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Responses to Reviewer #1 on “Does Nonstationarity in Rainfall Requires Nonstationary 

Intensity-Duration-Frequency Curves? By Poulomi Ganguli and Paulin Coulibaly 

We thank Referee #1 for reviewing our manuscript and providing constructive feedback, which 

improves the quality of the manuscript. Our responses are embedded within the comments (in 

BLACK) in BLUE. The new additions to the revised manuscript are embedded below in 

GREEN. 

 

The manuscript presents an interesting topic, and discuss the crucial question of whether there is 

enough evidence of changes in hydrometric series to warrant a change in the IDF curves used for 

the design and maintenance of hydraulic structures. Although the topic discussed is interesting 

and worthy, the paper is quite inconclusive and does not manage, in my opinion, to provide a 

clear point of view on the matter. The authors have definitely done a lot of work and have looked 

very carefully at the data, but they fail to summarize their finding in any useful way and simply 

provide a lot (too much maybe) of information. The presentation of the methods and results is 

quite unclear and it has several opaque points. The statistical methods are often presented with 

some imperfections and in general the paper could greatly benefit from some proof-reading and 

re-organisation. In particular the authors should make more of an attempt to summarise their 

findings from all the non-parametric tests in a way that is more informative. 

Response: Thanks for the feedback. The reviewer comments are well appreciated. In our case, a 

series of statistical tests are necessary to assess nonstationarity in design rainfall, as echoed in 

earlier literature (Sadri et al., 2016; Yilmaz et al., 2014, 2017). A single statistical test may not 

be reliable enough to detect signatures of nonstationarity in hydrometeorological time series. 

Further, we note that multiple tests allow a more rigorous assessment of overall trend in the time 

series since certain tests are complimentary to each other. Therefore, we explored various 

statistical tests, starting from testing auto-correlation, the presence of monotonic (using trend 

tests) or abrupt change (using single point change detection algorithm) at different statistical 

significance levels in practice. Further, we have presented a flowchart of complete methodology 

in Figure 2 to comprehend the overall analysis. Now coming to statistical methods, we have 

significantly revised the manuscript to correct any miss perfections as pointed by the reviewer. 

While we are highly appreciative of the suggestions and comments by the reviewers, we do have 

one minor point to make which may come across as a slight disagreement with one set of 

comments. We sense a sentiment shared in one of the comments that our presentation of methods 

and results are quite unclear. We do not agree with this sentiment even though we agree that the 

various nuances were not clearly explained in the previous version of the manuscript. Since the 

focus of the work is insight driven, we have discussed methodologies thoroughly in Supplements 

to avoid the distraction of audience by over-emphasizing the methodologies.  
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However, we have attempted to improve the presentation of methods and re-organized our 

manuscript in light of the reviewer’s comments. As suggested we have made the following 

changes in the revised manuscript: 

 We have expanded Section 3.2 in Methods to include rationale for the inclusion of 

multiple tests for detecting nonstationarity. We argue that some of the tests are 

complimentary to each other. Further, multiple tests allows a robust assessment of overall 

trend, shifts and nonstationarity in the time series as suggested in the literature (Sadri et 

al., 2016; Yilmaz et al., 2014, 2017). 

 We have reorganized Section 3.3 to include mathematical formulations of GEV 

distribution and associated time varying covariates to model nonstationary GEV 

parameters.  

 We have re-written the Methodology section and re-organized the Supplements into 

different sections to present it in a more coherent and clearer way to the readers. 

 We have summarized the results of trend detection tests in detail in Page 13, lines 11 – 

23. 

 We have included Bayes-factor criterion in addition to AIC statistics for small sample to 

evaluate fit of the nonstationary model. 

 We have restricted our analysis to Bayesian fit for stationary and nonstationary model. 

 We have recalculated 95% credible intervals for all sites from 0.025 and 0.975 quantiles of 

the simulated posterior samples. 

 

The title of the manuscript indicate that IDF curves are the main topic, although the authors limit 

themselves to the (hard) task of fitting different frequency curves to the each series with different 

duration separately. This could result in non-consistent estimates eventually. The type of studies 

the authors perform is laudable and would be the first step to take to assess whether new IDF 

curves would need to be derived. 

Response: Here we slightly disagree with the reviewer. First, we fitted both stationary and 

nonstationary frequency curves corresponding standard durations, commonly used in practice for 

infrastructure in design. We also test the hypothesis whether we need nonstationary frequency 

curves for the moderately and densely populated urbanized locations across Southern Ontario. 

We discussed motivation of our study in detail and extended literature review in the revision. 

Next, we compared the design storm estimates using simple z-statistics considering a range of 

uncertainty as assessed by 95% credible interval to find out whether statistically significant 

differences exist between nonstationary versus stationary method. Finally, we presented updated 

IDF curves for all nine locations across Southern Ontario, which is of interest to stakeholders’ of 
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the region. We further compared updated versus EC-generated IDFs considering both 

nonstationary and stationary (Figures 6 and 7) conditions. 

 

The authors do a lot (a lot!) of tests to the data series of each duration - definitely the issue of 

multiple comparisons arise and it is to be expected that some tests will turn out to be significant 

just by randomness.  

Response: We appreciate the reviewer’s point. However, we would stress that multiple tests are 

needed to detect the presence of monotonic trends or abrupt shifts, and nonstationarity in the 

time series since a selected or cherry-picked number of tests may not be sufficient to detect 

plausible changes and nonstationarity in the time series. Multiple tests were also performed in 

earlier studies (Sadri et al., 2016; Yilmaz et al., 2014, 2017) to detect temporal changes in the 

time series. For example, we employ both Mann-Whitney and Pettitt method to find an abrupt 

shift in mean in the time series, whereas Mann-Kendall test was employed to detect the 

monotonic trend in the time series.  

Previous studies (Xie et al., 2014; Yue and Wang, 2002) have found that the rank-based 

nonparametric Mann-Whitney test is not really distribution free and the power of the test is often 

affected by the properties of sampled data. In practice, when real change point is unknown, often 

Mann-Whitney test, in general, does not work well, and the Pettitt method can yield plausible 

change point location along with its statistical significance. However, the significance of the 

Pettitt test can be obtained using an approximated limiting distribution. As shown earlier, the p-

value associated with the test statistics is evaluated following an approximate estimate (Xie et al., 

2014). Further, it is also important to note that presence of nonstationarity may not be evaluated 

merely on the basis of trends or abrupt shifts in the time series, even if the increasing or 

decreasing trends are statistically significant (Yilmaz et al., 2014).  Therefore, we also employed 

three statistical tests, namely Augmented Dickey-Fuller (ADF), Kwiatkowski–Phillips–Schmidt–

Shin (KPSS) and Priestley Subbarao (PSR) test to further investigate nonstationarity in the time 

series. Both ADF and KPSS tests are based on autoregressive nature of time series. However, 

Yilmaz et al. (2014) did not observe the presence of any significant nonstationarity in short-

duration extreme rainfall time series in the city of Melbourne even after employing these tests. 

Therefore as an alternative, we employed frequency-based PSR test, which is able to capture 

nonlinear dynamical nature of hydrological system than the former two tests (Ali and Mishra, 

2017; Hamed and Rao, 1999). We have incorporated these points in the revised version of the 

manuscript in appropriate places (Page 8, lines 24-26; Page 9, lines 5 – 10; 15 - 24). 
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I have to say it is difficult to follow the authors in all their testing, there is very little effort made 

to summarise the finding in any useful way and the results are simply presented/dumped as they 

are in the SI.  

 

Response: We agreed. In the revised manuscript we provided a more detailed description of the 

results: 

 In page 12, lines 16-20, we provided results of skewness and kurtosis in Annual Maxima 

(AM) time series. We move results of skewness and kurtosis analysis in the form of 

Tables (Tables 2 and 3) in main manuscript. We have added following sentences: 

 

“The skewness is a measure of the asymmetry in the AMP distribution. Positive values of 

skewness indicate that data are skewed to the right. The skewness of sub-hourly 

precipitation extremes varies between 0.22 and 4.45, with highest being 30-min AMP 

record at Hamilton and least being at Oshawa respectively (Table 2). Likewise, for hourly 

extremes, the skewness ranges between 0.54 and 2.54, with least being 1-hour AMP at 

Oshawa and highest is 1-hour AMP at Hamilton respectively (Table 3).” 

 

 In page 13, lines 11 – 23, we summarized results of nonstationary trend detection tests. 

We have added following sentences in the revised manuscript: 

 

“We find statistically significant monotonic increase and abrupt step changes, both in 

mean and variance in Oshawa and Trenton respectively (Table S6 and S10), whereas 

London show (significant) decrease (Table S9) from duration of 6-hour and more. 

Windsor, Kingston and Stratford show (significant) step changes as confirmed by Mann-

Whitney and Mood Tests (Tables S7, S8 and S11). On the other hand, Toronto, Hamilton 

and Fergus Shand Dam (Tables S4, 4.1; S5, 5.1; S12) do not exhibit any statistically 

significant gradual or abrupt changes in the AMP time series. The ADF tests show 

presence of nonstationarity in all durations across the sites. To further validate results of 

ADF test, KPSS and PSR tests are employed. The KPSS test detects presence of 

nonstationarity at 3 out of 9 sites for 24-hour rainfall extreme at 5% significance level, 

whereas the results of PSR test indicate nonstationarity across 5 sites in 24-hour rainfall 

extremes. While KPSS test alone could not detect presence of nonstationarity in any of 

the extreme series in Oshawa and Stratford respectively, the results of PSR test did not 

indicate nonstationarity in any of the short-duration rainfall extreme in Windsor. Both of 

these tests taken together detect presence of nonstationarity in rainfall extremes across 6 

out of 9 sites”. 
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 We have incorporated results of the nonstationary versus stationary model fit of selected 

airport sites, such as, Toronto, Hamilton, Windsor and London in Tables 4 – 7 in the 

main manuscript and explained the results in page 14, lines 5 – 9. 

 

 We have revised the result section to include a more thorough explanation of each of the 

findings. 

 

I am not sure whether the results are reliable given the authors have p-values larger than 1. 

Response: Here we briefly explain computation procedure of Pettitt Test (Xie et al., 2014), 

which we have appended in Supplements (SI 2).  

When a sequence of random variables is divided into two segments represented by 
01,..., tx x and 

0 0 01 2, ,...,t t tx x x 
, if each segment has distribution functions,  1F x  and  2F x , where 

   1 2F x F x , then change point is identified at 0t . Thus the null hypothesis of the test is “no 

change”, 0 :H T   against the alternative of “change” 1 :1H T  . The test is based on 

following statistic (Serinaldi and Kilsby, 2016; Xie et al., 2014) 
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. Given a certain significance 

level  , if  p  , we reject the null hypothesis and conclude that  x is a significant change 

point at level  . Since the associated p-value is computed following an approximate estimate of 

p-value, in few cases it exceeds the value 1, which we sense is due to analytical intractability of 

the estimate. In that case, we have kept the table value blank simply putting a hyphen, and added 

a footnote indicating the calculation of p-value is analytically intractable in those cases. 

 

Response to Further Remarks by Reviewer 1 

Comment 1 The beginning of Section 3.3 is very messy and should be rewritten. Distributions 

do not contain parameters, they are characterised by parameters. Line 25, " a value of the shape 

parameter equal to zero". Line 28: "In the case of a negative shape parameter, the distribution is a 

Weibull". Note that the Frechet is also a bounded distribution, except it has a lower bound. 

Overall I would write down the whole thing in a formula, specifying the limits of the distribution 

for the different values of the shape. 
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Response: Agreed. We have added following sentences in the revision: 

“The GEV distribution is characterized by three parameters, the location, the scale and the shape 

of the distribution, which describes the center of the distribution, the deviation around the mean 

and the shape or the tail of the distribution (Katz et al., 2002; Katz and Brown, 1992). The 

cumulative distribution function of stationary (time invariant) GEV model is given by (Coles et 

al., 2001; Gilleland and Katz 2016): 
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      
   

     
  

                     (3.1) 

Where,  max ,0y y  , and  

  ,z       when 0  ;   ,z         when 0  ; and  ,z    when 

0   

  is a location parameter,   is a scale parameter and   is a shape parameter determining the 

heaviness of the tail. The shape parameter  , determines the higher moments of the density 

function and also the skew in the probability mass. The ‘+’ sign indicates positive part of the 

argument.  The Eq. (3.1) encompasses three types of DFs based on the sign of the shape 

parameter,  : (i) the Fréchet, with a finite lower bound of      and an unbounded, heavy 

upper tail, ( 0  ), (ii) the Weibull, unbounded below and with a finite upper bound of  

    , ( 0  ) and (iii) the Gumbel, unbounded below and above with a light upper tail 

0  , formally obtained by taking limit as 0  . The Gumbel distribution is described by an 

unbounded light tailed distribution and the tail decreases rapidly following an exponential decay. 

The Fréchet distribution is a heavy-tailed distribution, and the tail drops relatively slowly 

following a polynomial decay (Towler et al., 2010). On the other hand, the Weibull distribution 

is a bounded distribution”. 

 

Comment 2 Page 2 line 13. It is often the case though that IDF curves are derived not only from 

at-site data but using a pooled set of stations see for Svensson and Jones (2010, 

doi:10.1111/j.1753-318X.2010.01079.x) for a review of methods used in several countries. 
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Response: Agreed. The approach can be implemented locally (at Site; or SFA) or regionally 

(RFA or pooled). The regional frequency analysis is used when available record length is short 

or at locations where no observed data are available (Castellarin et al., 2012; Komi et al., 2016). 

However, various RFA estimation methods have certain drawbacks, such as Index flood method 

is sensitive to the homogeneity assumption and formation of regions; in Bayesian method of 

regionalization, the prior distributions of parameters are often not precise enough and do not add 

precision to the estimates; in Hierarchical approach, the method may produce abrupt changes in 

the parameters from one site to another. Komi et al. (2016) summarize the limitations and 

advantages of some of the widely used RFA techniques. In our case, the available records across 

all sites range between 47 and 66 years, which are more than the climatology (often over time 

periods of 30-years) of a region. Hence, we employ SFA method in our study. The rationale of 

incorporating at-site frequency method to derive IDF curves in the present study is discussed 

briefly in page 3, lines 20 – 28. This also allows a consistent comparison with the EC-IDFs that 

have been used in practice in the study area. 

 

Comment 3 Page 3 - line 8-9: the authors seem to imply that the Gumbel distribution is sym-

metric - which is not the case, as it is easy to see by plotting the pdf of a Gumbel distribution.  

Response: We agree. This was a mistake. We revise the sentence as follows: 

EV1 distribution has certain limitations, such that it is a non-heavy tailed distribution and 

characterized by constant skewness and kurtosis coefficients. 

 

Comment 4 Section 3.1: I think the information of the percentage of missing values of each 

station/duration should be given somewhere - ideally in the main text and not in SI. I can not 

judge whether the MCR technique is the most appropriate one, as this is too far away from my 

area of expertise. 

Response: We agree. We have moved Table S1 from Supplement to the main manuscript as 

Table 1. We have also added an extra column in Table 1 indicating information of missing years 

and durations at each station. 

 

Comment 5 Page 8 - line 8: if the 5% and 95% quantile of the posterior samples are taken then a 

90% credibility interval is constructed. A 95% interval is taken to be one that contains 95% of 

the distribution. 

Response: Agreed! As suggested we have re-analyzed our data to incorporate 2.5% and 97.5% 

quantiles of the posterior sample to construct a 95% credible interval.  
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Comment 6 Section 3.3: it is not clear to me why the authors go through the trouble of fitting 

both an ML and Bayesian fit for the stationary model if they only use a Bayesian model for the 

non-stationary models. Just use the Bayesian methods and embrace Bayesian Inference. 

Response: We appreciate the reviewer’s comment. As suggested, we have presented the results 

only using Bayesian model and exclude ML method.   

 

Also, seeing in Table SI16-S24 that the more complex non-stationary model GEVII is often 

selected I wander whether the authors have tried to only fit models with the scale taken as the 

only varying function?   

Response: We have revised our results in light of the above comments. However, from the 

revised set of results, we noted that in a few cases GEV II model (nonstationary in location and 

scale parameter), performed better than GEV I model (nonstationary in location only). The above 

results are not uncommon given the highly nonstationary nature of precipitation extremes as 

observed from the Figure 3. Similar findings were also noted by (Gu et al., 2017) in a flood 

frequency analysis of Pearl River basin in China, where the authors have analyzed 28 stream 

gauge locations. The results of their analysis suggested in 5 out of 28 sites GEVII performed 

better as compared to the stationary and GEV I models.  

  

Lastly, why not to formally test stationary/non-stationary model is better by using a Bayesian 

factor or some pre-set rule on the 95% credibility interval not-containing zero? 

Response: Agreed! We have incorporated Bayes factor, AIC statistics for small sample and 

probability-probability (P-P) plot to evaluate model fit. 

 

Comment 7 Section 3.3: what do you do with the results of the Pettitt test? One could use it to 

build a model with a step-change rather than a continuous function of time. In general, why 

doing all the non-parametric test AND the parametric models? What is the use of the non-

parametric tests exactly? 

Response: This is indeed a good point raised by the reviewer. Here, we used three different tests, 

Pettitt, Mann-Whitney and Mood tests to identify abrupt step changes in the time series, which is 

different from monotonic or gradual trends in the time series. We have implemented a series of 

statistical tests since a single statistical test may not be able to capture full ranges of 

nonstationarity in highly nonlinear dynamical system, such as short-duration extreme 

precipitation. As we discussed earlier, the rank-based nonparametric Mann-Whitney test is not 

really a distribution free and the power of the test is often affected by the properties of sampled 

data. In practice, when real change point is unknown, often Mann-Whitney test, in general, does 

not work well and the Pettitt method can yield plausible change point location along with its 
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statistical significance. However, the significance of the Pettitt test can be obtained using an 

approximated limiting distribution. Therefore, above tests were needed in the current setting.  

Further, we applied nonparametric tests due to their robustness to non-normality, which usually 

appears in the hydroclimatic time series. Further, in order to reduce the number of underlying 

assumption required for testing a hypothesis, such as the presence of specific kind of trend or 

change point in the data set, nonparametric tests were employed. We discussed each of these 

issues in the revised manuscript. 

 

Comment 8. Page 8 - line 14: it is very good that the authors verify the goodness of fit by using 

PP, but it is unclear to me how they "select the model with fewer parameters as the best model 

when two models have comparable performances.". This is exactly what the AIC should do, so 

even if the AIC does not indicate that a simpler model should be used the authors might cull a 

non-stationary model out if the stationary model give a better fit in the PP plot? 

Response: We have reanalyzed the data and new results are different from the previous ones.  

 

Comment 9. Page 8 - line 25-26: a positive skewness is just an indication of an asymmet-

ric/skewed distribution, it doesn’t necessary indicate a change in the distribution. I mean 

"extreme values are more frequent in the time series" compared to what? 

Response: We have revised this sentence in page 12 (line 17-18) as follows: 

Positive values of skewness indicate that data are skewed to the right. 

 

Comment 10. Page 9, line 29: Bayesian measures of uncertainty are normally called credibility 

and not confidence intervals. Also as I mentioned above - unclear if the 95% or the 90% intervals 

are derived. 

Response: We appreciate reviewer’s feedback. As suggested we have replaced the word with 

credibility interval wherever it is appropriate. We have constructed 95% credibility intervals 

from the 2.5th and 97.5th percentiles of the simulated posterior samples. 

 

Comment 11. Page 10/Figure 4: how are the DSI calculated for the non-stationary models? Is 

the last value of the parameters used to compute the quantiles? Why do you show boxplots of the 

posterior sample and not a 95% credibility interval? As I said I would drop the estimation using 

ML completely, but if you do use it, you could show confidence intervals based on the delta-

method (see Coles, 2001). 

Response: We estimated parameters using Bayesian inference (BI) coupled with Differential 

Evaluation Markov Chain (DE-MC) simulation as in (Cheng and AghaKouchak, 2014; Cheng et 
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al., 2014). DE-MC is an adaptive Monte Carlo Markov Chain (MCMC) algorithm (Ter Braak 

and Vrugt, 2008; Ter Braak, 2006), in which multiple chains (here, we fix chain length ‘n’ as 5) 

are run in parallel. The resulting MC simulations are then run to an equilibrium (often referred to 

as the burn-in period). It is a standard practice to discard the initial iterations of simulated 

samples since they are strongly influenced by starting values and do not provide usable 

information of the target distribution. Here we run DE-MC simulations for 3000 iterations and 

kept the 2001-3000th iterations of each chain. The convergence of MC simulation is checked by 

the “potential scale reduction factor (𝑅)̂” as in (Gelman et al., 2011), which suggests the value of 

𝑅̂  should remain below the threshold value of 1.1. The post burn-in random draws from 

posterior distribution are then used to construct predictive distributions. For annual maxima time 

series of each duration, the mean and associated 95% credibility intervals of parameters 

(µ(𝑡), 𝜎(𝑡)) are derived by computing 50th (the median), 2.5th and 97.5th (bounds) percentiles of 

post burn-in random draw (for example, 50th percentile of µ(𝑡1), … . , µ(𝑡100)). The derived 

model parameters are then used to compute corresponding design rainfall quantiles at T-year 

return period and corresponding credibility interval. We calculated the median value of design 

storm by computing 50th percentiles of the post-burn in simulated posterior quantiles for the 

nonstationary model. We have constructed 95% credibility intervals from the 2.5th and 97.5th 

percentiles of the posterior samples.  

 

In the manuscript, the boxplots are shown for 95% credibility interval and not with posterior 

samples. To avoid further ambiguity we have revised corresponding figure caption (Figure 4) as, 

“DSI estimates of the median (horizontal line within the box plot) and 95% credible intervals for 

100-year return periods of stationary versus nonstationary models across nine sites (a - i). The 

boxplots indicate the uncertainty in estimated DSI using Bayesian inference”. As suggested we 

have dropped ML method completely in the revised manuscript. 

 

Comment 12. Page 11/Figure 6: has any assessment been done on whether the stationary version 

of the fitted curves has a good overlap to the EC-curves? Surely if these two curves are very 

different, any mis-match between the non-stationary results and the EC-curves could be due to 

the fact that the EC curve doesn’t fully fit the data of a site. This links to a comment on the 

statements in page 13 between line 20-25: you are saying that from the comparison of stationary 

to non-stationary models there seems to be no indication of a need to update DSI, but when 

comparing the outputs of a non-stationary model to the EC-curves (obtained assuming 

stationarity) then the evidence is that we should update the DSI. This points in the direction of 

the EC-curves being different from the at-site stationary curves. 
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Response: As suggested we have compared the stationary version of the fitted curve with EC 

curves. Associated results are presented in Figures 8 and S15. We discuss following results in the 

revision: 

“In order to distinguish between the stationary and nonstationary method of analysis, we also 

present updated IDF assuming stationary condition relative to EC IDF in the same plot (in top 

panel). The comparisons of remaining sites are presented in Figure S15. Thus we made the first 

attempt to compare the results of updated versus EC-generated IDFs considering both 

nonstationary and stationary conditions, which are part of contemporary Design Standards and 

widely used by the stakeholders and practitioners. Overall, the updated IDFs closely follow the 

pattern of trends analogous to EC-generated IDFs, except for the 100-year return period. The 

difference is more pronounced considering nonstationary condition, especially at Toronto 

International Airport (Figure 8), Oshawa WPCP and Stratford WWTP (Figure S15). At longer 

durations and higher return periods, stations in metropolitan areas (such as Toronto International 

Airport, Hamilton Airport, Oshawa WPCP and Windsor Airport) show large differences in DSIs, 

whereas moderately populated locations such as Kingston P. station and Fergus Shand dam show 

relatively smaller changes. Considering, nonstationary condition, the maximum increase in 

Furgas Shand dam is noted as 18.7% for the 2-hour storm duration and 100-year return period, 

whereas an increase of around 44.5% is shown for 12-hour storm duration at Toronto Airport”.  

 

Comment 13. Page 14: I don’t understand what the last sentence of the paper means. 

Response: We have revised the sentence as follows:  

“Given that these findings are for the current period (e.g. historical extreme rainfall time series), 

we recommend a careful extrapolation of the findings with regards to future climate projections, 

in which frequency and magnitude of extreme rainfall are expected to intensify (Mailhot et al., 

2012; Deng et al., 2016; Fischer and Knutti, 2016; Prein et al., 2016; Pfahl et al., 2017).  Further 

work should consider nonstationary methods for deriving future IDFs in Southern Ontario.” 
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Comment 14. SI3: I would give the lower and upper bound of the GEV in a formula to give a 

simpler indication of the effect of the value of the shape parameter. 

Response: Agreed, we add following expressions to indicate effect of shape parameter in GEV 

distribution: 
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                    (3.1) 

Where,  max ,0y y  , and  

  ,z       when 0  ;   ,z         when 0  ; and  ,z    when 

0   

 

  is a location parameter,   is a scale parameter and   is a shape parameter determining the 

heaviness of the tail. The shape parameter  , determines the higher moments of the density 

function and also the skew in the probability mass. The ‘+’ sign indicates positive part of the 

argument.  The Eq. (3.1) encompasses three types of DFs based on the sign of the shape 

parameter,  : (i) the Fréchet, with a finite lower bound of      and an unbounded, heavy 

upper tail, ( 0  ), (ii) the Weibull, unbounded below and with a finite upper bound of  

    , ( 0  ) and (iii) the Gumbel, unbounded below and above with a light upper tail 

0  , formally obtained by taking limit as 0  . 

 

Comment 15. SI3.1: why using ML in one case and Bayesian methods for another? 

Response: Agreed. As suggested we have excluded the results of ML estimate. 
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Comment 16. SI3.1, paragraph after equation 3.8: p(y|λ, x) does not give information on the 

parameters. The formulation of the sentence seem to imply that the likelihood p(y|λ, x) gives 

information on the parameters under non-stationarity, which is not the case. 

Response: Agreed. To avoid any ambiguity, we have revised the sentence as: 

“The posterior distributions, 𝒑(𝝎|𝒚) and 𝒑(𝒚| , 𝒙) indicate likelihood functions, which infer 

parameters  , ,     considering stationarity, and  1 0 1 0, , , ,       assuming 

nonstationarity conditions, respectively.”  

 

Comment 17. SI4.1 - the definition in eq 4.1 for the Akaike information criterion is not correct 

(or better it is correct for a normal model, but not for a GEV). AIC is generally defined as AIC = 

−2log(L(ω, x)) + 2m . That’s how the two references cited by the authors define the AIC as well. 

From what I understand from the explanation of the observed/expected values the authors are 

doing a model selection using AIC based on the quantiles, which is not made explicit in section 

3.3. If that’s the case, which quantiles are used?  

Response: Here we cannot concur with the reviewer. We also point to the reviewer that we have 

used a least square version of Akaike Information Criterion (AIC), which is calculated as the 

largest deviation between the observed (empirical in this case, obtained from rank-based plotting 

position formula) and modelled cumulative distribution. This form of AIC is widely used in 

hydrology in general and multivariate statistics in particular (Dawson et al., 2007; Deepthi 

Rajsekhar et al., 2015; Ganguli and Reddy, 2012; Hu, 2007; Janga Reddy and Ganguli, 2012; 

Karmakar and Simonovic, 2007, 2009). Further, we point that this form does not correspond to a 

normal model. For calculation of AIC statistics, we consider median of the DE-MC sampled 

parameters, which can be considered as an average or expected value of risk in the historical 

observation. We have added this in detail in section 3.3 as suggested by the reviewer.   

 

Comment 18. Equation 5.1 and 5.2, what happens if ζ = 0? 

Response: When 0  , the GEV distribution reduces to Gumbel distribution (or Extreme 

Value Type I). In that case, the return period is obtained by calculating frequency factor. We add 

following sentences SI 4, page 40 in the revised version of the manuscript: 

 

“When 0  , the GEV distribution reduces to Gumbel distribution (or Extreme Value Type I). 

It should be noted that Gumbel Extreme value distribution has been commonly used to estimate 

design storm by Environment Canada (CSA, 2010). The Gumbel probability distribution has 

following form (Wang et al., 2015) 
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p pq K                   

Where 
pK denotes frequency factor depending on the return period T, which is obtained using 

following relationship (Wang et al., 2015) 

6
0.5772 ln ln

1
p

T
K

T

    
    

   
                      

Environment Canada uses this method to estimate rainfall frequency at a given duration and 

obtain nationwide IDF curves”.  

 

Comment 19 Table S7, 24-hours, the p-value for the pettitt test is larger than 1 - this cannot be 

right. (see also S9 30min, S11 15min to 2hr, S14 15min to 2hr, S15 12hr) 

Response: Agreed. As explained before, the significance of the Pettitt test can be obtained using 

an approximated limiting distribution, the p-value of certain durations could not be computed 

accurately due to analytical intractability. We have kept those places as blank (-) in the revised 

manuscript. We have added a footnote at the end of Table S4 explaining this point. 

 

Comment 20 Table SI16 - not sure if the red and blue are right in all stations. 

Response: We have revised our analysis and revised results are different from earlier. 

 

Comment 21 Pg 14 Supplement : the definition of return level has the word expected in the 

wrong place. ... often referred as return level in the literature is the expected value to be exceeded 

on an average once in every... should be ... often referred as return level in the literature, is the 

value which is expected to be exceeded on an average once in every... - see Coles, 2001 - end of 

section 3.1.3 (pg 49 in my edition). 

Response: Agreed. We have revised the definition in the current version as suggested. 

 

Comment 22 I also find some of the Figures - and in particular their captions - could be 

improved. 

Response: Agreed. We have revised captions of the figures wherever appropriate to enhance 

clarity. By doing so, we have also incorporated changes as suggested by the reviewer. 

 

Comment 22.1 Figure 3 caption 
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 Durations higher than an hour are also shown I would say "Spatial distribution of trends, 

change points and non-stationarities in rainfall extremes of several durations in nine 

urbanized locations, Southern Ontario" 

 Drop the information on the population - it’s in Figure 2 and in the text (several times) 

 Drop the information on the tests performed or at least reduce it since it’s given in the 

text (for example drop the references) 

 Include information on the color coding in the legend. 

 If tests are performed at 5% and 10% - what is considered statistically significant? p-

values < 0. 05 or p-value < 0.1? 

Response: Agreed and incorporated in the revision. Further, p-values < 0.1 is considered to be 

statistically significant. The same has been incorporated in the revision.  

 

Comment 22.2 Figure 4 caption: drop the list of the name of the station - it is given in the plot. 

Response: Agreed and incorporated in the revision. Also, we have revised the figure caption in 

light of comment no. 11. 

 

Comment 22.3 Figure 5 caption: add the information on the cyan shading representing the site 

with significant autocorrelation in the legend and drop from the legend. The second last sentence 

grammar is not correct. 

Response: Agreed and incorporated in the revision. We have revised the grammar of the second 

last sentence. 

 

Comment 22.4 Figure 7: I would include the information on solid/dotted lines in the legend. 

Response: Agreed and incorporated in the revision. 

 

Comment 23 The paper has several grammar mistakes, with articles missing or appearing in the 

wrong place and several sentences which have non-concordant subject and verb. I list here a 

minuscule sample of the typos/mistakes I found 

Response: We have thoroughly checked the manuscript, corrected all typos. We have revised the 

manuscript in places as they were suggested.  

 

Comment 23.1 Page 3, line 16 slowly or varying are not antonyms. Line 18-19 does should have 

a singular subject (not signal). Same in line 25-26. 

Response: Agreed. We have revised this to gradual or monotonic changes. We have revised the 

sentence in line 18-19. We have revised the grammar in line 25-26. 
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Comment 23.2 Page 3 line 23-24: The structure of the sentence is confusing. It is not the signa-

tures that necessitate IDF. Maybe use "...make necessary the use..." 

Response: Agreed and incorporated in the revision. 

 

Comment 23.3 Page 5: line 4-5 more repeated twice. 

Response: Agreed and we have revised the sentence as suggested. 

 

Comment 23.4 Page 8: Line 27-28: the sentence is not complete. 

Response: We apologized for this. We have corrected all incomplete sentences including this 

one in the revision. 

 

Comment 23.5 Page 10 - line 16: less uncertainty (not lesser). 

Response: Agreed and incorporated in the revision. 

 

Comment 23.6 Page 11 - line 17: More genralLY - and the sentence has a singular subject so 

line 19 should be is not are. 

Response: Agreed and incorporated in the revision. 

 

Comment 23.7 Page 12 - line 2: smaller, not lesser. 

Response: Agreed and incorporated in the revision. 

 

Comment 23.8 Page 12 - line 17: It? I think you need a "We"? 

Response: Agreed and incorporated in the revision. 

Comment 23.9 Page 13 - line 6: does/is? 

Response: Agreed and incorporated in the revision. 

 

Comment 23.10 Page 13 - line 12: several studies HAVE. 

Response: Agreed and incorporated in the revision. 

 

Comment 24. Further inconsistencies I identified:  

 Comment 24.1 Page 4 Line 10: the ref to Jien and Gough is missing in the reference list 

and I think is not needed since it states a basic fact about the geography of Canada. 

Response: Agreed and the citation is excluded from the revised version. 
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 Comment 24.2 Page 9, Line 28 - ξ, instead of ζ used in the SI, for the shape parameter of 

the GEV. 

Response: Agreed and incorporated in the revised version of the manuscript. 

 

 Comment 24.3 Reference list: Cheng, L. and AghaKouchak, A. 2014 - just give the doi, 

not the ncbi link. 

Response: Agreed and incorporated in the revision. 

 

 Comment 24.3 Supplement references: Coles and Tawn (1996) cited in text missing in 

the ref. Anyway, for that formula Coles, 2001 is probably enough as a citation. 

Response: The citation Coles and Tawn (1996) is included in the revised version. 

 

 Comment 24.4 The citation to Coles 2001, An introduction to statistical modelling of 

extreme values, Springer in the supplementary material is wrong, as it has additional 

authors other than Coles. 

Response: Agreed and incorporated in the revision. 

 

 

References 

Ali, H. and Mishra, V.: Contrasting response of rainfall extremes to increase in surface air and dewpoint 

temperatures at urban locations in India, Sci. Rep., 7(1), 1228, doi:10.1038/s41598-017-01306-1, 

2017. 

Castellarin, A., Kohnová, S., Gaál, L., Fleig, A., Salinas, J. L., Toumazis, A., Kjeldsen, T. R. and 

Macdonald, N.: Review of applied-statistical methods for flood-frequency analysis in Europe, 

Available from: http://nora.nerc.ac.uk/19286/, 2012. 

Cheng, L. and AghaKouchak, A.: Nonstationary precipitation intensity-duration-frequency curves for 

infrastructure design in a changing climate, Sci. Rep., 4, doi: 10.1038/srep07093, 2014. 

Cheng, L., AghaKouchak, A., Gilleland, E. and Katz, R. W.: Non-stationary extreme value analysis in a 

changing climate, Clim. Change, 127(2), 353–369, 2014. 

Coles, S. G. and Tawn, J. A.: A Bayesian Analysis of Extreme Rainfall Data, J. R. Stat. Soc. Ser. C Appl. 

Stat., 45(4), 463–478, doi:10.2307/2986068, 1996. 

Coles, S.: An introduction to statistical modeling of extreme values, Springer, 2001. 

CSA (Canadian Standards Association): Technical Guide – Development, Interpretation and Use of 

Rainfall Intensity-duration-frequency (IDF) Information: Guideline for Canadian Water 

Resources Practitioners, 2010. 

Dawson, C. W., Abrahart, R. J. and See, L. M.: HydroTest: A web-based toolbox of evaluation metrics 

for the standardised assessment of hydrological forecasts, Environ. Model. Softw., 22(7), 1034–

1052, doi:10.1016/j.envsoft.2006.06.008, 2007. 



18 
 

Deepthi Rajsekhar, Vijay P. Singh and Ashok K. Mishra: Hydrologic Drought Atlas for Texas, J. Hydrol. 

Eng., 20(7), doi:10.1061/(ASCE)HE.1943-5584.0001074, 2015. 

Deng, Z., Qiu, X., Liu, J., Madras, N., Wang, X. and Zhu, H.: Trend in frequency of extreme precipitation 

events over Ontario from ensembles of multiple GCMs, Clim. Dyn., 46(9–10), 2909–2921, 2016. 

Fischer, E. M. and Knutti, R.: Observed heavy precipitation increase confirms theory and early models, 

Nat. Clim. Change, 6(11), 986–991, 2016. 

Ganguli, P. and Reddy, M. J.: Probabilistic assessment of flood risks using trivariate copulas, Theor. 

Appl. Climatol., 111(1–2), 341–360, doi:10.1007/s00704-012-0664-4, 2012. 

Gelman, A., Shirley, K. and others: Inference from simulations and monitoring convergence, Handb. 

Markov Chain Monte Carlo, 163–174, 2011. 

Gilleland, E. and Katz, R. W.: Extremes 2.0: an extreme value analysis package in r, J. Stat. Softw., 72(8), 

2016. 

Gu, X., Zhang, Q., Singh, V. P., Xiao, M. and Cheng, J.: Nonstationarity-based evaluation of flood risk in 

the Pearl River basin: changing patterns, causes and implications, Hydrol. Sci. J., 62(2), 246–258, 

2017. 

Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 

204(1), 182–196, 1998. 

Hu, S.: Akaike information criterion, Cent. Res. Sci. Comput., North Carolina State University. Available 

from: http://www4.ncsu.edu/~shu3/Presentation/AIC_2012.pdf, 2007. 

Janga Reddy, M. and Ganguli, P.: Application of copulas for derivation of drought severity–duration–

frequency curves, Hydrol. Process., 26(11), 1672–1685, doi:10.1002/hyp.8287, 2012. 

Karmakar, S. and Simonovic, S. p.: Bivariate flood frequency analysis. Part 2: a copula-based approach 

with mixed marginal distributions, J. Flood Risk Manag., 2(1), 32–44, doi:10.1111/j.1753-

318X.2009.01020.x, 2009. 

Karmakar, S. and Simonovic, S.: Flood Frequency Analysis Using Copula with Mixed Marginal 

Distributions, Water Resour. Res. Rep. Available from: http://ir.lib.uwo.ca/wrrr/19, 2007. 

Katz, R. W. and Brown, B. G.: Extreme events in a changing climate: variability is more important than 

averages, Clim. Change, 21(3), 289–302, 1992. 

Katz, R. W., Parlange, M. B. and Naveau, P.: Statistics of extremes in hydrology, Adv. Water Resour., 

25(8), 1287–1304, 2002. 

Komi, K., Amisigo, B. A., Diekkrüger, B. and Hountondji, F. C.: Regional Flood Frequency Analysis in 

the Volta River Basin, West Africa, Hydrology, 3(1), 5, 2016. 

Mailhot, A., Duchesne, S., Caya, D. and Talbot, G.: Assessment of future change in intensity–duration–

frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model 

(CRCM), J. Hydrol., 347(1), 197–210, 2007. 

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P. and Holland, G. J.: The future 

intensification of hourly precipitation extremes, Nat. Clim. Change, advance online publication, 

doi:10.1038/nclimate3168, 2016. 

Sadri, S., Kam, J. and Sheffield, J.: Nonstationarity of low flows and their timing in the eastern United 

States, Hydrol Earth Syst Sci, 20(2), 633–649, 2016. 

Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates the distribution of 

extremes, Adv. Water Resour., 77, 17–36, 2015. 



19 
 

Ter Braak, C. J. and Vrugt, J. A.: Differential evolution Markov chain with snooker updater and fewer 

chains, Stat. Comput., 18(4), 435–446, 2008. 

Ter Braak, C. J.: A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: 

easy Bayesian computing for real parameter spaces, Stat. Comput., 16(3), 239–249, 2006. 

Wang, X., Huang, G., Liu, J., Li, Z. and Zhao, S.: Ensemble projections of regional climatic changes over 

Ontario, Canada, J. Clim., 28(18), 7327–7346, 2015. 

Wang, X., Huang, G., Liu, J., Li, Z. and Zhao, S.: Ensemble projections of regional climatic changes over 

Ontario, Canada, J. Clim., 28(18), 7327–7346, 2015. 

Xie, H., Li, D. and Xiong, L.: Exploring the ability of the Pettitt method for detecting change point by 

Monte Carlo simulation, Stoch. Environ. Res. Risk Assess., 28(7), 1643–1655, 2014. 

Yilmaz, A. G., Hossain, I. and Perera, B. J. C.: Effect of climate change and variability on extreme 

rainfall intensity–frequency–duration relationships: a case study of Melbourne, Hydrol. Earth 

Syst. Sci., 18(10), 4065–4076, 2014. 

Yilmaz, A. G., Imteaz, M. A. and Perera, B. J. C.: Investigation of non-stationarity of extreme rainfalls 

and spatial variability of rainfall intensity–frequency–duration relationships: a case study of 

Victoria, Australia, Int. J. Climatol., 37(1), 430–442, doi:10.1002/joc.4716, 2017. 

Yue, S. and Wang, C. Y.: Power of the Mann–Whitney test for detecting a shift in median or mean of 

hydro-meteorological data, Stoch. Environ. Res. Risk Assess., 16(4), 307–323, 2002. 

 



Responses to Reviewer #2 on “Does Nonstationarity in Rainfall Requires Nonstationary 

Intensity-Duration-Frequency Curves? By Poulomi Ganguli and Paulin Coulibaly 

We thank Referee #2 for reviewing our manuscript and providing constructive feedback. Our 

responses are embedded within the comments (in BLACK) in BLUE. The new additions to 

the revised manuscript are embedded below in GREEN. 

 

Reviewer #2 

Comment 1. The manuscript could do with a good proof read and rewrite. There are lots of 

little mistakes which makes the paper very difficult to read. I was constantly stopped in my 

train of reading by small errors or references to figures/tables which weren’t explained. The 

supplementary material is 66 pages and has 37 Tables. This is huge and difficult to come to 

terms with – I couldn’t follow it all. As I don’t believe a specific structure is required can I 

recommend the following? Group the supplementary text and figures and tables into sections. 

That way you will have separate sections to refer to in the main text. You can then go 

sequentially through the text. S1 is the infilling, S2 is the autocorrelation method and results, 

S3 non-stationarity test method and results, S4 GEV fitting. I may have got the headings 

incorrect but I hope what I mean is clear. Then with the results you can just reference a 

section for detailed results and focus on discussing the figures in the main text. Trying to 

interpret 37 tables (some split into two) – almost all which are referenced in the main text - it 

is like trying to read a thesis. 

Response: This is indeed a good point and we have revised the supplementary section and 

reorganized the material into various sections as suggested. We discussed corresponding 

results in the form of tables and figures under each subsection making it more coherent and 

easier to read. Also, we have moved some of the Tables (for example, Table S1) from 

supplements to main manuscript reducing the length of the Supplements to 57 pages with 30 

tables all together. 

 

Comment 2. Moving Table S1 to the main text, and maybe removing Figure S1 altogether 

will make the manuscript more standalone and easier to read. This manuscript is a bit short on 

doing justice to some of the previous work done in this area. 

Response: Here we partially agree with the reviewer’s comment. We have moved Table S1 to 

the main text. However, we have retained the Figure S1 in the Supplement since the figure 

provides a conceptual representation of changes in probability density functions of extremes 

in a nonstationary environment. We feel the figure will help readers in understanding how the 

nonstationarity may lead to changes in the distribution of extremes, which can potentially lead 

to the changes in the frequency of extremes.  

 



Comment 3. Page 2 – Line 21: This is the only line discussing previous work to do with non-

stationary IDFs. I think this work deserves more attention given that the focus of this 

manuscript is non-stationary IDFs. My recommendation is as follows: 

In Page 1 – Line 23: “In a warming climate . . .” I would be a bit more careful here and 

expand this. I would cite Lenderink and van Meijgaard (2008) and Wasko and Sharma (2015) 

as papers that link temperature increases to intensifying rainfall. Most of the papers cited at 

the end of this sentence deal with temporal precipitation trends (and not necessarily links to 

temperature). It is important to make that distinction. 

The reason I make the above point is the covariate used for non-stationarity is important. The 

authors don’t raise this till the second last of their manuscript citing Mondal and Mujumdar 

(2015). This needs to come up in the introduction to put this manuscript novelty in context. 

There are more papers in this space. For example Agilan and Umamahesh (2017) and Ali and 

Mishra (2017) who argue for temperature to be used as a covariate (and not necessarily time). 

Indeed Wasko and Sharma (2017) show that temperature is a good covariate when predicting 

future rainfall. Other work by Agilan and Umamahesh may also be relevant and should be 

discussed. Finally, I am pretty sure at least one of the Yilmaz papers suggests not much 

evidence (if any) for using non-stationarity so in the introduction this is not cited correctly 

(though I note in the discussion it is). To summarise – the literature review needs to be 

expanded on the above point. 

Response: Agreed. We expanded the literature review section in the revision. We add 

following sentences in the revision: 

“For sub-hourly and up to six-hourly extreme precipitation, increases at or above the C-C rate 

have been found in the Netherlands (Lenderink and van Meijgaard, 2008; Lenderink et al., 

2017), Switzerland (Ban et al., 2014), Germany (Berg et al., 2013), the UK (Blenkinsop et al., 

2015), the Mediterranean (Drobinski et al., 2016), most of Australia (Wasko and Sharma, 

2015, 2017), North America (Shaw et al., 2011) and China (Miao et al., 2016), while in India 

(Ali and Mishra, 2017) and northern Australia (Hardwick Jones et al., 2010) negative rates 

have been observed. The extent of urbanization also contributes to extreme regional 

precipitation through urban heat island effect and aerosol concentration (Dixon and Mote, 

2003; Mölders and Olson, 2004; Nihongi et al. 2007; Mohsen and Gough, 2012; Wang et al., 

2015). Agilan and Umamahesh (2017) incorporated six physical processes, namely, time, 

urbanization, local temperature changes, annual global temperature anomaly (as an indicator 

of global warming), El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as 

covariates in the  nonstationary GEV models for analyzing extreme precipitation in the city of 

Hyderabad, India. Their analysis indicated that the local processes, urbanization and local 

temperature changes are the best covariates for short-duration rainfall, whereas global 

processes, such as global warming, ENSO cycle and IOD are the best covariates for the long 

duration rainfall. In their study, however, time was never qualified as the best covariate for 

modeling local scale extreme rainfall intensity. Singh et al. (2016) performed nonstationary 

frequency analysis of Indian Summer Monsoon Rainfall extreme (ISMR; defined as 



cumulative rainfall over continental India during 1 June to 30 September) and found evidence 

of significant nonstationarity in ISMR extremes in urbanizing/developing-urban areas 

(transitioning from rural to urban), as compared to completely urbanized or rural areas. 

However, their analysis was performed at a spatial resolution of 1° using gridded daily 

precipitation data obtained from Indian Meteorological Department (IMD). Ali and Mishra 

(2017) showed that a strong (higher than C-C rate) positive relationship exists between 3-

hourly and daily rainfall extremes and dew point, and tropospheric temperature (T850; or the 

temperature in the upper troposphere at 850 hPa) over 23 urban locations in India. The latter 

two were subsequently used as covariates for nonstationary design storm estimates. The 

results indicated an increase in rainfall maxima at a majority of locations assuming 

nonstationary conditions over stationary atmospheric conditions. In contrast, in other studies, 

over Melbourne and Victoria, in Australia, Yilmaz et al. (2014; 2017) found superiority of 

stationary models over nonstationary models. Yilmaz et al. (2014; 2017), considered both 

nonstationarity in time and large scale climate oscillations affecting Australian rainfall in their 

analyses. However, most of these previous studies have analyzed changes in expected point 

estimates of nonstationary versus stationary Design Storm Intensity (hereafter referred as 

DSI), but have not reported the statistical significance of the difference between two methods 

of estimates. To our best knowledge, no thorough comparison of stationary vs. nonstationary 

methods for deriving IDF statistics has been conducted in Southern Ontario.” 

 

Comment 4. Another problem I have is with the paragraph on Page 3 that starts with 

“secondly” – I don’t think any of the research questions actually address the “secondly” point. 

Reading page 7 it seems you adopt the GEV and don’t necessarily test this is a better fit than 

other distribution. This is fine – but the way this paragraph sets up the reader for something 

else. Either omit the “secondly” paragraph altogether or add another point to the bottom of 

Page 3 saying you use a GEV and the reason for doing so. 

Response: This is indeed a good point. Agreed! We have re-organized this section and moved 

limitations of GEV in subsection 3.3 (Page 10; lines 3 – 7) in section 3. The choice of the 

GEV was based on a previous study where various distribution functions were compared in 

the study area (Switzman et al. 2017). 

 

Comment 5. You introduce the EC data without context – so I had no idea why it was there 

until I got to page 11. 

Response: We appreciate the reviewer’s point. We have introduced few sentences in the 

introduction section (page 5, lines 1-7) to highlight the rationale behind the inclusion of EC 

data. We argue that: 

“… so far very few studies have reported the difference between the updated versus EC 

generated IDF, taking into account nonstationarity in design consideration. Simonovic and 

Peck (2009) compared updated versus EC IDF for the city of London, Ontario and reported 

EC IDF curves shows a difference of the order of around 20%. However, their analysis was 



based on the stationarity assumption of precipitation extremes. Similarly, Coulibaly et al. 

2015 have compared EC-IDF with stationary GEV based IDF across southern Ontario, no 

nonstationary methods were investigated.” 

 

Comment 6. Top of Page 11 reads like a discussion and seems squished between the 

presentation of results in Figure 5 and 6. You could consider a separate discussion section and 

reordering of the text. 

Response: Agreed. We have moved this part of the text to Discussion and Conclusion 

section. 

 

Other comments: 

Page 2 – Line 16: If you are to introduce an abbreviation (TBRG) it helps to capitalise the 

first letter in each word before the abbreviation. This happens at several points in the text – I 

won’t comment on the other occurrences. 

Response: Agreed. We have capitalized the first letter in each word before the abbreviation 

for TBRG and other words in the revised version of the manuscript. 

 

Page 2 – Line 22: “The nonstationary behaviour. . .” I think I would expand this sentence to 

just state what places/regions the citations have studied. Reason being – in the abstract and 

following sentences you are referring only to Canada – so when I get to this point I am not 

sure if you are being Canada specific or not. Maybe this should be the start of a new 

paragraph and expanded a bit. 

Response: Agreed. As suggested we have expanded this sentence to include a list of regions 

where the citations have studied in Page 4, lines 10 – 18. We also started this in a new 

paragraph as suggested. We have added following sentences in the revision: 

“The nonstationary behavior of rainfall extremes is already being reflected in the increase in 

frequency or magnitude of such events, resulting in a shift of its distribution [Figure SPM 0.3 

in Intergovernmental Panel on Climate Change Special Report on Extremes, IPCC SREX 

Report: Field, 2012; Fig S1: IPCC AR5 working Group Report, (Stocker et al., 2013)]. For 

instance, seasonal and annual extreme precipitation events in north-central and eastern US in 

2013 (Knutson et al., 2014); extreme rainfall events in the Golden Bay region in New Zeeland 

(Dean et al., 2013); increase in precipitation rate in northern Europe (Yiou and Cattiaux, 

2013), successive winter storm events in southern England in 2013/2014 leading to severe 

winter floods (Schaller et al., 2016), are primarily attributable to intrinsic natural variability 

and partly to anthropogenic influences.” 

 

Also, in Page 2, lines 1-6, we list the places where increase/decrease in extreme precipitation 

is linked to C-C scaling. We have added following sentences: 



“For sub-hourly and up to six-hourly extreme precipitation, increases at or above the C-C rate 

have been found in the Netherlands (Lenderink and van Meijgaard, 2008; Lenderink et al., 

2017), Switzerland (Ban et al., 2014), Germany (Berg et al., 2013), the UK (Blenkinsop et al., 

2015), the Mediterranean (Drobinski et al., 2016), most of Australia (Wasko and Sharma, 

2015, 2017), North America (Shaw et al., 2011) and China (Miao et al., 2016), while in India 

(Ali and Mishra, 2017) and northern Australia (Hardwick Jones et al., 2010) negative rates 

have been observed.”  

 

Page 2 – Line 26: What result? This sentence doesn’t make sense – maybe some expansion of 

the sentences here would help. 

Response: Agreed. We have revised this sentence as: 

“The asymmetric changes in the distribution of extremes owing to climate change have been 

subsequently validated for winter temperature extremes over the northern hemisphere (Kodra 

and Ganguly, 2014), and regional short duration precipitation extremes in India and Australia 

(Mondal and Mujumdar, 2015; Westra and Sisson, 2011)”. 

 

Page 3 – Line 7: Replace “secondly” with “The second drawback of IDF curves is”. You have 

written too much to have just the word “secondly” here. Stylistically, I don’t think “first”, 

“second” etc need to be in italics. Particularly at the bottom at Page 3 – if you are that keen on 

this maybe a bullet point list would be better? 

Response: We have revised this section in the current version of the manuscript. 

 

Page 4 - Line 1: Remove “secondly”. 

Response: Agreed and incorporated as suggested. 

 

Page 5 – Line 6: The reference to Table S1 doesn’t belong here. I also believe Table S1 

belongs in the main text. 

Response: Agreed. Table S1 is moved to the main manuscript. 

 

Figure 1 – Are the record lengths for daily or sub-daily? I don’t think the caption says which. 

Response: Agreed and we have revised the caption accordingly. This includes hourly, sub-

hourly and daily record, which we together termed as short-duration Annual Maxima 

Precipitation (AMP) record.  

 

Page 5 – Line 26 – “Imputation” isn’t the correct word I don’t think. Infilling maybe? 

Response: Agreed and incorporated as suggested. 

 



Page 6 – Line 21 – Stylistically, why don’t you just say “Tables S2-S4”? I do feel if you 

composed the supplementary material in sections you could say section S1 and be done with 

it. 

Response: Agreed and incorporated. 

 

Page 6 – Line 24 – “Figure 2 shows . . .” You are repeating a previous a sentence Section 3.2 

– Is the KPSS test in Figure 2? 

Response: Agreed. We have included KPSS test in the flowchart. 

 

Page 8 – Line 4 – who else makes this assumption that only the location and scale parameter 

vary? I know other authors make this assumption so this assumption needs to be put in 

context of the other work done in this area. 

Response: Agreed. We have included list of references that assumes location and scale 

parameter(s) vary. We have added the following sentences in page 11, line 8 in the revised 

manuscript: 

“For nonstationary model, the shape parameter is assumed as constant throughout. Here it 

should be noted that for modeling temporal changes in   requires long-term observations, 

which are often not available in practice (Cheng et al., 2014). Hence, following previous 

studies (Cannon, 2010; Cheng et al., 2014; El Adlouni et al., 2007; Gu et al., 2017) we 

incorporated time-varying covariates into GEV location (GEVt-I), and both in location and 

scale parameters (GEVt-II) respectively, to describe trends as a function of time”. 

 

Page 8 – Line 18 – So I went to the supplementary material as the text recommends and I saw 

four models fitted for each duration but I wasn’t sure which model was which. Could this 

section in the main text be rewritten (maybe use some sort of list?) to say what models were 

fitted and clearly state their abbreviation  

Response: This section has been revised. Further, as suggested the abbreviations of models 

are included in page 11, line 12 and in the footnote of Table 4.  

 

Page 8 – Line 26: I disagree. Skewness of a distribution does not indicate a temporal trend. 

This a good example of a vague sentence with a Figure in brackets (in this case Figure 3) but 

no mention of what I am meant to get out of looking Figure 3 in reference to this sentence. 

This happens throughout the text. 

Response: Agreed. We have revised the sentence as follows: 

“The skewness is a measure of the asymmetry in the AMP distribution. Positive values of 

skewness indicate that data are skewed to the right.” 

 

Further, we have removed such inconsistencies in the revised version of the manuscript. 

 



Figure 3 – your caption says hourly and sub-hourly. The headings in the captions go up to 

daily. You say you did statistical tests at 5 and 10% but don’t say which final significance is 

presented in the plot. A legend wouldn’t go astray . . . 

Response: We have revised the Figure 3 caption as suggested. 

 

Figure 4 – is there a particular time used for the non-stationary plots? 

Response: This comment was not clear to us. Nevertheless, we have revised the Figure 4 

caption to avoid any ambiguity. We have revised our figure caption as: 

“DSI estimates of the median (horizontal line within the box plot) and 95% credible intervals 

for 100-year return periods of stationary versus nonstationary models (a - i). The boxplots 

indicate the uncertainty in estimated DSI using Bayesian inference.” 

 

Page 10 – Maybe I missed this somewhere but what is the “z-statistic”? Is this the statistical 

test for the difference between two means? 

Response: The reviewer is correct. The z-statistic is the test score for the difference between 

two means. We clarify this procedure in the Supplementary section of the revised manuscript. 

 

Figure 6 – Should this have a negative scale too? Are there some sites which decrease? 

Response: The reviewer is correct. We have added color map for negative scale too in the 

revised manuscript. 

______________________________________________ 
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Does Nonstationarity in Rainfall Requires Nonstationary Intensity-

Duration-Frequency Curves? 
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Abstract. In Canada, increased risk of flooding due to heavy rainfall has risen in recent decades; most notable   

recent examples include July 2013  storm in Greater Toronto region and May 2017 flood of Toronto Island. We 

investigate nonstationarity and trends in the short-duration precipitation extremes in selected urbanized locations 10 

in Southern Ontario, Canada, and evaluate the potential of nonstationary Intensity-Duration-Frequency (IDF) 

curves, which form an input to civil infrastructural design. Despite apparent signals of nonstationarity in 

precipitation extremes in all locations, the stationary versus nonstationary models do not exhibit any significant 

differences in the design storm intensity. The signatures of nonstationarity in rainfall extremes do not necessarily 

imply the use of nonstationary IDFs for design considerations. When comparing the proposed IDFs with current 15 

design standards, for return periods (10-year or less) typical for urban drainage design, current design standards 

require an update up to 711%, whereas for longer recurrence intervals (50 - 100-year), ideal for critical civil 

infrastructural design, updates ranging between ~ 2 to 3044% are suggested. We further emphasize that above 

findings need re-evaluation in light of climate change projections since intensity and frequency of extreme 

precipitation are expected to intensify due to global warming.   20 

1 Introduction 

Short-duration extreme rainfall events can have devastating consequences, damage to crops and infrastructures, 

leading to severe societal and economic losses in Canada (Canadian Climate Forum, 2013; Toronto Region 

Conservation Authority, 2013). In a warming climate, extreme precipitation events are expected to intensify due to 

moistening of the atmosphere  (Donat et al., 2016; Fischer and Knutti, 2016; Pendergrass et al., 2015; Prein et al., 25 

2016; Pfahl et al., 2017). Using observational record, review of the literature suggests a dependency between mean 

and extreme precipitation on temperature (O’Gorman, 2015). The increased water-holding capacity of warmer air, 
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as governed by the Clausius-Clapeyron (C-C) relation (Lenderink and van Meijgaard, 2008; O’Gorman and 

Schneider, 2009; Wasko and Sharma, 2015, 2017), intensifies heavy rainfall at a rate of approximately 7-8%°C-1 

of warming. On a local scale, for sub-hourly and up to six-hourly extreme precipitation, increases at or above the 

C-C rate have been found in the Netherlands (Lenderink and van Meijgaard, 2008; Lenderink et al., 2017), 

Switzerland (Ban et al., 2014), Germany (Berg et al., 2013), the UK (Blenkinsop et al., 2015), the Mediterranean 5 

(Drobinski et al., 2016), most of Australia (Wasko and Sharma, 2015, 2017), North America (Shaw et al., 2011) 

and China (Miao et al., 2016), while in India (Ali and Mishra, 2017) and northern Australia (Hardwick Jones et al., 

2010) negative rates have been observed. The extent of urbanization also contributes to extreme regional 

precipitation through urban heat island effect and aerosol concentration (Dixon and Mote, 2003; MöldersMölders 

and Olson, 2004; Niyogi et al., 2007; MohsinMohsen and Gough, 2012; Wang et al., 2015). Agilan and Umamahesh 10 

processes, namely, time, urbanization, local temperature changes, annual global temperature anomaly (as an 

indicator of global warming), El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as covariates 

for the nonstationary extreme precipitation analysis in the city of Hyderabad, India. Their analysis indicated that 

the local processes, urbanization and local temperature changes are the best covariates for short-duration rainfall, 

whereas global processes, such as global warming, ENSO cycle and IOD are the best covariates for the long 15 

duration rainfall. In their study, time was never qualified as the best covariate for modeling local scale extreme 

rainfall intensity. Singh et al. (2016) performed nonstationary frequency analysis of Indian Summer Monsoon 

Rainfall extreme (ISMR; defined as cumulative rainfall over continental India during 1 June to 30 September) and 

found evidence of significant nonstationarity in ISMR extremes in urbanizing/developing-urban areas 

(transitioning from rural to urban), as compared to completely urbanized or rural areas. However, their analysis 20 

was performed at a spatial resolution of 1° using gridded daily precipitation data obtained from Indian 

Meteorological Department (IMD). Ali and Mishra (2017) showed that a strong (higher than C-C rate) positive 

relationship exists between 3-hourly and daily rainfall extremes and dew point, and tropospheric temperature 

(T850; or the temperature in the upper troposphere at 850 hPa) over 23 urban locations in India. The latter two 

were subsequently used as covariates for nonstationary design storm estimates. The results indicated an increase in 25 

rainfall maxima at a majority of locations assuming nonstationary conditions over stationary atmospheric 

conditions. In contrast, in another studies, over Melbourne and Victoria, in Australia, Yilmaz et al. (2014; 2017) 

found superiority of stationary models over nonstationary models. For developing nonstationary models, authors 

(Yilmaz et al. 2014; 2017), considered both the time dependency and dependency to large scale climate oscillations 

affecting Australian rainfall. However, most of these previous studies have analyzed changes in expected point 30 
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estimates of nonstationary versus stationary Design Storm Intensity (hereafter referred as DSI), but have not 

reported the statistical significance of the difference between the two methods of estimates. To our best knowledge, 

no thorough comparison of stationary vs. nonstationary methods for deriving IDF statistics has been conducted in 

Southern Ontario. For densely populated Southern Ontario, Canada, observations and multiple climate models 

suggest an increasing trends in regional surface temperature and extreme precipitation in recent decades (Stone et 5 

al., 2000; Paixao et al., 2011; Mailhot et al., 2012; De Carolis, 2012; Burn and Taleghani, 2013; Shephard et al., 

2014; Deng et al., 2016). A recent study shows an increase in local surface temperature of 3.06 ± 0.18 °C/century 

in Greater Toronto Area (GTA) since the 1960s (Berkeley Earth, 2017). In July 2013, a single storm event has 

resulted in 126 mm of rainfall in GTA causing total insured losses of around $940 million and claimed to be the 

third- most expensive weather-related event in Canada (CDD, 2015; TRCA, 2013).  10 

Extreme rainfall statistics are often mathematically expressed using the concept of exceedance probability or T-

year return period [i.e., T = 1∕ (1 − 𝐹𝑝(𝑃 )), where 𝐹𝑝(𝑃 ) is the cumulative probability of the underlying 

distribution], and graphically as a decision relevant metrics in the form of Intensity-Duration-Frequency (IDF) 

curves (or relations) (ASCE, 2006; CSA, 2010; EC, 2012). These curves are based on a comprehensive statistical 

analysis of historical rainfall records and widely used for the design and operation of storm-water and sewerage 15 

systems, and other engineered hydraulic structures (Coulibaly and Shi, 2005; Durrans and Brown, 2001; Lima et 

al., 2016; Madsen et al., 2009; Rana et al., 2013; Sandink et al., 2016; Yilmaz et al., 2014a). At given return period 

and the storm duration, the average design-storm intensity (hereafter referred as DSI) is determined from the at-

site IDF relationships. The IDF curves are based on fitting a theoretical probability distribution to short-duration 

(sub-hourly, hourly  and sub-hourly daily) aAnnual mMaximum Pprecipitation (AMP). The approach can be 20 

locally (at site) or regionally [Svensson and Jones, 2010; Regional Frequency Analysis (RFA) or pooled]. The RFA 

is used when available record lengths are short or at locations where no observed data are available (Castellarin et 

al., 2012; Komi et al., 2016). However, various RFA estimation methods have certain drawbacks; for instance, the 

index flood method is sensitive to the homogeneity assumption and formation of regions; in a Bayesian method of 

regionalization, the prior distributions of parameters are often not precise enough and do not add precision to the 25 

estimates. Komi et al. (2016) summarize the limitations and advantages of some of the widely used RFA techniques. 

In the present study, the available records across all sites range between 47 and 66 years, which are more than the 

climatology (often over time periods of 30-years) of a region. Therefore, we employ at-site frequency analysis 

herein. This also allows a consistent comparison with the Environment Canada (EC) IDFs that have been used in 
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practice in the study area. For Canada, information for preparation of IDFs and nation-wide IDF curves (EC 

at  Environment Canada (EC) Engineering database (Environment Canada, 2012; 

http://climate.weather.gc.ca/prods_servs/engineering_e.html), which are produced based on short-duration 

available rainfall records from the tTipping-bBucket rRain gGauges (TBRG). Nevertheless, Tthe methodology to 

existing IDF curves has certain drawbacks, first,such as, the current IDF curves in Canada are based on the 5 

of stationarity, which implies statistical properties of hydroclimatic time series will remain same over the period of 

time. However, However, impact of urbanization and human-induced climate changes (Field, 2012; Milly et al., 

Villarini et al., 2009) raises the question whether the stationarity assumption to derive IDF curves is still reliable 

for urban infrastructural planning (Sarhadi and Soulis, 2017; Cheng and AghaKouchak, 2014; Jakob, 2013; Yilmaz 

et al., 2014a; Yilmaz and Perera, 2013).  10 

The nonstationary behavior of rainfall extremes is already being reflected in the increase in frequency or magnitude 

of such events, resulting in a shift of its distribution [Figure SPM 0.3 in Intergovernmental Panel on Climate Change 

Special Report on Extremes, IPCC SREX Report: Field, 2012; Fig S1: IPCC AR5 working Group Report, (Stocker 

et al., 2013)].  recently For instance, seasonal and annual extreme precipitation in north-central and eastern US in 

2013 (Knutson et al., 2014); extreme rainfall in the Golden Bay region in New Zeeland (Dean et al., 2013); increase 15 

in summer precipitation rate in northern Europe (Yiou and Cattiaux, 2013); successive winter storm events in 

southern England in 2013/2014 leading to severe winter floods (Schaller et al., 2016), are primarily attributable to 

intrinsic natural variability and partly to anthropogenic influences. (Dixon and Mote, 2003; Guo et al., 2006; 

Mölders and Olson, 2004), resulting in a shift of its distribution [Figure SPM 0.3 in Intergovernmental Panel on 

for winter temperature extremes over the northern hemisphere (Kodra and Ganguly, 2014), and regional short 20 

duration precipitation extremes in India and Australia (Mondal and Mujumdar, 2015; Westra and Sisson, 2011). 

Two of the recent studies (Deng et al., 2016; Mailhot et al., 2012) analyzed large ensemble of CMIP3 Global 

Climate Model (GCM) runs and a sub-set of regional climate models that are part of North American Regional 

Climate Change Assessment Program (NARCCAP) in terms of impact-relevant metrics over Canada. Both studies 

confirmed a relative increase in intensity and magnitude of rainfall extremes, especially over Southern Ontario. 25 

This issue has come to attention in the Guidelines for Canadian Water Resources Practitioner  (CSA, 2010), that 

urges the need for updated IDF calculations: “…climate change will likely result in an increase in the intensity and 

frequency of extreme precipitation events in most regions in the future. As a result, IDF values will optimally need 

to be updated more frequently than in the past ….”.  
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SecondlyFurthermore, so far very few studies have reported the difference between the updated versus EC 

taking into account nonstationarity in design consideration. Simonovic and Peck (2009) compared updated versus 

EC IDFs for the city of London, Ontario and reported EC IDF curves shows a difference of the order of around 

20%. However, their analysis was based on the stationarity assumption of precipitation extremes. Similarly, 

Coulibaly et al. (2015) have compared EC IDFs with stationary GEV based IDF curves across Southern Ontario, 5 

no nonstationary methods were investigated. for the development of IDF curves, a particular family of distribution 

questions pertained to short-duration precipitation extremes in Southern Ontario, Canada, to improve pro-active 

management of storm-induced urban flooding. First, is there any signature of statistically significant nonstationary 

trends (gradual or slowlymonotonic or varying changes), change points or regime shifts (occurrence of any abrupt 

mean/variance of the distribution) in short-duration AMP in densely and moderately populated urbanized locations 10 

across Southern Ontario? Second, does signals of nonstationarity in the time series necessitates the use of 

barring economic consideration and mathematical complexity involved in the design? Third, how can we use this 

knowledge to assess the credibility of existing EC-generated IDFs in the backdrop of a changing climate? We do 

not attempt to provide a methodological comparison ofor EC-generated versus current approach but will focus on 

differences in estimated DSI values between the updated and EC-IDF. Further, to this end, we test the hypothesis 15 

that signatures of nonstationarity in rainfall extremes do not necessitate the use of nonstationary IDFs for design 

considerations. In general, urban drainage areas have substantial proportions of impervious or semi-impervious 

land cover, which significantly reduces response time to extreme precipitation and increases the peak flow, 

resulting into storm-induced floods (Miller et al., 2014). Hence, it is the short-duration precipitation extremes, 

which controls the design of urban infrastructure (Mishra et al., 2012). Therefore, we focus our analysis on AMP 20 

intensity. We select Southern Ontario as a test bed because of the majority of stations with more than 30-years of 

available rainfall record (Adamowski and Bougadis, 2003; Deng et al., 2016; Shephard et al., 2014). Secondly, 

have indicated that the region is more vulnerable to climate change than any other part of Canada (Deng et al., 

2016; Mailhot et al., 2012). Furthermore, southern Ontario is one of the prominent economic hubs with largest 

population concentration in Canada (Bourne and Simmons, 2003; Kerr, 1965; Partridge et al., 2007). In this context, 25 

we explore a robust statistical framework to evaluate possible nonstationary trends, analyze the frequency of urban 

precipitation extremes and assess the risk of severe rain-induced urban flooding in Southern Ontario (Table S1). 

 

2.1 Study Area 
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Southern Ontario is situated on a Southwest-northeast transect, in the southernmost Canadian region, and separated 

from the United States by lakes Erie, Huron, and Ontario (Jien and Gough, 2013; Figure 1). The study includes 

nine densely and moderately populated urbanized and anthropogenically altered locations of the Windsor - 

Kingston corridor in Southern Ontario. The specific sites include (in the order from southwest to northeast): 

Windsor Airport, London International Airport, Stratford wWastewater tTreatment Pplant (WWTP), Shand Dam 5 

in Fergus on the Grand River, Hamilton Airport, Toronto International Airport, Oshawa Water Pollution Control 

Plant (WPCP), Trenton Airport, and Kingston Pumping Station (Figure 1; Table S1). The last column in Table 1 

shows a list of missing years and AMP values for each duration at each station. The Digital Elevation Model (DEM) 

of the study area was derived from Shuttle Radar Topography Mission (SRTM) 90-m Digital Elevation Database 

v4.1 (Jarvis et al., 2008), which indicates a shallow slope with a maximum altitude of 670 m above mMean sSea 10 

lLevel (MSL). The proximity to Great Lakes and topographic effect, especially in areas to the lee of Lakes Erie, 

Lake Ontario, and the Georgian Bay significantly modifies the climate in the region (Baldwin et al., 2011). 

Convective showers and thunderstorms primarily modulate the summer rainfall, but fall rainfall is dominated by 

reduced convective activity and increased lake effect precipitation (Lapen and Hayhoe, 2003). Further, the 

topographic features and associated westerly winds in the Niagara Escarpment and the Oak Ridge Moraine, play a 15 

significant role in modulating rainfall in Toronto region. On the other hand, Windsor metropolitan area, the 

southernmost urbanized location in the region, has a the humid continental climate, which results in warm summer 

temperature (30°C or higher) with the greatest precipitation in the spring and summer seasons, and lowest in the 

fall and winter (Sanderson and Gorski, 1978). Moreover, because of the part of Windsor-Detroit international 

transborder agglomeration, the extreme summer precipitation in the city of Windsor is primarily influenced by 20 

convection and urban heat island effect (Sanderson and Gorski, 1978; De Carolis, 2012).  

 

2.2 Hydrometeorological Data 

We identified the station locations (Figure 1b) based on the quality of long-range rainfall records (e.g., more than 

30 years or more) and 2011 Census information archived at Statistics Canada website 25 

(https://www12.statcan.gc.ca). The geographic areas of these locations are extracted from 2011 census digital 

boundary shape files (https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2011-

eng.cfm). The Toronto metropolitan area is the most populous (over 5 million population) and known to be one of 

the fastest growing population base in Canada (http://torontosvitalsigns.ca/main-sections/demographics/), while 
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Fergus is the least populated (population of around 19,000) (Table S1) city. The other cities have population ranges 

between ~ 500,000 (Hamilton) and 30,000 (Stratford) (Table S1). We obtained AMP observations at particular 

durations (15-, 30- minutes, 1-, 2-, 6-, 12- and 24-hours) with a few data gaps from Canada’s National Climate 

Data Archive, maintained by the EC (http://climate.weather.gc.ca/prods_servs/documentation_index_e.html). The 

rainfall records collected from TBRG are thoroughly quality controlled (Shephard et al., 2014). These records have 5 

been previously analyzed for the assessment of national extreme rainfall trends (Burn and Taleghani, 2013; 

Shephard et al., 2014). We consider seven storm durations ranging from 15-, 30- minutes (the typical time of 

concentration for small urban catchments), and 1-, 2-, 6-, 12-, and 24- hours (the standard time of concentration for 

larger watersheds) following a previous study (Bougadis and Adamowski, 2006). Except for a few stations (for 

example, Toronto International Airport and Trenton Airport), for most of the sites, the AMP observation is available 10 

either untill the year 2007 or before (Table S1). Also, we found missing values in the AMP time series in all sites. 

We obtained daily and hourly rainfall records from the EC website and Toronto Region Conservation Authority 

(TRCA).  

3 Methods 

Figure 2 shows schematics of the overall analysis. In subsequent subsection, we will discuss each of these steps in 15 

detail.  

 

We infilled missing values and updated the AMP records by successively disaggregating daily rainfall values to 

hourly and sub-hourly time steps using mMultiplicative rRandom Ccascade (MRC)-based disaggregation tool. The 

Cascade-based disaggregation model for continuous rainfall time series was suggested by (Olsson, 1995, 1998). 20 

The technique was later successfully implemented by (Güntner et al., 2001; Jebari et al., 2012; Rana et al., 2013) 

for temporal disaggregation of point rainfall and the development of IDF-curves from short-duration rainfall 

extremes. Due to freezing weather conditions during winter, most of the TBRGs’ are inoperative from early 

November to late April of the following year. Therefore, when short-duration rainfall records were not available, 

the AMP values over moving windows of n- durations (n varies from 15-, 30- minutes and 1-,2-,6-,12- and 24-25 

hours) are extracted from May to October (warm season) disaggregated rainfall volumes for remaining years. There 

are several reasons for selecting warm periods: first, extreme rainfall events mostly occur in the study area during 

the warm season (Cheng et al., 2010); second, the focus of our analysis is an investigation of extreme rainfall 

Formatted: Font: Not Italic

Formatted: Font: Not Italic



8 

 

related flood risks and development of IDF curves using extreme rainfall statistics. We adjusted the occasional 

overestimation of extreme values at a higher order cascade step by a statistical post-processing method. We 

employed qQuantile mMatching (QM) approach (Li et al., 2010), which claims to outperform other simple bias 

correction methods and corrects not only the mean but also the variance of the distribution of interest 

(Gudmundsson et al., 2012; Teutschbein and Seibert, 2012). QM is based on equidistant cumulative probability 5 

distribution matching of observed and disaggregated AMP time series using three-parameter Generalized Extreme 

Value (GEV) distribution. Although like other statistical post-processing technique, QM relies on the stationarity 

assumption of the time series, in our case, we applied QM to entire time series of both observed and disaggregated 

AMP, which comes from the same station location (or similar spatial resolution) and a similar period. Therefore, 

we avoid potential consequences of inflation by quantile mapping (Maraun, 2013) in our analysis. We discuss the 10 

implementations of MRC, adjustment of extremes and associated model fits in more details in the Supplementary 

Information (SI 1; Table S2; Figures S2-S8 and Tables S3-S4).  

3.2 Detection of Nonstationarity 

A series of statistical tests areis employed to detect the presence of nonstationary trends and abrupt shifts in the 

short-duration AMP before frequency analysis. The multiple tests allow a more rigorous and comprehensive 15 

assessment of overall trend in the time series since certain tests are complementary to each other (Sadri et al., 2016; 

Yilmaz et al., 2014, 2017). Figure 2 shows schematics of the overall analysis. Most of the trend and change-point 

detection algorithms assume observations are mutually independent. The presence of autocorrelation 

over/underestimates the statistical significance of trend and change-point detection algorithms (Serinaldi and 

Kilsby, 2016; von Storch and Navarra, 1999). We employed a Ljung-Box test with 20 lags to the short-duration 20 

AMP time series of each site to check if they show statistically significant autocorrelation (at 5% and 10% 

significance levels). For the time series with no serial autocorrelation, we test for trending behavior and 

nonstationarity. It is also important to note that presence of nonstationarity may not be evaluated merely on the 

basis of trends or abrupt shifts in the time series, even if the increasing or decreasing trends are statistically 

significant (Yilmaz et al., 2014). First,First, we check for a presence of nonstationarity in the time series by 25 

employing unit root-based Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1981) test. However, the test may 

have a low power against stationary near unit root processes  (Dritsakis, 2004; Chowdhury and Mavrotas, 2006). 

Therefore, as a complementary to unit root test, KPSS test (Kwiatkowski et al., 1992) is employed to validate the 

results of the ADF test. Since both ADF and KPSS tests assume linear regression or normality of the distribution; 
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alternatively, a log-transformation can convert a possible exponential trend present in the data into a linear trend. 

Therefore, following previous studies (Gimeno et al., 1999; Van Gelder et al., 2006), AMP time series is log-

transformed before applying stationarity tests. However, Yilmaz et al. (2014) did not observe the presence of any 

significant nonstationarity in extreme rainfall time series in the city of Melbourne even after employing ADF and 

KPSS tests. Therefore as an alternative, we also employed frequency-based Priestley and Subbarao test [‘PSR’-5 

test; (Priestley and Rao, 1969), which is able to better capture nonlinear dynamical nature of hydrological system 

than the former two tests (Ali and Mishra, 2017; Hamed and Rao, 1999).The other test we employed is frequency-

based Priestley and Subbarao test [‘PSR’-test; (Priestley and Rao, 1969) for nonstationarity. Next, we detected the 

presence of smooth and abrupt changes in the time series.  The continuous or monotonic trends in short-duration 

rainfall extremes are identified using non-parametric Mann-Kendall trend statistics with correction for ties (Hamed 10 

and Rao, 1998; Reddy and Ganguli, 2013) at 5 and 10% significance levels. In general, the abrupt change (or 

change point) in the time series occur at a single point in the record and bifurcate the time series into two halves, 

either with different means, variances, or both dissimilar means and variance together at each part. The change-

point in location (or mean) is identified using non-parametric Pettit’s  (Pettitt, 1979) and Mann-Whitney tests (Ross 

et al., 2011). As indicated by previous studies (Xie et al., 2014; Yue and Wang, 2002), the rank-based nonparametric 15 

Mann-Whitney test is not really distribution free and the power of the test is often affected by the properties of 

sampled data. In practice, when real change point is unknown, often Mann-Whitney test, in general, does not work 

well, and the Pettitt method can yield plausible change point location along with its statistical significance. 

However, the significance of the Pettitt test can be obtained using an approximated limiting distribution (Xie et al., 

2014; SI2).The shift in scale (or variance) is detected using non-parametric Mood’s Test (Ross et al., 2011; See 20 

Figure 2 for details). We applied nonparametric tests due to their robustness to non-normality, which usually 

appears in the hydroclimatic time series. Further, in order to reduce the number of underlying assumptions required 

for testing a hypothesis, such as a presence of specific kind of trend or change point in the data, nonparametric tests 

are employed. For the time series with significant autocorrelation, we employed a Ttrend-Ffree Ppre-Wwhitening 

procedure (TPFW; SI 2) as described in (Yue et al., 2002, 2003) and later modified by (Petrow and Merz, 2009). 25 

Then, we applied trend and change point detection algorithms to the pre-whitened AMP extremes.   

    

3.3 Extreme Value Analysis of Sub-daily and Daily Precipitation Extremes 
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Nation-wide EC IDF curves were developed using a particular family of distribution function from the extreme 

value theory (i.e., Gumbel distribution or Extreme Value type I, hereafter referred as EVI). However, EV1 

distribution has certain limitations, such that it is a non-heavy tailed distribution and characterized by constant 

skewness and kurtosis coefficients (Markose and Alentorn, 2005; Pinheiro and Ferrari, 2016). However, the short-

duration AMP intensities often exhibit fat-tail behavior and have left asymmetries (skewed to the left relative to 5 

standard normal distribution). In fact, a few studies in the past have shown that EV1 fits poorly to the historical 

rainfall extremes (Burn and Taleghani, 2013; Coulibaly et al., 2015). Therefore, in the present study, we perform 

frequency analysis of extreme precipitation using GEV distribution. The choice of GEV distribution was based on 

a previous studiesy where various distribution functions were compared in the study area (Coulibaly et al. 2015; 

Switzman et al., 2017). Next, we perform frequency analysis of AMP intensity using GEV distribution. GEV 10 

fitted to block or AM time series (Cheng and AghaKouchak, 2014; Katz et al., 2002; Katz and Brown, 1992). The 

GEV distribution is characterized by contains three parameters, the location, the scale and the shape of the 

which describes the center of the distribution, the deviation around the mean and the shape or the tail of the 

distribution (Katz et al., 2002; Katz and Brown, 1992). The cumulative distribution function of stationary (time-

invariant) GEV model is given by (Coles et al., 2001): 15 

 

1

exp 1 0

exp exp 0

z
if

G z

z
if




 











      
      

      
    

     
  

                                        (3.1) 

Where,  max ,0y y  , and  

  ,z       when 0  ;   ,z         when 0  ; and  ,z    when 0   

  is a location parameter,   is a scale parameter and   is a shape parameter determining the heaviness of the 

tail. The shape parameter  , determines the higher moments of the density function and also the skew in the 20 

probability mass. The ‘+’ sign indicates positive part of the argument.  The Eq. (3.1) encompasses three types of 

DFs based on the sign of the shape parameter,  : (i) the Fréchet, with a finite lower bound of      and an 
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unbounded, heavy upper tail, ( 0  ), (ii) the Weibull, unbounded below and with a finite upper bound of  

    , ( 0  ) and (iii) the Gumbel, unbounded below and above with a light upper tail 0  , formally 

obtained by taking limit as 0  . The shape parameter zero indicates Gumbel distribution , which iis described 

by an unbounded light tailed distribution and the tail decreases rapidly following an exponential decay. On the 

other hand, The the positive shape parameter denotes Fréchet andistribution is a heavy-tailed distribution, and the 5 

tail drops relatively slowly following a polynomial decay (Towler et al., 2010). On the other hand, Tthe negative 

shape parameter represents a Weibull distribution, which is a bounded distribution. Here we compare the 

performance of both stationary and nonstationary form of GEV distribution. For stationary model, we estimate  

parameters byusing maximizing the log-likelihood function of the distribution (i.e., Maximum Likelihood or ML-

based) and Bayesian iInference (BI) coupled with Differential Evaluation Markov Chain (DE-MC) Monte Carlo 10 

(MC) simulation as suggested by (Cheng et al., 2014; Cheng and AghaKouchak, 2014). For nonstationary model, 

the shape parameter is assumed as constant throughout. Here it should be noted that for modeling temporal changes 

in   requires long-term observations, which are often not available in practice (Cheng et al., 2014). Howevernce, 

following previous studies (Cannon, 2010; Cheng et al., 2014; El Adlouni et al., 2007; Gu et al., 2017) we 

incorporate  time- varying covariates  into GEV location (GEVt-I I), and both in location and scale parameters 15 

(GEVt-I II) respectively, to describe trends as a function of time (in years): 

  1 0t t                        (3.2) 

  1 0t t                        (3.3) 

Since the scale parameter must be positive throughout, it is often modeled using a log link function (Gilleland and 

Katz, 2014) 20 

     1 0 1 0ln expt t t t                           (3.4) 

Where t is the time (in years),  1 0 1 0, , , ,       are the parameters.  

 (See SI 3 for details). Then we estimate parameters of the nonstationary GEV distribution by integrating BI 

combined with DE-MC simulation. For AMP intensity, we derive the time variant parameter(s) from the 50 th (the 

median or the mid-point of the distribution) percentiles of the DE-MC sampled parameter(s). We obtain the 25 

associated 95% confidence credible intervals (the bounds) from the 2.5th5th and 95th97.5th percentilespercentiles of 
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the  simulated posterior samples (See SI 3 for details). We perform the calculations following (Cheng and 

AghaKouchak, 2014) using an MATLAB-based software package, Nonstationary Extreme Value Analysis 

(NEVA, Version 2.0). The Bayes factor followed by Akaike information criterion (AIC) with a small sample 

correction (AICc) isare used to identify the best model,. The AICc which claims to avoid overfitting the data as 

compared to traditional AIC (Burnham and Anderson, 2004; Hurvich and Tsai, 1995). Here we assess model fitness 5 

based on a least square sense of AIC statistics considering maximum deviation between empirical (obtained from 

rank-based plotting position formula) and modelled cumulative distribution (CDF) [Dawson et al., 2007; Hu, 2007; 

Karmakar and Simonovic, 2007, 2007]. For calculation of AICc statistics, we consider median of the DE-MC 

sampled parameters, which can be considered as an average or expected value of risk in the historical observation. 

Besides this, we also assess the performance of the models using pProbability-pProbability (PP) plots. Following 10 

a previous study (El Adlouni et al., 2007), we select the model with fewer parameters as the best model when two 

models have comparable performances. For example, we chose GEV I as the best fit for 15-minute and 12-hour 

durations rainfall extremes at Hamilton and Trenton Airport respectively (Table S17 and Table S22). The derived 

model parameters are then utilized to obtain DSI using the concept of a T-year return period. We discuss the 

methods to estimate DSI and T-year return periods using stationary and nonstationary methods in detail in section 15 

SI 54. To test (statistically) significant difference in the estimated DSI from the best-selected stationary versus 

nonstationary models, we calculate standardized z-statistics for selected return periods (Madsen et al., 2009; 

Mikkelsen et al., 2005). We applied the 2-sided option with 510% and 10% significance levels to assess the 

statistical significance of the test statistics (See SI 6 5 for details). Finally, we compared the DSI obtained from 

nonstationary and stationary models with existing EC-generated DSI estimates. 20 

 

 

The extreme rainfall statistics show high standard deviation with positive skew behaviorbehavior (Tables S5 2 and 

skewness is a measure of the asymmetry in the AMP distribution. Positive values of skewness indicate that data 

are skewed to the righta shift towards an increase in the intensity of extreme events. The skewness of sub-hourly 25 

highest being 30-min AMP record at Hamilton and least being at Oshawa respectively (Table 2). Likewise, for 

hourly extremes, the skewness ranges between 0.54 and 2.54, with least being 1-hour AMP at Oshawa and highest 

is 1-hour AMP at Hamilton respectively (Table 3). For example, extremes at London International Airport, Trenton 

S5 2 and S63), which indicates the data have a distinct peak near the mean, which decline rapidly, and have heavy 

We find the presence of statistically significant autocorrelation in the AMP time series of Toronto International 30 

Formatted: Font color: Custom Color(RGB(0,0,204))

Formatted: Font: Italic

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: Italic

Formatted: Font color: Custom Color(RGB(0,0,204))



13 

 

Airport, Hamilton Airport, and Fergus Shand Dam (Table S7.1, Table S8.1, and Table S15SI 2). We apply 

with a significant autocorrelation (Table S7S4.1, Table S8S5.1, and Table S15S12). However, two successive 

to correct the effect of autocorrelation in 12- and 24-hour duration extremes in Shand Dam. Hence we exclude 

those two time series from frequency analysis (Table S15S12).  The ADF-test for nonstationarity is statistically 

significant in all durations, as indicated by the higher p-values. As a complementary to ADF test, we also employed 5 

KPSS and PSR tests (Figure 2; Tables S7 – S15SI 2) to check significant nonstationarity. Figure 3 shows the spatial 

spatial trends, change points and nonstationarity in short-duration rainfall extremes. We find co-occurrences of 

change points and nonstationarities in extremes at multiple locations (Figure 3). In general, the three sites in the 

Northeast, the Oshawa WPCP, Trenton Airport and Kingston P. Station show evidence of statistically significant 

upshifts and nonstationarities in the time series, whereas the rest of the sites in the Southwest exhibit downshifts 10 

and statistically significant nonstationarities (Figure 3). For 2-hour and beyond durations, London International 

Airport shows a presence of statistically significant downward trends with change points. An increase (decrease) 

in mean precipitation imply an increase in heavy precipitation and vice-versa. Further, it could also alter the shape 

of the right-hand tail, changing overall asymmetry in the distribution (Fig. S1), and hence affecting the nature of 

extremes (Stocker et al., 2013). Furthermore, the presence of opposite signs of trends within a proximity of sites 15 

are prominent in all durations, for example, except for 1-hour duration, extremes in all durations at Toronto 

International Airport and Oshawa WPCP show downwards and upward shifts respectively. Our findings confirm 

the other study (Burn and Taleghani, 2013), where authors report a lack of spatial structures and presence of 

different trends within a close vicinity of stations. Further, we find statistically significant monotonic increase and 

abrupt step changes, both in mean and variance in Oshawa and Trenton respectively (Table S6 and S10), whereas 20 

London shows (significant) decrease (Table S9) from the duration of 6-hour and more. Windsor, Kingston and 

Stratford show (significant) step changes as confirmed by Mann-Whitney and Mood Tests (Tables S7, S8 and S11). 

On the other hand, Toronto, Hamilton and Fergus Shand Dam (Tables S4, 4.1; S5, 5.1; S12) do not exhibit any 

statistically significant gradual or abrupt changes in the AMP time series. The ADF tests show the presence of 

nonstationarity in all durations across the sites. To further validate results of ADF test, KPSS and PSR tests are 25 

employed. The KPSS test detects the presence of nonstationarity at 3 out of 9 sites for 24-hour rainfall extreme at 

5% significance level, whereas the results of PSR test indicate nonstationarity across 5 sites in 24-hour rainfall 

extremes. While KPSS test alone could not detect the presence of nonstationarity in any of the extreme series in 

Oshawa and Stratford respectively, the results of PSR test did not indicate nonstationarity in any of the short-

duration rainfall extreme in Windsor. Both of these tests taken together detect the presence of nonstationarity in 30 
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rainfall extremes across 6 out of 9 sites. We find even if trends in individual sites may not deem significant, the 

magnitude of trends (as measured by slope per decade, Tables S7 S4 – S15S12 in SI2) is never zero in any of the 

A weak trend can also have a significant impact on the results of probability analysis (Porporato and Ridolfi, 1998). 

Hence even if precipitation extremes often exhibit statistically insignificant trends in few durations, we assess the 

performance of both nonstationary and stationary models in all sites (Tables S16 – S24). Tables 4 – 7 lists 5 

performance of nonstationary versus stationary models for selected airport locations, whereas Tables S13 - S17 

presents results of the distribution fit for the remaining stations. Barring a few exceptions, the shape parameters in 

most of the models range between -0.30 and +0.3, which is an acceptable range of GEV shape parameter as shown 

in an earlier study (Martins et al., 2000). Our results corroborate well with recent research (Papalexiou et al., 2013; 

Wilson and Toumi, 2005), which showed that distribution with fat tails (with GEV shape parameter, ξ  < 0) fits 10 

better for the precipitation extremes. The nonstationary models are selected employing Bayes-factor and minimum 

AICc criterion. For example, for the 6-hour duration at Hamilton Airport, the nonstationary GEVt-I (nonstationary 

model with time-varying GEV location) model performed the best as shown by both test metrics. However, in 

certain cases, nonstationary models does not pass Bayes-factor test. In such cases, we select the best nonstationary 

model (i.e., between GEVt-I and GEVt-II) following AICc test statistics. Here, it should be noted that the objective 15 

is to compare the design storm obtained from stationary versus best nonstationary model and not to analyze the 

best distribution between them. As a measure of uncertainty, we also report the 95% confidence credible interval 

of design rainfall quantiles at 100-year return period as a ratio between the upper and the lower bounds, which 

ranges between the factor of 1.2-to-1 and 43.09-to-1 in all cases. The performance of time-varying GEV models 

(Figure S9) closely follows the spatial pattern as indicated in the trend map (Figure 3). For example, Trenton 20 

Airport, which showed significant upward trends with change points and nonstationarity, is better modeled by the 

nonstationary GEV distributions for most of the durations.  Likewise, except a few cases, we find that in few cases, 

GEV II fits best if the time series exhibit (significant) evidence of a change point in variancenonstationarity as 

detected by PSR-test statistics, for example, 155-min and 12-hr extremes in TrentonLondon and Toronto 

International Airport (Tables S224 and 7) and Kingston P. station (Table S20) respectively. However, in many 25 

cases, the performance of nonstationary models are often comparable and even superseded by their stationary 

counterparts (Figure S9, Tables S16 - S24SI 3). In fact, the scatter of data points in the PP-plots (Figures S10 – 

S13S12) suggests a close resembles between stationary and nonstationary models across all durations.  Figure 4 

shows the relation between DSI and durations (ranges between 15-min and 24-hr) for 100-year return periods 
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estimated by stationary versus nonstationary GEV distributions. While tThe interquartile range of the boxplot 

uncertainty in estimated rainfall quantiles obtained from theusing Bayesian Inferenceanalysis, the black circles 

simulated by the nonstationary model is found to be relatively narrower as compared to the one simulated by the 

stationary model for most of the sites (Figure 4), indicating lesser uncertainty in the estimated quantiles. For return 

periods of less than 100 years, such as for 10- and 5-year, the DSI from stationary versus nonstationary models, 5 

show subtle differences (Figures S14 S13 – S15S14).  

Figure 5 displays the differences in DSI obtained using the best performing nonstationary model relative to the best 

selected stationary models using percentage changes and z-statistics for different durations and return periods. 

While percentage change indicates a magnitude of change, the z-statistics show statistical significance of the 

relative difference in estimated DSI using the two different methods. The percentage differences at 2- and 10-year 10 

return period are small relative to larger return periods. At 100-year return period, a maximum positive difference 

of around 44% is observed at 12-hour storm duration in Toronto International Airport (Table S18.1). The 

standardized z-statistics show positive (negative) values indicating an increase (decrease) in DSI values assuming 

nonstationarity in return period estimates against its stationarity counterparts. However, a Ccomparison between 

T-year event estimates from both models indicates statistically indistinguishable differences in rainfall intensity. 15 

We find for all return periods and durations, z-statistics ranges between -1 and +1 for all nine sites (SI 5). 

Nonetheless, extreme precipitation intensity shows either positive or negative (statistically insignificant) changes 

in signs. The difference between DSI shows a decrease, at 1- and 2-hour storm duration in Toronto, 6-hour storm 

duration in London, and 15-min and 12-hour storm duration at Trenton Airport for 50- and 100-year return periods 

(Figure 5, SI 5). In contrast, Toronto, Windsor and London International Airport shows an increase in DSI value at 20 

15-min duration (Figure 5; SI 5), although the increase is statistically insignificant. Further, we note, except 6- and 

12-hour storm duration, the performance statistics show a comparable and in few cases even better performance of 

the stationary versus nonstationary GEV models across most of the sites (SI 3). At 2- and 10-year return periods, 

which is typical for most urban drainage planning, the differences are close to zero (Figure 5, Tables S27 and S28 

in SI 5) for most of the durations.  25 

We find for all return periods and durations, z-statistics ranges between -1 and +1 for all nine sites.  

Nonetheless, extreme precipitation intensity shows either positive or negative (statistically insignificant) 

changes in signs. The difference between DSI shows a decrease, especially between 15-min and 2-hour for 

Hamilton, Windsor, London International Airport, and Shand Dam for 50- and 100-year return periods 
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(Figure 5, Tables S25-S26). These findings are in agreement with Figure 3, in which sites show a decrease in 

periods taking into account both stationary and nonstationary condition. The median and associated lower and 

upper bounds of the ratio of regional nonstationaryupdated versus EC-generated T-year event estimates can be 

analogous to most likely, minimum and maximum plausible scenarios. While the positive value of the ratio 

indicates a required increase in DSI, the negative value indicates a decrease in DSI estimate. Considering 5 

nonstationarity, Fator T = 10-year return period (Figure 6, SI 4), the ratio of updated versus old estimates of DSI 

the order of ~ 1.01 – 1.308,  for Oshawa WPCP, Kingston P. station, Stratford WWTP, Windsor and Trenton 

period, except Oshawa and Windsor, a majority of the sites show decrease in DSI for most of the storm durations 

(Figure 6, middle row). In contrast, Tthe increase in the estimated ratio beingis more pronounced at 50- and 100-

year return periods, andwhich are in the order of ~ 1.031 - 1.5 80 (Figure 67, Table S29.1 – Table S37.2SI 4). While 10 

for Toronto International Airport and Hamilton Airport, we find no increase in the short-duration rainfall extremes 

of less than 1- hour and 50-year return period considering nonstationary condition, the increase is more pronounced 

for longer durations and larger return periods (12 and 24-hour, and 50- and 100-year return period, Figure 6, bottom 

panelSI 4). For longer recurrence intervals, while the heat maps of minimum bounds and the most likely scenario 

show a lesser smaller number of stations and durations to reach a ratio of 1.5 and beyond, the maximum bounds 15 

suggest a sharp increase in the ratio across all durations and locations. Further, for return periods more than of 50-

year and more, the increase in the ratio is more prominent in the upper bound of the stationary models (Figure 

S167, left two columns) as compared to the nonstationary models. The resulting increase in T-year event estimates 

is because of the relatively wider confidence interval of estimated DSIs in stationary models than that of the 

nonstationary models (Figures 64; S14 – S15SI 3). In general, for larger return periods, our analysis reveals, the 20 

increase in the ratio of updated versus EC-generated rainfall intensity is more prominent in sites with statistically 

significant signatures of nonstationarity, upward trends, and change points. For example, the updated DSIs of 

Oshawa WPCP (Table S31.1), Windsor  and Trenton Airport (Table S35.1) shows an increase in the ratio for most 

of the durations and return periods as compared to the EC-generated DSI values (SI 4). On the other hand, except 

for the 100-year return period events, the hourly precipitation extremes in London International Airport, in general, 25 

show a decrease in the ratio (Table S3423.1 – 23.2) across all return period, which is predominantly due to the 

presence of significant downward trends with change points in the time series.  

Based on the study results and in anticipation of stakeholders’ participation in adaptive management, we present 

updated nonstationary IDFs for four selected the nine urbanized and semi-urbanized locations across Southern 
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Ontario (Figure 78). In order to distinguish between stationary and nonstationary method of analysis, we also 

updated IDF assuming stationary condition relative to EC IDF in the same plot (in top panel). The comparison of 

remaining sites is presented in Figure S15. Thus It we also madkes the first attempt to compare the results of 

EC-generated IDFs considering both nonstationary and stationary conditions, which are the part of contemporary 

Design Standards and widely used by the stakeholders and practitioners. Overall, the updated IDFs closely follow 5 

the pattern of trends analogous to EC-generated IDFs, except for the 100-year return period. The difference is more 

pronounced considering nonstationary condition, especially at Toronto International Airport (Figure 8), Oshawa 

WPCP and Stratford WWTP (Figure S15). At longer durations and higher return periods, stations in metropolitan 

areas (such as Toronto International Airport, Hamilton Airport, Oshawa WPCP and Windsor Airport) show large 

differences in DSIs, whereas moderately populated locations such as Kingston P. station and Fergus Shand dam 10 

show relatively smaller changes. Considering, nonstationary condition, the maximum increase in Furgas Shand 

dam is noted as 18.7% for the 2-hour storm duration and 100-year return period, whereas an increase of around 

44.5% is shown for 12-hour storm duration at Toronto Airport. Stratford WWTP, shows substantial differences in 

range of ~ 2 – 40% in the T-year event estimates (Table S29.1 – S37.2SI 4). Meanwhile, for T = 10-year return 

increase is in the order of  ~1.4 to 7.2%1.2 – 11% acrossin several stations (i.e., Oshawa WPCP, Windsor Airport, 15 

more, the required increase ranges between ~ 21.78 – 3044.5%. We find the largest increase is for the 12-hour 

extreme in Toronto International Airport (~ 320 – 3144.5%; Table S2918.1), followed by 12-hour extreme at 

WWTP (~ 237 – 316%; Table S3625.1). However, considering stationarity condition, for T = 50-year and more, 

required increase ranges between ~ 1.4 – 26%. It should be noted that above results are based on an average risk 

approach for extreme value analysis by considering median of the sampled parameters in the historical observation 20 

and not considering the overall risk envelope (i.e., minimum and maximum bounds).  In summary, our findings 

confirm that updates in the order of ~ 2 – 3044% are required based on locations and return periods to mitigate the 

risk of precipitation induced urban flooding irrespective of the choice of methods used in the IDF estimation (Table 

4). The results are consistent with (Simonovic and Peck, 2009), in which authors recommends an average update 

about 21%, with a difference, ranges between ~ 11 – 35% for the updated versus EC-IDF in London Metropolitan 25 

area. However, they assumed stationarity condition in the method ofto develop at-site IDF estimation. The above 

need to update existing EC IDFs, which are generated using Gumbel probability distributions and do not fit the 

data well.  

The increase could also indicate a tendency towards an increase in mean precipitation and (or) a shift in the 

distribution, affecting its tail behavior. However, a few caveat remains, for example, a critical question could be: 30 
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does an increase in DSI is potentially linked towards more frequent and more intense precipitation extremes or is 

an artifact of the new dataset in the update process? It is worthwhile to note that results shown here are 

manifestations of present-day climate using ground-based hydrometeorological observations and the specific 

insights are nonetheless subject to the quality of available rainfall records.  It remains an open-ended question to 

what extent we credibly develop IDFs in a changing climate (Coulibaly et al., 2015) since there is no uniformly 5 

accepted method of generating IDF information and related projection uncertainty in light of climate change. More 

In general, highlighting advantages and limitations of nonstationary versus the stationary methods of analyses 

(Koutsoyiannis and Montanari, 2015; Montanari and Koutsoyiannis, 2014; Serinaldi and Kilsby, 2015) is beyond 

the scope of the current study. Further, several studies (Deng et al., 2016; Kunkel, 2003) hasve indicated an increase 

in frequency and magnitude of short-duration rainfall extremes in Southern Ontario due to global warming. 10 

Research towards this direction is currently underway for regional preparedness and to develop comprehensive 

adaptation strategies.   

4 Discussions and Conclusions 

This paper has sought to assess signatures of nonstationarity in densely and moderately populated urbanized 

locations in Southern Ontario, which is one of the major economic hubs in Canada. We update short-duration 15 

rainfall extremes with latest available ground-based observations and present a comprehensive analysis to evaluate 

nonstationary versus the stationary method of IDF estimation. This analysis yields two principal findings. First, 

despite signatures of (statistically) significant nonstationarity and trends in extremes in most of the sites, the 

changes in design storm intensity remain statistically indistinguishable using stationary versus nonstationary 

methods. These findings pose an important question: does the presence of nonstationarities in rainfall extremes 20 

require the design of nonstationary IDF curves? We argue speculate that although it is crucial to recognize 

nonstationarity in precipitation extremes, the stationary form of IDFs can still represent the extreme rainfall 

statistics for the present-day climate over Southern Ontario region. Our results are consistent with (Yilmaz et al., 

2014; Yilmaz and Perera, 2013), in which authors found despite the presence of (statistically) significant trends in 

rainfall extremes; nonstationary GEV models did not show any additional advantages over the stationary models. 25 

As supported by the previous study (Singh et al., 2016), we attribute that the little or no changes in extreme rainfall 

statistics in the urbanized setting is due to the stabilization of urban development leading to no substantial variations 

in the land use pattern. Hence, no significant changes in synoptic scale circulations, which in turn affect space-time 

pattern in rainfall extremes (Moglen and Schwartz, 2006). Second, comparison of at-site T-year event estimates of 
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updated versus EC-generated IDFs shows forat T = 10-year, the return period commonly used for urban drainage 

design, current design standards require updates up to 117% to mitigate the risk of urban flooding. Meanwhile, for 

longer recurrence interval (T = 50-year or more), typical for critical civil infrastructural design, comparison of 

updated versus EC-generated IDF curves shows a difference that ranges between 2% and 3044% based on 

locations.  5 

 

Preliminary investigations based on regional and global climate model simulations in the study area confirm a 

considerable uncertainty in the projection of short-duration and high-intensity extreme rain events (Coulibaly et 

al., 2015). While short-duration precipitation extremes are typically controlled by synoptic scale moisture 

convergence (Ruiz-Villanueva et al., 2012; Westra and Sisson, 2011), the daily extremes are often modulated by 10 

large-scale circulation patterns and local orographic factors (Carvalho et al., 2002; Gershunov and Barnett, 1998; 

Trenberth, 1999). Further, the role of natural variability and multidecadal modes of sea-surface temperature (SST) 

in modulating Canadian extreme rainfall intensity have already been shown in the past (Gan et al., 2007; Shabbar 

et al., 1997). The future research should include two aspects. First, investigation of physical drivers (such as 

temperature, decadal and multidecadal modes of SST) in influencing short-duration rainfall extremes. Second, the 15 

inclusion of these covariates in nonstationary IDF development  (Mondal and Mujumdar, 2015; Yilmaz et al., 

2014b). Given that these findings are for the current period climatecurrent period (e.g., historical extreme rainfall 

time series), we recommend a careful extrapolation of findings with regards to future climate projections, it is also 

recommended to explore hypothesis-driven studies for the future time periods using high-resolution climate model 

simulations. in which frequency and magnitude of extreme rainfall are expected to intensify (Mailhot et al., 2012; 20 

Deng et al., 2016; Fischer and Knutti, 2016; Prein et al., 2016; Pfahl et al., 2017; Switzman et al. 2017). Further 

work should consider nonstationary methods for deriving future IDFs in Southern Ontario.   
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Figure 1. (a) Selected urbanized sites in Southern Ontario. The Southern Ontario (41° - 44°N, 84° - 76°W) is the 

southernmost region of Canada and is situated on a southwest-northeast transect, bounded by lakes Huron, Erie, 

and Ontario. The nine locations on the map are (from southwest to northeast corner): Windsor Airport, London 

International Airport, Stratford Wastewater Treatment Plant (WWTP), Fergus Shand Dam, Hamilton Airport, 5 

Toronto  International Airport, Oshawa Water Pollution Control Plant (WPCP), Trenton Airport, and Kingston 

Pumping Station. Topography map indicates maximum slope of 670 m above mean sea level. (b) The population 

map shows six the sites: Windsor Airport, London International Airport, Hamilton Airport, Toronto International 

Airport, Oshawa WPCP, and Kingston P. Station to be located either in or the vicinity of densely populated 

urbanized area. The remaining three sites are located in the moderately populated area. The daily and sub-daily 10 

AMP records in all locations vary between the minimum of 46 and maximum of 66 years.Selected urbanized sites 

in Southern Ontario. The Southern Ontario (41° - 44°N, 84° - 76°W) is the southernmost region of Canada and is 

situated on a southwest-northeast transect, bounded by lakes Huron, Erie, and Ontario. The nine locations on the 

map are (from southwest to northeast corner): Windsor Airport, London International Airport, Stratford 

Wastewater Treatment Plant (WWTP), Fergus Shand Dam, Hamilton Airport, Toronto  International Airport, 15 

Oshawa Water Pollution Control Plant (WPCP), Trenton Airport, and Kingston Pumping Station. Topography map 

indicates maximum slope of 670 m above mean sea level. (b) The population map shows six the sites: Windsor 

Airport, London  International Airport, Hamilton Airport, Toronto International Airport, Oshawa WPCP, and 

Kingston P. Station to be located either in or the vicinity of densely populated urbanized area. The remaining three 

sites are located in the moderately populated area. The rainfall records in all locations vary between the minimum 20 

of 46 and maximum of 66 years. 

Figure 2. Schematics of the process flow (Blue - input step, orange - process step, and green – decision steps). 

All three tests – Mann-Kendall, Pettitt’s and Mann-Whitney, check for shifts in the mean. While Mann-Kendall 

tests for monotonic trends, the other two tests, Pettitt’s and Mann-Whitney check for change point or regime shift 

in the time series.Schematics of the process flow (Blue - input step, orange - process step, and green – decision 25 

steps). All three tests – Mann-Kendall, Pettitt’s and Mann-Whitney, check for shifts in the mean. While Mann-
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Kendall tests for monotonic trends, the other two tests, Pettitt’s and Mann-Whitney check for change point or 

Figure 3. Spatial distribution of trends, change points and nonstationarities in rainfall extremes of several durations 

in nine urbanized locations, Southern Ontario (a – g). The up and down triangles in white indicate (statistically 

insignificant) up and downward shifts; the up and down triangles in cyan and orange indicate shifts with change 

points only; the up and down triangles in the dark blue and red show presence of (statistically significant) trends 5 

including change point(s). Sites with significant nonstationarity are marked with an ‘x’ sign. All tests are performed 

at 10% significance levels, i.e., p-value < 0.10. Spatial distribution of trends, change points and nonstationarities 

in hourly and sub-hourly rainfall extremes in nine urbanized locations, Southern Ontario (a – g). The population 

estimates in and the vicinity of urbanized sites varies between 5 Million and 19,000 with highest in Toronto 

Metropolitan Area and the lowest in Fergus Shand dam area. The up and down triangles in white indicate 10 

(statistically insignificant) up and downward shifts; the up and down triangles in cyan and orange indicate shifts 

with change points only; the up and down triangles in the dark blue and red show presence of (statistically 

significant) trends including change point(s). Sites with significant nonstationarity are marked with an ‘x’ sign. The 

trends in short-duration AMP extremes are detected using nonparametric Mann-Kendall trend test with correction 

for ties. The change point in precipitation extremes are identified either as a shift in the mean or the variance in 15 

AMP time series. We apply nonparametric Pettit (Pettitt, 1979) and Mann-Whitney (Ross et al., 2011) tests to 

identify change point in the mean and Mood’s test (Ross et al., 2011) to detect change point in the variance 

respectively (See section 2 for details). All tests are performed at 5 and 10% significance levels.  

Figure 4. DSI estimates of median (horizontal line within the box plot) and 95% credible intervals for 100-year 

return periods of stationary versus nonstationary models across nine sites (a - i). The boxplots indicate the 20 

uncertainty in estimated DSI using Bayesian inference.    Uncertainty in DSI for 100-year return periods for 

stationary (blue) versus nonstationary (red) models with durations ranging between 15- min and 24-hr for nine sites 

(a - i): Toronto International Airport, Hamilton Airport, Oshawa WPCP, Windsor Airport, Kingston P. station, 

London International Airport, Trenton Airport, Stratford WWTP, and Fergus Shand Dam. The boxplots indicate 

the uncertainty in estimated DSI from Bayesian inference, whereas the DSI obtained from maximum likelihood 25 

approach is shown as a black dot in the stationary simulation.    

Figure 5. Percentage changes (in top panel) and Z-statistics (bottom panel) of at-site T-year event estimates for T 

= 2-year to T = 100-year return periods (a – d) with durations between 15-min and 24-hr in nine urbanized locations, 

Southern Ontario. The Z-statistic represents statistical significance of differences in DSI obtained from the best 
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selected nonstationary versus the stationary model. The Z-statistics is statistically significant when |Z| > 1.64 at 

10% significance level. The shades in blue and red denote decrease and increase in Z-statistics with the strength of 

shading represents the magnitude of the test statistics. The cyan shading represents the site with significant 

autocorrelation, which we exclude from the analysis.  Z-statistics of at-site T-year event estimates for T = 2-year 

to T = 100-year return periods (a – d) with durations between 15-min and 24-hr in nine urbanized locations, 5 

Southern Ontario. The Z-statistic represents statistical significance of differences in DSI obtained from the best 

selected nonstationary versus the stationary model. The Z-statistics is statistically significant when |Z| > 1.96 and 

|Z| > 1.64 at 5 and 10% significance levels. The shades in blue and red denote decrease and increase in Z-statistics 

with the strength of shading represents the magnitude of the test statistics. The cyan shading represents the site with 

significant autocorrelation, which we exclude from the analysis.   10 

Figure 6. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary 

versus EC-generated T = 2-and 10-year event estimates for DSI at selected return periods with durations between 

15-min and 24-hr. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 

archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and red denote decrease 

and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-15 

generated DSI. Central tendency (median, b) and the bounds (5 and 95% range, a and c) of the updated 

nonstationary versus EC-generated T-year event estimates for DSI at selected return periods with durations between 

15-min and 24-hr. The minimum, median and maximum T-year event estimates of nonstationary models are 

obtained from time-variant GEV parameter(s) by computing the 5th, 50th and 95th percentiles of DE-MC sampled 

parameters. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 20 

archive of Engineering Climate Datasets maintained by the Environment Canada (http://climate.weather.gc.ca/). 

The strength of shading represents the magnitude of the ratio between updated versus EC-generated DSI with a 

deeper shade indicates an increase in the ratio. The cyan shading indicates the site with significant autocorrelation. 

Figure 7. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary 

versus EC-generated T = 50-and 100-year event estimates for DSI at selected return periods with durations between 25 

15-min and 24-hr. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 

archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and red denote decrease 
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and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-

generated DSI. 

Figure 8. Estimated nonstationary versus EC-generated IDFs for return periods T = 2, 5, 10, 25, 50 and 100-year 

return periods for the selected urbanized locations in Southern Ontario, Canada. The nonstationary IDFs are shown 

using solid lines, while EC-generated IDFs are shown using dotted lines.  5 
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Table 1. Selected station locations, population distribution and hourly and daily data availability 

Stations EC-Station 

      ID 

Lat (°) Long (°) Elevation 

(m) 

 

Population 

Estimate 

Census  

Subdivision 

EC-derived 

AMP 

Hourly 

Rainfall 

Daily 

Rainfall 

Missing years/ 

Duration values 

Toronto P.  

Int’l Airport  

6158731 43.68 -79.63 173.4 5,583,046 Toronto CMA1 1950 - 2013 1960 - 2012 1940 - 2013 1952-53, 2005  

[15-30 min, 1-6 hr] 

Hamilton Airport 6153194 43.17 -79.93 237.7 519,949 Population  

Center 

1971 - 2003 1971 - 2003 1960 – 2010 2004-2010 

Oshawa WPCP 6155878 43.87 -78.83 83.8 356,177 Oshawa CMA 1970 - 2006 1970 – 1999 1970 - 2015 1971  

[15-30 min, 1-6hr],  

1995 [12 hr],  

1999 [6-12hr], 

2000,  

2005-06 [15-30 min, 

1-6 hr], 2007-15 

Windsor Airport 6139525 42.28 -82.96 189.6 319,246 Windsor CMA 1946 - 2007 1960 – 2007 1940 - 2013 1950, 2008 - 2013 

Kingston P. Station 6104175 44.24 -76.48 76.5 159,561 Kingston CMA 1961 - 2007 1961 – 2003 1960 – 2007 2004 

London Int’l Airport 6144478/75* 43.03 -81.15 278 474,786 London CMA 1950 - 2007* 1961 – 2001 1940 – 2015 1950-51, 2002,  

2008-2015 

Trenton Airport 6158875 44.12 -77.53 86.3 43,086 Population  

Center 

1965 - 2013 1964 – 1997 1935 – 2015 1974, 1998-99,  

2002 [15-30 min,  

1-6hr], 2003-04 

Stratford WWTP 6148100 43.37 -81.0 345 30,886 CA  1966 - 2004 1966 – 2007 1960 – 2015 1973, 1999 

Fergus Shand 

Dam 

6142400 43.73 -80.33 417.6 19,126 Population  

Center 

1961 - 2007 1960 – 2007 1950 – 2015 1969, 1971, 1986,  

1987 [2- 6hr],  

1992 [6 - 12hr], 1995 

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...



35 

 

 

 

 

 

 5 

 

 

 

 

 10 

 

 

 
1 CMA and CA denote census metropolitan area and census agglomeration respectively. Statistics of Canada defines a CMA with a population of at least 

100,000, where the urban core of that area has at least 50,000 people, whereas CA must have an urban core population of at least 10,000. A population 15 

Center (or urban area) is an area with at least a population of 1,000 and a density of 400 or more people per square kilometer. All population information 

are collected from Statistics Canada (https://www12.statcan.gc.ca/) website.*Missing values are infilled using observations from nearest Environment Canada 

station ID 6144475 (latitude 44° and longitude -81.5°) located at 111.5 km geodesic distance. Annual maxima values of missing years or durations are obtained 

by disaggregating daily data to hourly and sub-hourly time steps. 

 20 
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Table 2. Selected stations and their statistical properties for annual maxima time series of rainfall volume 

Stations EC-Station 

ID 

Analysis 

Period 

Time Frame 

(min) 

Mean 

(mm) 

Std. deviation 

(mm) 

Skew Excess1 

Kurtosis 

6158731 1950 - 2013 15 16.35 5.88 0.46 -0.36 
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Toronto Int’l. 

Airport  

30 21.85 8.68 0.86 0.9 

Hamilton Airport 6153194 1960 - 2010 15 16.12 5.61 1.26 1.11 

30 16.63 8.47 4.45 24.09 

Oshawa WPCP 6155878 1970 - 2015 15 56.01 17.84 0.84 1.68 

30 36.09 11.40 0.22 -0.57 

Windsor Airport 6139525 1950 - 2013 15 17.79 5.56 1.03 1.69 

30 23.49 8.20 0.77 -0.15 

Kingston P. 

Station  

6104175 1961 - 2007 15 12.89 3.79 0.93 2.15 

30 16.54 5.31 0.78 1.12 

London Airport 6144478/75* 1950 – 2015 15 15.96 6.62 1.28 1.73 

30 21.06 8.55 1.68 3.94 

Trenton Airport 6158875 1950 – 2015 15 13.30 6.52 2.90 10.23 

30 16.60 6.40 1.54 2.97 

Stratford WWTP 6148100 1960 – 2015 15 16.33 5.08 1.30 2.23 

30 21.37 9.08 2.22 7.53 

Fergus Shand 

Dam 

6142400 1950 – 2015 15 17.74 6.66 1.24 2.14 

30 23.42 10.32 1.78 4.04 

*Missing values are infilled using observations from the nearest station ID 6144475.1Kurtosis relative to normal distribution, i.e., kurtosis – 3. 

 

 

Table 3. Selected stations and their statistical properties for hourly annual maxima rainfall volume for selected durations 

Stations EC-Station 

ID 

Analysis 

Period 

Time Frame 

(hr) 

Mean Std. Deviation 

(mm) 

Skew Excess 

Kurtosis 

Toronto Int’l. Airport  6158731 1950 - 2013 1 24.67 11.01 1.98 7.33 
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6 38.44 18.09 2.46 7.93 

Hamilton Airport 6153194 1960 - 2010 1 25.91 10.30 2.54 10.20 

6 38.72 15.05 2.34 7.07 

Oshawa WPCP 6155878 1970 - 2015 1 22.09 8.56 0.54 -0.43 

6 5.94 2.05 1.18 0.99 

Windsor Airport 6139525 1950 - 2013 1 29.53 10.43 0.88 0.14 

6 44.36 14.81 1.12 1.81 

Kingston P. Station  6104175 1961 - 2007 1 21.21 6.83 0.56 -0.03 

6 37.35 13.61 2.32 8.05 

London Airport 6144478/75 1950 – 2015 1 24.26 11.23 2.41 9.79 

6 36.46 12.10 1.73 4.57 

Trenton Airport 6158875 1950 – 2015 1 20.36 8.25 1.87 6.03 

6 36.76 12.51 1.19 0.66 

Stratford WWTP 6148100 1960 – 2015 1 24.31 11.12 1.71 3.41 

6 41.77 21.61 2.31 6.15 

Fergus Shand Dam 6142400 1950 – 2015 1 28.07 13.67 2.02 5.50 

6 39.86 18.59 1.25 2.30 
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Table 4. Performance of stationary and nonstationary models for Toronto Pearson International Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 37.02 19.83 -0.073 -465.05 - 78.85 209.56 2.66 
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 GEVt-I 30.11 + 0.194t 20.86 -0.079 -450.28 4.98 105.3 229.77 2.18 

 GEVt-II 34.30 + 0.056t exp(2.68 + 0.0069t) -0.11 -383.58 10.47 87.66 119.42 1.36 

30-min GEVt-0 25.65 13.14 0.019 -442.29 - 58.8 155.85 2.65 

 GEVt-I 17.32 + 0.21t 13.44 -0.075 -422.67 1.47 57.9 113.37 1.96 

 GEVt-II 12.08 + 0.35t exp(2.77 + 0.0023t) -0.20 -351.22 74357.2 58.63 99 1.69 

1-hr GEVt-0 19.77 7.79 0.07 -477.68 - 45.47 101.33 2.22 

 GEVt-I 18.27 + 0.022t 8.59 -0.08 -402.43 78.53 42.27 63.57 1.50 

 GEVt-II 4.44 + 0.414t exp(1.71 + 0.015t) 0.044 -372.2 4.43×109 49.65 87.11 1.75 

2-hr GEVt-0 11.79 4.45 0.11 -477.64 - 28.24 58.52 2.07 

 GEVt-I 11.0 + 0.02t 4.74 -0.02 -449.02 13.95 27.24 40.98 1.50 

 GEVt-II 11.46 – 0.0053t exp(1.52 – 0.00072t) 0.28 -421.44 9.08 46.44 61.47 1.32 

6-hr GEVt-0 4.98 1.50 0.26 -488.39 - 13.71 21 1.53 

 GEVt-I 5.12+0.0005t 1.57 0.24 -496.92 0.15 12.02 29.77 2.48 

 GEVt-II 5.44-0.0049t exp(0.77 – 0.0042t) 0.10 -424.07 52.13 13.71 21.0 1.53 

12-hr GEVt-0 2.96 0.70 0.36 -503.23 - 6.59 25.72 3.90 

 GEVt-I 3.02-0.0031t 0.69 0.51 -501.42 1.39 12.4 21.98 1.77 

 GEVt-II 3.13-0.0045t exp(-0.183-0.0032t) 0.49 -511.69 0.86 12.89 20.58 1.60 

24-hr GEVt-0 1.71 0.41 0.29 -477.04 - 3.69 11.71 3.17 

 GEVt-I 1.73-0.0006t 0.41 0.28 -466.25 13.22 3.75 10.41 2.78 

 GEVt-II 1.66+0.00093t exp(-1.00+0.00274t) 0.30 -460.06 1.30 4.28 8.16 1.91 

* GEVt-0 is stationary model whereas GEVt-I and GEVt-II are nonstationary models with time-variant mean, and both time-variant mean and standard 

deviation respectively. The selected best fitted nonstationary model is marked in bold letters. Bayes factor, 1   indicates that the nonstationary 

model fits better than the stationary model. However, in cases 1  , to compare with stationary model, the nonstationary model is selected following 

minimum AICc criteria. LB and UB indicates lower and upper bound of DSI at 100-year return period.  

 5 

 

Table 5. Performance of stationary and nonstationary models for Hamilton Airport 

Time 

Slice 

Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 53.84 14.96 0.12 -347.44 - 103.8 221.98 2.14 

 GEVt-I 56.31-0.096t 14.2 0.14 -338.32 0.67 102.19 223.91 2.19 

 GEVt-II 55.86-0.114t exp(2.83-0.0056t) 0.19 -351.58 2.07 107.81 285.01 2.64 

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Space Before:  6 pt, Line spacing:  single

Field Code Changed

Field Code Changed

Formatted: Font: 12 pt, Bold

Formatted: Font: Bold

Formatted: Font: 12 pt

Formatted: Line spacing:  single

Formatted Table

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted: Line spacing:  single

Formatted Table



39 

 

30-min GEVt-0 27.1 7.32 0.20 -369.40 - 56.71 174.66 3.08 

 GEVt-I 28.002-0.06t 7.28 0.11 -346.29 1.73 53.93 99.27 1.84 

 GEVt-II 27.8-0.038t exp(1.91+0.0009t) 0.25 -365.19 0.28 69.81 110.76 1.59 

1-hr GEVt-0 21.79 6.41 0.13 -361.35 - 41.92 109.07 2.60 

 GEVt-I 21.33+0.026t 7.06 0.03 -353.4 0.62 45.85 75.54 1.65 

 GEVt-II 20.50+0.046t exp(1.86+0.0035t) -0.0039 -350.97 3.09 43.75 68.8 1.57 

2-hr GEVt-0 12.63 3.68 0.11 -349.70 - 25.81 51.37 1.99 

 GEVt-I 12.15+0.006t 3.76 0.21 -322.00 4.91 32.16 54.78 1.70 

 GEVt-II 11.53+0.042t exp(1.09+0.0087t) 0.19 -329.09 11.20 32.76 49.51 1.51 

6-hr GEVt-0 5.32 1.33 0.23 -389.88 - 10.24 32.46 3.17 

 GEVt-I 5.15+0.0037t 1.28 0.29 -396.75 0.94 14.51 21.47 1.48 

 GEVt-II 5.09+0.0052t exp(0.12+0.0038t) 0.28 -375.03 1.21 14.53 20.47 1.41 

12-hr GEVt-0 3.11 0.74 0.20 -369.54 - 5.86 15.58 2.66 

 GEVt-I 3.09+0.0022t 0.74 0.27 -366.46 1.73 14.51 21.47 1.48 

 GEVt-II 3.03+0.0023t exp(-0.305+0.0002t) 0.21 -363.03 1.12 13.97 6.35 2.20 

24-hr GEVt-0 1.44 0.49 0.16 -338.35 - 3.05 11.47 3.76 

 GEVt-I 1.36+0.0026t 0.48 0.22 -338.33 0.31 3.26 8.42 2.58 

 GEVt-II 1.33+0.0034t exp(-0.74-0.00019t) 0.20 -326.63 0.99 4.04 6.44 1.59 
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Table 6. Performance of stationary and nonstationary models for Windsor Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 60.04 15.76 0.13 -394.2 - 106.43 300.24 2.82 

 GEVt-I 61.6-0.099t 14.61 0.25 -370.00 0.80 157.9 227.06 1.44 

 GEVt-II 63.33-0.068t exp(2.67+0.0027t) 0.013 -376.75 5.36 115.47 166.94 1.44 

30-min GEVt-0 38.92 12.94 0.06 -443.89 - 72.9 179.38 2.46 

 GEVt-I 43.20-0.124t 12.04 0.12 -435.12 0.25 72.6 210.06 2.89 
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 GEVt-II 42.81-0.11t exp(2.33+0.0032t) -0.0096 -371.83 1.002 81.7 104.43 1.28 

1-hr GEVt-0 24.82 8.00 0.044 -459.27 - 46.8 112.2 2.40 

 GEVt-I 28.93-0.14t 7.1 0.14 -452.65 0.35 58.99 89.75 1.52 

 GEVt-II 28.86-0.12t exp(2.11-0.0005t) 0.024 -444.90 0.22 56.66 73.64 1.30 

2-hr GEVt-0 15.79 5.12 -0.14 -476.71 - 25.62 45.09 1.76 

 GEVt-I 17.58-0.073t 4.78 -0.02 -434.62 0.38 26.13 58.27 2.23 

 GEVt-II 17.70-0.07t exp(1.50+0.0049t) -0.14 -475.53 0.16 29.79 37.83 1.27 

6-hr GEVt-0 6.24 1.86 0.041 -472.16 - 11.85 23.23 1.96 

 GEVt-I 6.80-0.014t 1.94 -0.04 -477.91 0.52 12.45 16.77 1.35 

 GEVt-II 6.85-0.017t exp(0.64+0.0013t) 0.040 -480.19 0.65 14.28 18.75 1.31 

12-hr GEVt-0 3.47 0.98 0.10 -489.97 - 6.3 16.67 2.65 

 GEVt-I 3.97-0.016t 0.92 0.14 -461.74 0.20 6.75 14.51 2.15 

 GEVt-II 3.89-0.012t exp(-0.055+0.00094t) 0.09 -481.94 0.20 7.7 10.57 1.37 

24-hr GEVt-0 2.04 0.53 0.03 -475.90 - 3.42 7.36 2.15 

 GEVt-I 2.05-0.011t 0.53 0.03 -472.08 2.44 3.41 7.15 2.09 

 GEVt-II 1.74+0.0067t exp(-0.78+0.0054t) 0.0056 -415.7 30.74 3.66 5.84 1.60 
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Table 7. Performance of stationary and nonstationary models for London International Airport 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB 

(100yr) 

UB 

(100yr) 

UB/LB 

15-min GEVt-0 51.7 19.15 0.045 -449.07 - 112.5 206.6 1.84 

 GEVt-I 57.8-0.12t 18.64 0.19 -457.44 0.30 119.5 311.1 2.60 

 GEVt-II 59.71-0.24t exp(2.95-0.00095t) 0.17 -459.62 0.24 149.51 222.9 1.49 

30-min GEVt-0 34.04 11.26 0.16 -535.35 - 70.04 264.2 3.77 

 GEVt-I 35.42 – 0.082t 11.88 0.054 -433.14 9.61 68.83 142.8 2.07 

 GEVt-II 38.42 – 0.13t exp(2.39-0.00304t) 0.12 -446.35 0.09 74.91 125.6 1.68 

1-hr GEVt-0 19.06 6.92 0.14 -511.32 - 44.78 110.3 2.46 

 GEVt-I 20.5-0.042t 6.75 0.21 -511.94 2.26 57.91 95.6 1.65 
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 GEVt-II 25.2-0.18t exp(2.68-0.0194t) 0.052 -494.92 206.09 40.8 116.9 2.87 

2-hr GEVt-0 11.93 4.57 0.046 -501.85 - 26.04 56.4 2.17 

 GEVt-I 13.29-0.044t 4.49 0.093 -496.55 1.32 30.05 47.1 1.57 

 GEVt-II 12.60-0.029t exp(1.42+0.00196t) 0.20 -462.71 1.27 37.68 54.6 1.45 

6-hr GEVt-0 5.196 1.47 0.082 -498.12 - 9.79 19.9 2.03 

 GEVt-I 5.80-0.018t 1.35 0.058 -501.40 0.05 10.48 14.5 1.38 

 GEVt-II 5.83-0.018t exp(0.32-0.0012t) 0.099 -499.38 0.02 10.14 19.2 1.89 

12-hr GEVt-0 3.09 0.80 -0.0013 -515.05 - 5.35 10.1 1.89 

 GEVt-I 3.34-0.008t 0.80 0.062 -511.60 0.13 6.32 8.7 1.38 

 GEVt-II 3.49-0.011t exp(-0.22-0.002t) -0.026 -500.35 0.05 5.72 7.5 1.30 

24-hr GEVt-0 1.72 0.63 -0.051 -473.40 - 3.14 6.3 2.01 

 GEVt-I 1.98-0.008t 0.61 -0.054 -450.07 0.17 3.57 5.0 1.41 

 GEVt-II 2.036-0.008t exp(-0.45-0.0007t) -0.103 -435.8 0.12 3.44 4.9 1.44 
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Figure 1. (a) Selected urbanized sites in Southern Ontario. The Southern Ontario (41° - 44°N, 84° - 76°W) is the southernmost region 

of Canada and is situated on a southwest-northeast transect, bounded by lakes Huron, Erie, and Ontario. The nine locations on the 5 

map are (from southwest to northeast corner): Windsor Airport, London International Airport, Stratford Wastewater Treatment Plant 

(WWTP), Fergus Shand Dam, Hamilton Airport, Toronto  International Airport, Oshawa Water Pollution Control Plant (WPCP), 

Trenton Airport, and Kingston Pumping Station. Topography map indicates the maximum slope of 670 m above mean sea level. (b) 

The population map shows six the sites: Windsor Airport, London  International Airport, Hamilton Airport, Toronto International 

Airport, Oshawa WPCP, and Kingston P. Station to be located either in or the vicinity of densely populated urbanized area. The 10 

remaining three sites are located in the moderately populated area. The short-duration AMP rainfall records in all locations vary 

between the minimum of 46 and maximum of 66 years. 
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Figure 2. Schematics of the process flow (Blue - input step, orange - process step, and green – decision steps). All three tests – Mann-

Kendall, Pettitt’s and Mann-Whitney, check for shifts in the mean. While Mann-Kendall tests for monotonic trends, the other two 

tests, Pettitt’s and Mann-Whitney check for change point or regime shift in the time series. 5 
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Figure 3. Spatial distribution of trends, change points and nonstationarities in hourly and sub-hourly rainfall extremes of several 

durations in nine urbanized locations, Southern Ontario (a – g). The population estimates in and the vicinity of urbanized sites varies 

between 5 Million and 19,000 with highest in Toronto Metropolitan Area and the lowest in Fergus Shand dam area. The up and down 

triangles in white indicate (statistically insignificant) up and downward shifts; the up and down triangles in cyan and orange indicate 5 

shifts with change points only; the up and down triangles in the dark blue and red show presence of (statistically significant) trends 

including change point(s). Sites with significant nonstationarity are marked with an ‘x’ sign. The trends in short-duration AMP 

extremes are detected using nonparametric Mann-Kendall trend test with correction for ties. The change point in precipitation extremes 

are identified either as a shift in the mean or the variance in AMP time series. We apply nonparametric Pettit (Pettitt, 1979) and Mann-
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Whitney (Ross et al., 2011) tests to identify change point in the mean and Mood’s test (Ross et al., 2011) to detect change point in the 

variance respectively (See section 2 for details). All tests are performed at 5 and 10% significance levels, i.e., p-value < 0.10.  
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Figure 4.  DSI estimates of the median (horizontal line within the box plot) and 95% credible intervals for 100-year return periods of 

stationary versus nonstationary models Uncertainty in DSI for 100-year return periods for stationary (blue) versus 

nonstationary (red) models with durations ranging between 15- min and 24-hr foracross nine sites (a - i): Toronto International 

Airport, Hamilton Airport, Oshawa WPCP, Windsor Airport, Kingston P. station, London International Airport, Trenton 5 

Airport, Stratford WWTP, and Fergus Shand Dam). The boxplots indicate the uncertainty in estimated DSI fromusing 

Bayesian inference, whereas the DSI obtained from maximum likelihood approach is shown as a black dot in the stationary 

simulation.   
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Figure 5. Percentage changes (in top panel) and Z-statistics (bottom panel) of at-site T-year event estimates for T = 2-year to T = 100-

year return periods (a – d) with durations between 15-min and 24-hr in nine urbanized locations, Southern Ontario. The Z-statistic 

represents statistical significance of differences in DSI obtained from the best selected nonstationary versus the stationary model. The 

Z-statistics is statistically significant when |Z| > 1.96 and |Z| > 1.64 at 5 and 10% significance levels. The shades in blue and red denote 5 

decrease and increase in Z-statistics with the strength of shading represents the magnitude of the test statistics. The cyan shading 

represents the sitedurations with significant autocorrelation, which wes are excluded from the analysis.   
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Figure 6. Central tendency (median, b) and the bounds (5 and 95% rangecredible interval, a and c) of the updated nonstationary versus EC-

generated T = 2-and 10-year event estimates for DSI at selected return periods with durations between 15-min and 24-hr. The minimum, median 

and maximum T-year event estimates of nonstationary models are obtained from time-variant GEV parameter(s) by computing the 5th, 50th and 95th 

percentiles of DE-MC sampled parameters. The DSI and associated 95% confidence limits of EC-generated IDF is obtained from the national 5 

archive of Engineering Climate Datasets maintained by the Environment Canada (http://climate.weather.gc.ca/). The shades in blue and red denote 
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decrease and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-generated DSI. with a 

deeper shade indicates an increase in the ratio. The cyan shading indicates the site with significant autocorrelation. 
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Figure 7. Central tendency (median, b) and the bounds (95% credible interval, a and c) of the updated nonstationary versus EC-generated T = 50-and 5 

100-year event estimates for DSI at selected return periods with durations between 15-min and 24-hr. The DSI and associated 95% confidence limits 

of EC-generated IDF is obtained from the national archive of Engineering Climate Datasets (http://climate.weather.gc.ca/). The shades in blue and 

red denote decrease and increase in DSI. The strength of shading represents the magnitude of the ratio between updated versus EC-generated DSI.
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Figure 78. Estimated nonstationary versus EC-generated IDFs for return periods T = 2, 5, 10, 25, 50 and 100-year return periods for 

the selected urbanized locations in Southern Ontario, Canada. The updated and EC IDFs are shown using solid and dotted lines 

respectively. The nonstationary IDFs are shown using solid lines, while EC-generated IDFs are shown using dotted lines. 5 
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