snow processes. Later on,

Doulatyari et al. (2017) discussed that snow accumulation and melt could be affecting the streamflow pdf estimation for the

Sitter at Appenzell, without, however, exploring the issue further.10

As can be seen in Figure 6, the switch from λ < λp to λp to λ > λp is located at around 1500 m asl. This corresponds to

a relatively low mean catchment elevation; for this mean elevation, it can a priori not be assumed that significant snowmelt

continues throughout the summer. In fact, for most snow-influenced catchments, the majority of snowmelt happens during

spring. Summer flows are nevertheless directly influenced by spring snowmelt since the summer discharge results from a

continuous release of melt water stored in the catchment during the preceding snowmelt period. For high elevation catchments,15

the exceedance of λ over λp is directly related to significant snow- and icemelt inputs throughout the summer.

It should be kept in mind here, that for the present study, λ is estimated directly from the relation between discharge

and precipitation (see section 2.2 and Equation 7). The question of how to estimate this parameter directly from catchment

characteristics based on long term snow cover statistics and data on glacier cover remains to be answered in future work.

Besides the important result that the model is applicable to snow-influenced catchments, additional insights can be obtained20

from the highlighted model performance trends with mean catchment elevation (Figure 9 and 10). These performance trends

are explained by the evolution of the regimes with mean catchment elevation, from rainfall-dominated (pluvial) regimes with

summer low flow to snowfall-influenced (nival and glacier) regimes with summer high flow. This result suggests that mean

catchment elevation is a good proxy for regime shifts, despite the fact that many other catchment characteristics vary strongly

across the set of studied catchments (area, hypsometric curve, land use etc.). Given the strong link between mean catchment25

elevation, mean catchment air temperature and snow accumulation, this opens interesting perspectives for parameter regional-

ization.

6 Conclusions

This application of the analytic framework of Botter et al. (2007c) to estimate summer streamflow probability distributions for

25 Swiss catchments shows that this framework performs well without any further methodological adjustments across a wide30

range of discharge regimes, including rainfall-driven regimes with summer low flows, but also regimes with snow- and glacier

melt influenced summer high flows. Given that the original framework was developed for purely rainfall-driven regimes, this

result is unexpected. For snow-influenced catchments, the model has been shown here to accommodate the additional source

11



of water from snowmelt by a relative increase of the discharge-producing frequency, which is coherent with the underlying

analytic framework.

The detailed comparison between the performance of the linear and the nonlinear model formulation shows that the descrip-

tion of Swiss summer flows strongly benefits from using a nonlinear storage-discharge relationship, in particular for catchments

with summer low flow and for the karst catchments. In general, the linear model performance increases for increasing total5

summer flows or, equivalently, for catchments with higher mean elevation. Future work will focus on improving the model

parameter estimation directly from observed data (without parameter optimization), which is a pre-condition for parameter

regionalization. Better insights into the physical grounds of the different parameters will also open new perspectives for the

extension of the model framework to all four seasons for all Swiss streamflow regimes.

Data availability. The used meteorological data is currently not freely available but requires a license from MeteoSwiss. The discharge data10

is available upon request from the Swiss Federal Office for the Environment at https://www.hydrodaten.admin.ch/en/ (last accessed on 15

December 2017). The used basin boundaries, obtained from the Swiss Federal Office for the Environment, are available in the Supplementary

Material of this paper as vector files.
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Figure 1. Sketch of the adopted workflow for model parameter estimation and performance assessment.
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Figure 2. Annual cycle of discharge and air temperature for three selected catchments representing three different hydrologic regimes

(pluvial, snow-dominated and glacier regime). Shown are the mean monthly values computed over the entire observation period for each

catchment (see Table 1).
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Figure 3. Location of the case study catchments in Switzerland. The six biogeographical regions of Switzerland (for the Environment, 2004)

are summarized here into three main regions. Data source: Digital elevation model (SwissTopo, 2005), catchments: (Helbling, 2016).
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Figure 4. Examples of the temporal variation of the model parameters over the course of a year. The parameters are calculated for 90 days

intervals beginning at the calendar day for which the value is plotted; for a given time window, the data points corresponding to this window

in all available civil years are pooled together. Top row: residence time τk and mean daily precipitation depth α; bottom row: precipitation

frequency λp and discharge-producing frequency λ.
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Figure 5. Temporal variation of the residence time (τk = k−1) for the 25 catchments. The temporal variation is obtained as in Figure 4.
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Figure 7. Modelled cdfs with forward and inverse parameter estimation for the three selected catchments. The shaded area is located between

the cdf envelopes and represents the natural variability of the daily discharges.
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Figure 8. As Figure 7 but for the nonlinear model.
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Figure 9. Performance of the linear model and nonlinear model as a function of mean catchment elevation. The shown performance measure,

cKS is zero for a perfect model.
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of mean catchment elevation. All model parameters are estimated in inverse mode.
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Table 1. Characteristics of Swiss case study catchments as given in the FOEN database, including: the FOEN identification code (ID), the

catchment name, the Swiss coordinates of the gauging station, the drainage area, the mean elevation of the catchment and the gauging station

elevation, the percentage of glacier-cover of the catchment, the mean annual precipitation, the mean annual temperature, the period of data

acquisition. The 16 regime classes of Weingartner and Aschwanden (1992) are regrouped here into three classes (details are available in the

Supplementary Material).

ID Name Coordinates Area Mean elevation Station elevation Glaciation P T Data period Regime 16 Regime 3

(CH1903) (km2 ) (m asl.) (m asl.) (%) (mm) (oC) classes classes

1 2430 Rein da Sumvitg - Sumvitg, Encardens 718810 / 167690 21.8 2450 1490 6.7 1707 -1,19 15-09-1977 to 31-12-2014 b-glacio nival glacier

2 2327 Dischmabach - Davos, Kriegsmatte 786220 / 183370 43.3 2372 1668 2.1 1021 -0,62 24-07-1961 to 31-12-2014 b-glacio nival glacier

3 2308 Goldach - Goldach, Bleiche 753190 / 261590 49.8 833 399 0 1446 7,39 01-01-1974 to 31-12-2014 pluvial supérieur pluvial

4 2374 Necker - Mogelsberg, Aachsäge 727110 / 247290 88.2 959 606 0 1777 6,47 01-01-1972 to 31-12-2014 nivo-pluvial préalpin snow-dominated

5 2112 Sitter - Appenzell 749040 / 244220 74.2 1252 769 0.08 1904 5,10 01-01-1961 to 31-12-2014 nival de transition snow-dominated

6 2126 Murg - Wängi 714105 / 261720 78.9 650 466 0 1357 7,90 01-01-1961 to 31-12-2014 pluvial inférieur pluvial

7 2610 Scheulte - Vicques 599485 / 244150 72.8 785 463 0 1325 7,27 01-01-1992 to 31-12-2014 nivo-pluvial jurassien snow-dominated

8 2159 Gürbe - Belp, Mülimatt 604810 / 192680 117 837 522 0 1295 7,21 01-01-1961 to 31-12-2014 pluvial supérieur pluvial

9 2251 Rotenbach - Plaffeien, Schwyberg 587980 / 170590 1.65 1454 1275 0 1910 5,81 01-09-1961 to 31-12-2014 nivo-pluvial préalpin snow-dominated

10 2179 Sense - Thörishaus, Sensematt 593350 / 193020 352 1068 553 0 1479 6,29 01-01-1961 to 31-12-2014 nivo-pluvial préalpin snow-dominated

11 2480 Areuse - Boudry 554350 / 199940 377 1060 444 0 1531 5,41 01-01-1961 to 31-12-2014 pluvial jurassien pluvial

12 2603 Ilfis - Langnau 627320 / 198600 188 1051 685 0 1719 6,22 01-04-1989 to 31-12-2014 nivo-pluvial préalpin snow-dominated

13 2608 Sellenbodenbach - Neuenkirch 658530 / 218290 10.5 615 515 0 1230 8,72 12-09-1980 to 31-12-2014 pluvial inférieur pluvial

14 2299 Alpbach - Erstfeld, Bodenberg 688560 / 185120 20.6 2200 1022 27.7 1645 0,68 01-01-1961 to 31-12-2014 b-glaciaire glacier

15 2276 Grosstalbach - Isenthal 685500 / 196050 43.9 1820 767 9.3 1801 2,22 01-01-1961 to 31-12-2014 nival alpin snow-dominated

16 2609 Alp - Einsiedeln 698640 / 223020 46.4 1155 840 0 2005 5,43 27-02-1991 to 31-12-2014 nivo-pluvial préalpin snow-dominated

17 2268 Rhone - Gletsch 670810 / 157200 38.9 2719 1761 52.2 2066 -2,98 01-01-1961 to 31-12-2014 a-glaciaire glacier

18 2161 Massa - Blatten bei Naters 643700 / 137290 195 2945 1446 65.9 2423 -3,18 01-01-1961 to 31-12-2014 a-glaciaire glacier

19 2432 Venoge - Ecublens, Les Bois 532040 / 154160 231 700 383 0 1181 9,29 01-01-1979 to 31-12-2014 pluvial jurassien pluvial

20 2206 Melera - Melera (Valle Morobbia) 726988 / 114670 1.05 1419 944 0 1716 4,74 01-01-2005 to 31-12-2014 nivo-pluvial méridional snow-dominated

21 2605 Verzasca - Lavertezzo, Campiòi 708420 / 122920 186 1672 490 0 2051 4,37 01-09-1989 to 31-12-2014 nivo-pluvial méridional snow-dominated

22 2356 Riale di Calneggia - Cavergno, Pontit 684970 / 135960 24 1996 890 0 1918 2,54 01-01-1967 to 31-12-2014 nival méridional snow-dominated

23 2244 Krummbach - Klusmatten 644500 / 119420 19.8 2276 1795 3 1475 1,92 01-01-1995 to 31-12-2014 nival méridional snow-dominated

24 2366 Poschiavino - La Rösa 802120 / 142010 14.1 2283 1860 0.35 1512 0,02 01-01-1970 to 31-12-2014 nival méridional snow-dominated

25 2319 Ova da Cluozza - Zernez 804930 / 174830 26.9 2368 1509 2.2 963 -1,36 24-07-1961 to 31-12-2014 nivo glaciaire snow-dominated
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Table 2. Parameter values and performance indicators for all the catchments for summer with linear model and forward estimation, summer

linear model and inverse estimation, summer nonlinear model and forward estimation, winter nonlinear model and inverse estimation, winter

linear model and forward estimation. Q stands for the mean observed discharge, Ps the mean total precipitation during summer, Ts the mean

temperature during summer, I for interception depth, cKS for the Kolmogorov-Smirnov distance. The indices stand for: f forward estimation,

i inverse estimation, l linear model, n nonlinear model.

Name Q Ps Ts α λp I λ kf cKS
lf ki cKS

li cAIC
li

(mm/d) (mm) (oC) (mm/d) mm (1/d) (mm) (1/d) (1/d)

Rein da Sumvitg - Sumvitg, Encardens 13,8 532 5,62 12,4 0,410 1,83 1,115 0,201 0,179 0,383 0,075 21550

Dischmabach - Davos, Kriegsmatte 7,4 378 6,49 8,2 0,377 2,29 0,906 0,136 0,065 0,163 0,048 22300

Goldach - Goldach, Bleiche 2,5 513 15,15 11,0 0,376 3,13 0,224 0,370 0,187 0,236 0,130 13494

Necker - Mogelsberg, Aachsäge 3,3 600 14,22 12,2 0,393 3,30 0,273 0,435 0,183 0,275 0,125 16467

Sitter - Appenzell 5,4 648 12,30 12,5 0,433 3,06 0,427 0,393 0,109 0,308 0,108 25067

Murg - Wängi 1,7 432 16,07 9,6 0,348 3,13 0,174 0,282 0,293 0,105 0,120 13636

Scheulte - Vicques 1,5 388 15,10 9,1 0,312 3,46 0,162 0,264 0,274 0,133 0,158 5262

Gürbe - Belp, Mülimatt 2,1 450 15,15 9,9 0,355 3,06 0,210 0,271 0,266 0,096 0,095 15070

Rotenbach - Plaffeien, Schwyberg 4,3 616 13,29 14,0 0,378 3,16 0,309 0,550 0,202 0,339 0,161 22856

Sense - Thörishaus, Sensematt 2,2 483 13,98 10,7 0,356 3,22 0,208 0,344 0,275 0,127 0,105 16401

Areuse - Boudry 1,7 383 13,10 8,8 0,316 3,37 0,191 0,261 0,214 0,132 0,120 14013

Ilfis - Langnau 2,7 567 13,79 12,4 0,373 3,40 0,220 0,362 0,287 0,149 0,123 8210

Sellenbodenbach - Neuenkirch 2,0 431 16,86 9,7 0,357 2,99 0,207 0,381 0,165 0,285 0,161 6617

Alpbach - Erstfeld, Bodenberg 16,5 457 7,29 8,9 0,477 1,28 1,858 0,171 0,081 0,276 0,014 30444

Grosstalbach - Isenthal 6,0 598 8,97 11,8 0,444 2,35 0,504 0,195 0,128 0,106 0,053 22256

Alp - Einsiedeln 4,7 687 13,03 14,1 0,415 3,40 0,335 0,521 0,204 0,318 0,144 9763

Rhone - Gletsch 17,1 473 3,58 9,0 0,505 1,00 1,905 0,092 0,197 0,419 0,064 32412

Massa - Blatten bei Naters 17,1 739 3,48 13,9 0,533 1,00 1,228 0,130 0,112 0,272 0,049 32418

Venoge - Ecublens, Les Bois 0,7 298 17,39 7,9 0,268 3,14 0,090 0,194 0,355 0,056 0,124 3737

Melera - Melera (Valle Morobbia) 3,1 562 12,64 18,1 0,273 3,87 0,174 0,142 0,176 0,079 0,096 2918

Verzasca - Lavertezzo, Campiòi 6,0 581 12,03 17,9 0,313 3,00 0,333 0,287 0,127 0,294 0,125 11649

Riale di Calneggia - Cavergno, Pontit 8,9 482 9,96 13,5 0,332 2,04 0,655 0,173 0,192 0,352 0,071 25838

Krummbach - Klusmatten 6,0 317 9,30 9,2 0,294 2,35 0,656 0,117 0,253 0,297 0,102 8673

Poschiavino - La Rösa 5,4 424 7,83 11,1 0,323 2,49 0,490 0,125 0,162 0,199 0,087 19679

Ova da Cluozza - Zernez 5,2 329 6,58 8,4 0,342 1,77 0,619 0,215 0,047 0,192 0,058 21954

Name knf af cKS
nf kni ai cKS

ni cAIC
ni

Rein da Sumvitg - Sumvitg, Encardens 0,029 1,46 0,296 0,110 1,52 0,057 21387

Dischmabach - Davos, Kriegsmatte 0,013 1,73 0,201 0,031 1,86 0,022 21972

Goldach - Goldach, Bleiche 0,145 1,50 0,126 0,174 1,81 0,023 11990

Necker - Mogelsberg, Aachsäge 0,125 1,63 0,107 0,156 1,81 0,023 15015

Sitter - Appenzell 0,066 1,69 0,179 0,115 1,76 0,029 23888

Murg - Wängi 0,099 1,70 0,062 0,081 1,98 0,019 11978

Scheulte - Vicques 0,099 1,72 0,106 0,117 2,20 0,027 3978

Gürbe - Belp, Mülimatt 0,068 1,76 0,036 0,063 1,76 0,023 14108

Rotenbach - Plaffeien, Schwyberg 0,080 1,81 0,218 0,154 1,87 0,043 20753

Sense - Thörishaus, Sensematt 0,084 1,85 0,010 0,082 1,86 0,009 15069

Areuse - Boudry 0,078 1,85 0,106 0,116 1,77 0,032 12785

Ilfis - Langnau 0,068 1,96 0,042 0,069 2,04 0,025 7303

Sellenbodenbach - Neuenkirch 0,184 1,38 0,181 0,271 1,49 0,077 5776

Alpbach - Erstfeld, Bodenberg 0,057 1,17 0,168 0,156 1,21 0,020 30420

Grosstalbach - Isenthal 0,017 1,88 0,070 0,025 1,86 0,016 21768

Alp - Einsiedeln 0,089 1,76 0,160 0,110 1,97 0,036 8870

Rhone - Gletsch 0,107 0,87 0,216 0,897 0,70 0,043 32234

Massa - Blatten bei Naters 0,052 1,13 0,181 0,585 0,70 0,034 32274

Venoge - Ecublens, Les Bois 0,119 1,65 0,103 0,104 2,00 0,030 2706

Melera - Melera (Valle Morobbia) 0,054 0,92 0,161 0,031 1,94 0,057 2702

Verzasca - Lavertezzo, Campiòi 0,041 1,70 0,261 0,081 1,94 0,030 10738

Riale di Calneggia - Cavergno, Pontit 0,014 1,79 0,336 0,077 1,79 0,039 24958

Krummbach - Klusmatten 0,032 1,37 0,354 0,064 1,99 0,060 8345

Poschiavino - La Rösa 0,014 1,75 0,318 0,042 2,05 0,035 18837

Ova da Cluozza - Zernez 0,030 1,70 0,180 0,083 1,58 0,034 21673
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