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Abstract. Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely 10 

on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for 

streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography 

and orography effect over diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing 

approach called rainfall-post processing (RPP), developed in Australia (Robertson et al., 2013;Shrestha et al., 2015), has 

been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global 15 

ensemble forecasting system (GEFS) Reforecast 2 project from National Centers for Environmental Prediction, and Global 

deterministic forecast system (GDPS) from Environment and Climate Change Canada are used in this study. The study 

period from Jan 2013 to Dec 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that 

the RPP is able to remove the bias, and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the 

RPP reliably quantify the forecast uncertainty.   20 

1 Introduction 

Quantitative precipitation forecasts (QPFs) obtained from numerical weather prediction (NWP) models are one of the main 

inputs to hydrological models when used for streamflow forecasting (Ahmed et al., 2014;Coulibaly, 2003;Cuo et al., 

2011;Liu and Coulibaly, 2011). A deterministic forecast, representing a single state of the weather, is unreliable due to 

known errors associated with approximate simulation of atmospheric processes, and in defining initial conditions for a NWP 25 

model (Palmer et al., 2005). A single estimate of streamflow using a poor or high quality precipitation forecast would have 

significant impact on decision support, such as management of water structures, issuing warnings of pending floods or 

droughts, scheduling reservoir operations, etc. In recent years, there is growing interest in moving toward probabilistic 

forecasts, suitable for estimating the likelihood of occurrence of any future meteorological event, thus allowing water 

managers and emergency agencies to prepare for the risks involved during low or high flow events, at least a few days or 30 
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weeks in advance (Palmer, 2002). The precipitation forecasts, however, are constrained by major limitations surrounding the 

technical difficulties and computational requirements involved in perturbing initial conditions and physical parametrization 

of the NWP model. The QPFs, ensemble or deterministic, have to be post-processed prior to use as reliable estimates of any 

observations (e.g., streamflow).  

 5 

In the last decade, several post-processing methods reliant on statistical models have been proposed. The basic idea is to 

develop a statistical model by exploiting the joint relationship between observations and NWP forecasts, estimate the model 

parameters using past data, and reproduce post-processed ensemble forecasts of the future (Roulin and Vannitsem, 

2012;Robertson et al., 2013;Chen et al., 2014;Khajehei, 2015;Shrestha et al., 2015;Khajehei and Moradkhani, 2017;Schaake 

et al., 2007;Wu et al., 2011;Tao et al., 2014). The range of complexity in the post-processing approaches vary from 10 

regression-based approaches to parametric or non-parametric models based on the meteorological variables (wind speed, 

temperature, precipitation etc.) and specific applications. Precipitation is known to have complex spatial structure and 

behavior (Jha et al., 2015a;Jha et al., 2015b). Thus it is much more difficult to forecast than other atmospheric variables 

because of nonlinearities and the sensitive processes involved in its generation (Bardossy and Plate, 1992;Jha et al., 2013). 

From the perspective of a hydrologic forecast center, the post-processing approach should be effective while involving few 15 

parameters. For instance, the United States National Weather Service River Forecast System has been using an Ensemble 

Pre-processing technique that constructs ensemble forecasts through the Bayesian Forecasting System by correlating normal 

quantile transform of QPFs and observations (Wu et al., 2011). In order to instill space-time variability of precipitation 

forecast in ensemble, the post-processed forecast ensemble is reordered based on historical data using the Schaake-Shuffle 

procedure (Clark et al., 2004;Schaake et al., 2007). This pre-processing technique requires a long historical hindcast database 20 

as it relates single NWP forecasts to corresponding observations. In Australia, Robertson et al. (2013) developed a Bayesian 

post-processing approach called Rainfall Post-processing (RPP) to generate precipitation ensemble forecasts. The approach 

was based on combining Bayesian Joint Probability approach of Wang et al. (2009) and Wang and Robertson (2011), along 

with the Schaake-Shuffle procedure (Clark et al., 2004). In contrast to Ensemble Pre-Processing technique, the RPP 

approach of Robertson et al. (2013) has been described with few parameters and it can better deal zero value problems in 25 

NWP forecasts (Tao et al., 2014) and observations. The RPP approach has been successfully applied to remove rainfall 

forecast bias and quantify forecast uncertainty from NWP models in Australian catchments (Bennett et al., 2014;Shrestha et 

al., 2015).  

 

Recent developments in post-processing techniques and advantage of generating ensembles, and thus estimating uncertainty, 30 

are well established in the literature. In an operational context, however, forecast centres in Canada tend to use deterministic 

forecasts in hydrologic models to obtain streamflow forecasts. The main reasons for this are the higher spatial and temporal 

resolution of the deterministic forecasts over the ensemble QPFs, and the associated computational complexities in dealing 

with ensemble members. The added advantage of using ensemble forecasts over deterministic forecasts have been addressed 
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in many previous studies e.g., (Abaza et al., 2013;Boucher et al., 2011). When the computational facilities are available, 

using a set of QPFs obtained from different NWP models run by different agencies (such as the European Centre for 

Medium-range Weather Forecasts, the Japan Meteorological Agency, the National Center for Environmental Prediction, the 

Canadian Meteorological Center, etc.) seem to be a preferred choice (Ye et al., 2016;Zsótér et al., 2016;Qu et al., 

2017;Hamill, 2012).  5 

 

The main hypothesis we want to test in this study is whether RPP approach can be directly applied to Canadian catchments 

or any modification is required. Based on this hypothesis, the aims of this study are to: (a) evaluate the performance of RPP 

in improving cold regions precipitation forecasts; (b) compare the ensembles generated from applying RPP to the 

deterministic QPFs obtained from GEFS and GDPS (referred to as calibrated QPF); and, (c) investigate forecast performance 10 

during an extreme precipitation event like that of 2013 in Alberta, Canada. The methodology and description of the study 

area and datasets are presented in Section 2. Section 3 presents methodology, followed by results in Section 4 and discussion 

and conclusion in Section 5. 

 

Although the current study uses RPP approach previously published in Robertson et al. (2013) and Shrestha et al. (2015), 15 

there are many novel aspects of this study, which are listed below:  

 

i. Robertson et al. (2013) demonstrated the application of RPP approach at rain gauge locations in a catchment in southern 

Australia. In the present study, we are applying RPP at the subcatchment level using the subcatchment-averaged forecasts 

and observations, which is similar to the work presented in Shrestha et al. (2015).   20 

ii. The physiography and orography effects over western catchments of Canada significantly differ from those Australian 

catchments considered in Shrestha et al. (2015). In their analysis, Shrestha et al. (2013) considered 10 catchments in 

Tropical, Subtropical and Temperate climate zones with catchment area ranging from 87 to 19618 km
2
 distributed in 

different parts of Australia. Each catchment was further divided into smaller subcatchments and RPP was applied in each of 

them. In the present study, we focus on only a specific region of Canada with cold and snowy climate having 15 25 

subcatchments with areas ranging from 734 to 2884 km
2
. We apply RPP to each subcatchment using the forecast and 

observation data lying within it. The size of the subcatchment plays an important role in estimating the subcatchment-

averaged forecast and observations.  

iii. The results from different NWP models are known to vary due to approximations involved in the simulation of 

atmospheric processes, applied initial and boundary conditions, etc. In the present study, we used two precipitation forecasts 30 

obtained from the Global Ensemble Forecast System (GEFS) Reforecast Version 2 data from National Centers for 

Environmental Prediction, and Global deterministic forecast system (GDPS) from Environment and Climate Change 

Canada. Shrestha et al. (2013) used forecasts from only one NWP model, the Australian Community Climate and Earth-
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System Simulator. Further, we compare the performance of RPP applied to GEFS and GDPS forecasts in order to decide 

which forecast is best suited in our study area.    

iv. Although QPFs from the GDPS are routinely used at the forecast centers in Canada, the application of GEFS to 

catchments in Western Canada is not known, to the best of our knowledge (also confirmed from data providers, personal 

communication dated 21
st
 March, 2017).  5 

v. In their analysis, Shrestha et al. (2013) considered 3 hourly forecasts for 615 days only. In the current study, 3 years of 

daily forecasts are used without any gap. The longer data record are recommend as it can help in inferring the parameters of 

RPP more accurately.  

vi. In the present study, we explicitly look at an extreme precipitation event that happened in Calgary 2013 and evaluated the 

performance of RPP approach in generating ensembles, which was not done in previous works (Shrestha et al., 10 

2015;Robertson et al., 2013). 

vii. To the best of our knowledge, this is the first time an approach for generating ensembles from a deterministic QPF is 

tested in any Canadian catchment explicitly for the benefit of forecast centers. As part of National Sciences and Engineering 

Research Council Canadian Floodnet 3.1 project, the first author visited flood forecast centres in Western Canada. One of 

the common concerns raised by forecasters was the need for generating ensembles in order to assess risk associated with 15 

streamflow forecasts provided to the public. The conclusions from the present study will be highly relevant and beneficial 

for flood forecast centres in Canada. 

2 Study area and datasets  

The selected study area is southern Alberta, located in western Canada (Figure 1a). The Rocky Mountains are located at the 

Southern boundary with the USA and Western boundary with British Columbia, with the Canadian Prairie region extending 20 

toward the south-eastern portion of the province. Topography plays a major role in generating cyclonic weather systems 

common to Alberta. The Oldman, Bow and Red Deer River basins, all located at the foothills of the Canadian Rocky 

mountain range, are subjected to extreme precipitation events. In June 2013 a major flood occurred in this region resulting 

from the combined effect of heavy rainfall during mountain snowpack melt over partially frozen ground (Pomeroy et al., 

2016;Teufel et al., 2016). Some river basins received 1.5 times 1:100 year rainfall, estimated to be 250 mm rain in 24 hours. 25 

The 2013 flood affected most of Southern Alberta from Canmore to Calgary and beyond, causing evacuation of around 

100,000 people and a reported cost of damage of infrastructure exceeding $6CAD billion (Milrad et al., 2015). The spatial 

distribution of convective precipitation and orography make it difficult for any NWP model to successfully predict the 

summertime convective precipitation in Alberta. The NWP forecasts at the time predicted less (about half of the actual 

amount) rainfall during this event (AMEC, 2014).   30 

 

The dataset used in this study consists of observed and forecast daily precipitation over the period of 2013 to 2015, including 

the heavy precipitation event causing the major flood of 2013. Observed data were obtained from the Environment and 
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Climate Change Canada precipitation gauges. Two precipitation forecasts GEFS and GDPS were obtained from National 

Centers for Environmental Prediction and Environment and Climate Change Canada respectively. A description of both 

forecasts is presented in Table 1. The spatial resolution of GEFS forecasts is: [0.47
0
 latitude, 0.47

0
 longitude]. GEFS contains 

eleven forecast members including one control run and ten ensembles. The control run uses the same model physics but 

without perturbing the analysis or model. The ensembles are obtained by perturbing the initial conditions slightly (WMO, 5 

2012). The forecast is available at 00 UTC at an interval of three hours for the first three days and then six hourly up to eight 

days. It is worth pointing here that in the GEFS data, the forecasts at hours 3, 9, 15, and 21 are three hour accumulations, 

whereas the forecasts at 6, 12, 18, and 24 hours are six hours accumulations for forecasts valid for days 1 to 3. In order to 

obtain a 24-hour (daily) forecast for days 1, 2, and 3, we need to consider the summation of forecasts valid at hours 6, 12, 18, 

and 24 for a given day. For days 4 and 5, forecasts are only available for 6, 12, 18, and 24 hours (i.e., there is no forecast for 10 

the 3-hour accumulation). The control run of GEFS for a period of three years (01/01/2013 to 31/12/2015) with lead-time of 

5 days are used in the present analysis.  

 

GDPS precipitation forecasts are obtained from the Canadian NWP model, Global Environmental Multi-scale model. The 

forecasts are available at approximately [0.24
0
 latitude, 0.24

0
 longitude] spatial resolution at an interval of three hours for 15 

forecast lead times up to and beyond two weeks. Precipitation forecasts are accumulations from the start to the forecast 

period. To obtain a forecast for a specific day, let’s say day 2, the precipitation forecast at the end of day 1 has to be 

subtracted from the precipitation forecast at the end of day 2. Three years of continuous GDPS forecasts from 01/01/2013 to 

31/12/2015 with lead-times of 5 days at 00 UTC are used in the present analysis.  

 20 

There are three major rivers passing through the study area: Bow, Oldman, and Red Deer Rivers (Figure 1b). Based on the 

world map of Peel et al. (2007), the climate of the study area is classified as warm summer humid continental. The Köppen-

Geiger classification system presented for Canada in Delavau et al. (2015) shows that our study area falls within the KPN42 

(Dfb – snow, fully humid precipitation, warm summer), KPN43 (Dfc – snow, fully humid precipitation, cool summer) and 

KPN 62 (ET polar tundra).  All the three river basins are part of the South Saskatchewan River basin which flows eastward 25 

towards Canadian prairies. The combined basin area is approximately 101,720 km
2
 (AEP, 2017). For the purpose of 

hydrological prediction, the River Forecast Centre in Alberta uses fifteen subcatchments (marked with numbers 1 to 15 in 

Figure 1b) to delineate the study area, with drainage areas as indicated in Table 2.  

 

The distribution of precipitation gauges and forecast locations are uneven in the various subcatchments (Figure 1b). For 30 

hydrological modeling purposes, average precipitation over each subcatchment is calculated using an inverse-distance 

weighting method (Shepard, 1968) considering four neighbouring gauges. Subcatchment 2 receives the highest 

subcatchment-averaged annual precipitation, while subcatchment 13 receives the lowest average annual precipitation during 
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the three year study period (Table 2). In each subcatchment, an area-weighted forecast is calculated by considering the 

portion of the forecast grid that overlaps with the subcatchment.  

 

Figure 2 shows the comparison of raw QPFs and observed precipitation in subcatchments 10 and 11 for GEFS and GDPS 

with a lead-time of one day for 2013. The large peak observed  (Figures 2a to 2d) is the result of a major rainfall event 5 

responsible for severe flooding in Alberta in June 2013. Figure 2 indicates that there is a substantial bias between the raw 

QPFs and observations. Raw QPFs from GEFS and GDPS consistently underestimate peak events and medium precipitation 

amounts, which is of concern to hydrologic forecast centres predicting streamflow peak volume and timing.  

 

3 Methodology 10 

3.1 Post-processing approach 

We use the RPP to post-process the precipitation forecasts. The RPP was developed by Robertson et al. (2013) and 

successfully applied to a range of Australian catchments (Shrestha et al., 2015).  Detailed descriptions of the RPP can be 

found in above references, here we present a brief overview of the method. 

 15 

The input to the post processing approach is observation ( Oz ) and raw QPF ( rfz ). A log-sinh transformation is applied to 

both observations and raw precipitation forecast:  
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where
Oẑ and

Oẑ
 represent the mean and standard deviation of Oẑ  respectively; 

rfẑ  and 
rfẑ

  represent the mean and 

standard deviation of rfẑ respectively; 
rfOzz ˆˆ is the correlation coefficient between Oẑ  and rfẑ . Thus, there are nine 

parameters ( O , O ,
Oẑ , 

Oẑ
 , f , f , 

rfẑ , 
rfẑ

 , 
rfOzz ˆˆ ) to model the joint distribution of raw QPF and observation. 

We infer a single set of model parameters that maximizes the likelihood of posterior parameter distribution using the 

shuffled complex evolution algorithm (Duan et al., 1994). All model parameters are reparametrized to ease the parameter 5 

inference. Once the parameters are inferred, the forecast is estimated using the bivariate normal distribution conditioned on 

the raw forecast. The random sampling from the conditional distribution generates the ensemble of forecasts. The forecast 

values are then transformed to the original space using inverse of Equations (1) and (2).  

 

Since the forecasts are generated at each location for each lead-time separately, the space-time correlation in the ensemble 10 

members will be unrealistic. The Schaake shuffle (Clark et al., 2004) is then applied to adjust the space-time correlations in 

the ensemble similar to what was observed in the historically observed data. The Schaake shuffle calculates the rank in the 

observed data and preserves the same rank in the sorted, new ensemble forecast. Our application of the Schaake shuffle is 

briefly described here. 

1. For a given forecast date, an observation sample (date and amount of data) of the same size as that of the ensemble 15 

is selected from the historical observation period;  

2. The observation sample data for each lead time are ranked. Similarly, the data from the forecast ensemble for each 

lead time are ranked; 

3. A date from the observation sample is randomly selected and the ranks of the observation data for the selected date 

for all lead times are identified;  20 

4. For a given lead time, we select the forecast (from the forecast ensemble) that has same rank as that of the selected 

observation; 

5. In order to construct an ensemble trace across all lead times, step 3 is repeated for all lead times; and  

6. Steps 3 to 5 are repeated as many times as the size of ensembles.  

The above procedure is extended for both temporal and spatial correlation in this study.   25 

 

An important feature of the RPP is the treatment of (near) zero precipitation values, which are treated as censored data  in the 

parameter inference. This enables the use of the continuous bivariate normal distribution for a problem which is otherwise 

solved using a mixed discrete-continuous probability distribution (e.g. Wu et al. (2011)). 
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3.2 Verification of the post-processed forecasts 

We assess the processed forecast in terms of deterministic metrics, such as percent bias defined as percent deviation from the 

observations (Bias (%)), mean absolute error (MAE in mm), and a probabilistic metric, continuous rank probability score 

(CRPS) at each site for the forecast period (t). The percent bias is estimated:  

100
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where fz could be either raw ( rfz ) or post-processed forecast ( pfz ), and Oz represents observation.  

 

MAE measures the closeness of the forecasts and observations over the forecast period.  
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In case of ensemble forecast, we use the mean value of forecasts in the calculation of both bias and MAE. Low value of both 10 

bias and MAE indicate that the forecasts are closer to observations. Percent bias close to zero indicates that forecasts are 

unbiased.  

 

The CRPS is a probabilistic measure to relate the cumulative distribution of the forecasts and the observations:  



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of zz

2))()((                                                            (7) 15 

where 
fzF is the cumulative distribution function of ensemble forecasts; 

ozF is the cumulative distribution function of 

observation, which turns out to be a Heaviside function (= 1 for values greater than a value, otherwise 0). In case of 

deterministic forecast, CRPS reduces to MAE. The forecast is considered better when the CRPS values are close to zero.  

 

The relative operating characteristic (ROC) curves are used to assess the forecast’s ability to discriminate precipitation 20 

events in terms of hit rate and false alarm rate. Given a precipitation threshold, hit rate refers to probability of forecasts that 

detected events smaller or larger in magnitude than the threshold; false alarm rate refers to probability of erroneous forecasts 

or false detection (Atger, 2004;Golding, 2000). If the ROC curves (plot between hit rate versus false alarm rate) approach the 

top left corner of the plot, the forecast is considered to have greater ability to discriminate precipitation events. The 

discrimination ability of the forecast is considered low when the ROC curves are close to the diagonal.   25 
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To compare the spread in forecast ensembles against the observations, we perform spread-skill analysis by plotting ensemble 

spread versus forecast error (e.g., Nester et al. (2012)). The ensemble spread is defined as mean absolute difference between 

the ensemble members and the mean. The absolute difference between the observation and the ensemble mean is defined as 

forecast error. For each lead time in the cross-validation period, we compute the ensemble spread and forecast error for 1000 

ensemble forecasts, sort them in increasing order, group the values in 10 classes, and calculate an average spread and error in 5 

each class.  

3.3 Statistical treatment of forecasts  

Because of the short record of data (3 years only), few extreme events may significantly affect the verification scores. 

Therefore it is desirable to understand the effect of the sampling variability on the verification scores. Accounting for 

sampling variability in calculating the verification scores adds confidence that results are robust and likely to apply under 10 

operational conditions (Shrestha et al., 2015). We calculate sampling uncertainty through a bootstrap procedure (e.g. 

Shrestha et al. (2013)). The first 1095 pairs (three years of data) of forecast-observation are sampled with replacement from 

the original forecast-observation pairs, with replacement and verification scores calculated (discussed in Section 3.1 below). 

These steps are repeated 5000 times to obtain a distribution of the verification score, from which 5% and 95% confidence 

interval are calculated.  15 

3.4  Experimental set up 

Post-processing is applied to precipitation forecasts in 15 subcatchments, making use of the subcatchment-averaged 

precipitation forecast data for the total study duration (i.e., 2013 to 2015 for GEFS and GDPS), for each day of forecast at 00 

UTC up to a lead-time of 5 days. We apply a leave-one-month-out cross validation approach. The simulation runs in two 

modes: inference and forecast. In the inference mode, for example, 36 months of precipitation forecast and observations are 20 

used to estimate the model parameters. Once parameters are estimated, the simulation runs in forecast mode to generate 1000 

ensembles (or realizations) of precipitation forecast for the month that was left out of the calibration. The process is repeated 

36 times to generate forecasts for 2013 to 2015.  

 

4 Results 25 

 

4.1 Evaluation of calibrated QPFs 

 

Figures 3 presents the percent bias and CRPS in five subcatchments for both GEFS and GDPS forecasts. Out of 15 

subcatchments considered in this study, the maximum and minimum total annual subcatchment-averaged precipitation for 30 

years 2013 to 2015 occurred in subcatchments 2 and 13, respectively (see Table 2); subcatchments 7 and 8 have minimum 

and maximum size, respectively. The four selected subcatchments covered the middle and southern portions of the study 
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area, therefore we include subcatchment 4 to facilitate discussion on the performance of calibrated QPFs in the northern 

portion of the study area. The percent bias for all 15 subcatchments is provided in Supplementary Figure SF-1(a).   

 

Based on visual inspection of bias plots (Figure 3a to 3e), the bias in the calibrated QPF is close to zero in almost all five 

subcatchments (except at lead time 4 in the subcatchment 8), indicating that overall the RPP is able to reduce the bias in the 5 

raw QPF. As shown in Supplementary Figure SF-1(b), the inability of calibrated RPP in reproducing a peak precipitation 

event at lead time 4 in the subcatchment 8 resulted into large bias. The anomaly can be attributed to the fact that the 

subcatchment 8 has largest area and only few observation stations lie inside the subcatchment. In case of GEFS forecasts for 

the lead-time of one day, the raw QPFs have an average bias ranging from -30 % (in subcatchment 2) to around 100 % (in 

subcatchment 13). In all subcatchments, the bias increases slightly from day 1 to day 2, then drops in day 3 and in days 3 to 5 10 

either increases or remains almost constant. Increase in bias in the first two days lead-time can be attributed to the ‘spin-up’ 

of the NWP model. Spin-up is expected to influence only the first day or two. In the case of GDPS, the bias in the raw QPF 

is close to zero (except in subcatchments 2 and 8, where bias is negative) for the 1-day lead time, but the bias increases up to 

as high as 50% (subcatchment 13) for a lead-time of 5 days. The 5% and 95% confidence interval around the raw QPF also 

increases slightly with lead-time indicating that the forecast for lead-time of 1-day will have higher confidence (hence a 15 

narrow shaded area), than for the latter days, which is intuitive. It may be argued that the variations in bias in different 

subcatchments can be attributed to topography and physiographic characteristics. It is worth pointing out that in this study, 

we are not considering spatial non-stationarity because the goal is to set up a simple Bayesian model that relates the 

subcatchment precipitation forecasts and the observations. Accounting for the topography and elevation in the probabilistic 

model increases the complexity significantly and it is unlikely that the forecast performance will increase given the length of 20 

data used to infer the model parameters. Thus, we are not concerned with linking topography and corrections in the forecasts. 

 

The subcatchment-averaged CRPS of raw and calibrated QPFs are shown in Figures 3f to 3j. It is worth mentioning that for 

the deterministic forecast, the CRPS reduces to mean-absolute error (MAE), thus the plots for raw QPF (Figures 3f to 3j) 

show MAE. For simplicity, we therefore refer to MAE of raw QPF as its CRPS. The CRPS estimated on the calibrated QPFs 25 

are based on 1000 ensembles generated from the RPP approach.  In the case of GEFS and similar to the bias plots (Figures 

3a to 3e), we notice that the CRPS first increases then decreases and increases again after a lead-time of 4 days in the raw 

QPF. The CRPS based on the calibrated QPFs, however, consistently increases (except for subcatchment 2) indicating that as 

the lead-time increases, deviation between forecasts and observation will be larger. In case of GDPS, the CRPS of raw QPF 

varies between 1 to 2.2 mm/day for lead-time of one day, almost linearly increasing up to 3 mm/day for forecast lead-times 30 

of 5 days. The RPP approach reduces the CRPS significantly for each lead-time in all subcatchments (except at a lead time 4 

in the subcatchment 8).The reason for deviation in CRPS at lead time 4 in the subcatchment 8 is not trivial; however it can 

be attributed to RPP’s inability to capture a peak precipitation event as shown in Figure SF-1(b). Overall the calibrated QPF 
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has lower CRPS than the raw QPF, which demonstrates that the RPP is able to improve the raw QPF across all lead times. 

The CRPS of other subcatchments are presented in Supplementary Figure SF-1(c). 

 

To assess the calibrated forecasts’ ability to discriminate between low  (<0.2 mm) and high precipitation events (>5 mm) for 

all lead times, Figure 4 presents the ROC curves for years 2013 to 2015. We only present results for lead-times of 1, 3 and 5 5 

days for calibrated GEFS and GDPS forecasts for subcatchment 11. The results of other subcatchments are presented in 

Supplementary Figures SF-2(a) to 2(d). For GEFS (Figures 4a and 4b), the ROC curves for days 1, 3 and 5 increasingly 

move away from the top left corner of the plot, suggesting that forecasts for shorter lead times have slightly higher 

discriminative ability than those for longer lead times. GDPS shows similar behaviour (Figures 4c and 4d), indicating that 

forecasts at longer lead times are less skilful than those at shorter lead times. Both GEFS and GDPS forecasts for a lead time 10 

of 1 day suggest that the forecast discrimination is stronger for higher rainfall events (> 5 mm) where ROC curves are closer 

to left corner of the plot (Figures 4c and 4d) than for smaller precipitation events (< 0.2 mm).   

 

Figure 5 indicates the forecast error versus spread of the ensembles for calibrated GEFS and GDPS forecasts with lead times 

of 1, 3 and 5 days for subcatchment 11. For days 3 and 5, most of the points seem to fall on the diagonal (1:1 line), 15 

suggesting good agreement between the forecast error and the spread across all the lead times. For day 1, the deviation of the 

points from the diagonal (1:1 line) is higher indicating larger bias for day 1 compared to days 3 and 5. To explore it further, 

we calculated the frequency of observed data lying within 10-90% confidence boundary of calibrated QPFs. Figure 6 shows 

that in case of calibrated GEFS, the calculated frequency of observed data for lead time of 1 to 5 days varies between 0.78 to 

0.88. However, for calibrated GDPS, the frequency lies between 0.87 to 0.9. Figure 6 demonstrates that as the lead-time 20 

increases, the frequency of observed data lying within the [0.1-0.9] confidence boundary is higher.  

 

4.2 Performance of calibrated QPFs during an extreme event 

As mentioned in Section 2, a severe flood event occurred from 20
th

 to 24
th

 of June, 2013 in Calgary (located near the outlet 

of subcatchment 7, see Figure 1b). Therefore we examine subcatchment-averaged precipitation obtained from raw and 25 

calibrated QPFs against observed data. From the historical observed data, we notice that most peak precipitation events tend 

to occur over the mountains (i.e., in subcatchments 10 and 11). To consider both the peak precipitation event responsible for 

triggering the 2013 flood, and also the series of smaller precipitation events before and after the peak event, we select a one 

month period from 10
th

 June to 10
th

 July 2013.  Results for the 1-day lead-time in subcatchments 10 and 11 (Figure 6) 

relative to observed data suggest there were series of high precipitation events on day 10, 11 and 12 with almost negligible 30 

precipitation on the remaining days relative to these peak events (with the exception of some small events on days 26 and 

29). In both subcatchments 10 and 11, raw GEFS forecasts show significantly less precipitation compared to the 

observations from days 10 to 12 (see Figures 7a and 7b). On the remaining days, raw GEFS consistently forecasts higher 

magnitudes of precipitation relative to the observations. The raw GDPS forecast also shows significantly lower magnitudes 
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of precipitation relative to observed during the peak event (days 10 to 12; Figures 7c and Figure 7d). The GDPS forecast 

shows overprediction of a smaller event on day 26 and underprediction on day 29. For the remaining days, the raw GDPS 

forecast closely matches observed precipitation. The shaded area for the calibrated QPF in the case of both GEFS and GDPS 

indicates the range of precipitation forecasts obtained from 1000 ensemble forecast members.  In both subcatchments 10 and 

11, the subcatchment-averaged calibrated QPFs (shaded area) is able to capture peak precipitation and the smaller events 5 

(except for day 10 in calibrated GEFS).    

 

We have also evaluated the ability of the calibrated QPFs to discriminate between events and non-events for large rainfall 

events (>5 mm) from 10
th

 June to 10
th

 July 2013. The ROC curves for lead times of 1, 3, and 5 days for both calibrated 

GEFS and GDPS in subcatchment 11 (Figure 8) indicate that the calibrated GEFS (lead times of 1 and 3 days) and calibrated 10 

GDPS (lead time of 1 and 5 days) have a greater ability to discriminate between events and non-events.    

 

5 Discussion and conclusion 

Based on the results presented, the RPP shows promising performance for catchments in cold and snowy climates, such as 

that in Western Canada. Bias free precipitation is a vital component, among other inputs, for improved streamflow forecasts 15 

from hydrological models. For raw GEFS and GDPS, the RPP approach was able to reduce the bias in the calibrated QPFs 

close to zero. The bias calculated from raw GEFS forecasts show almost similar bias, with slight variations, from lead time 

of one to five days. The GDPS forecast, however, showed an expected trend of increasing bias with increasing lead time. 

The advantage of applying the RPP approach was that, irrespective of the nature of the inherent bias in the raw forecasts, 

overall the calibrated QPFs were bias-free.   20 

 

The calibrated QPFs have significantly reduced CRPS values in all subcatchments in both GEFS and GDPS forecasts. 

Furthermore, the ensembles produced from the deterministic QPF were mostly able to capture the peak precipitation events 

within the study area (i.e., June 2013). It is noted that in the absence of ensembles, a hydrological model would take only the 

raw QPF, and would therefore not forecast the resulting streamflow correctly during a major flood event. Ensemble 25 

precipitation forecasts would enable uncertainty bands to be produced around the forecast streamflow simulated from a 

hydrological model, thus increasing the chance of properly assessing the associated risks associated with sudden, high 

precipitation events.  

 

ROC curves for calibrated QPFs showed that GEFS forecasts have greater ability to discriminate between events and non-30 

events for both low and high precipitation across all lead times. The discrimination ability of GDPS forecasts, however, 

reduces significantly with increasing lead-time.   
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In conclusion, this study assessed the performance of a post-processing approach, RPP, developed in Australia to a 

catchment in Alberta, Canada. The RPP approach was applied on two sets of raw forecasts, GEFS and GDPS, obtained from 

two different NWP models for common periods in 2013 and 2015. In each case, 1000 post-processed forecast ensembles 

were created. Post-processed forecasts were demonstrated to have low bias and higher accuracy for each lead-time in 15 

subcatchments covering a range of topographical conditions, from mountains to western plains, inducing different 5 

precipitation mechanisms. Unlike raw forecasts, the post-processed forecast ensembles are able to capture peak precipitation 

events, which resulted in a major flood event in 2013 within the study area. Future work will involve applying RPP to other 

Canadian catchments, under different climatic conditions such as coastal, plains, and lake-dominated Boreal Shield, among 

others. The influence of the density of rain gauges, and perhaps use of a gridded reanalysis product for the observation 

dataset, are left for future investigations. The authors aim to test the post-processed precipitation forecasts for streamflow 10 

forecasting in different Canadian catchments as future work.   
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List of Figures: 

 

Figure 1. Location of the study basin in Alberta, Canada; showing (a) topography, a major driver of different precipitation 

mechanism; and (b) the study area with locations of observed and forecast data.  5 

 

Figure 2. Comparison of weighted-area raw QPF with subcatchment-averaged observations for the year 2013 in 

subcatchments 10 and 11. Raw GEFS are plotted in (a) and (b), while (c) and (d) show raw GDPS, along with observations.  

 

Figure 3. Subcatchment-averaged bias (%) in the raw QPFs and calibrated QPFs for individual daily forecasts as a function 10 

of lead-time for subcatchments 2, 4, 7, 8 and 13 ((a) to (e), respectively); (f) to (j) show subcatchment-averaged CRPS 

(mm/day) in the raw QPFs and calibrated QPFs for daily precipitation as a function of lead-time. The shaded region 

represents 5% and 95% confidence intervals generated using a bootstrap approach. Note the different scales on the vertical 

axes.  

 15 

Figure 4. Relative operating characteristic (ROC) curve at lead times of 1, 3, and 5 days for calibrated QPFs for events of 

precipitation less than 0.2 mm and events greater than 5 mm for subcatchment 11. (a) and (b) show ROC curves of calibrated 

GEFS; (c) and (d) show ROC curves of calibrated GDPS. In the calculation of ROC, the daily data from 2013 to 2015 are 

used.  

 20 

Figure 5. Scatterplots of forecast error versus spread for the 100 ensembles of calibrated QPFs for lead times of 1, 3, and 5 

days for subcatchment 11. 

 

Figure 6: Frequency of observations lying within 10 and 90 percentile of calibrated GEFS and calibrated GDPS. 

 25 

Figure 7. Comparison of time series of precipitation obtained from subcatchment-averaged raw QPF, subcatchment-averaged 

observations, and subcatchment-averaged calibrated QPFs in subcatchments 10 and 11. The shaded area represents the range 

of values obtained from 1000 post-processed ensembles, (a) and (b) show results of calibrated GEFS, and (c) and (d) show 

results of calibrated GDPS.  

 30 

Figure 8. Relative operating characteristic (ROC) curve at lead times of 1, 3, and 5 days for calibrated QPFs for precipitation 

events greater than 5 mm for subcatchment 11 during 10/6/2013 to 10/7/2013, with (a) and (b) showing ROC curves of 

calibrated GEFS and GDPS, respectively.  
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Table 1. Description of precipitation forecasts 

Data 

Source 

NWP 

name 

Variable  Ensembles/ 

Deterministic 

Time 

period 

Daily 

/Subdaily 

Lead 

time 

(days) 

Spatial 

resolution 

(km) 

Forecast 

hour 

NCEP GEFS Precipitation Control run 2013-

2015 

Daily 5 days 50 km 00 UTC 

ECCC GDPS Precipitation Deterministic 2013-

2015 

Daily 5 days 25 km 00 UTC 
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Table 2. Description of subcatchments in the study area 

Subcatchment 

Name 
Area 

(km
2
) 

Subcatchment-averaged total 

annual precipitation (mm) 

ID 
Year 

2013 

Year 

2014 

Year 

2015 

1 Up Oldman Willow  2664 808 699 514 

2 Crows nest Castle  1848 1206 1196 909 

3 Little Red Deer 2574 608 587 458 

4 Mid Red Deer 1398 614 549 458 

5 James Raven 1464 715 655 541 

6 Up Red Deer 2723 897 662 571 

7 Low Bow Local Bearspaw 734 628 533 409 

8 Up Bow Banff Cascade 2884 663 806 659 

9 
Mid Bow Local Ghost  

1063 871 

 

689 

 

540 

 Jumping pound 

10 Canmore Ghost Waiparous 1642 900 723 544 

11 Spray Kananaskis 1445 1136 983 821 

12 Fish Threepoint Low Elbow 1405 646 516 487 

13 Low Sheep Highwood 1111 502 440 371 

14 Trap Peki Stim 890 587 691 559 

15 Up Highwood Sheep Elbow 2153 1062 784 693 
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Figure 1: Location of the study basin in Alberta, Canada; showing (a) topography, a major driver of different precipitation mechanism; and (b) the 

study area with locations of observed and forecast data.  

 5 
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Figure 2: Comparison of weighted-area raw QPF with subcatchment-averaged observations for the year 2013 in subcatchments 10 and 11. Raw GEFS 

are plotted in (a) and (b), while (c) and (d) show raw GDPS, along with observations.  

 5 
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Figure 3: Subcatchment-averaged bias (%) in the raw QPFs and calibrated QPFs for individual daily forecasts as a function of lead-time for 

subcatchments 2, 4, 7, 8 and 13 ((a) to (e), respectively); (f) to (j) show subcatchment-averaged CRPS (mm/day) in the raw QPFs and calibrated QPFs 

for daily precipitation as a function of lead-time. The shaded region represents 5% and 95% confidence intervals generated using a bootstrap approach. 

Note the different scales on the vertical axes.  5 
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Figure 4: Relative operating characteristic (ROC) curve at lead times of 1, 3, and 5 days for calibrated QPFs for events of precipitation less than 0.2 mm 

and events greater than 5 mm for subcatchment 11. (a) and (b) show ROC curves of calibrated GEFS; (c) and (d) show ROC curves of calibrated GDPS. 

In the calculation of ROC, the daily data from 2013 to 2015 are used.  
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Figure 5. Scatterplots of forecast error versus spread for the 1000 ensembles of calibrated QPFs for lead times of 1, 3, and 5 days for subcatchment 11. 
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Figure 6: Frequency of observations lying within 10 and 90 percentile of calibrated GEFS and calibrated GDPS. 
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Figure 7: Comparison of time series of precipitation obtained from subcatchment-averaged raw QPF, subcatchment-averaged observations, and 

subcatchment-averaged calibrated QPFs in subcatchments 10 and 11. The shaded area represents the range of values obtained from 1000 post-

processed ensembles, (a) and (b) show results of calibrated GEFS, and (c) and (d) show results of calibrated GDPS.  

 5 
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Figure 8: Relative operating characteristic (ROC) curve at lead times of 1, 3, and 5 days for calibrated QPFs for precipitation events greater than 5 mm 

for subcatchment 11 during 10/6/2013 to 10/7/2013, with (a) and (b) showing ROC curves of calibrated GEFS and GDPS, respectively.  
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