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Abstract 8 

Characterizing the hydrometeorological extremes, in terms of both rainfall and streamflow, as 9 

well as the estimation of long-term water balance indicators are essential issues for flood alert 10 

and water management services. In recent years, simulations carried out with meteorological 11 

models are getting available at increasing spatial and temporal resolutions (both historical 12 

reanalysis and near real-time hindcast studies): thus, these meteorological datasets can be 13 

used as input for distributed hydrological models to drive long-period hydrological reanalysis. 14 

In this work we adopted a high resolution (4 km-spaced grid, 3-hourly) meteorological 15 

reanalysis dataset that covers Europe as a whole for the period between 1979 and 2008. This 16 

reanalysis dataset was used together with a rainfall downscaling algorithm and a rainfall bias 17 

correction technique in order to feed a continuous and distributed hydrological model. The 18 

resulting modelling chain allowed to produce long time series of distributed hydrological 19 

variables, inter alia streamflows and evapotranspiration for Liguria (N-W Italy), and the 20 

western Mediterranean areas that have been most impacted by severe hydro-meteorological 21 

events. 22 

The available raingauges were compared with the rainfall estimated by the dataset, and then 23 

used to perform a bias correction in order to match the observed climatology. An analysis of 24 

the annual maxima discharges derived by simulated streamflow time series was carried out by 25 

comparing the latter with the observations (where available) or a regional statistical analysis 26 
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(elsewhere). Eventually, an investigation of long-term water balance was performed by 1 

comparing simulated runoff ratios with the available observations. 2 

The study highlights the limits and the potentialities of the considered methodological 3 

approach in order to undertake an hydrological analysis in study areas mainly featured by 4 

small basins, thus allowing to overcome the limits of observations which are punctual and in 5 

some cases not fully reliable. 6 

1 Introduction 7 

The estimation of the magnitude and the probability of occurrence of a certain streamflow is 8 

an important task for a number of purposes: risk assessment, design of structural protections 9 

against flooding, civil protection, and early warning. 10 

The standard approach based on the use of streamflow observations to carry out a statistical 11 

analysis on a specific outlet (Kottegoda and Rosso, 1997) is not always possible because of 12 

the lack of measurements: this problem can be tackled by means of a frequency 13 

regionalization approach (De Michele and Rosso, 2002) exploiting both observed and 14 

modelled streamflow (Boni et al., 2007). 15 

On the other hand, studies and methodologies regarding the management of water resources 16 

and drought also have an important role, especially in the perspective of possible future 17 

changes in climate and water needs (Calanca et al., 2006; Fu et al., 2007; Döll and Müller, 18 

2012; Asadieh and Krakauer, 2017). In this case, the analysis of long-term water balance 19 

components is of primary importance and the evaluation of total runoff and 20 

evapotranspiration becomes crucial.  21 

In the last decades, the use of meteorological reanalyses to study basins behaviour in different 22 

hydrological regimes has become quite frequent, due to the increased reliability and space-23 

time resolution of NWP models. Among many others, Choi et al. (2008) investigated the 24 

feasibility of temperature and precipitation data of the North American Regional Reanalysis 25 
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(NARR, about 32 km grid spacing) for hydrological modelling in northern Manitoba 1 

watersheds, while Bastola and Misra (2013) showed that reanalysis products outperformed 2 

other four meteorological datasets, when used as a large-scale precipitation proxy for  3 

hydrological response simulations. 4 

Furthermore, Krog et al. (2015) used ECMWF interim reanalysis (ERA-Interim, about 70 km 5 

grid spacing) as input to model the hydrological response of one of the largest rivers in 6 

Patagonia; similarly, Nkiaka et al. (2017) investigated the potential of using global reanalysis 7 

datasets in the data-scarce Sudan-Sahel region. 8 

The CORDEX (COordinated Regional climate Downscaling Experiment, Giorgi et al. 2009) 9 

initiative is aiming at producing regional climate change projections worldwide to be fed into 10 

impact, adaptation and disaster risk reduction studies using fine-scaled regional climate 11 

models (RCM) forced by different GCMs of the CMIP5 (Coupled Model Intercomparison 12 

Project Phase 5, CMIP5) archive. Along these lines, Kotlarski et al. (2014) confirmed, with 13 

simulations on grid-resolutions up to about 12 km (0.11°), the capability of RCMs to correctly 14 

reproduce the main features of the European climate for the period 1979-2008. However they 15 

also exhibit relevant modeling errors concerning some metrics, certain regions and seasons: as 16 

an example, precipitation biases are in the ±40% range while seasonally and regionally 17 

averaged temperature biases are generally smaller than 1.5 °C. Building on these findings, 18 

Pieri et al. (2015) moved one step further, in the framework of the EXtreme PREcipitation 19 

and Hydrological climate Scenario Simulations (EXPRESS-Hydro) project, by dynamically 20 

downscaling at a finer space-time resolution (4 km, 3-hourly) the ERA-Interim dataset using 21 

the state-of-the-art non-hydrostatic Weather Research and Forecasting (WRF) regional 22 

climate model.  23 

In this work the high-resolution (∆t=3 h, ∆x=4 km) EXPRESS-HYDRO regional dynamical 24 

downscaling of historical climate scenarios is used as input to a hydro-meteorological chain 25 
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including a rainfall downscaling algorithm (RainFARM, Rebora et al. 2006a, 2006b) and a 1 

continuous distributed hydrological model (Continuum, Silvestro et al. 2013). As a result, a 2 

30-year long high resolution (∆t=1 h, ∆x=< 500 m) hydrological dataset (e.g. Streamflow and 3 

Evapotranspiration) was generated for a reference Mediterranean region. It is noteworthy to 4 

highlight that both Continuum model and RainFARM downscaling algorithm have been 5 

already widely employed and tested in the very same study area (Gabellani et al., 2008; 6 

Silvestro et al., 2014; Laiolo et al., 2015; Davolio et al., 2017). 7 

The distributed nature of the variables allowed to investigate the possibility of using the 8 

hydrological modelling chain for extreme streamflow statistical analysis (e.g. distribution of 9 

annual discharge maxima) and long-term water balance (e.g. long-term runoff ratio) with a 10 

fully distributed approach. Furthermore, the fine space-time resolution of the forcings, 11 

together with the use of a rainfall downscaling model, allowed to evaluate such a high 12 

resolution reanalysis in regions featured with small hydrological watersheds (Silvestro et al., 13 

2011), complex topography and frequently flash-flooded (Altinbilek et al., 1997; Cassola et 14 

al., 2016). The aforementioned elements, together with the analysis of the distribution of 15 

flood extremes, are the main novel contributions of the presented analysis in respect to other 16 

works that employ a similar modelling cascade: it is in fact mandatory to use high resolution 17 

reanalysis since coarser ones cannot reproduce the small-scale rainfall structures that usually 18 

trigger such local hydro-meteorological processes.(Buzzi et al., 2013; Marta-Almeida, 2016; 19 

Pontoppidan et al. 2017; Schwitalla et al. 2017).  20 

The study shows the capabilities and the limits of the considered modelling chain to 21 

reproduce low-frequency streamflow and long-term water balance as an alternative to 22 

observations in a scarce data environment or whenever a finer spatial distribution of hydro-23 

meteorological processes is essential. 24 
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The manuscript is organized as follows: section 2 describes the study area, hydro-1 

meteorological data set and models, section 3 shows the results, and in section 4 the 2 

discussion and conclusions are reported. 3 

2 Materials and Methods 4 

2.1 Study Area and Case study 5 

Liguria Region is located in northern Italy (Figure 1) and it is characterized by small 6 

(drainage are in the range 10-1000 km
2
) and steep slope (10 - 20 %) basins (Table 1). The 7 

response time to precipitation is short, ranging between 0.5 and 10 hours (Maidment, 1992; 8 

Giannoni et al., 2005). The maximum elevation of mountains is around 2500 m, and most of 9 

the region is covered with forest or other types of vegetation like meadows and shrubs; 10 

usually the catchments mouths are densely urbanized. The hydrological regime is prevalently 11 

torrential and the entire study area is frequently hit by flash floods (Rebora et al., 2013): as a 12 

consequence, the variability of annual discharge maxima is high. Winter seasons are generally 13 

not rigid but, as the elevation varies from sea level to more than 2000 m, below-zero 14 

temperatures are rare (a few days ayear) along the coast and at low altitude but they can easily 15 

drops even below -10 °C inland. Snow occurs only few days a year and normally does not 16 

reach the coastal areas. 17 

During warm season peak temperature hardly rises over 31-32 °C. The local raingauge 18 

network (OMIRL – “Osservatorio Meteo-Idrologico della Regione Liguria”) is managed by 19 

the Environmental Agency of Liguria Region (ARPAL) and is quite dense (more than 150 20 

gauges; 1 raingauge/40 km
2 

on the average) ,with a 5-10 minute resolution and an 21 

homogeneous distribution with respect to the elevation. Temperature, radiation, wind, air 22 

humidity gauges are also part of the observational network, even though their density is 23 

lower, about 1/50, 1/200, 1/200, 1/60 km
2
 respectively. The data seamlessly collected from 24 

2011 to 2014 for calibrating/validating the hydrological model. 25 
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Besides, for a subset of 95 raingauge stations (see Figure 1), ARPAL hosts a web-based free-1 

access validated database of historical (1978 - 2010) daily precipitation measurements 2 

(ARPAL, 2010) that were used in the present study for the bias correction of the EXPRESS-3 

Hydro reanalysis rainfall estimation. 4 

For 11 level gauge stations seamless hourly data are available from 2011 to 2014 together 5 

with rating curves, while annual discharge maxima (hereafter ADM) time series longer than 6 

30 years are available for 15 level gauges (Figure 1); the latter ones cover sub-periods which 7 

are not continuous from 1950 to recent years. Moreover, in the Hydrologic Annual Survey 8 

(http://www.arpal.gov.it/homepage/meteo/pubblicazioni/annali-idrologici.html), an official 9 

document published by ARPAL, annual basin-scale runoff ratio (defined as runoff 10 

volume/precipitation) are available for 6 stations. 11 

In Table 1 the availability of the discharge and discharge-related data is summarized together 12 

with hydro-geomorphic characteristics of the basins upstream each station. 13 

All the data are checked by ARPAL in compliance with WMO recommendations so as to flag 14 

errors and unphysical values. 15 

 16 

2.2 Bias correction of rainfall fields (B.C.) 17 

Before being used as input for the hydrological simulations, the EXPRESS-Hydro reanalysis 18 

rainfall dataset was compared with the climatological precipitation data of the Liguria 19 

raingauge dataset (ARPAL, 2010). The observational dataset is constituted by validated time 20 

series of about 95 raingauges homogeneously distributed on the Liguria Region territory, 21 

covering the whole EXPRESS-Hydro dataset (not for all gauges, though) with a daily 22 

timestep. 23 

In order to provide Continuum the most reliable input data, the EXPRESS-Hydro reanalysis 24 

precipitation data were bias-corrected with the actual raingauges so as to assure an accurate 25 
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reproduction of the local climatology in terms of monthly accumulation. As rainfall was the 1 

only available data in the Liguria climatological atlas, the bias correction was not applied to 2 

the other variables of the EXPRESS-Hydro dataset. 3 

Nevertheless, several methods are available in literature to perform a bias correction 4 

(hereafter B.C.) on different variables (e.g., rainfall, temperature, et c.; Fang et al. 2015): 5 

amongst many, in this study a CDF-matching approach was selected (Fang et al. 2015).  6 

In order to preserve the seasonality and the inter-annual variability which can be found in the 7 

observational data as well as in the EXPRESS-Hydro ones, the correction was based on the 8 

monthly accumulations. computed for both datasets. This led to generate  12 x N (where N is 9 

the number of years of the dataset) maps of monthly-cumulated rainfall for Express-Hydro 10 

and 12 x Nobs (being Nobs the number of years of the observed dataset) timeseries representing 11 

the actual accumulated rainfall for each month and for each of the available raingauges.  12 

To allow a direct comparison between the observed data and the modeled dataset, the monthly 13 

cumulated data from the raingauges were previously interpolated on the Express-Hydro 14 

spatial grid by using a kriging technique with a Spherical variogram. No regression with other 15 

spatialized variables (e.g., elevation) was performed because previous tests showed no 16 

significant correlation. Due to the high density of the raingauge network and since the 17 

interpolation was applied only to the monthly accumulation, possible errors introduced by the 18 

interpolation are assumed to be negligible as short-lived and small-scaled rainfall events , 19 

were addressed (see Boni et al., 2007 and Rebora et al. 2013). 20 

For each cell i, the empirical CDF (Cumulative Distribution Function) of both observed and 21 

modeled values were computed: with the purpose of minimizing the distortions, these CDFs 22 

were calculated separately for each month of the year  23 
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In the CDF-matching process the observations CDF was applied to the Express-Hydro time 1 

series of a given cell i in order to obtain the corrected time series of the monthly 2 

accumulation: 3 
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where: 11 

- pi,t is the 3-hourly accumulated rainfall modeled in the cell i at time t  12 

- p’i,t is the bias-corrected 3-hourly accumulated rainfall modeled in the cell i at time t  13 

- PMi,m is the monthly accumulated rainfall modeled in the cell i for the month m (in 14 

which the instant t falls) 15 

- PM’i,m is the monthly accumulated rainfall modeled in the cell i for the month m (in 16 

which the time t is) corrected with the CDF-matching 17 

The described procedure allowed to obtain a 3-hourly maps dataset in which the model bias 18 

was eliminated by keeping the characteristics of the modelled output in terms of seasonality 19 

and inter-annual variability. Furthermore, the procedure allows to avoid alterations of possible 20 

temporal trends, at both full-domain and single-cell spatial scale. 21 

2.3 Downscaling the rainfall with RainFARM Model 22 

RainFARM (Rebora et al. 2006a, 2006b) is a stochastic mathematical model that can be 23 

exploited for generating downscaled rainfall fields consistent with the large-scale forecasts 24 

provided by either Numerical Weather Prediction Systems (NWPs) as in Laiolo et al. (2013) 25 
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and by expert forecasters (Silvestro and Rebora, 2014). The model takes into account the 1 

variability of precipitation at small spatial and time scales (e.g. L ≤ 1 km, t ≤ 1 hour), 2 

preserving the precipitation volume at the scales considered reliable (Lr, and tr) for 3 

quantitative precipitation forecasts. In other words Lr, and tr are those scales where we expect, 4 

on average, a reliable forecast of precipitation volume. RainFARM is able on one side to 5 

preserve spatial and time patterns at Lr, tr, on the other side to produce small-scale structures 6 

of rainfall which are consistent with detailed remote sensor observations as meteorological-7 

radar estimation (Rebora et al., 2006a). 8 

In the model, the spatial-temporal Fourier spectrum of the precipitation is estimated using the 9 

rainfall patterns predicted by a meteorological model and it is mathematically described as 10 

follows: 11 

βα ωω −−+∝ 2/222
)(),,(̂ yxyx kkkkg      (3) 12 

kx and ky are the x and y spatial wavenumbers, ω the temporal wavenumber (frequency), 13 

while α and β are two parameters that are calibrated fitting the power spectrum of rainfall 14 

derived by a NWPS on the frequencies corresponding to the spatial-time scales Lr, and tr. By 15 

extending the spectrum defined by equation (3) to the larger wave numbers/frequencies it is 16 

possible to generate a spatial-time rainfall pattern at high resolution (Rebora et al. 2006b). 17 

Since the Fourier phases related with the power spectrum (3) are randomly generated before 18 

the backwards transformation in real space, RainFARM provides an ensemble of 19 

equiprobable high-resolution fields that are consistent with the large-scale precipitation 20 

forecastedby a NWPS. RainFARM was designed to feed flood forecasting systems in small 21 

and medium sized basins (drainage area < 10
3
-10

4
 km

2
) and it was widely tested on the study 22 

area (Rebora et al., 2006a; Silvestro et al. 2012; Silvestro and Rebora, 2014). 23 
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In this study the algorithm is used to downscale the bias-corrected EXPRESS-Hydro 1 

reanalysis; the nominal grid spacing and temporal resolution of EXPRESS-Hydro 2 

precipitation (4 km and 3 hours, Hardenberg et al. 2015 and Pieri et al. 2015) are assumed as 3 

reliable spatial and time scales. The downscaling algorithm is not used in probabilistic 4 

configuration, but to build a possible rainfall time-spatial pattern at 1 km and 1 hour 5 

resolution that is compatible with the runoff at small scales, since most of the catchments in 6 

the study area are small-sized (often <100-200 km
2
) with a response time ranging from 1 to 6 7 

hours. 8 

2.4 The hydrological model and its calibration-validation 9 

2.4.1 The model: Continuum 10 

The hydrological model used in this study is Continuum (Silvestro et al. 2013), a distributed 11 

and continuous model that relies on a space-filling approach and uses a robust way for the 12 

identification of the drainage network components (Giannoni et al., 2005). Though all the 13 

main hydrological processes are mathematically described in a distributed way, Continuum 14 

was designed to be a trade-off between complex physically-based models (which describe the 15 

physical phenomena with a high detail, often introducing complex parameterization) and 16 

models with a empirical approach (easy to implement but not accurate enough, Silvestro et 17 

al., 2015). The basin or domain of interest is represented through a regular grid, derived by a 18 

Digital Elevation Model (DEM) while the flow directions are defined with an algorithm that 19 

calculates the maximum slope using the DEM. An algorithm classifies each cell of the 20 

drainage network as hillslope or channel flow depending on the main flow regime; a 21 

morphologic filter is defined by the expression AS
k
 = C where A is the drainage area 22 

upstream of each cell [L
2
], S is the local slope [-], k and C are constants related to the 23 

geomorphology of the catchment (Giannoni et al., 2000) and it is used to determine whether a 24 

cell is a hillslope or a channel. The surface flow scheme treats differently channel and 25 
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hillslope flows: the overland flow (hillslopes) is described by a linear reservoir 1 

schematization, while an approach derived by kinematic wave (Wooding, 1965; Todini and 2 

Ciarapica, 2001) models the channel flow. 3 

Subsurface flows and infiltration are modeled through an adaptation of the Horton equations 4 

(Bauer, 1974; Disikin and Nazimov, 1997) that accounts for soil moisture evolution even in 5 

conditions of intermittent and low-intensity rainfall as in Gabellani et al. (2008). 6 

Interception of vegetation is schematized with a reservoir that has a retention capacity Sv 7 

estimated by static informative layers of vegetation type or Leaf Area Index data; the flow in 8 

deep soil and the water table evolution are modeled with a distributed linear reservoir 9 

schematization and a simplified version of Darcy equation. 10 

The energy balance uses the “force restore equation” (Dickinson, 1988) that allows to 11 

explicitly model the soil surface temperature and to estimate the evapotranspiration from the 12 

latent heat flux (Silvestro et. al 2013). 13 

Snow melting and accumulation is simulated with simple equations forced with air 14 

temperature and solar radiation (Maidment, 1992) as in Silvestro et al. (2015). 15 

Continuum needs the following input variables: rainfall, air temperature, short-wave solar 16 

radiation, wind velocity, and relative humidity. When the ExpressHYDRO reanalysis are used 17 

to feed the model the input variables are: 2m temperature, 10 m wind, rain depth, downward 18 

short wave flux at ground surface, and 2 m relative humidity 19 

The parameters that require calibration in Continuum model are six, they are often estimated 20 

at basin or sub-basin scale: two for the surface flow (uh [m
0.5

s
-1

] and uc [s
-1

]), two for the sub-21 

surface flow (ct [-] and cf [-]) and two for deep flow and watertable (VWmax [mm] and Rf [-]) 22 

processes. 23 

The parameter uh affects those hydrograph components which are related to fast surface flow 24 

as well as uc but the impact of the latter depends on the length of the channeled paths; cf is 25 



 12

related to saturated hydraulic conductivity and controls the rate of subsurface flow rate (i.e., 1 

it); ct identifies the part of water volume in the soil that can be extracted through 2 

evapotranspiration only and is thus related to the soil field capacity, while both ct and cf 3 

regulate the dynamics of saturation of the root-zone. The two parameters VWmax and Rf 4 

control the flow in the deep soil and the dynamic of watertable, yet they impact on recession 5 

curves and influence flood hydrographs only when large-sized catchments are taken into 6 

account (Silvestro et al., 2013). 7 

2.4.2 Implementation on the study area 8 

In the present work, Continuum was implemented with a time resolution of 60 minutes and a 9 

spatial resolution of 0.005 deg (about 480 m). The Shuttle Radar Topographic Mission 10 

(SRTM) DEM was employed as a terrain model. 11 

The model was calibrated on 11 basins where streamflow observations were available at 12 

hourly time resolution (see Table 1); the hourly measurements of rainfall, air temperature, 13 

solar radiation, air relative humidity provided by the regional weather stations network were 14 

interpolated on a 1-km regular grid through a Kriging method to feed the model. The two 15 

parameters VWmax and Rf were estimated at regional scale based also on Davolio et al. (2017), 16 

since they are less sensitive than the other four parameters (Silvestro et al., 2013). The 17 

observed streamflow data at 60-minute time resolution were compared with the model output 18 

in order to evaluate its performance. The validation period spanned from 01/01/2013 to 19 

31/12/2014, the model performance was evaluated through the skill scores, also used in the 20 

calibration process (Davolio et al., 2017), as reported in the following .  21 

The Nash Sutcliffe (NS) coefficient (Nash and Sutcliffe, 1970): 22 
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where Qm(t) and Qo(t) are the modelled and observed streamflows at time t. oQ
 is the mean 1 

observed streamflow. 2 

Relative Error of High Flows (REHF) 3 
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 4 

where Qth is chosen as the 99 percentile of the observed hydrograph along the calibration 5 

period.  6 

While NS has the purpose of evaluating the general reproduction of streamflow, REHF score 7 

aims to give more weight to the highest flows thus leading the calibration to better reproduce 8 

the flood events. 9 

As in Madsen (2000) the calibration was carried out by combining NS and REHF into a 10 

multi-objective function: the space parameter was analyzed using a brute force approach on 11 

the time span 2011-2013 in order to optimize the aforementioned multi-objective function. 12 

The time resolution of the streamflow data was hourly, while the Curve Number map was 13 

derived by the CORINE Land Cover (http://www.sinanet.isprambiente.it/it/progetti/corine-14 

land-cover-1). The parameters range values considered during the calibration process were 15 

defined considering their physical meaning, the mathematical constraints and the experience, 16 

they are reported in Table 2 (Silvestro et al., 2015; Cenci et al., 2016), the final parameter 17 

configuration is similar to the one used in Davolio et al. (2017).  18 

The values of the skill scores were calculated for the validation period and turned out to be 19 

satisfactory, as reported in Table 3. 20 

For those basins where the calibration was not possible, the parameters are assumed to be 21 

equal to the average values obtained by the calibration. This assumption was then verified by 22 

carrying out a run of the model using the average parameters even for calibrated basins; the 23 
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statistics maintain good values supporting the significant assumption done. Table 3 reports the 1 

skill scores. 2 

Even if the calibration of the model did not encompass all the study region due to the lack of 3 

data, the hydrological model (as well) was proven to be as performing as similar models 4 

specifically developed for the same study area (Giannoni et al., 2000, 2005; Gabellani et al., 5 

2008; Silvestro et al. 2013, 2015; Cenci et al 2016), even for flood forecasting in not 6 

calibrated sections (Regione Marche, 2016). In fact, when the basins have similar 7 

characteristics especially regarding the surface response to intense rainfall and the main 8 

genesis of rainfall-runoff process, the parameters have often similar values (Boni et al., 2007).  9 

In order to reduce the warm up impacts on the 1979 (first year of EXPRESS-Hydro) 10 

simulation, a first run was started with a predefined initial condition setup and the state 11 

variables simulated on the 31 of December of every year (from 1979 to 2008) were averaged 12 

to estimate a reasonable initial condition for 1
th

 January 1979 to be used in the final 13 

simulation. 14 

The hydrological model run for the period 1979-2008 provided, a streamflow time series for 15 

each pixel of the calculation domain which was, ideally, equivalent to having a gauge every 16 

∆x along the hydrological network. Since the spatial resolution of the hydrological model is 17 

480 m basins smaller than Ath=15 km
2 

were not taken into account , because the surface water 18 

motion processes cannot be modeled with a sufficient detail (Giannoni et al., 2005). 19 

2.5 Distribution of the annual discharge maxima 20 

The results of the modeling chain were firstly compared with observations using a typical 21 

station-wise comparison approach: 15 gauge stations with at least 30 years of annual 22 

discharge maxima (ADM) were identified along the Ligurian territory from east to west. 23 

It was not possible to ensure a perfect overlapping between the simulated and the 24 

observational timeseries, often observed data are not seamless and they may cover longer 25 
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periods (in some case 50-60 years) with large timespans of missing data. However, on the 1 

basis of the conclusions drawn in the Liguria climatological atlas, major climate change-2 

related trends for the meteorological variables are not evident, thus allowing for the use of the 3 

database despite the data gaps. 4 

The comparison between observed and reanalysis-driven ADM is firstly based on the analysis 5 

of the respective cumulative density function distributions. 6 

The reanalysis-driven ADM were fitted with a Generalized Extreme Value (GEV) distribution 7 

(see e.g., Hoskin and Wallis, 1993; Piras et al., 2015) that represents a good compromise 8 

between flexibility and robustness. Other works based extreme statistical analysis on the Two 9 

Components Extreme Value (TCEV) model (Rossi et al., 1984), nevertheless we decided to 10 

use GEV since it has a smaller number of parameters and it was widely applied (CIMA 11 

Research Foundation, 2015; Piras et al., 2015). Moreover the comparison between observed 12 

and modeled ADM was also done using the Kolmogorov-Smirnov test with a 5% significance 13 

level, in order to verify if they belonged to the same distribution. 14 

2.6 Regional analysis of the annual discharge maxima  15 

In order to carry out a comparison following a distributed approach we referred to Boni et al. 16 

(2007) which is one of the operational reference methods in Liguria Region (used by both 17 

public authorities and private engineers) to estimate the ADM quantiles (Provincial Authority 18 

of Genoa, 2001; Silvestro et al., 2012). The method was conceived and tested especially for 19 

the Tyrrhenian catchments of Liguria Region, so the present analysis was carried out only for 20 

this area; the 45-50% of which is located upstream the calibrated basins. The method defines 21 

a hierarchical approach based on the analysis of the non-dimensional random variable X0 = 22 

X/µx, obtained by grouping together all the available data, and making them non-dimensional 23 

with respect to each local (gauging station) sample mean, µx, taken as the index flood for 24 

gauged sites. Index flood is estimated even where observations were not available by taking 25 
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advantage of the rainfall regional frequency analysis and rainfall-runoff modelling to allow 1 

quantile estimation in each point of the region. 2 

The final result is a methodology to estimate the index flood that can be formalized as it 3 

follows: 4 

������ = �(
��, ���������)     (6) 5 

While the quantile is: 6 

�(�� = �(�� ∙ ������      (7) 7 

where T is the return period and K(T) is defined by the non-dimensional regional growth 8 

curve, uniquely defined  for all the studied region (Boni et al. 2007). 9 

In the case of the modelling chain analyzed in this work a large number of reanalysis-driven 10 

time series is available because 30 year long ADM series for each pixel of the model grid can 11 

be accessed for basins bigger than Ath. In practice, using a distributed hydrological model, on 12 

one side allows the index flood estimation to be a simple mean of a time series in each point 13 

of the domain, on the other side provides a large number of data to build the non-dimensional 14 

regional curve. 15 

3 Results 16 

3.1 Precipitation analysis 17 

The comparison between EXPRESS-Hydro reanalysis and precipitation climatology over 18 

Liguria derived from observational data was undertaken at annual, seasonal, monthly and 19 

daily scales. 20 

Pieri et al. (2015), using EURO4M-APGD reference observational dataset (Isotta et al. 2013, 21 

with about 50 daily raingauge stations in Liguria), already showed an overall underestimation 22 

of the WRF rainfall depths on annual basis, more evident on the eastern side of the region 23 

(Figure 3, panels e-f of Pieri et al. 2015), with differences in the range between -2 and -1 24 
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mm/day on the eastern coastal part and between -1 and 0 mm/day on the eastern Apennines 1 

side.  2 

The same analysis was repeated and extended in this study, using 95 raingauges in Liguria:  3 

results on annual rainfall depth confirm the findings of Peri et al. (2015) both on eastern and 4 

western Liguria sides (Figure 2). 5 

Concerning the seasonal results, EXPRESS-Hydro tends to underestimate average observed 6 

rainfall depths during DJF (Figure 3) on eastern Liguria (between 0-100 mm) while generally 7 

overestimates them on centre-west (0-100 mm); the same holds also for MAM (Figure 3). 8 

During JJA, instead, EXPRESS-Hydro underestimation ranges between 0 and 100 mm over 9 

both the western and eastern sides, while ramps up to 100 - 200 mm over the centre. The 10 

underestimation deepens over eastern Liguria during SON (Figure 3), with values between -11 

100 and 200 mm inland and up to 200 - 300 mm over the coast. Conversely, on the rest of the 12 

region the underestimation drops between 0 -100 mm. In Figure 4 the seasonal comparison 13 

between observations and EXPRESS-Hydro is also shown in terms of scatter plots, with a 14 

good correlation between reanalysis and observations, while in Table 4 we reported the values 15 

of bias and Root Mean Square Error (RMSE). 16 

Figure 5 shows the box plot of monthly precipitation averaged at regional scale for both 17 

EXPRESS-Hydro and observations, obtained by the averaging the maps of accumulated 18 

rainfall. The comparison highlights that EXPRESS-Hydro satisfyingly reproduces the 19 

variability along the 30 years, but often underestimates the rainfall amount; particularly in 20 

January, September and October. 21 

Figure 6 shows the same analysis of Figure 5 but at catchment scale on 4 basins whose 22 

characteristics are reported in Table 1; the basins locations was spread from east to west side 23 

of the region to investigate if different behaviours arise along the study area. It is interesting 24 
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to evidence that while a general underestimation of rainfall during fall period is found for the 1 

rivers located in central-east Liguria  (Entella closed at Panesi and Vara closed at Nasceto), 2 

the other 2 test basins behave rather differently as the box plots of Argentina closed at Merelli 3 

and Arroscia closed at Pogli show an overestimation during spring, especially in April and 4 

May. 5 

A further analysis was carried out in order to understand how EXPRESS-Hydro reanalysis 6 

reproduces the rainfall annual maxima, especially after the application of bias correction; 7 

ADM of the region are in fact generally driven by very intense rainfall events that have 8 

duration lower or equal to 24 hours. We thus compared the annual maxima of 24 hours 9 

accumulated rainfall (ARM) derived by observations with those derived by the reanalysis 10 

(with B.C.) again following the approach described in Boni et al. (2007): each series of ARM, 11 

observed and modeled, was normalized with its average and a regional non-dimensional 12 

distribution function was built. The result is reported in Figure 7 which shows a very good fit 13 

between observations and reanalysis, this confirms a general good reproduction of the 14 

climatology even in terms of ARM. 15 

3.2 Distribution of the annual discharge maxima 16 

In Figures 8 to 10 a selection of observed and reanalysis-driven ADM CDF distributions, the 17 

GEV and the corresponding 95% confidence intervals are shown. Six basins were chosen in 18 

order to evidence the variability of results, showing either good and poor performances, 19 

moreover the comparisons are referred to hydrological gauging stations where reliable and 20 

long-time series of observed ADM are available. For each station the results obtained with 21 

and without rainfall B.C. are both reported. 22 

The cases in Figure 8 show a shift of the observed distribution with respect to the modeled 23 

one especially without B.C. Low ADM observed values lay out of the confidence intervals of 24 
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the reanalysis-driven ADM GEV distribution, while the most extreme values fall inside the 1 

confidence intervals. The distributions without bias correction show an underestimation of 2 

ADM; B.C. led to very good results for Entella closed at Panesi and to an overestimation on 3 

Bisagno closed at La Presa case. 4 

Magra closed at Piccatello (Figure 9) shows an overestimation in both cases, even higher after 5 

the B.C; Argentina closed at Merelli benefits of B.C. especially regarding the extreme ADM 6 

values. 7 

Arroscia closed at Pogli shows an improvement of reanalysis-driven ADM, once B.C. is 8 

performed, while Nervia ADM without B.C. well fits the observations and B.C. leads to an 9 

overestimation (Figure 10).  10 

The Kolmogorov-Smirnov test with a 5% significance level on ADM was applied to all the 11 

selected stations and the corresponding results are summarized in Table 5. It is interesting that 12 

bias correction does not allow to increase the number of null-hypothesis (data belong to the 13 

same distribution) yet: 9 stations out of 15 pass the test either B.C. is applied or not. Changing 14 

the significance level does not affect the final findings in a significant way: with a 1% 12 15 

stations pass the test with B.C. and 11 without B.C., with 10% 7 stations pass the test with 16 

B.C. and 7 without B.C.. This fact could derive on how the B.C. -acting on the monthly 17 

volume- affects the short-lived and severe rainfall events that usually are responsible for the 18 

ADM in many parts of the study area. 19 

The poor reproduction of ADM in some sections may be due to various causes; on one side it 20 

was not possible to calibrate the model over the whole study region, on the other side in some 21 

periods and in some sub-regions the rainfall reanalysis is probably poorly representative of 22 

actual rainfall and B.C. does not correct it enough. Moreover observed peaks and simulated 23 

peaks are often referred to different time periods: this, together with the typical hydro-climatic 24 
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regime of the study region (flash floods with high variability of ADM) could have a 1 

significant impact on final results. 2 

We would like also to highlight the fact that simulated ADM distributions have often similar 3 

shapes to the observed ones and suffer of a sort of bias (for example Bisagno closed at La 4 

Presa, Figure 8), while in other cases the simulated ADM distribution is only partially out of 5 

the confidence intervals (example Argentina closed at Merelli, Figure 9). The average 6 

hydrologic regime on the study region could be only partially affected by the local bad fittings 7 

of ADM. 8 

3.3 Regional analysis of the annual discharge maxima  9 

Figure 11 shows the comparison between the non dimensional regional growth curve obtained 10 

fitting a GEV on simulated ADM computed with and without B.C., the observations 11 

(available ADM on Liguria Region) and the simulated ADM. The results are quite good even 12 

if it seems that the modeling chain without B.C. leads to a small underestimation of high 13 

frequency events (low T) and a small overestimation of low frequency events (high T) with 14 

respect to the observations. Anyway both observed and modeled ADM lay inside the 15 

confidence intervals (95 %) for a large part of the curve. 16 

In the Figure we reported the curves built using simulations of all the sections with a drainage 17 

area larger than Ath together with those obtained using only the sections where the 18 

hydrological model was calibrated. The curves that used only calibrated sections are really 19 

similar to the others, proving that the latter configuration enhances the robustness of the 20 

regional curve estimation without introducing evident errors.  21 

The main differences in the case of B.C. configuration are that observations lay always inside 22 

the confidence intervals and there is a better matching between simulated and observed 23 

sample curves. This is a significant finding in fact the regional curve is an important 24 

ingredient to deal with quantile estimation in ungauged sections. It is important to highlight 25 
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that regional approach allows to reduce the errors that can be found for single basins (Boni et 1 

al., 2007) and which are shown in section 3.2; on one side the normalization of each ADM 2 

series with its average reduces the effects of bias (due for example to a bad hydrological 3 

model calibration), on the other side the ADM time series of each outlet section (or grid 4 

point) is only a small sub-sample of the entire sample used to build the regional curve. 5 

To compare the quantiles estimated using the modelling chain with those in Boni et al. (2007) 6 

the following ratio was considered: 7 
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       (8) 8 

where Model and Reg respectively stand for modelling chain and regional analysis, T is the 9 

return period, Q is the ADM. Ideally, if the modelling chain provided exactly the same results 10 

of the benchmark regional analysis, the Ratio(T) value should be around 1, Ratio(T) > 1 (<1) 11 

means overestimation (underestimation). 12 

Figure 12 shows Ratio(T) for T=2.9 years (Index Flow) as a function of the drainage area (A 13 

in km
2
), while Figure 13 shows the maps of Ratio(T) for T=2.9 years and T=50 years. 14 

The first consideration is that a relation between Ratio(T) and A appears to exist, probably 15 

because the chain is not able to reproduce in detail the meteorological and hydrologic 16 

processes at very fine time and spatial scales (Siccardi et al., 2005), in fact for A < 30-50 km
2
 17 

the underestimation seems quite systematic even if B.C. improves results. Ratio(T) is 18 

generally underestimated also for A>30-50 km
2
 but B.C. generally leads to a better balance 19 

between over- and underestimation, despite introducing the overestimation grows on larger 20 

basins (A > 200-300 km
2
). From Figure 13 a general improvement driven by B.C. stands out 21 

especially in those areas where the model chain without B.C. underestimates Q(T). Areas 22 

where modelling chain is really close to the benchmark are in green/light blue, whereas dark 23 

blue and purple point out where under or overestimation is high (absolute difference larger 24 
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than 70-100%); noticeably, Ratio(T) for T= 50 years and T=2.9 years (Figure 13) have a 1 

similar pattern. 2 

In central Liguria the Ratio(T) obtained with EXPRESS-Hydro leads to results comparable 3 

with Boni et al. (2007) regardless the use of B.C., while simulations with B.C. are affected by 4 

overestimation. This could be due to different causes: i) EXPRESS-Hydro is likely to well-5 

reproduce the events at small time and spatial scales (3-6 hours, 10-100 km
2
) in that part of 6 

the region as well as generally underestimates monthly asccumulation, in this case B.C. could 7 

lead to streamflow overestimation; ii) the hydrological model may need a better calibration, 8 

but it does not seem the most probable option; in fact B.C leads to the overestimation of ADM 9 

even in calibrated basins, this occurrence arose even in the site comparison (Bisagno creek, 10 

see section 3.2) iii) the quantiles in this area may have been underestimated by Boni et al. 11 

(2007). It has to be noticed that overestimation is larger for T=2.9 years than for T=50 years 12 

(see Figure 13, some basins are in purple for T=2.9 years and in yellow-orange for T=50 13 

years), this is probably due to the fact that the shape of the growing curve in the B.C. case 14 

leads to a reduction of the overestimation as T increases; the behaviour on western Liguria is 15 

similar to the centre even if less stressed and evident for larger basins only. 16 

The underestimation on smaller catchments (A < 30-50 km
2
) could be partially due to a not 17 

optimal parameterization of the hydrological model (especially where calibration was not 18 

possible), but it appears more reasonable that the errors related to parameterization would lead 19 

to a uniform-like distribution between over and underestimation. However, the model spatial 20 

resolution could play a role since the representativeness of the catchment morphology 21 

decreases for small drainage areas with a general smoothing effect that affects the results: this 22 

degradation effect is clearly continuous from large to small drainage areas, though a threshold 23 

for the analysis (i.e., basins with Area<16 km
2
 are neglected) was set. 24 
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A further cause is presumably that EXPRESS-Hydro cannot always adequately reproduce the 1 

rainfall structures at fine spatial and temporal scale, and the downscaling procedure can only 2 

partially correct this drawback. Moreover the time resolution (1 hour after downscaling) could 3 

be not sufficient when drainage area is small (Silvestro et al., 2016; Rebora et al., 2013): as a 4 

consequence, the runoff processes needed to trigger such very small catchments are not 5 

properly modelled (Siccardi et al., 2005). 6 

The combination of the aforementioned factors leads us to conclude that the underestimation 7 

of quantiles for very small catchments (i.e. A < 30-50 km
2
) is a structural problem of the 8 

modelling chain. 9 

This fact is supported by the analysis shown in Figure 14, left panel. The Ratio(T) averaged 10 

on the target area is plotted as a function of T for all the sections with drainage Area ≥ 16 11 

km
2
. Ratio increases with T especially for the B.C. case, meaning that the growth curve 12 

values K(T) obtained by EXPRESS-Hydro partially balance the underestimation of average 13 

ADM (used as Index Flow) in the estimation of higher quantiles; Ratio(T=2.9 years) changes 14 

from 0.47 to 0.71, Ratio(T=50 years) from 0.45 to 0.66. If the threshold area is increased from 15 

16 to 50 km
2
 (Figure 14, right panel) the underestimation drops for both cases, with and 16 

without B.C.. 17 

As already shown, the general underestimation of Ratio(T) for small catchments is not 18 

completely confirmed for all the region, for instance, in part of central Liguria results are 19 

quite good even for basins with Area < 50 km
2
 and bias correction leads to an overestimation 20 

of Ratio(T). Apparently, in this area EXPRESS-Hydro can produce rainfall with a spatial-21 

temporal structure able to trigger floods compatible with the hydro-climatology of local small 22 

basins. This is also the part of the study region that previous studies demonstrated to be 23 

characterized by the highest values of rainfall maxima for 1, 3, 6, 12 and 24 hours (Boni et al., 24 

2008). 25 
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3.4 Effects of the rainfall downscaling on simulated ADM 1 

In order to assess the influence of the rainfall downscaling, the modelling chain was applied 2 

without it. In this way for each pixel of the domain a 30year long time series of ADM was 3 

computed by the hydrological model driven with the bias-corrected rainfall reanalysis at 4 

EXPRESS-Hydro native resolution. The rainfall field was assumed to have a constant 5 

intensity over 3-hourly timestep and resampled from 4 km to 1 km. 6 

The 30-year average ADM was computed and compared to the ones obtained by the complete 7 

chain by estimating the following ratio for each grid cell: 8 
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where QMeanNoDS (QMeanDS) is the average ADM obtained without (with) downscaling. The 10 

RatioDS was then plot versus the drainage area as in Figure 15:the downscaling impact 11 

generally increases as the drainage area decreases, and it is crucial to simulate the ADM on 12 

small catchment when drainage area is lower than 100-150 km
2
. Moreover RatioDS is always 13 

lower than 1, thus confirming that rainfall downscaling enhances the runoff formation as in 14 

Siccardi et al. (2005), likewise the analysis evidences how the underestimation of quantiles 15 

shown in section 3.3 would worsen without it. 16 

3.5 Water balance and runoff ratio 17 

In this section some considerations about the long-term water balance are shown in order to 18 

evaluate how the applied system can reproduce the hydrological cycle and the variables 19 

related to water balance and water resources management. 20 

Taking advantage of the modelled evapotranspiation maps, the distributed runoff ratio (RR) at 21 

cell scale is estimated as: 22 
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where Rain(x,y) and Evt(x,y) are the modeled total rainfall and evapotranspiration in the cell 1 

with coordinates (x,y) over the 30 years of simulation. The maps of RR are shown in Figure 2 

16, together with the maps of mean annual rainfall for both cases with and without B.C.. 3 

The spatial pattern of RR is strongly correlated to the precipitation one, and the latter is in 4 

turn evidently related with orography, especially for the case without B.C.. 5 

When a single cell has a large number of upstream cells, it tends to be frequently saturated 6 

because of the contributions of subsurface flow of the upstream cells: the values in the cells 7 

that belong to channel network as simulated by the hydrological model (Giannoni et al., 2005) 8 

are not shown because they are hardly representative (generally, the values are very low or 9 

even negative). 10 

B.C. produces an increasing of both precipitation and runoff ratio on the entire region and a 11 

reduction of the differences between coastal and inland areas. In order to estimate how the 12 

modeling chain reproduces the available observations the runoff ratio at basin scale on a 13 

target section S is computed by: 14 
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where Rain(s) is the accumulated rainfall over the basin laying upstream the section S and 16 

VQ(s) is the integral on time of the streamflow volume passed through the section S. We 17 

considered some closure sections where the runoff ratio estimated by observations (rainfall 18 

and streamflow) is available (see Table 1) from the Hydrologic Annual Survey 19 

(http://www.arpal.gov.it/homepage/meteo/pubblicazioni/annali-idrologici.html), an official 20 

document published by the Regional Agency for Environment Protection. The observed 21 

runoff ratios are not available for the simulation period (1979-2008) but they are estimated as 22 

an average of the values measured in non-continuous periods since 1940s to present, thus 23 

providing a possible benchmark to assess the performance of the modeling chain.  24 
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Modeled RRs are compatible with the hydro-climatology of the target area (Barazzuoli and 1 

Rigati, 2004; Provincia di Imperia, 2017) but at the same time it is evident a general 2 

underestimation in the western part of the region (basins 4,5,6); B.C. improves results and 3 

RRs are more similar to the benchmark (Table 6.). 4 

The rainfall B.C. introduces only small variations in terms of runoff ratio, thus meaning that 5 

when the long term water balance is addressed, the increasing or decreasing of rainfall lead on 6 

similar percent variation on both runoff and evapotranspiration.  7 

For example, in the central and eastern parts of Liguria, B.C. generally increases the 8 

precipitation and reduces the orographic features of the spatial pattern, but at the same time 9 

the evapotranspiration increases too, consequently RRs rise is small. As shown in sections 3.2 10 

and 3.3 the increasing of rainfall leads to larger values of ADM, but the RRs do not change 11 

significantly: this could be due to the fact that other EXPRESS-Hydro variables that influence 12 

the energy balance (and the long term water balance) like solar radiation or wind speed may 13 

benefit a correction, nevertheless no reliable and dense data are available for the entire 14 

simulation period. Another approach could be to perform a calibration more focused to 15 

preserve long term runoff. In any case we could say that generally the results are good and 16 

they highlight the potentialities of using such modeling chain even for water balance 17 

purposes. 18 

4 Discussion and conclusions 19 

This work explores the possibility of using EXPRESS-Hydro, a high-resolution regional 20 

dynamical downscaling of ERA-Interim dataset by means of the state-of-the-art non-21 

hydrostatic Weather Research and Forecasting (WRF) regional climate model for 22 

hydrological purposes on small catchments. This was done by feeding a distributed 23 

continuous hydrological model with a subset of the EXPRESS-Hydro meteorological 24 

variables to produce streamflow simulations; the rainfall fields were downscaled from the 25 



 27

native space-time resolution (4km, 3 hours) to a finer one (1km, 1 hour) before they were 1 

used to feed an hydrological model. All the analyses were conducted either applying and not 2 

applying a bias correction to rainfall fields. The study area is Liguria, a Region in the north-3 

western Italy, with a particular focus on its Tyrrhenian coast. 4 

Firstly we evaluated the performance of the modelling chain in reproducing extreme 5 

streamflow statistics by following two methods: i) by comparing statistical distribution of 6 

ADM with observations in some gauging points ii) by using as a benchmark the regional 7 

analysis presented in Boni et al. (2007) that allows a comparison with a distributed approach. 8 

We then evaluated how the modeling chain reproduces the long term water balance by 9 

analyzing the modeled runoff ratios and using as a benchmark the estimations based on 10 

observations. 11 

The results are encouraging even if the modelling chain cannot always meet the considered 12 

benchmarks with high accuracy. The ADM statistic is quite good in most of the target region 13 

but in some sub-regions the quantiles are sometimes under- or over-estimated. Rainfall B.C. 14 

generally improves the underestimation, yet introducing an overestimation in some basins 15 

especially in the central part of the region and in the largest basins. 16 

A single-site comparison of modelled and observed ADM shows that, for a large number of 17 

the gauging sites the time series belong to the same distribution with a 5% significance,  the 18 

fitting of modelled ADM with GEV distributions is generally good and often the observations 19 

lay inside the 95% confidence interval, especially for low-frequency quantiles. It must be 20 

noted that anyway in some sites the GEV fitting without B.C. is better than that with B.C. 21 

A comparison with the regional analysis shows interesting results as the behaviour 22 

remarkably drifts in some parts of the region, depending on how EXPRESS-Hydro generates 23 

the spatial-temporal patterns of precipitation and how much rainfall bias correction is 24 

effective. 25 
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Both point and distributed analysis show that there is a general underestimation for basins 1 

with drainage area smaller than 30-50 km
2
 but B.C. is able to tackling it largely. This is 2 

probably due to structural problems of the modelling chain under the aforementioned  size: 3 

for those basins it is necessary to further refine the time and spatial scales of the 4 

meteorological input (precipitation chiefly, Siccardi at al., 2006; Silvestro et al., 2016), and 5 

likely of hydrological model too (Yang et al., 2001). A possible way  to deal with very small 6 

basins is to better exploit the potentialities of the downscaling algorithm (RainFARM) that is 7 

here used in a deterministic way to generate a possible time (1-hour)- and space (1km) pattern 8 

with the constraint of maintaining the precipitation volumes and structures generated by 9 

EXPRESS-Hydro at its native resolution (3 hours, 4 km). 10 

Runoff ratio RR was used to evaluate long term water balance. The RR coefficient evaluated 11 

on a 30-year long simulation period at cell scale reasonably meets  the climatology of the 12 

region (Barazzuoli and Rigati, 2004; Provincia di Imperia 2017) and its pattern is highly 13 

correlated with annual mean rainfall distribution. RR at basin scale was compared with 14 

observations-based estimates for some gauging points and the values are of the same order of 15 

magnitude, however the modelling chain generally underestimates in both configurations 16 

even if B.C. results are slightly better. This could be due to the fact that also the variables 17 

related to energy balance (for example the solar radiation and wind) modelled by EXPRESS-18 

Hydro probably need a correction, but this analysis was not carried out, mainly for the lack of 19 

reliable and sufficiently dense data. 20 

To summarize this work, the present modelling chain was proven to reliably simulate the 21 

hydro-meteorological statistics in the study area, even if some difficulties and gaps were 22 

emphasized by the study. The fully distributed approach allows to reproduce the hydro-23 

climatic characteristics and features in a seamless way over the whole territory. Rainfall B.C., 24 

by helping the system to better model some characteristics not completely captured even by a 25 
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high-resolution meteorological reanalysis, contributes in a relevant way to improve the results 1 

even in very small basins (Area < 30-50 km
2
) generally affected by structural 2 

underestimation. 3 
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 1 

5 Tables 2 

Basin Section ADM 30 

years 

time 

series 

Hourly 

discharge 

data 

Runoff 

ratio 

Area 

[km
2
] 

Mean 

Slope 

[%] 

Mean 

heght [m] 

Magra Calamazza X X  1650 18 503 

Magra Piccatello X  X 
78 

21 590 

Vara Nasceto X X X 202 23 651 

Petronio Riva 

Trigoso 

X  

 

55 19 401 

Graveglia Caminata X   43 24 590 

Entella Panesi X X X 364 21 535 

Lavagna San 

Martino 

X  

 

163 23 570 

Bisagno Passerella 

Firpo 

 X 

 

92 20 398 

Bisagno La Presa X   34 25 520 

Sansobbia Ponte 

Poggi 

X  

 

33 21 470 

Neva Cisano X X X 123 25 670 

Arroscia Pogli X X X 204 27 650 

Impero Rugge X   73 19 480 

Argentina Merelli X X X 188 26 883 

Nervia Isolabona X   123 22 690 

Tanaro Ponte 

Nava 

X  

 

147 23 1350 
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Bormida Murialdo  X  134 19 820 

Bormida Piana 

Crixia 

 X 

 

273 15 550 

Orba Tiglieto  X  76 21 560 

Aveto Cabanne  X  33 23 1130 

Table 1: availability of discharge data used for model validation, ADM analysis, long term 1 

mass balance analysis. The characteristics of the basins upstream each measurement station 2 

are reported. 3 

4 



 39

 1 

Parameter uc [m
0.5

s
-

1
] 

uh [s
-1

] ct [-] cf [-] VWmax 

[mm] 

Rf [-] 

Range 

20-150 

0.0001-

0.001 0.1-0.7 

0.005-

0.1 

200-

1500 0.5 10 

Table 2: ranges of parameter values considered for the calibration-validation process. 2 

 3 

4 
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 1 

Basin Section uc [m
0.5

s
-

1
] 

uh [s
-

1
] 

ct [-] cf [-] NS REHF NS 

(AP) 

REHF 

(AP) 

Magra Calama

zza 127 

0.000

194 0.3 0.05 0.81 0.14 

0.75 0.34 

Vara Nasceto 

125 

0.000

191 0.5 0.035 0.83 0.10 

0.79 0.17 

Entella Panesi 

64 

0.000

192 0.3 0.05 0.77 0.18 

0.69 0.28 

Bisagn

o 

Passerel

la Firpo 110 

0.000

556 0.5 0.05 0.26 0.16 

0.24 0.21 

Neva Cisano 

63 

0.000

194 0.3 0.05 0.71 0.25 

0.59 0.47 

Arrosci

a 

Pogli 

65 

0.000

192 0.3 0.02 0.74 0.31 

0.66 0.39 

Argent

ina 

Merelli 

62 

0.000

185 0.3 0.035 0.84 0.21 

0.78 0.3 

Bormi

da 

Muriald

o 85 

0.000

174 0.3 0.05 0.35 0.51 

0.21 0.87 

Bormi

da 

Piana 

Crixia 66 

0.000

200 0.5 0.02 0.76 0.41 

0.57 0.35 

Orba Tiglieto 

114 

0.000

278 0.5 0.02 0.88 0.21 

0.84 0.29 

Aveto Cabann

e 69 

0.000

520 0.5 0.02 0.73 0.41 

0.77 0.45 

Table 3: hydrological model validation; skill score values obtained for the calibrated. The 2 

calibrated parameters are also reported. VWmax [mm] and Rf [-] have values 500 mm and 1 for 3 

all the basins. 4 

5 



 41

 1 

 BIAS [mm] RMSE [mm] 

DJF -10.47 60.21 

MAM -0.71 56.13 

JJA -47.71 59.58 

SON -89.55 120.73 

Table 4: Comparison between seasonal rainfall observations and EXPRESS-Hydro. Skill 2 

scores estimated on seasonal time scale. 3 

 4 

 5 

6 
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 1 

 2 

 3 

 4 

Basin Section P value K-S test P value 

(B.C.) 

K-S test 

(B.C.) 

Magra Calamazza 0.008 NO 0.855 Yes 

Magra Piccatello 0.036 NO 0.021 NO 

Vara Nasceto 0.632 Yes 0.012 NO 

Petronio Riva Trigoso 0.780 Yes 0.023 NO 

Graveglia Caminata 0.030 NO 0.065 Yes 

Entella Panesi 0.002 NO 0.990 Yes 

Lavagna San Martino 0.062 Yes 0.701 Yes 

Bisagno La Presa 0.056 Yes 0.022 NO 

Sansobbia Ponte Poggi 0.350 Yes 0.005 NO 

Neva Cisano 0.420 Yes 0.110 Yes 

Arroscia Pogli 0.172 Yes 0.820 Yes 

Impero Rugge 0.003 NO 0.860 Yes 

Argentina Merelli 0.078 Yes 0.218 Yes 

Nervia Isolabona 0.206 Yes 0.449 Yes 

Tanaro Ponte Nava 0.001 NO 0.034 NO 

Table 5: Kolmogorov-Smirnov test with 5% significance. P values are reported together with 5 

verification of null-hypothesis (data belong or not to the same distribution). 6 

 7 

 8 

 9 

 10 

11 
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 2 

 3 

Basin Section N. 

Progr 

Area 

[km
2
] 

Obs. RR. Model 

RR 

Model RR 

(B.C.) 

Magra  Piccatello 1 78 0.61 0.62 0.63 

Vara Nasceto 2 202 0.7 0.64 0.66 

Entella Panesi 3 364 0.73 0.64 0.67 

Neva Cisano 4 123 0.59 0.47 0.49 

Arroscia Pogli 5 204 0.55 0.48 0.51 

Argentina Merelli 6 188 0.65 0.51 0.53 

Table 6. Runoff ratios (RR) obtained by the modeling chain (with and without the 4 

rainfall bias correction) compared to those estimated by observations. 5 

 6 

7 
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6 Figures 1 

 2 

Figure 1. Study area geo-location at large scale (a) and zoom (b). Blue lines represent 3 

the regional boundaries of Italy, dashed line shows the main catchments of the study 4 

region, red dots represent the meteorological rain-gauge station of Liguria region of 5 

Italy where 32 years (1978-2010) of daily data are available, yellow triangles are the 6 

level gauge sections. Digital elevation model highlights the morphology of the region. 7 

In the bottom right corner the curve number map is reported to show synthetically the 8 

usage of soil. 9 

10 



 45

 1 

 2 

 3 

Figure 2. Upper panel shows the average annual rainfall map over Liguria area, the middle 4 

panel shows the average observed annual rainfall map, while the bottom one shows their 5 

difference in mm. 6 

7 
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 1 

 2 

Figure 3. Upper panel shows the average DJF, MAM, JJA, SON rainfall maps over Liguria. 3 

For each season 3 maps are shown: EXPRESS-Hydro rainfall map, observed rainfall map, 4 

difference map in mm. 5 

6 
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 1 

 2 

Figure 4: Scatter plots of seasonal precipitation built using data on EXPRESS-Hydro spatial 3 

resolution (pixel to pixel comparison). X axis reports observed interpolated rainfall, Y axis 4 

reports EXPRESS-Hydro estimation. 5 

 6 

 7 

8 
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 2 

Figure 5: Box plot of monthly precipitation averaged at regional scale. Blue box plots are 3 

built with observations while red ones with EXPRESS-Hydro reanalysis. 4 

5 
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 1 

 2 

Figure 6: Box plot of monthly precipitation averaged at basin scale for 4 test catchments. Blue 3 

box plots are built with observations while red ones with EXPRESS-Hydro reanalysis. 4 

5 
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 1 

 2 

Figure 7. Growth curve obtained by annual maxima of 24 hours accumulated rainfall. 3 

Observations (blue dots) compared with EXPRESS-Hydro reanalysis (black dots). Red line is 4 

the GEV distribution fitted on EXPRESS-Hydro values while dotted lines are the confidence 5 

intervals with significance 95% 6 

7 
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 2 

 3 

Figure 8. Distribution of ADM for Entella closed at Panesi (364 km
2
) and Bisagno 4 

closed at La Presa (34 km
2
). Blue dots are the simulated ADM, black dots are observed 5 

ADM, red line is the GEV fitted on simulated ADM while dotted lines are confidence 6 

intervals with 95% significance. Upper panels show results without rainfall bias 7 

correction, bottom panels show results with rainfall bias correction. 8 

 9 

 10 
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 1 

Figure 9. Same as figure 8 but for Magra closed at Piccatello (78 km
2
) and Argentina 2 

closed at Merelli (188 km
2
). 3 
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 1 

Figure 10: Same as figure 8 but for Neva closed at Cisano (123 km
2
) and Nervia closed 2 

at Isolabona (122 km
2
). 3 

 4 

 5 

 6 

 7 

 8 
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 1 

Figure 11. Sample growth curve obtained by model chain (blue dots) compared with 2 

observations (black dots). Red line is the GEV distribution fitted on modeled values 3 

while dotted lines are the confidence intervals with significance 95%. Top panels: 4 

results without and with rainfall bias correction using the sections where hydrological 5 

model was calibrated. 6 

Bottom panels: results without and with rainfall bias correction using all the grid points 7 

with drainage area larger than Ath. 8 

 9 
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 1 

Figure 12. Ratio(T) as a function of drainage area. T=2.9 years which correspond to index 2 

flow. Upper panel shows results without rainfall bias correction, lower panel (B.C.) with 3 

rainfall bias correction. 4 

5 
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 2 

 3 

Figure 13. Maps of Ratio(T) for T=2.9 and 50 years. Upper panel shows results without 4 

rainfall bias correction, lower panel (B.C.) with rainfall bias correction. The B.C. 5 

increases the  percentage of drainage network points that have values around 1. 6 

7 
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 1 

 2 

Figure 14. Mean Ratio(T) over the considered domain as a function of T. Continuous line (no 3 

B.C.) is the case without rainfall bias correction, dotted line (B.C.) is the case with rainfall 4 

bias correction. Left panel is the case where points with drainage area lower than 16 km
2
 are 5 

discarded; right panel is the case where points with drainage area lower than 50 km
2
 are 6 

discarded. 7 

8 
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 2 

Figure 15. Ratio between mean flow estimated without and with downscaling as a function of 3 

drainage Area. The graph shows that the impact of rainfall downscaling increases when basin 4 

drainage area decreases. 5 
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 2 

 3 

Figure 16. Distributed runoff ratio and mean annual rainfall. Upper panels show the 4 

model estimation without B.C. while lower panels with B.C. . 5 

 6 


