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Abstract. In Canada, increased risk of flooding due to heavy rainfall has risen in recent decades; most notable   

recent examples include July 2013 storm in Greater Toronto region and May 2017 flood of Toronto Island. We 

investigate nonstationarity and trends in the short-duration precipitation extremes in selected urbanized locations 10 

in Southern Ontario, Canada, and evaluate the potential of nonstationary Intensity-Duration-Frequency (IDF) 

curves, which form an input to civil infrastructural design. Despite apparent signals of nonstationarity in 

precipitation extremes in all locations, the stationary versus nonstationary models do not exhibit any significant 

differences in the design storm intensity. The signatures of nonstationarity in rainfall extremes do not necessarily 

imply the use of nonstationary IDFs for design considerations. When comparing the proposed IDFs with current 15 

design standards, for return periods (10-year or less) typical for urban drainage design, current design standards 

require an update up to 7%, whereas for longer recurrence intervals (50 - 100-year), ideal for critical civil 

infrastructural design, updates ranging between ~ 2 to 44% are suggested. We further emphasize that above findings 

need re-evaluation in light of climate change projections since intensity and frequency of extreme precipitation are 

expected to intensify due to global warming.   20 

1 Introduction 

Short-duration extreme rainfall events can have devastating consequences, damage to crops and infrastructures, 

leading to severe societal and economic losses in Canada (CCF, 2013; TRCA, 2013). In a warming climate, extreme 

precipitation events are expected to intensify due to moistening of the atmosphere (Donat et al., 2016; Fischer and 

Knutti, 2016; Pendergrass et al., 2015; Prein et al., 2016; Pfahl et al., 2017). Using observational record, review of 25 

the literature suggests a dependency between mean and extreme precipitation on temperature (O’Gorman, 2015). 

The increased water-holding capacity of warmer air, as governed by the Clausius-Clapeyron (C-C) relation 
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(Lenderink and van Meijgaard, 2008; O’Gorman and Schneider, 2009; Wasko and Sharma, 2015, 2017), intensifies 

heavy rainfall at a rate of approximately 7-8%°C-1 of warming. On a local scale, for sub-hourly and up to six-hourly 

extreme precipitation, increases at or above the C-C rate have been found in the Netherlands (Lenderink and van 

Meijgaard, 2008; Lenderink et al., 2017), Switzerland (Ban et al., 2014), Germany (Berg et al., 2013), the UK 

(Blenkinsop et al., 2015), the Mediterranean (Drobinski et al., 2016), most of Australia (Wasko and Sharma, 2015, 5 

2017), North America (Shaw et al., 2011) and China (Miao et al., 2016), while in India (Ali and Mishra, 2017) and 

northern Australia (Hardwick Jones et al., 2010) negative rates have been observed. The extent of urbanization also 

contributes to extreme regional precipitation through urban heat island effect and aerosol concentration (Dixon and 

Mote, 2003; Mölders and Olson, 2004; Mohsen and Gough, 2012; Wang et al., 2015). Agilan and Umamahesh 

(2017) used six physical processes, namely, time, urbanization, local temperature changes, annual global 10 

temperature anomaly (as an indicator of global warming), El Niño-Southern Oscillation (ENSO) and Indian Ocean 

Dipole (IOD) as covariates for the nonstationary extreme precipitation analysis in the city of Hyderabad, India. 

Their analysis indicated that the local processes, urbanization and local temperature changes are the best covariates 

for short-duration rainfall, whereas global processes, such as global warming, ENSO cycle and IOD are the best 

covariates for the long duration rainfall. In their study, time was never qualified as the best covariate for modeling 15 

local scale extreme rainfall intensity. Singh et al. (2016) performed nonstationary frequency analysis of Indian 

Summer Monsoon Rainfall extreme (ISMR; defined as cumulative rainfall over continental India during 1 June to 

30 September) and found evidence of significant nonstationarity in ISMR extremes in urbanizing/developing-urban 

areas (transitioning from rural to urban), as compared to completely urbanized or rural areas. However, their 

analysis was performed at a spatial resolution of 1° using gridded daily precipitation data obtained from Indian 20 

Meteorological Department (IMD). Ali and Mishra (2017) showed that a strong (higher than C-C rate) positive 

relationship exists between 3-hourly and daily rainfall extremes and dew point, and tropospheric temperature 

(T850; or the temperature in the upper troposphere at 850 hPa) over 23 urban locations in India. The latter two 

were subsequently used as covariates for nonstationary design storm estimates. The results indicated an increase in 

rainfall maxima at a majority of locations assuming nonstationary conditions over stationary atmospheric 25 

conditions. In contrast, in another studies, over Melbourne and Victoria, in Australia, Yilmaz et al. (2014; 2017) 

found superiority of stationary models over nonstationary models. For developing nonstationary models, authors 

(Yilmaz et al. 2014; 2017), considered both the time dependency and dependency to large scale climate oscillations 

affecting Australian rainfall. However, most of these previous studies have analyzed changes in expected point 

estimates of nonstationary versus stationary Design Storm Intensity (hereafter referred as DSI), but have not 30 
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reported the statistical significance of the difference between the two methods of estimate. To our best knowledge, 

no thorough comparison of stationary vs. nonstationary methods for deriving IDF statistics has been conducted in 

Southern Ontario. For densely populated Southern Ontario, Canada, observations and multiple climate models 

suggest increasing trends in regional surface temperature and extreme precipitation in recent decades (Stone et al., 

2000; Paixao et al., 2011; Mailhot et al., 2012; De Carolis, 2012; Burn and Taleghani, 2013; Shephard et al., 2014; 5 

Deng et al., 2016). A recent study shows an increase in local surface temperature of 3.06 ± 0.18 °C/century in 

Greater Toronto Area (GTA) since the 1960s (Berkeley Earth, 2017). In July 2013, a single storm event has resulted 

in 126 mm of rainfall in GTA causing total insured losses of around $940 million and claimed to be the third-most 

expensive weather-related event in Canada (CDD, 2015; TRCA, 2013).  

Extreme rainfall statistics are often mathematically expressed using the concept of exceedance probability or T-10 

year return period [i.e., T = 1∕ (1 − 𝐹𝑝(𝑃 )), where 𝐹𝑝(𝑃 ) is the cumulative probability of the underlying 

distribution], and graphically as a decision relevant metrics in the form of Intensity-Duration-Frequency (IDF) 

curves (or relations) (ASCE, 2006; CSA, 2010; EC, 2012). These curves are based on a comprehensive statistical 

analysis of historical rainfall records and widely used for the design and operation of storm-water and sewerage 

systems, and other engineered hydraulic structures (Coulibaly and Shi, 2005; Durrans and Brown, 2001; Lima et 15 

al., 2016; Madsen et al., 2009; Rana et al., 2013; Sandink et al., 2016; Yilmaz et al., 2014a). At given return period 

and the storm duration, the average DSI is determined from the IDF relationships. The IDF curves are based on 

fitting a theoretical probability distribution to short-duration (sub-hourly, hourly and daily) Annual Maximum 

Precipitation (AMP). The approach can be implemented both locally (at site) or regionally [Svensson and Jones, 

2010; Regional Frequency Analysis (RFA) or pooled]. The RFA is used when available record lengths are short or 20 

at locations where no observed data are available (Castellarin et al., 2012; Komi et al., 2016). However, various 

RFA estimation methods have certain drawbacks; for instance, the index flood method is sensitive to the 

homogeneity assumption and formation of regions; in a Bayesian method of regionalization, the prior distributions 

of parameters are often not precise enough and do not add precision to the estimates. Komi et al. (2016) summarize 

the limitations and advantages of some of the widely used RFA techniques. In the present study, the available 25 

records across all sites range between 47 and 66 years, which are more than the climatology (often over time periods 

of 30-years) of a region. Therefore, we employ at-site frequency analysis herein. This also allows a consistent 

comparison with the Environment Canada (EC) IDFs that have been used in practice in the study area. For Canada, 

information for preparation of IDFs and nation-wide IDF curves are archived at EC Engineering database 
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(Environment Canada, 2012; http://climate.weather.gc.ca/prods_servs/engineering_e.html), which are produced 

based on short-duration available rainfall records from the Tipping-Bucket Rain Gauges (TBRG). Nevertheless, 

the methodology to derive existing IDF curves has certain drawbacks, such as, the current IDF curves in Canada 

are based on the assumption of stationarity, which implies statistical properties of hydroclimatic time series will 

remain same over the period of time.  However, impact of urbanization and human-induced climate changes (Field, 5 

2012; Milly et al., 2008; Villarini et al., 2009) raises the question whether the stationarity assumption to derive IDF 

curves is still reliable for urban infrastructural planning (Sarhadi and Soulis, 2017; Cheng and AghaKouchak, 2014; 

Jakob, 2013; Yilmaz et al., 2014a; Yilmaz and Perera, 2013).  

The nonstationary behavior of rainfall extremes is already being reflected in the increase in frequency or magnitude 

of such events, resulting in a shift of its distribution [Figure SPM 0.3 in Intergovernmental Panel on Climate Change 10 

Special Report on Extremes, IPCC SREX Report: Field, 2012; Fig S1: IPCC AR5 working Group Report, (Stocker 

et al., 2013)]. For instance, seasonal and annual extreme precipitation in north-central and eastern US in 2013 

(Knutson et al., 2014); extreme rainfall in the Golden Bay region in New Zeeland (Dean et al., 2013); increase in 

summer precipitation rate in northern Europe (Yiou and Cattiaux, 2013); successive winter storm events in southern 

England in 2013/2014 leading to severe winter floods (Schaller et al., 2016), are primarily attributable to intrinsic 15 

natural variability and partly to anthropogenic influences. The asymmetric changes in the distribution of extremes 

owing to climate change have been subsequently validated for winter temperature extremes over the northern 

hemisphere (Kodra and Ganguly, 2014), and regional short-duration precipitation extremes in India and Australia 

(Mondal and Mujumdar, 2015; Westra and Sisson, 2011). Two of the recent studies (Deng et al., 2016; Mailhot et 

al., 2012) analyzed large ensemble of CMIP3 Global Climate Model (GCM) runs and a sub-set of regional climate 20 

models that are part of North American Regional Climate Change Assessment Program (NARCCAP) in terms of 

impact-relevant metrics over Canada. Both studies confirmed a relative increase in intensity and magnitude of 

rainfall extremes, especially over Southern Ontario. This issue has come to attention in the Guidelines for Canadian 

Water Resources Practitioner  (CSA, 2010), that urges the need for updated IDF calculations: “…climate change 

will likely result in an increase in the intensity and frequency of extreme precipitation events in most regions in the 25 

future. As a result, IDF values will optimally need to be updated more frequently than in the past ….”.  

Furthermore, so far very few studies have reported the difference between the updated versus EC generated IDFs, 

taking into account nonstationarity in design consideration. Simonovic and Peck (2009) compared updated versus 

EC IDFs for the city of London, Ontario and reported EC IDF curves shows a difference of the order of around 
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20%. However, their analysis was based on the stationarity assumption of precipitation extremes. Similarly, 

Coulibaly et al. (2015) have compared EC IDFs with stationary GEV based IDF curves across Southern Ontario, 

no nonstationary methods were investigated. Motivated with these research gaps, here we address several important 

questions pertained to short-duration precipitation extremes in Southern Ontario, to improve pro-active 

management of storm-induced urban flooding. First, is there any signature of statistically significant nonstationary 5 

trends (gradual or monotonic changes), change points or regime shifts (occurrence of any abrupt changes in 

mean/variance of the distribution) in short-duration AMP in densely and moderately populated urbanized locations 

across Southern Ontario? Second, does nonstationarity in the time series necessitates the use of nonstationary IDFs, 

barring economic consideration and mathematical complexity involved in the design? Third, how can we use this 

knowledge to assess the credibility of existing EC-generated IDFs in the backdrop of a changing climate? We do 10 

not attempt to provide a methodological comparison of EC-generated versus current approach but will focus on 

differences in estimated DSI values between the updated and EC-IDF. Further, to this end, we test the hypothesis 

that signatures of nonstationarity in rainfall extremes do not necessitate the use of nonstationary IDFs for design 

considerations. In general, urban drainage areas have substantial proportions of impervious or semi-impervious 

land cover, which significantly reduce response time to extreme precipitation and increases the peak flow, resulting 15 

into storm-induced floods (Miller et al., 2014). Hence, it is the short-duration precipitation extremes, which controls 

the design of urban infrastructure (Mishra et al., 2012). Therefore, we focus our analysis on AMP intensity. We 

select Southern Ontario as a test bed because of the majority of stations with more than 30-years of available rainfall 

record (Adamowski and Bougadis, 2003; Deng et al., 2016; Shephard et al., 2014). Recent studies have indicated 

that the region is more vulnerable to climate change than any other part of Canada (Deng et al., 2016; Mailhot et 20 

al., 2012). Furthermore, southern Ontario is one of the prominent economic hubs with largest population 

concentration in Canada (Bourne and Simmons, 2003; Kerr, 1965; Partridge et al., 2007). In this context, we 

explore a robust statistical framework to evaluate possible nonstationary trends, analyze the frequency of urban 

precipitation extremes and assess the risk of severe rain-induced urban flooding in Southern Ontario (Table 1). 

2 Study Area and Data 25 

2.1 Study Area 

Southern Ontario is situated on a Southwest-northeast transect, in the southernmost Canadian region, and separated 

from the United States by lakes Erie, Huron, and Ontario (Figure 1). The study includes nine densely and 

moderately populated urbanized and anthropogenically altered locations of the Windsor - Kingston corridor in 
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Southern Ontario. The specific sites include (in the order from southwest to northeast): Windsor Airport, London 

International Airport, Stratford Wastewater Treatment Plant (WWTP), Shand Dam in Fergus on the Grand River, 

Hamilton Airport, Toronto International Airport, Oshawa Water Pollution Control Plant (WPCP), Trenton Airport, 

and Kingston Pumping Station (Figure 1; Table 1). The last column in Table 1 shows a list of missing years and 

AMP values for each duration at each station. The Digital Elevation Model (DEM) of the study area was derived 5 

from Shuttle Radar Topography Mission (SRTM) 90-m Digital Elevation Database v4.1 (Jarvis et al., 2008), which 

indicates a shallow slope with a maximum altitude of 670 m above Mean Sea Level (MSL). The proximity to Great 

Lakes and topographic effect, especially in areas to the lee of Lakes Erie, Lake Ontario, and the Georgian Bay 

significantly modifies the climate in the region (Baldwin et al., 2011). Convective showers and thunderstorms 

primarily modulate the summer rainfall, but fall rainfall is dominated by reduced convective activity and increased 10 

lake effect precipitation (Lapen and Hayhoe, 2003). Further, the topographic features and associated westerly winds 

in the Niagara Escarpment and the Oak Ridge Moraine, play a significant role in modulating rainfall in Toronto 

region. On the other hand, Windsor metropolitan area, the southernmost urbanized location in the region, has a 

humid continental climate, which results in warm summer temperature (30°C or higher) with the greatest 

precipitation in the spring and summer seasons, and lowest in the fall and winter (Sanderson and Gorski, 1978). 15 

Moreover, because of the part of Windsor-Detroit international transborder agglomeration, the extreme summer 

precipitation in the city of Windsor is primarily influenced by convection and urban heat island effect (Sanderson 

and Gorski, 1978; De Carolis, 2012).  

 

2.2 Hydrometeorological Data 20 

We identified the station locations (Figure 1b) based on the quality of long-range rainfall records (e.g., 30 years or 

more) and 2011 Census information archived at Statistics Canada website (https://www12.statcan.gc.ca). The 

geographic areas of these locations are extracted from 2011 census digital boundary shape files 

(https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2011-eng.cfm). The Toronto 

metropolitan area is the most populous (over 5 million population) and known to be one of the fastest growing 25 

population base in Canada (http://torontosvitalsigns.ca/main-sections/demographics/), while Fergus is the least 

populated (population of around 19,000) (Table 1) city. The other cities have population ranges between ~ 500,000 

(Hamilton) and 30,000 (Stratford) (Table 1). We obtained AMP observations at particular durations (15-, 30- 

minutes, 1-, 2-, 6-, 12- and 24-hours) with a few data gaps from Canada’s National Climate Data Archive, 

https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2011-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2011-eng.cfm
http://torontosvitalsigns.ca/main-sections/demographics/
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maintained by the EC (http://climate.weather.gc.ca/prods_servs/documentation_index_e.html). The rainfall 

records collected from TBRG are thoroughly quality controlled (Shephard et al., 2014). These records have been 

previously analyzed for the assessment of national extreme rainfall trends (Burn and Taleghani, 2013; Shephard et 

al., 2014). We consider seven storm durations ranging from 15-, 30- minutes (the typical time of concentration for 

small urban catchments), and 1-, 2-, 6-, 12-, and 24- hours (the standard time of concentration for larger watersheds) 5 

following a previous study (Bougadis and Adamowski, 2006). Except for a few stations (for example, Toronto 

International Airport and Trenton Airport), for most of the sites, the AMP observation is available either until the 

year 2007 or before (Table 1). Also, we found missing values in the AMP time series in all sites. We obtained daily 

and hourly rainfall records from the EC website and Toronto Region Conservation Authority (TRCA).  

3 Methods 10 

Figure 2 shows schematics of the overall analysis. In subsequent subsection, we will discuss each of these steps in 

detail.  

3.1 Infilling Missing AMP Record 

We infilled missing values and updated the AMP records by successively disaggregating daily rainfall values to 

hourly and sub-hourly time steps using Multiplicative Random Cascade (MRC)-based disaggregation tool. The 15 

Cascade-based disaggregation model for continuous rainfall time series was suggested by (Olsson, 1995, 1998). 

The technique was later successfully implemented by (Güntner et al., 2001; Jebari et al., 2012; Rana et al., 2013) 

for temporal disaggregation of point rainfall and the development of IDF-curves from short-duration rainfall 

extremes. Due to freezing weather conditions during winter, most of the TBRGs’ are inoperative from early 

November to late April of the following year. Therefore, when short-duration rainfall records were not available, 20 

the AMP values over moving windows of n- durations (n varies from 15-, 30- minutes and 1-,2-,6-,12- and 24-

hours) are extracted from May to October (warm season) disaggregated rainfall volumes for remaining years. There 

are several reasons for selecting warm periods: first, extreme rainfall events mostly occur in the study area during 

the warm season (Cheng et al., 2010); second, the focus of our analysis is an investigation of extreme rainfall 

related flood risks and development of IDF curves using extreme rainfall statistics. We adjusted the occasional 25 

overestimation of extreme values at a higher order cascade step by a statistical post-processing method. We 

employed Quantile Matching (QM) approach (Li et al., 2010), which claims to outperform other simple bias 

correction methods and corrects not only the mean but also the variance of the distribution of interest 
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(Gudmundsson et al., 2012; Teutschbein and Seibert, 2012). QM is based on equidistant cumulative probability 

distribution matching of observed and disaggregated AMP time series using three-parameter Generalized Extreme 

Value (GEV) distribution. Although like other statistical post-processing technique, QM relies on the stationarity 

assumption of the time series, in our case, we applied QM to entire time series of both observed and disaggregated 

AMP, which comes from the same station location (or similar spatial resolution) and a similar period. Therefore, 5 

we avoid potential consequences of inflation by quantile mapping (Maraun, 2013) in our analysis. We discuss the 

implementations of MRC, adjustment of extremes and associated model fits in more details in the Supplementary 

Information (SI 1).  

3.2 Detection of Nonstationarity 

A series of statistical tests are employed to detect the presence of nonstationary trends and abrupt shifts in the short-10 

duration AMP before frequency analysis. The multiple tests allow a more rigorous and comprehensive assessment 

of overall trend in the time series since certain tests are complementary to each other (Sadri et al., 2016; Yilmaz et 

al., 2014, 2017). Figure 2 shows schematics of the overall analysis. Most of the trend and change-point detection 

algorithms assume observations are mutually independent. The presence of autocorrelation over/underestimates 

the statistical significance of trend and change-point detection algorithms (Serinaldi and Kilsby, 2016; von Storch 15 

and Navarra, 1999). We employed a Ljung-Box test with 20 lags to the short-duration AMP time series of each site 

to check if they show statistically significant autocorrelation (at 5% and 10% significance levels). For the time 

series with no serial autocorrelation, we test for trending behavior and nonstationarity. It is also important to note 

that presence of nonstationarity may not be evaluated merely on the basis of trends or abrupt shifts in the time 

series, even if the increasing or decreasing trends are statistically significant (Yilmaz et al., 2014). First, we check 20 

for a presence of nonstationarity in the time series by employing unit root-based Augmented Dickey-Fuller (ADF; 

Dickey and Fuller, 1981) test. However, the test may have a low power against stationary near unit root processes  

(Dritsakis, 2004; Chowdhury and Mavrotas, 2006). Therefore, as a complementary to unit root test, KPSS test 

(Kwiatkowski et al., 1992) is employed to validate the results of the ADF test. Since both ADF and KPSS tests 

assume linear regression or normality of the distribution; alternatively, a log-transformation can convert a possible 25 

exponential trend present in the data into a linear trend. Therefore, following previous studies (Gimeno et al., 1999; 

Van Gelder et al., 2006), AMP time series is log-transformed before applying stationarity tests. However, Yilmaz 

et al. (2014) did not observe the presence of any significant nonstationarity in extreme rainfall time series in the 

city of Melbourne even after employing ADF and KPSS tests. Therefore as an alternative, we also employed 
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frequency-based Priestley and Subbarao test [‘PSR’-test; (Priestley and Rao, 1969), which is able to better capture 

nonlinear dynamical nature of hydrological system than the former two tests (Ali and Mishra, 2017; Hamed and 

Rao, 1999). Next, we detected the presence of smooth and abrupt changes in the time series. The continuous or 

monotonic trends in short-duration rainfall extremes are identified using non-parametric Mann-Kendall trend 

statistics with correction for ties (Hamed and Rao, 1998; Reddy and Ganguli, 2013) at 5 and 10% significance 5 

levels. In general, the abrupt change (or change point) in the time series occur at a single point in the record and 

bifurcate the time series into two halves, either with different means, variances, or both dissimilar means and 

variance together at each part. The change-point in location (or mean) is identified using non-parametric Pettit’s  

(Pettitt, 1979) and Mann-Whitney tests (Ross et al., 2011). As indicated by previous studies (Xie et al., 2014; Yue 

and Wang, 2002), the rank-based nonparametric Mann-Whitney test is not really distribution free and the power of 10 

the test is often affected by the properties of sampled data. In practice, when real change point is unknown, often 

Mann-Whitney test, in general, does not work well, and the Pettitt method can yield plausible change point location 

along with its statistical significance. However, the significance of the Pettitt test can be obtained using an 

approximated limiting distribution (Xie et al., 2014; SI2).The shift in scale (or variance) is detected using non-

parametric Mood’s Test (Ross et al., 2011; See Figure 2 for details). We applied nonparametric tests due to their 15 

robustness to non-normality, which usually appears in the hydroclimatic time series. Further, in order to reduce the 

number of underlying assumptions required for testing a hypothesis, such as a presence of specific kind of trend or 

change point in the data, nonparametric tests are employed. For the time series with significant autocorrelation, we 

employed a Trend-Free Pre-Whitening procedure (TPFW; SI 2) as described in (Yue et al., 2002, 2003) and later 

modified by (Petrow and Merz, 2009). Then, we applied trend and change point detection algorithms to the pre-20 

whitened AMP extremes.   

    

3.3 Extreme Value Analysis of Sub-daily and Daily Precipitation Extremes 

Nation-wide EC IDF curves were developed using a particular family of distribution function from the extreme 

value theory (i.e., Gumbel distribution or Extreme Value type I, hereafter referred as EVI). However, EV1 25 

distribution has certain limitations, such that it is a non-heavy tailed distribution and characterized by constant 

skewness and kurtosis coefficients (Markose and Alentorn, 2005; Pinheiro and Ferrari, 2016). However, the short-

duration AMP intensities often exhibit fat-tail behavior and have left asymmetries (skewed to the left relative to 

standard normal distribution). In fact, a few studies in the past have shown that EV1 fits poorly to the historical 



10 

 

rainfall extremes (Burn and Taleghani, 2013; Coulibaly et al., 2015). Therefore, in the present study, we perform 

frequency analysis of extreme precipitation using GEV distribution. The choice of GEV distribution was based on 

previous studies where various distribution functions were compared in the study area (Coulibaly et al. 2015; 

Switzman et al., 2017). GEV distribution is a combination of Gumbel, Fréchet and Weibull distributions and is 

fitted to block or AM time series (Cheng and AghaKouchak, 2014; Katz et al., 2002; Katz and Brown, 1992). The 5 

GEV distribution is characterized by three parameters, the location, the scale and the shape of the distribution, 

which describes the center of the distribution, the deviation around the mean and the shape or the tail of the 

distribution (Katz et al., 2002; Katz and Brown, 1992). The cumulative distribution function of stationary (time-

invariant) GEV model is given by (Coles et al., 2001; Gilleland and Katz 2016): 

 

1

exp 1 0

exp exp 0
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                                        (3.1) 10 

Where,  max ,0y y  , and  

  ,z       when 0  ;   ,z         when 0  ; and  ,z    when 0   

  is a location parameter,   is a scale parameter and   is a shape parameter determining the heaviness of the 

tail. The shape parameter  , determines the higher moments of the density function and also the skew in the 

probability mass. The ‘+’ sign indicates positive part of the argument.  The Eq. (3.1) encompasses three types of 15 

DFs based on the sign of the shape parameter,  : (i) the Fréchet, with a finite lower bound of      and an 

unbounded, heavy upper tail, ( 0  ), (ii) the Weibull, unbounded below and with a finite upper bound of  

    , ( 0  ) and (iii) the Gumbel, unbounded below and above with a light upper tail 0  , formally 

obtained by taking limit as 0  . The Gumbel distribution is described by an unbounded light tailed distribution 

and the tail decreases rapidly following an exponential decay. The Fréchet distribution is a heavy-tailed distribution, 20 

and the tail drops relatively slowly following a polynomial decay (Towler et al., 2010). On the other hand, the 

Weibull distribution is a bounded distribution. Here we compare the performance of both stationary and 
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nonstationary form of GEV distribution. For stationary model, we estimate  parameters using Bayesian Inference 

(BI) coupled with Differential Evaluation Markov Chain (DE-MC) Monte Carlo (MC) simulation as suggested by 

(Cheng et al., 2014; Cheng and AghaKouchak, 2014). For nonstationary model, the shape parameter is assumed as 

constant throughout. Here it should be noted that for modeling temporal changes in   requires long-term 

observations, which are often not available in practice (Cheng et al., 2014). Hence, following previous studies 5 

(Cannon, 2010; Cheng et al., 2014; El Adlouni et al., 2007; Gu et al., 2017) we incorporate time- varying covariates 

into GEV location (GEVt-I), and both in location and scale parameters (GEVt-II) respectively, to describe trends 

as a function of time (in years): 

  1 0t t                        (3.2) 

  1 0t t                        (3.3) 10 

Since the scale parameter must be positive throughout, it is often modeled using a log link function (Gilleland and 

Katz, 2014) 

     1 0 1 0ln expt t t t                           (3.4) 

Where t is the time (in years),  1 0 1 0, , , ,       are the parameters.  

Then we estimate parameters of the nonstationary GEV distribution by integrating BI combined with DE-MC 15 

simulation. For AMP intensity, we derive the time variant parameter(s) from the 50th (the median or the mid-point 

of the distribution) percentiles of the DE-MC sampled parameter(s). We obtain the associated 95% credible 

intervals (the bounds) from the 2.5th and 97.5th percentiles of the simulated posterior samples (See SI 3 for details). 

We perform the calculations following (Cheng and AghaKouchak, 2014) using an MATLAB-based software 

package, Nonstationary Extreme Value Analysis (NEVA, Version 2.0). The Bayes factor followed by Akaike 20 

information criterion (AIC) with a small sample correction (AICc) are used to identify the best model. The AICc  

claims to avoid overfitting the data as compared to traditional AIC (Burnham and Anderson, 2004; Hurvich and 

Tsai, 1995). Here we assess model fitness based on a least square sense of AIC statistics considering maximum 

deviation between empirical (obtained from rank-based plotting position formula) and modelled cumulative 

distribution (CDF) [Dawson et al., 2007; Hu, 2007; Karmakar and Simonovic, 2007, 2007]. For calculation of AICc 25 

statistics, we consider median of the DE-MC sampled parameters, which can be considered as an average or 

expected value of risk in the historical observation. Besides this, we also assess the performance of the models 
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using Probability-Probability (PP) plots. The derived model parameters are then utilized to obtain DSI using the 

concept of a T-year return period. We discuss the methods to estimate DSI and T-year return periods using 

stationary and nonstationary methods in detail in section SI 4. To test (statistically) significant difference in the 

estimated DSI from the best-selected stationary versus nonstationary models, we calculate standardized z-statistics 

for selected return periods (Madsen et al., 2009; Mikkelsen et al., 2005). We applied the 2-sided option with 10% 5 

significance levels to assess the statistical significance of the test statistics (See SI 5 for details). Finally, we 

compared the DSI obtained from nonstationary and stationary models with existing EC-generated DSI estimates. 

 

4 Results  

The extreme rainfall statistics show high standard deviation with positive skew behavior (Tables 2 and 3). The 10 

skewness is a measure of the asymmetry in the AMP distribution. Positive values of skewness indicate that data 

are skewed to the right. The skewness of sub-hourly precipitation extremes varies between 0.22 and 4.45, with 

highest being 30-min AMP record at Hamilton and least being at Oshawa respectively (Table 2). Likewise, for 

hourly extremes, the skewness ranges between 0.54 and 2.54, with least being 1-hour AMP at Oshawa and highest 

is 1-hour AMP at Hamilton respectively (Table 3). The majority of stations show positive excess kurtosis (Tables 15 

2 and 3), which indicates the data have a distinct peak near the mean, which decline rapidly, and have heavy tails. 

We find the presence of statistically significant autocorrelation in the AMP time series of Toronto International 

Airport, Hamilton Airport, and Fergus Shand Dam (SI 2). We apply nonparametric TPFW to precipitation extremes 

with a significant autocorrelation (Table S4.1, Table S5.1, and Table S12). However, two successive TPFWs fail 

to correct the effect of autocorrelation in 12- and 24-hour duration extremes in Shand Dam. Hence we exclude 20 

those two time series from frequency analysis (Table S12).  The ADF-test for nonstationarity is statistically 

significant in all durations, as indicated by the higher p-values. As a complementary to ADF test, we also employed 

KPSS and PSR tests (Figure 2; SI 2) to check significant nonstationarity. Figure 3 shows the spatial distribution of 

trends, change points and nonstationarity in short-duration rainfall extremes. We find co-occurrences of trends, 

change points and nonstationarities in extremes at multiple locations. In general, the three sites in the extreme 25 

Northeast, the Oshawa WPCP, Trenton Airport and Kingston P. Station show evidence of statistically significant 

upshifts and nonstationarities in the time series, whereas the rest of the sites in the Southwest exhibit downshifts 

and statistically significant nonstationarities (Figure 3). For 2-hour and beyond durations, London International 

Airport shows a presence of statistically significant downward trends with change points. An increase (decrease) 

in mean precipitation imply an increase in heavy precipitation and vice-versa. Further, it could also alter the shape 30 
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of the right-hand tail, changing overall asymmetry in the distribution (Fig. S1), and hence affecting the nature of 

extremes (Stocker et al., 2013). Furthermore, the presence of opposite signs of trends within a proximity of sites 

are prominent in all durations, for example, except for 1-hour duration, extremes in all durations at Toronto 

International Airport and Oshawa WPCP show downwards and upward shifts respectively. Our findings confirm 

the other study (Burn and Taleghani, 2013), where authors report a lack of spatial structures and presence of 5 

different trends within a close vicinity of stations. Further, we find statistically significant monotonic increase and 

abrupt step changes, both in mean and variance in Oshawa and Trenton respectively (Table S6 and S10), whereas 

London shows (significant) decrease (Table S9) from the duration of 6-hour and more. Windsor, Kingston and 

Stratford show (significant) step changes as confirmed by Mann-Whitney and Mood Tests (Tables S7, S8 and S11). 

On the other hand, Toronto, Hamilton and Fergus Shand Dam (Tables S4, 4.1; S5, 5.1; S12) do not exhibit any 10 

statistically significant gradual or abrupt changes in the AMP time series. The ADF tests show the presence of 

nonstationarity in all durations across the sites. To further validate results of ADF test, KPSS and PSR tests are 

employed. The KPSS test detects the presence of nonstationarity at 3 out of 9 sites for 24-hour rainfall extreme at 

5% significance level, whereas the results of PSR test indicate nonstationarity across 5 sites in 24-hour rainfall 

extremes. While KPSS test alone could not detect the presence of nonstationarity in any of the extreme series in 15 

Oshawa and Stratford respectively, the results of PSR test did not indicate nonstationarity in any of the short-

duration rainfall extreme in Windsor. Both of these tests taken together detect the presence of nonstationarity in 

rainfall extremes across 6 out of 9 sites. We find even if trends in individual sites may not deem significant, the 

magnitude of trends (as measured by slope per decade, Tables S4 – S12 in SI2) is never zero in any of the sites.  

A weak trend can also have a significant impact on the results of probability analysis (Porporato and Ridolfi, 1998). 20 

Hence even if precipitation extremes often exhibit statistically insignificant trends in few durations, we assess the 

performance of both nonstationary and stationary models in all sites. Tables 4 – 7 lists performance of nonstationary 

versus stationary models for selected airport locations, whereas Tables S13 - S17 presents results of the distribution 

fit for the remaining stations. Barring a few exceptions, the shape parameters in most of the models range between 

-0.30 and +0.3, which is an acceptable range of GEV shape parameter as shown in an earlier study (Martins et al., 25 

2000). Our results corroborate well with recent research (Papalexiou et al., 2013; Wilson and Toumi, 2005), which 

showed that distribution with fat tails (with GEV shape parameter,  < 0) fits better for the precipitation extremes. 

The nonstationary models are selected employing Bayes-factor and minimum AICc criterion. For example, for the 

6-hour duration at Hamilton Airport, the nonstationary GEVt-I (nonstationary model with time-varying GEV 
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location) model performed the best as shown by both test metrics. However, in certain cases, nonstationary models 

does not pass Bayes-factor test. In such cases, we select the best nonstationary model (i.e., between GEVt-I and 

GEVt-II) following AICc test statistics. Here, it should be noted that the objective is to compare the design storm 

obtained from stationary versus best nonstationary model and not to analyze the best distribution between them. 

As a measure of uncertainty, we also report the 95% credible interval of design rainfall quantiles at 100-year return 5 

period as a ratio between the upper and the lower bounds, which ranges between the factor of 1.2-to-1 and 3.9-to-

1 in all cases. The performance of time-varying GEV models (Figure S9) closely follows the spatial pattern as 

indicated in the trend map (Figure 3). For example, Trenton Airport, which showed significant upward trends with 

change points and nonstationarity, is better modeled by the nonstationary GEV distributions for most of the 

durations.  Likewise, we find that in few cases, GEV II fits best if the time series exhibit (significant) evidence of 10 

a nonstationarity as detected by PSR-test statistics, for example, 15-min and 12-hr extremes in London and Toronto 

International Airport (Tables 4 and 7) respectively. However, in many cases, the performance of nonstationary 

models are often comparable and even superseded by their stationary counterparts (SI 3). In fact, the scatter of data 

points in the PP-plots (Figures S10 – S12) suggests a close resembles between stationary and nonstationary models 

across all durations.  Figure 4 shows the relation between DSI and durations (ranges between 15-min and 24-hr) 15 

for 100-year return periods estimated by stationary versus nonstationary GEV distributions. The interquartile range 

of the boxplot shows the uncertainty in estimated rainfall quantiles obtained using Bayesian Inference. However, 

the spread of the boxes simulated by the nonstationary model is found to be relatively narrower as compared to the 

one simulated by the stationary model for most of the sites (Figure 4), indicating less uncertainty in the estimated 

quantiles. For return periods of less than 100 years, such as for 10- and 5-year, the DSI from stationary versus 20 

nonstationary models, show subtle differences (Figures S13 – S14).  

Figure 5 displays the differences in DSI obtained using the best performing nonstationary model relative to the 

stationary models using percentage changes and z-statistics for different durations and return periods. While 

percentage change indicates a magnitude of change, the z-statistics show statistical significance of the relative 

difference in estimated DSI using the two different methods. The percentage differences at 2- and 10-year return 25 

period are small relative to larger return periods. At 100-year return period, a maximum positive difference of 

around 44% is observed at 12-hour storm duration in Toronto International Airport (Table S18.1). The standardized 

z-statistics show positive (negative) values indicating an increase (decrease) in DSI values assuming nonstationarity 

in return period estimates against its stationarity counterparts. However, a comparison between T-year event 
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estimates from both models indicates statistically indistinguishable differences in rainfall intensity. We find for all 

return periods and durations, z-statistics ranges between -1 and +1 for all nine sites (SI 5). Nonetheless, extreme 

precipitation intensity shows either positive or negative (statistically insignificant) changes in signs. The difference 

between DSI shows a decrease, at 1- and 2-hour storm duration in Toronto, 6-hour storm duration in London, and 

15-min and 12-hour storm duration at Trenton Airport for 50- and 100-year return periods (Figure 5, SI 5). In 5 

contrast, Toronto, Windsor and London International Airport shows an increase in DSI value at 15-min duration 

(Figure 5; SI 5), although the increase is statistically insignificant. Further, we note, except 6- and 12-hour storm 

duration, the performance statistics show a comparable and in few cases even better performance of the stationary 

versus nonstationary GEV models across most of the sites (SI 3). At 2- and 10-year return periods, which is typical 

for most urban drainage planning, the differences are close to zero (Figure 5, Tables S27 and S28 in SI 5) for most 10 

of the durations.  

Figures 6 and 7 compare the T-year event estimates of updated versus EC-generated IDFs for different return 

periods taking into account both stationary and nonstationary condition. The median and associated lower and 

upper bounds of the ratio of regional updated versus EC-generated T-year event estimates can be interpreted as 

analogous to most likely, minimum and maximum plausible scenarios. While the positive value of the ratio 15 

indicates a required increase in DSI, the negative value indicates a decrease in DSI estimate. Considering 

nonstationarity, at T = 10-year return period (Figure 6, SI 4), the ratio of updated versus old estimates of DSI is in 

the order of ~ 1.01 – 1.08, which indicates the required increase in the order of 1.4 to 7.2%. At T = 2-year return 

period, except Oshawa and Windsor, a majority of the sites show decrease in DSI for most of the storm durations 

(Figure 6, middle row). In contrast, the increase in the estimated ratio is more pronounced at 50- and 100-year 20 

return periods, which are in the order of ~ 1.03 - 1.80 (Figure 7, SI 4). While for Toronto International Airport and 

Hamilton Airport, we find no increase in the short-duration rainfall extremes of less than 1- hour and 50-year return 

period considering nonstationary condition, the increase is more pronounced for longer durations and larger return 

periods (12 and 24-hour, and 50- and 100-year return period, SI 4). For longer recurrence intervals, while the heat 

maps of minimum bounds and the most likely scenario show a smaller number of stations and durations to reach a 25 

ratio of 1.5 and beyond, the maximum bounds suggest a sharp increase in the ratio across all durations and locations. 

Further, for return periods of 50-year and more, the increase in the ratio is more prominent in the upper bound of 

the stationary models (Figure 7, left two columns) as compared to the nonstationary models. The resulting increase 

in T-year event estimates is because of the relatively wider confidence interval of estimated DSIs in stationary 
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models than that of the nonstationary models (Figures 4; SI 3). In general, for larger return periods, our analysis 

reveals, the increase in the ratio of updated versus EC-generated rainfall intensity is more prominent in sites with 

statistically significant signatures of nonstationarity, upward trends, and change points. For example, the updated 

DSIs of Oshawa WPCP, Windsor and Trenton Airport shows an increase in the ratio for most of the durations and 

return periods as compared to the EC-generated DSI values (SI 4). On the other hand, except for the 100-year return 5 

period events, the hourly precipitation extremes in London International Airport, in general, show a decrease in the 

ratio (Table S23.1 – 23.2) across all return period, which is predominantly due to the presence of significant 

downward trends with change points in the time series.  

Based on the study results and in anticipation of stakeholders’ participation in adaptive management, we present 

updated IDFs for four selected urbanized locations across Southern Ontario (Figure 8). In order to distinguish 10 

between stationary and nonstationary method of analysis, we also present updated IDF assuming stationary 

condition relative to EC IDF in the same plot (in top panel). The comparison of remaining sites is presented in 

Figure S15. Thus we made the first attempt to compare the results of updated versus EC-generated IDFs considering 

both nonstationary and stationary conditions, which are the part of contemporary Design Standards and widely 

used by the stakeholders and practitioners. Overall, the updated IDFs closely follow the pattern of trends analogous 15 

to EC-generated IDFs, except for the 100-year return period. The difference is more pronounced considering 

nonstationary condition, especially at Toronto International Airport (Figure 8), Oshawa WPCP and Stratford 

WWTP (Figure S15). At longer durations and higher return periods, stations in metropolitan areas (such as Toronto 

International Airport, Hamilton Airport, Oshawa WPCP and Windsor Airport) show large differences in DSIs, 

whereas moderately populated locations such as Kingston P. station and Fergus Shand dam show relatively smaller 20 

changes. Considering, nonstationary condition, the maximum increase in Furgas Shand dam is noted as 18.7% for 

the 2-hour storm duration and 100-year return period, whereas an increase of around 44.5% is shown for 12-hour 

storm duration at Toronto Airport. For T = 10-year or less, we find a decrease in the range of ~ 2 – 40% in the T-

year event estimates (SI 4). Meanwhile, for T = 10-year return period, we find the increase is in the order of ~1.4 

to 7.2% across several stations. Considering nonstationarity, for T = 50-year and more, the required increase ranges 25 

between ~ 2.8 – 44.5%. We find the largest increase is for the 12-hour rainfall extreme in Toronto International 

Airport (~ 32 – 44.5%; Table S18.1), followed by 2-hour extreme at Stratford WWTP (~ 27 – 36%; Table S25.1). 

However, considering stationarity condition, for T = 50-year and more, the required increase ranges between ~ 1.4 

– 26%. It should be noted that above results are based on an average risk approach for extreme value analysis by 
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considering median of the sampled parameters in the historical observation and not considering the overall risk 

envelope (i.e., minimum and maximum bounds). In summary, our findings confirm that updates in the order of ~ 

2 – 44% are required based on locations and return periods to mitigate the risk of precipitation induced urban 

flooding irrespective of the choice of methods used in the IDF estimation (SI 4). The results are consistent with 

(Simonovic and Peck, 2009), in which authors recommend an average update of about 21%, with a difference, 5 

range between ~ 11 – 35% for the updated versus EC-IDF in London Metropolitan area. However, they assumed 

stationarity condition to develop at-site IDF. The above results also highlight the need to update existing EC IDFs, 

which are generated using Gumbel probability distributions and do not fit the data well.  

The increase could also indicate a tendency towards an increase in mean precipitation and (or) a shift in the 

distribution, affecting its tail behavior. However, a few caveat remains, for example, a critical question could be: 10 

does an increase in DSI potentially linked towards more frequent and more intense precipitation extremes or is it 

an artifact of the new dataset in the update process? It is worthwhile to note that results shown here are 

manifestations of present-day climate using ground-based hydrometeorological observations and the specific 

insights are nonetheless subject to the quality of available rainfall records. It remains an open-ended question to 

what extent we credibly develop IDFs in a changing climate (Coulibaly et al., 2015) since there is no uniformly 15 

accepted method of generating IDF information and related projection uncertainty in light of climate change. In 

general, highlighting advantages and limitations of nonstationary versus the stationary methods of analyses 

(Koutsoyiannis and Montanari, 2015; Montanari and Koutsoyiannis, 2014; Serinaldi and Kilsby, 2015) is beyond 

the scope of the current study. Further, several studies (Deng et al., 2016; Kunkel, 2003) have indicated an increase 

in frequency and magnitude of short-duration rainfall extremes in Southern Ontario due to global warming. 20 

Research towards this direction is currently underway for regional preparedness and to develop comprehensive 

adaptation strategies.   

4 Discussions and Conclusions 

This paper has sought to assess signatures of nonstationarity in densely and moderately populated urbanized 

locations in Southern Ontario, which is one of the major economic hubs in Canada. We update short-duration 25 

rainfall extremes with latest available ground-based observations and present a comprehensive analysis to evaluate 

nonstationary versus the stationary method of IDF estimation. This analysis yields two principal findings. First, 

despite signatures of (statistically) significant nonstationarity and trends in extremes in most of the sites, the 
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changes in design storm intensity remain statistically indistinguishable using stationary versus nonstationary 

methods. These findings pose an important question: does the presence of nonstationarities in rainfall extremes 

require the design of nonstationary IDF curves? We argue that although it is crucial to recognize nonstationarity in 

precipitation extremes, the stationary form of IDFs can still represent the extreme rainfall statistics for the present-

day climate over Southern Ontario region. Our results are consistent with (Yilmaz et al., 2014; Yilmaz and Perera, 5 

2013), in which authors found despite the presence of (statistically) significant trends in rainfall extremes; 

nonstationary GEV models did not show any additional advantages over the stationary models. As supported by 

the previous study (Singh et al., 2016), we attribute that the little or no changes in extreme rainfall statistics in the 

urbanized setting is due to the stabilization of urban development leading to no substantial variations in the land 

use pattern. Hence, no significant changes in synoptic scale circulations, which in turn affect space-time pattern in 10 

rainfall extremes (Moglen and Schwartz, 2006). Second, comparison of at-site T-year event estimates of updated 

versus EC-generated IDFs shows at T = 10-year, the return period commonly used for urban drainage design, 

current design standards require updates up to 7% to mitigate the risk of urban flooding. Meanwhile, for longer 

recurrence interval (T = 50-year or more), typical for critical civil infrastructural design, comparison of updated 

versus EC-generated IDF curves shows a difference ranges between 2% and 44% based on locations.  15 

 

Preliminary investigations based on regional and global climate model simulations in the study area confirm a 

considerable uncertainty in the projection of short-duration and high-intensity extreme rain events (Coulibaly et 

al., 2015). While short-duration precipitation extremes are typically controlled by synoptic scale moisture 

convergence (Ruiz-Villanueva et al., 2012; Westra and Sisson, 2011), the daily extremes are often modulated by 20 

large-scale circulation patterns and local orographic factors (Carvalho et al., 2002; Gershunov and Barnett, 1998; 

Trenberth, 1999). Further, the role of natural variability and multidecadal modes of sea-surface temperature (SST) 

in modulating Canadian extreme rainfall intensity have already been shown in the past (Gan et al., 2007; Shabbar 

et al., 1997). The future research should include two aspects. First, investigation of physical drivers (such as 

temperature, decadal and multidecadal modes of SST) in influencing short-duration rainfall extremes. Second, the 25 

inclusion of these covariates in nonstationary IDF development  (Mondal and Mujumdar, 2015; Yilmaz et al., 

2014). Given that these findings are for the current period (e.g., historical extreme rainfall time series), we 

recommend a careful extrapolation of findings with regards to future climate projections, in which frequency and 

magnitude of extreme rainfall are expected to intensify (Mailhot et al., 2012; Deng et al., 2016; Fischer and Knutti, 
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2016; Prein et al., 2016; Pfahl et al., 2017; Switzman et al. 2017). Further work should consider nonstationary 

methods for deriving future IDFs in Southern Ontario.   
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Figure Captions 

Figure 1. (a) Selected urbanized sites in Southern Ontario. The Southern Ontario (41° - 44°N, 84° - 76°W) is the 

southernmost region of Canada and is situated on a southwest-northeast transect, bounded by lakes Huron, Erie, 

and Ontario. The nine locations on the map are (from southwest to northeast corner): Windsor Airport, London 

International Airport, Stratford Wastewater Treatment Plant (WWTP), Fergus Shand Dam, Hamilton Airport, 5 

Toronto  International Airport, Oshawa Water Pollution Control Plant (WPCP), Trenton Airport, and Kingston 

Pumping Station. Topography map indicates maximum slope of 670 m above mean sea level. (b) The population 

map shows six the sites: Windsor Airport, London International Airport, Hamilton Airport, Toronto International 

Airport, Oshawa WPCP, and Kingston P. Station to be located either in or the vicinity of densely populated 

urbanized area. The remaining three sites are located in the moderately populated area. The daily and sub-daily 10 

AMP records in all locations vary between the minimum of 46 and maximum of 66 years. 

Figure 2. Schematics of the process flow (Blue - input step, orange - process step, and green – decision steps). 

All three tests – Mann-Kendall, Pettitt’s and Mann-Whitney, check for shifts in the mean. While Mann-Kendall 

tests for monotonic trends, the other two tests, Pettitt’s and Mann-Whitney check for change point or regime shift 

in the time series. 15 

Figure 3. Spatial distribution of trends, change points and nonstationarities in rainfall extremes of several durations 

in nine urbanized locations, Southern Ontario (a – g). The up and down triangles in white indicate (statistically 

insignificant) up and downward shifts; the up and down triangles in cyan and orange indicate shifts with change 

points only; the up and down triangles in the dark blue and red show presence of (statistically significant) trends 

including change point(s). Sites with significant nonstationarity are marked with an ‘x’ sign. All tests are performed 20 

at 10% significance levels, i.e., p-value < 0.10.   

Figure 4. DSI estimates of median (horizontal line within the box plot) and 95% credible intervals for 100-year 

return periods of stationary versus nonstationary models across nine sites (a - i). The boxplots indicate the 

uncertainty in estimated DSI using Bayesian inference.        

Figure 5. Percentage changes (in top panel) and Z-statistics (bottom panel) of at-site T-year event estimates for T 25 

= 2-year to T = 100-year return periods (a – d) with durations between 15-min and 24-hr in nine urbanized locations, 

Southern Ontario. The Z-statistic represents statistical significance of differences in DSI obtained from the best 

selected nonstationary versus the stationary model. The Z-statistics is statistically significant when |Z| > 1.64 at 
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10% significance level. The shades in blue and red denote decrease and increase in Z-statistics with the strength of 

shading represents the magnitude of the test statistics. The cyan shading represents the site with significant 

autocorrelation, which we exclude from the analysis.     

Figure 6. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary 

versus EC-generated T = 2-and 10-year event estimates for DSI at selected return periods with durations between 5 

15-min and 24-hr. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 

archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and red denote decrease 

and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-

generated DSI.  

Figure 7. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary 10 

versus EC-generated T = 50-and 100-year event estimates for DSI at selected return periods with durations between 

15-min and 24-hr. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 

archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and red denote decrease 

and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-

generated DSI. 15 

Figure 8. Estimated nonstationary versus EC-generated IDFs for T = 2, 5, 10, 25, 50 and 100-year return periods 

for the selected urbanized locations in Southern Ontario, Canada.  

 

 

 20 



31 

 

Table 1. Selected station locations, population distribution and hourly and daily data availability 

Stations EC-Station 

      ID 

Lat (°) Long (°) Elevation 

(m) 

 

Population 

Estimate 

Census  

Subdivision 

EC-derived 

AMP 

Hourly 

Rainfall 

Daily 

Rainfall 

Missing years/ 

Duration values 

Toronto P.  

Int’l Airport  

6158731 43.68 -79.63 173.4 5,583,046 Toronto CMA1 1950 - 2013 1960 - 2012 1940 - 2013 1952-53, 2005  

[15-30 min, 1-6 hr] 

Hamilton Airport 6153194 43.17 -79.93 237.7 519,949 Population  

Center 

1971 - 2003 1971 - 2003 1960 – 2010 2004-2010 

Oshawa WPCP 6155878 43.87 -78.83 83.8 356,177 Oshawa CMA 1970 - 2006 1970 – 1999 1970 - 2015 1971  

[15-30 min, 1-6hr],  

1995 [12 hr],  

1999 [6-12hr], 

2000,  

2005-06 [15-30 min, 

1-6 hr], 2007-15 

Windsor Airport 6139525 42.28 -82.96 189.6 319,246 Windsor CMA 1946 - 2007 1960 – 2007 1940 - 2013 1950, 2008 - 2013 

Kingston P. Station 6104175 44.24 -76.48 76.5 159,561 Kingston CMA 1961 - 2007 1961 – 2003 1960 – 2007 2004 

London Int’l Airport 6144478/75* 43.03 -81.15 278 474,786 London CMA 1950 - 2007* 1961 – 2001 1940 – 2015 1950-51, 2002,  

2008-2015 

Trenton Airport 6158875 44.12 -77.53 86.3 43,086 Population  

Center 

1965 - 2013 1964 – 1997 1935 – 2015 1974, 1998-99,  

2002 [15-30 min,  

1-6hr], 2003-04 

Stratford WWTP 6148100 43.37 -81.0 345 30,886 CA  1966 - 2004 1966 – 2007 1960 – 2015 1973, 1999 

Fergus Shand 

Dam 

6142400 43.73 -80.33 417.6 19,126 Population  

Center 

1961 - 2007 1960 – 2007 1950 – 2015 1969, 1971, 1986,  

1987 [2- 6hr],  

1992 [6 - 12hr], 1995 

1 CMA and CA denote census metropolitan area and census agglomeration respectively. Statistics of Canada defines a CMA with a population of at least 

100,000, where the urban core of that area has at least 50,000 people, whereas CA must have an urban core population of at least 10,000. A population 

Center (or urban area) is an area with at least a population of 1,000 and a density of 400 or more people per square kilometer. All population information 

are collected from Statistics Canada (https://www12.statcan.gc.ca/) website.*Missing values are infilled using observations from nearest Environment Canada 5 

station ID 6144475 (latitude 44° and longitude -81.5°) located at 111.5 km geodesic distance. Annual maxima values of missing years or durations are obtained 

by disaggregating daily data to hourly and sub-hourly time steps. 

 

https://www12.statcan.gc.ca/
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Table 2. Selected stations and their statistical properties for annual maxima time series of rainfall volume 

Stations EC-Station 

ID 

Analysis 

Period 

Time Frame 

(min) 

Mean 

(mm) 

Std. deviation 

(mm) 

Skew Excess1 

Kurtosis 

Toronto Int’l. 

Airport  

6158731 1950 - 2013 15 16.35 5.88 0.46 -0.36 

30 21.85 8.68 0.86 0.9 

Hamilton Airport 6153194 1960 - 2010 15 16.12 5.61 1.26 1.11 

30 16.63 8.47 4.45 24.09 

Oshawa WPCP 6155878 1970 - 2015 15 56.01 17.84 0.84 1.68 

30 36.09 11.40 0.22 -0.57 

Windsor Airport 6139525 1950 - 2013 15 17.79 5.56 1.03 1.69 

30 23.49 8.20 0.77 -0.15 

Kingston P. 

Station  

6104175 1961 - 2007 15 12.89 3.79 0.93 2.15 

30 16.54 5.31 0.78 1.12 

London Airport 6144478/75* 1950 – 2015 15 15.96 6.62 1.28 1.73 

30 21.06 8.55 1.68 3.94 

Trenton Airport 6158875 1950 – 2015 15 13.30 6.52 2.90 10.23 

30 16.60 6.40 1.54 2.97 

Stratford WWTP 6148100 1960 – 2015 15 16.33 5.08 1.30 2.23 

30 21.37 9.08 2.22 7.53 

Fergus Shand 

Dam 

6142400 1950 – 2015 15 17.74 6.66 1.24 2.14 

30 23.42 10.32 1.78 4.04 

*Missing values are infilled using observations from the nearest station ID 6144475.1Kurtosis relative to normal distribution, i.e., kurtosis – 3. 

 5 
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Table 3. Selected stations and their statistical properties for hourly annual maxima rainfall volume for selected durations 

Stations EC-Station 

ID 

Analysis 

Period 

Time Frame 

(hr) 

Mean Std. Deviation 

(mm) 

Skew Excess 

Kurtosis 

Toronto Int’l. Airport  6158731 1950 - 2013 1 24.67 11.01 1.98 7.33 

6 38.44 18.09 2.46 7.93 

Hamilton Airport 6153194 1960 - 2010 1 25.91 10.30 2.54 10.20 

6 38.72 15.05 2.34 7.07 

Oshawa WPCP 6155878 1970 - 2015 1 22.09 8.56 0.54 -0.43 

6 5.94 2.05 1.18 0.99 

Windsor Airport 6139525 1950 - 2013 1 29.53 10.43 0.88 0.14 

6 44.36 14.81 1.12 1.81 

Kingston P. Station  6104175 1961 - 2007 1 21.21 6.83 0.56 -0.03 

6 37.35 13.61 2.32 8.05 

London Airport 6144478/75 1950 – 2015 1 24.26 11.23 2.41 9.79 

6 36.46 12.10 1.73 4.57 

Trenton Airport 6158875 1950 – 2015 1 20.36 8.25 1.87 6.03 

6 36.76 12.51 1.19 0.66 

Stratford WWTP 6148100 1960 – 2015 1 24.31 11.12 1.71 3.41 

6 41.77 21.61 2.31 6.15 

Fergus Shand Dam 6142400 1950 – 2015 1 28.07 13.67 2.02 5.50 

6 39.86 18.59 1.25 2.30 
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Table 4. Performance of stationary and nonstationary models for Toronto Pearson International Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 37.02 19.83 -0.073 -465.05 - 78.85 209.56 2.66 

 GEVt-I 30.11 + 0.194t 20.86 -0.079 -450.28 4.98 105.3 229.77 2.18 

 GEVt-II 34.30 + 0.056t exp(2.68 + 0.0069t) -0.11 -383.58 10.47 87.66 119.42 1.36 

30-min GEVt-0 25.65 13.14 0.019 -442.29 - 58.8 155.85 2.65 

 GEVt-I 17.32 + 0.21t 13.44 -0.075 -422.67 1.47 57.9 113.37 1.96 

 GEVt-II 12.08 + 0.35t exp(2.77 + 0.0023t) -0.20 -351.22 74357.2 58.63 99 1.69 

1-hr GEVt-0 19.77 7.79 0.07 -477.68 - 45.47 101.33 2.22 

 GEVt-I 18.27 + 0.022t 8.59 -0.08 -402.43 78.53 42.27 63.57 1.50 

 GEVt-II 4.44 + 0.414t exp(1.71 + 0.015t) 0.044 -372.2 4.43×109 49.65 87.11 1.75 

2-hr GEVt-0 11.79 4.45 0.11 -477.64 - 28.24 58.52 2.07 

 GEVt-I 11.0 + 0.02t 4.74 -0.02 -449.02 13.95 27.24 40.98 1.50 

 GEVt-II 11.46 – 0.0053t exp(1.52 – 0.00072t) 0.28 -421.44 9.08 46.44 61.47 1.32 

6-hr GEVt-0 4.98 1.50 0.26 -488.39 - 13.71 21 1.53 

 GEVt-I 5.12+0.0005t 1.57 0.24 -496.92 0.15 12.02 29.77 2.48 

 GEVt-II 5.44-0.0049t exp(0.77 – 0.0042t) 0.10 -424.07 52.13 13.71 21.0 1.53 

12-hr GEVt-0 2.96 0.70 0.36 -503.23 - 6.59 25.72 3.90 

 GEVt-I 3.02-0.0031t 0.69 0.51 -501.42 1.39 12.4 21.98 1.77 

 GEVt-II 3.13-0.0045t exp(-0.183-0.0032t) 0.49 -511.69 0.86 12.89 20.58 1.60 

24-hr GEVt-0 1.71 0.41 0.29 -477.04 - 3.69 11.71 3.17 

 GEVt-I 1.73-0.0006t 0.41 0.28 -466.25 13.22 3.75 10.41 2.78 

 GEVt-II 1.66+0.00093t exp(-1.00+0.00274t) 0.30 -460.06 1.30 4.28 8.16 1.91 

* GEVt-0 is stationary model whereas GEVt-I and GEVt-II are nonstationary models with time-variant mean, and both time-variant mean and standard 

deviation respectively. The selected best fitted nonstationary model is marked in bold letters. Bayes factor, 1   indicates that the nonstationary 5 

model fits better than the stationary model. However, in cases 1  , to compare with stationary model, the nonstationary model is selected following 

minimum AICc criteria. LB and UB indicates lower and upper bound of DSI at 100-year return period.  
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Table 5. Performance of stationary and nonstationary models for Hamilton Airport 

Time 

Slice 

Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 53.84 14.96 0.12 -347.44 - 103.8 221.98 2.14 

 GEVt-I 56.31-0.096t 14.2 0.14 -338.32 0.67 102.19 223.91 2.19 

 GEVt-II 55.86-0.114t exp(2.83-0.0056t) 0.19 -351.58 2.07 107.81 285.01 2.64 

30-min GEVt-0 27.1 7.32 0.20 -369.40 - 56.71 174.66 3.08 

 GEVt-I 28.002-0.06t 7.28 0.11 -346.29 1.73 53.93 99.27 1.84 

 GEVt-II 27.8-0.038t exp(1.91+0.0009t) 0.25 -365.19 0.28 69.81 110.76 1.59 

1-hr GEVt-0 21.79 6.41 0.13 -361.35 - 41.92 109.07 2.60 

 GEVt-I 21.33+0.026t 7.06 0.03 -353.4 0.62 45.85 75.54 1.65 

 GEVt-II 20.50+0.046t exp(1.86+0.0035t) -0.0039 -350.97 3.09 43.75 68.8 1.57 

2-hr GEVt-0 12.63 3.68 0.11 -349.70 - 25.81 51.37 1.99 

 GEVt-I 12.15+0.006t 3.76 0.21 -322.00 4.91 32.16 54.78 1.70 

 GEVt-II 11.53+0.042t exp(1.09+0.0087t) 0.19 -329.09 11.20 32.76 49.51 1.51 

6-hr GEVt-0 5.32 1.33 0.23 -389.88 - 10.24 32.46 3.17 

 GEVt-I 5.15+0.0037t 1.28 0.29 -396.75 0.94 14.51 21.47 1.48 

 GEVt-II 5.09+0.0052t exp(0.12+0.0038t) 0.28 -375.03 1.21 14.53 20.47 1.41 

12-hr GEVt-0 3.11 0.74 0.20 -369.54 - 5.86 15.58 2.66 

 GEVt-I 3.09+0.0022t 0.74 0.27 -366.46 1.73 14.51 21.47 1.48 

 GEVt-II 3.03+0.0023t exp(-0.305+0.0002t) 0.21 -363.03 1.12 13.97 6.35 2.20 

24-hr GEVt-0 1.44 0.49 0.16 -338.35 - 3.05 11.47 3.76 

 GEVt-I 1.36+0.0026t 0.48 0.22 -338.33 0.31 3.26 8.42 2.58 

 GEVt-II 1.33+0.0034t exp(-0.74-0.00019t) 0.20 -326.63 0.99 4.04 6.44 1.59 
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Table 6. Performance of stationary and nonstationary models for Windsor Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 60.04 15.76 0.13 -394.2 - 106.43 300.24 2.82 

 GEVt-I 61.6-0.099t 14.61 0.25 -370.00 0.80 157.9 227.06 1.44 

 GEVt-II 63.33-0.068t exp(2.67+0.0027t) 0.013 -376.75 5.36 115.47 166.94 1.44 

30-min GEVt-0 38.92 12.94 0.06 -443.89 - 72.9 179.38 2.46 

 GEVt-I 43.20-0.124t 12.04 0.12 -435.12 0.25 72.6 210.06 2.89 

 GEVt-II 42.81-0.11t exp(2.33+0.0032t) -0.0096 -371.83 1.002 81.7 104.43 1.28 

1-hr GEVt-0 24.82 8.00 0.044 -459.27 - 46.8 112.2 2.40 

 GEVt-I 28.93-0.14t 7.1 0.14 -452.65 0.35 58.99 89.75 1.52 

 GEVt-II 28.86-0.12t exp(2.11-0.0005t) 0.024 -444.90 0.22 56.66 73.64 1.30 

2-hr GEVt-0 15.79 5.12 -0.14 -476.71 - 25.62 45.09 1.76 

 GEVt-I 17.58-0.073t 4.78 -0.02 -434.62 0.38 26.13 58.27 2.23 

 GEVt-II 17.70-0.07t exp(1.50+0.0049t) -0.14 -475.53 0.16 29.79 37.83 1.27 

6-hr GEVt-0 6.24 1.86 0.041 -472.16 - 11.85 23.23 1.96 

 GEVt-I 6.80-0.014t 1.94 -0.04 -477.91 0.52 12.45 16.77 1.35 

 GEVt-II 6.85-0.017t exp(0.64+0.0013t) 0.040 -480.19 0.65 14.28 18.75 1.31 

12-hr GEVt-0 3.47 0.98 0.10 -489.97 - 6.3 16.67 2.65 

 GEVt-I 3.97-0.016t 0.92 0.14 -461.74 0.20 6.75 14.51 2.15 

 GEVt-II 3.89-0.012t exp(-0.055+0.00094t) 0.09 -481.94 0.20 7.7 10.57 1.37 

24-hr GEVt-0 2.04 0.53 0.03 -475.90 - 3.42 7.36 2.15 

 GEVt-I 2.05-0.011t 0.53 0.03 -472.08 2.44 3.41 7.15 2.09 

 GEVt-II 1.74+0.0067t exp(-0.78+0.0054t) 0.0056 -415.7 30.74 3.66 5.84 1.60 
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Table 7. Performance of stationary and nonstationary models for London International Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 51.7 19.15 0.045 -449.07 - 112.5 206.6 1.84 

 GEVt-I 57.8-0.12t 18.64 0.19 -457.44 0.30 119.5 311.1 2.60 

 GEVt-II 59.71-0.24t exp(2.95-0.00095t) 0.17 -459.62 0.24 149.51 222.9 1.49 

30-min GEVt-0 34.04 11.26 0.16 -535.35 - 70.04 264.2 3.77 

 GEVt-I 35.42 – 0.082t 11.88 0.054 -433.14 9.61 68.83 142.8 2.07 

 GEVt-II 38.42 – 0.13t exp(2.39-0.00304t) 0.12 -446.35 0.09 74.91 125.6 1.68 

1-hr GEVt-0 19.06 6.92 0.14 -511.32 - 44.78 110.3 2.46 

 GEVt-I 20.5-0.042t 6.75 0.21 -511.94 2.26 57.91 95.6 1.65 

 GEVt-II 25.2-0.18t exp(2.68-0.0194t) 0.052 -494.92 206.09 40.8 116.9 2.87 

2-hr GEVt-0 11.93 4.57 0.046 -501.85 - 26.04 56.4 2.17 

 GEVt-I 13.29-0.044t 4.49 0.093 -496.55 1.32 30.05 47.1 1.57 

 GEVt-II 12.60-0.029t exp(1.42+0.00196t) 0.20 -462.71 1.27 37.68 54.6 1.45 

6-hr GEVt-0 5.196 1.47 0.082 -498.12 - 9.79 19.9 2.03 

 GEVt-I 5.80-0.018t 1.35 0.058 -501.40 0.05 10.48 14.5 1.38 

 GEVt-II 5.83-0.018t exp(0.32-0.0012t) 0.099 -499.38 0.02 10.14 19.2 1.89 

12-hr GEVt-0 3.09 0.80 -0.0013 -515.05 - 5.35 10.1 1.89 

 GEVt-I 3.34-0.008t 0.80 0.062 -511.60 0.13 6.32 8.7 1.38 

 GEVt-II 3.49-0.011t exp(-0.22-0.002t) -0.026 -500.35 0.05 5.72 7.5 1.30 

24-hr GEVt-0 1.72 0.63 -0.051 -473.40 - 3.14 6.3 2.01 

 GEVt-I 1.98-0.008t 0.61 -0.054 -450.07 0.17 3.57 5.0 1.41 

 GEVt-II 2.036-0.008t exp(-0.45-0.0007t) -0.103 -435.8 0.12 3.44 4.9 1.44 
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Figure 1. (a) Selected urbanized sites in Southern Ontario. The Southern Ontario (41° - 44°N, 84° - 76°W) is the southernmost region 

of Canada and is situated on a southwest-northeast transect, bounded by lakes Huron, Erie, and Ontario. The nine locations on the 5 

map are (from southwest to northeast corner): Windsor Airport, London International Airport, Stratford Wastewater Treatment Plant 

(WWTP), Fergus Shand Dam, Hamilton Airport, Toronto  International Airport, Oshawa Water Pollution Control Plant (WPCP), 

Trenton Airport, and Kingston Pumping Station. Topography map indicates the maximum slope of 670 m above mean sea level. (b) 

The population map shows six the sites: Windsor Airport, London  International Airport, Hamilton Airport, Toronto International 

Airport, Oshawa WPCP, and Kingston P. Station to be located either in or the vicinity of densely populated urbanized area. The 10 

remaining three sites are located in the moderately populated area. The short-duration AMP records in all locations vary between the 

minimum of 46 and maximum of 66 years. 
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Figure 2. Schematics of the process flow (Blue - input step, orange - process step, and green – decision steps). All three tests – Mann-

Kendall, Pettitt’s and Mann-Whitney, check for shifts in the mean. While Mann-Kendall tests for monotonic trends, the other two 

tests, Pettitt’s and Mann-Whitney check for change point or regime shift in the time series. 
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Figure 3. Spatial distribution of trends, change points and nonstationarities in rainfall extremes of several durations in nine urbanized 

locations, Southern Ontario (a – g). The up and down triangles in white indicate (statistically insignificant) up and downward shifts; 5 

the up and down triangles in cyan and orange indicate shifts with change points only; the up and down triangles in the dark blue and 

red show presence of (statistically significant) trends including change point(s). Sites with significant nonstationarity are marked with 

an ‘x’ sign. All tests are performed at 10% significance levels, i.e., p-value < 0.10.  



41 

 

 

 

Figure 4. DSI estimates of the median (horizontal line within the box plot) and 95% credible intervals for 100-year return periods of 

stationary versus nonstationary models across nine sites (a - i). The boxplots indicate the uncertainty in estimated DSI using 

Bayesian inference.   5 
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Figure 5. Percentage changes (in top panel) and Z-statistics (bottom panel) of at-site T-year event estimates for T = 2-year to T = 100-

year return periods (a – d) with durations between 15-min and 24-hr in nine urbanized locations, Southern Ontario. The Z-statistic 

represents statistical significance of differences in DSI obtained from the best selected nonstationary versus the stationary model. The 5 

Z-statistics is statistically significant when |Z| > 1.64 at 10% significance level. The shades in blue and red denote decrease and 

increase in Z-statistics with the strength of shading represents the magnitude of the test statistics. The durations with significant 

autocorrelations are excluded from the analysis.   
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Figure 6. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary versus EC-generated T = 2-

and 10-year event estimates for DSI at selected return periods with durations between 15-min and 24-hr. The DSI and associated 95% confidence 

limits of EC-generated IDF is obtained from the national archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in 

blue and red denote decrease and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-5 

generated DSI.  
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Figure 7. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary versus EC-generated T = 50-and 

100-year event estimates for DSI at selected return periods with durations between 15-min and 24-hr. The DSI and associated 95% confidence limits 5 

of EC-generated IDF is obtained from the national archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and 

red denote decrease and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-generated DSI.
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Figure 8. Estimated nonstationary versus EC-generated IDFs for T = 2, 5, 10, 25, 50 and 100-year return periods for the selected 

urbanized locations in Southern Ontario, Canada. The updated and EC IDFs are shown using solid and dotted lines respectively.  5 


