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Evaluation of multiple forcing data sets for precipitation and shortwave radiation over mainland China 

by Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Chengwei Li, Menglei Han, Yishan Li 

 

We would like to thank the editor for your comments and suggestions, which improve the quality of 

our manuscript substantially. In this response, we first summarize major revisions, and then present the 

point-by-point response to comments of the individual referees. 

 

1 Major revisions 

1. According to the referees, independent data is necessary to do an objective evaluation. By following 

their comments and editor’s suggestion, we obtained an independent precipitation data set observed 

by a rain gauge network operated by the Ministry of Water Resources (MWR), and then MWR data 

was used to evaluate the precipitation data from CN05.1, CMFD, CLDAS and GLDAS. The results 

of this independent evaluation were shown in the section4.3.  

2. The CN05.1 precipitation data was treated as a forcing data set too. When we compared CN05.1 

against MWR precipitation data, it was found that the CN05.1 differs obviously from the independent 

precipitation observations. Therefore, it is no longer used as reference data, but treaded as a forcing 

data generated by interpolating CMA station observations. 

3. A new precipitation version of CMFD was used to replace to old one. Due to CMFD has updated their 

precipitation data recently, we made a new analysis of the new version. And in order to analyze deeply 

the performance of CMFD, we invited it producer, Dr. Jie He, as a co-author. 

4. We added a part of discussion in the manuscript (section 6). According to the comments from 

referee#1, superficial analysis is not enough. As a result, we added some discussions on why the 

forcing data sets have such performance. 

5. We removed a metric named TSD which represent the temporal standard deviations, because it is 

highly correlated with the temporal coefficient variation (TCV). In order to avoid redundancy, we 

only remained TCV in current version. 

 

 

 

  



2 Point-by Point response 

2.1 Response to editor 

Comment: 

1) The submission evaluated three datasets including GLDAS, CLDAS, CMFD over China. Such 

evaluations would be useful for the users to select proper dataset if deep insights can be obtained. 

Although a lot of work has been done, there are several major concerns raised in the reviewing process, 

of which the most serious one is the independent dataset from the three dataset. As far as I know, 

Hydrological Bureau of Ministry of Water Resources maintains a high density of rain gauge network. I 

suggest authors to use this independent dataset for the evaluation and submit a substantially revised 

manuscript.  

 Response: 

 Thanks for your advice to use the independent precipitation observation data provided by the 

Ministry of Water Resources (MWR). We obtained MWR precipitation data in 2014 observed by a rain 

gauge network located in the middle and lower reaches of the Yangtze River, where four forcing data 

show obvious differences. We added an introduction of the rain gauge network in Section 2.1.1, and also 

included the basic information of MWR data into Table 1. Moreover, we illustrated the location of this 

MWR network in Figure 1.  

With this independent precipitation data set, CN05.1, CMFD, CLDAS and GLDAS were evaluated 

at annual and monthly scale. The evaluation method is the same as that used for shortwave radiation. 

CMFD and CLDAS were resampled to 0.25°×0.25° by the bilinear resampling method and the pixel-

point method is applied when they are compared against MWR gauge observations.  

The results was shown in section 4.3, and we can see that “When compared the spatial distribution 

of four forcing data sets, it is clear that there are obvious differences among them in the middle and lower 

reaches of the Yangtze River (red polygon shown in Fig. 3). Therefore, we use the independent MWR 

observation data to further evaluate forcing data in this region. As shown in Fig. 6, the annual mean 

precipitation data of CMFD and CLDAS are more consistent with the MWR observation. However, the 

performance of GLDAS and CN05.1 are not as good as others. Their RMSE are about twice bigger than 

that of CLDAS. Also, it is obvious that the dispersion degree of GLDAS is the biggest compared with 

other data sets which indicate that GLDAS changes greatly in spatial. From the pattern of Fig. 6 (a) and 

the high bias of CN05.1, we can conclude that the annual mean precipitation in Hubei, Hunan and Jiangxi 

province are heavily overestimated by CN05.1. The evaluation results of monthly precipitation are listed 



in Table 3. According to the metrics, CLDAS performs best in most of the months of 2014. Fig. 7 also 

confirms that CLDAS performs well because the orange points representing CLDAS are concentrated 

together, located in a region where the correlation coefficient is between 0.6 and 0.9, the standardized 

deviation is close to 1 and the unbiased RMSE is low. This reflects that the quality of monthly 

precipitation of CLDAS is stable and reliable. However, the performance of other data sets in the monthly 

scale varies greatly, especially for CMFD and CN05.1.” 



Table 1.  Basic information of the data sets used in this paper. 

Name Type Analyzed period Available period Variables 

Spatial 

resolution 

Number of 

sites 

CN05.1 forcing data set 2008-2014 1961-2014 precipitation 0.25°  

CMFD forcing data set 2008-2014 1979-2016 precipitation; shortwave radiation 0.1°  

CLDAS forcing data set 2008-2014 2008-2016 precipitation; shortwave radiation 0.0625°  

GLDAS forcing data set 2008-2014 2000-2016 precipitation; shortwave radiation 0.25°  

MWR Observation data 2014 2014 precipitation  5490 

CMA observation data 2008-2010 Different at each site shortwave radiation  625 

CERN observation data 2008-2014 Different at each site shortwave radiation  35 

HiWATER observation data Different at each site Different at each site shortwave radiation  8 

TPE Database observation data Different at each site Different at each site shortwave radiation   2 



Table 3. Statistical metrics of monthly precipitation in 2014 between forcing data set and MWR rain gauge observations. 

Time 

Bias   RMSE 

CN05.1 CMFD CLDAS GLDAS   CN05.1 CMFD CLDAS GLDAS 

Jan. 23.62  2.37  -1.85  -0.48   29.53  19.70  8.90  8.26  

Feb. 48.04  31.53  4.74  20.43   59.13  59.87  26.19  37.15  

Mar. 61.37  14.81  -9.26  12.50   77.02  37.54  36.43  59.47  

Apr. 62.83  17.93  -8.47  12.39   79.06  47.63  35.86  67.15  

May 66.23  24.72  13.32  39.51   93.05  66.51  52.63  105.35  

June 40.11  23.59  0.49  19.48   74.53  67.77  50.06  87.73  

July 18.68  7.38  -0.24  1.04   67.86  78.26  59.45  92.06  

Aug. 22.37  -53.29  3.57  11.01   62.51  78.93  47.46  74.30  

Sept. 4.58  -21.18  -8.57  1.74   36.81  45.66  32.35  44.09  

Oct. 26.07  -17.59  5.56  8.72   37.11  38.95  27.76  32.35  

Nov. 26.73  -21.04  -2.91  14.36   37.71  34.76  25.95  40.79  

Dec. 8.99  -5.43  -4.33  -1.65    14.90  16.97  9.40  10.84  

Annual 421.38 273.68 234.39 427.71  403.16 3.80 -7.93 139.06 



 

Figure 1: Locations of the rain gauges operated by the Ministry of Water Resources of China, used as an independent precipitation 

data source in this study. 



 

Figure 6: Comparison of the precipitation from (a) CN05.1, (b) CMFD, (c) CLDAS, and (d) GLDAS against MWR rain gauge 

observation. The color bar on the right indicates the number of MWR rain gauges in one 0.25°×0.25° grid. 



 

Figure 7: Taylor diagram for the monthly/annual precipitation of CN05.1 (black), CMFD (blue), CLDAS (orange), and GLDAS 

(green).  

  



2.2 Response to referee#1 

1) Comment: 

While the evaluation for radiation has some novelty given that the authors use several observation 

networks (CERN, HiWater and TPE) that are independent from the CMA data, the evaluation for 

precipitation is less credible. As far as I know, CLDAS used over 30,000 ground observation merged with 

CMORPH for precipitation, while the reference data used in this study (i.e., CN05.1) was only 

interpolated from 2000 stations. So, which one do you believe that is more close to the reality? I guess 

most people would buy CLDAS. In addition, CMFD was also basically interpolated from 740 stations, 

so it is not surprise that CMFD might be closer to CN05.1 than the CLDAS. So the fundamental issue is: 

which one is the truth for precipitation? 

Response: 

We are very appreciate for your valuable comments about the reference data of precipitation. 

Accordingly, we have obtained an independent precipitation data set observed by a rain gauge network 

operated by the Ministry of Water Resource (MWR) of China. This MWR rainfall observations were used 

to evaluate the four forcing data sets. We added an introduction of the MWR rain gauge network in 

Section 2.1.1, and also included the basic information of MWR data into Table 1. Moreover, we illustrated 

the location of this MWR network in Figure 1. The evaluation results do show that CLDAS which merged 

more station data performs better than the other forcing data sets. For more details, please check section 

4.3 and also the response to editor 

2) Comment: 

The second major issue is the resampling. As compared with GLDAS, the advantage of CLDAS and 

CMFD is their high resolution. So the evaluation should be conducted across scales, i.e., they should be 

verified against station observations besides at 0.25 degree resolution. Even for the gridded comparison 

conducted in the manuscript, the Nearest Neighbor resampling method is not suitable. The Nearest 

Neighbor is useful for comparing gridded data with station data, while for the comparison between two 

gridded datasets, bilinear interpolation or the inverse quadratic distance weighting method would be more 

appropriate. 

Response: 

Thanks for your advice! As you suggested, we adopted a bilinear interpolation method to rescale 

CLDAS and CMFD to the resolution of GLDAS, i.e., 0.25 degree, and then re-do the comparison and 

evaluation of forcing data sets. 



As for shortwave radiation, we used the bilinear interpolation resample method (mentioned in L20, 

P6) when compared CLDAS and GLDAS with CMFD. “The difference among the three forcing data sets 

is shown in Fig. 11. It can be found that CLDAS and GLDAS have a much higher shortwave radiation 

than CMFD in most regions. More than 95% of the area over mainland China shows a positive difference 

for CLDAS when compared with CMFD, especially in some areas of Xinjiang province and the area 

24°N-44°N, 105°E-120°E. When compared with CMFD, GLDAS is also significantly higher except over 

the Tibetan Plateau. In terms of the statistical metrics shown in Table 4, the absolute value of average 

difference, RMSE, and the relative bias between CMFD and CLDAS are smaller and the correlation 

coefficient of the three forcing data sets are all around 0.9. Overall, CLDAS and GLDAS are similar, both 

being higher than CMFD in most regions of mainland China.” 

  



 

Figure 11: Shortwave radiation difference among three forcing data sets and corresponding histogram from CMFD and CLDAS (a 

and c) and GLDAS and CMFD (b and d). 

Due to the difficulty in obtaining independent observation data over whole mainland China, we 

deleted the gridded comparison of precipitation. Instead, we verified forcing data sets against independent 

MWR rain gauge observations and the results were shown in section 4.3. “As shown in Fig. 6, the annual 

mean precipitation data of CMFD and CLDAS are more consistent with the MWR observation. However, 

the performance of GLDAS and CN05.1 are not as good as others. Their RMSE are about twice bigger 

than that of CLDAS. Also, it is obvious that the dispersion degree of GLDAS is the biggest compared 

with other data sets which indicate that GLDAS changes greatly in spatial. From the pattern of Fig. 6 (a) 

and the high bias of CN05.1, we can conclude that the annual mean precipitation in Hubei, Hunan and 

Jiangxi province are heavily overestimated by CN05.1. The evaluation results of monthly precipitation 

are listed in Table 3. According to the metrics, CLDAS performs best in most of the months of 2014. Fig. 

7 also confirms that CLDAS performs well because the orange points representing CLDAS are 

concentrated together, located in a region where the correlation coefficient is between 0.6 and 0.9, the 

standardized deviation is close to 1 and the unbiased RMSE is low. This reflects that the quality of 



monthly precipitation of CLDAS is stable and reliable. However, the performance of other data sets in 

the monthly scale varies greatly, especially for CMFD and CN05.1.” 

  



Table 3. Statistical metrics of monthly precipitation in 2014 between forcing data set and MWR rain gauge observations. 

Time 

Bias   RMSE 

CN05.1 CMFD CLDAS GLDAS   CN05.1 CMFD CLDAS GLDAS 

Jan. 23.62  2.37  -1.85  -0.48   29.53  19.70  8.90  8.26  

Feb. 48.04  31.53  4.74  20.43   59.13  59.87  26.19  37.15  

Mar. 61.37  14.81  -9.26  12.50   77.02  37.54  36.43  59.47  

Apr. 62.83  17.93  -8.47  12.39   79.06  47.63  35.86  67.15  

May 66.23  24.72  13.32  39.51   93.05  66.51  52.63  105.35  

June 40.11  23.59  0.49  19.48   74.53  67.77  50.06  87.73  

July 18.68  7.38  -0.24  1.04   67.86  78.26  59.45  92.06  

Aug. 22.37  -53.29  3.57  11.01   62.51  78.93  47.46  74.30  

Sept. 4.58  -21.18  -8.57  1.74   36.81  45.66  32.35  44.09  

Oct. 26.07  -17.59  5.56  8.72   37.11  38.95  27.76  32.35  

Nov. 26.73  -21.04  -2.91  14.36   37.71  34.76  25.95  40.79  

Dec. 8.99  -5.43  -4.33  -1.65    14.90  16.97  9.40  10.84  

Annual 421.38 273.68 234.39 427.71  403.16 3.80 -7.93 139.06 



 

Figure 6: Comparison of the precipitation from (a) CN05.1, (b) CMFD, (c) CLDAS, and (d) GLDAS against MWR rain gauge 

observation. The color bar on the right indicates the number of MWR rain gauges in one 0.25°×0.25° grid. 



 

Figure 7: Taylor diagram for the monthly/annual precipitation of CN05.1 (black), CMFD (blue), CLDAS (orange), and GLDAS 

(green).  

  



3) Comment: 

The third major issue is the superficial analysis. An arbitrary conclusion that “In summary, 

precipitation estimates of CMFD and GLDAS are more credible and CMFD outperforms CLDAS and 

GLDAS in shortwave radiation estimation over mainland China” is definitely not enough for a HESS 

paper. The manuscript needs to answer why one dataset is better than another to provide more insights 

for the data production community. Alternatively, it should provide some in-depth comparison, for 

example, long-term trends, inter-annual variability and extremes. The authors had a good start to show 

the temporal variations, but the new findings, if there are, should be concluded in the abstract. 

Response: 

Thanks for your comment which helps us to improve the manuscript dramatically. We added a part 

of discussion and analysis the reason why the forcing data sets have such performance. In order to analyze 

deeply the performance of forcing data, we invited Dr. Jie He, main producer of CMFD, as a co-author 

to contribute his experiences and understandings in the revision. 

“Based on the preceding analysis, we can see that though these forcing data sets have some common 

characteristics and can reflect the features of precipitation and shortwave radiation over mainland China, 

they have many difference due to different resolution, the various data they merged and the diverse 

algorithm they used. For precipitation, the spatial distribution of forcing data sets were compared and 

their quality in the middle and lower reaches of the Yangtze River were evaluated.  CLDAS performs 

better both in annual and monthly scale, this is not surprise because CLDAS merges data at more than 

30000 stations which can improve the data quality greatly. The precipitation of CMFD perform well at 

annual mean but not so at monthly scale, and its heavily decrease of precipitation after August 2014 is 

abnormal. As far as we concern, the CMFD used less precipitation station data than CN05.1 and CLDAS, 

which influences its quality in 2014. GLDAS as a global data, the precision in mainland China is limited 

due to the observation data of China merged in it may be not enough. Though both CMFD and GLDAS 

merged remote sensing data, they are not similar because the station data they used are different. As for 

CN05.1 which was made by purely station data and mathematical method, it is reasonable that it performs 

worse than other forcing data sets in station-sparse regions. 

Comparing the forcing data sets and observation data, it was found that the shortwave radiation of 

CMFD perform better than the other two. The reason is that there are only about 100 radiation stations 

that were sparsely deployed in China since 1961 and the radiation observation data may be unusable 

because it often include erroneous values and missing data (Shi et al. 2008), therefore, the radiation 

observation data merged in CLDAS and GLDAS are limited. However, for CMFD, it merged the 50-year 



data set of daily surface solar radiation at 716 CMA stations which was aforementioned in section 2.1.2. 

Though this data set is estimated by model, it is widely validated and its performance is pretty well. As a 

result, shortwave radiation of CMFD is closer to observation data”. 

Also, we modified the abstract which consists the results of temporal variations. “The results 

demonstrate that all the four forcing data sets can capture the spatial distribution characteristics of 

precipitation over mainland China while the annual mean precipitation of CLDAS is smaller than others 

in most area. The time series of precipitation anomaly from the forcing data sets also match well with 

each other expect CMFD after August 2014. All forcing data sets show the temporal variations in dry 

region are greater than wet region. Compared with the independent precipitation observation data 

provided by the Ministry of Water Resources (MWR) in the middle and lower reaches of the Yangtze 

River, CLDAS performs best and the annual mean precipitation of CMFD also match well with the MWR 

station data. However, GLDAS shows a large dispersion degree and CN05.1 obviously overestimates the 

precipitation with the highest bias in eight months. As for shortwave radiation, CMFD is consistent with 

observation data, while CLDAS and GLDAS heavily overestimate shortwave radiation when compared 

against station data. Spatially, the three forcing data sets have some common distribution features. 

Compared with CMFD, CLDAS and GLDAS have higher radiation values in most areas of mainland 

China. However, the metrics we calculated indicate that CLDAS performs better than GLDAS. For 

temporal variations, CLDAS is closer to CMFD than GLDAS, while their amplitude of anomalies are 

diverse. Also, the temporal variation difference of shortwave radiation from the three forcing data sets 

mainly exists the south of 34°N.” 

4) Comment: 

As the paper mainly focus on dataset evaluation, detailed introduction for different datasets should 

be provided to help distinguish them. For instance, CMFD uses GLDAS precipitation to replace TRMM 

3B42 north to the 40°N which makes CMFD has the same background with GLDAS in that region. And, 

GLDAS also uses TRMM 3B42. Will this similarity influence the result? 

Response: 

Many thanks for your comment and we revised the description of data sets used in this manuscript 

in section 2. “The CMFD forcing data set was developed by the Institute of Tibetan Plateau Research, 

Chinese Academy of Sciences (He and Yang, 2011). This product covers the region of 70.0°E -140.0°E 

and 15.0°N -55.0°N, and includes precipitation, downward  shortwave radiation, downward longwave 

radiation, 2-meter air temperature, specific humidity, wind speed and surface pressure. Tropical Rainfall 

Measuring Mission (TRMM) 3B42 precipitation data is used as the background field of precipitation data. 



However, TRMM has no valid data in the north of 40°N in most of the time. Therefore, GLDAS is used 

in these regions to solve this problem. Gauge observation data from 740 stations of CMA are used to 

correct systematic deviations in background data. The Global Energy and Water cycle Experiment - 

Surface Radiation Budget (GEWEX-SRB) radiation data provide the background field for the shortwave 

radiation data of CMFD. Notably, GLDAS also used to replace GEWEX-SRB in its unavailable time and 

region. Shortwave radiation data estimated with CMA station data which has been mentioned in 2.1.2 is 

also used. Other basic information of the data is listed in Table 1.The 0.25°×0.25° monthly GLDAS-1 

forcing data from the NOAH model (it is abbreviated as GLDAS in this paper) is provided by the US 

National Aeronautics and Space Administration (NASA). From 2001 to the present, this version makes 

use of National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Merged 

Analysis of Precipitation (CMAP) fields, which merged satellite data (IR and microwave) and gauge data. 

CMAP fields are spatially and temporally disaggregated by Global Data Assimilation System (GDAS) 

modeled precipitation fields. A procedure and cloud and snow products from the Air Force Weather 

Agency (AFWA) Agricultural Meteorology modeling system (AGRMET) are used to calculate 

downward shortwave radiation fluxes (Rui and Beaudoing, 2017; Rodell et al. 2004).” Though both 

CMFD and GLDAS use TRMM 3B42 when they were product, the station data they used are not the 

same and their precipitation performance are different. 

5) Comment: 

P3L29, CLDAS-v2.0 covers the area of 60-140E and 0-65N. So I believe the manuscript used 

CLDAS-v1.0. Anyway, a more detailed description of CLDAS is needed. 

Response: 

We feel very sorry that we gave a wrong information about CLDAS in the last manuscript. We 

confirmed that the version we used in the manuscript is CLDAS-v2.0 whose spatial coverage is 60°E -

160°E, 0°N -65°N (L23, P5). In addition, we gave a more detailed description of CLDAS as you advised. 

“CLDAS-V2.0 was developed by CMA (Shi et al. 2014) and its spatial coverage is 60°E -160°E, 0°N -

65°N. This is hourly gridded data with a spatial resolution of 0.0625°×0.0625°. CLDAS includes land 

surface forcing data, such as precipitation, shortwave radiation, temperature, specific humidity, wind 

speed and surface pressure, as well as soil status variables. It is a relatively new product, with current 

temporal coverage from 2008 to 2017. Precipitation is combined and interpolated from two products, one 

is the Climate Prediction Center Morphing Technique (CMORPH) product and the other is an hourly 

merged precipitation product (V1.0) made by CMA which based on the observation data from automatic 

weather stations in China and CMORPH products through probability density function (PDF) and optimal 



interpolation (OI) merging algorithm (Shen et al. 2014). Shortwave radiation is retrieved from the FY-

2C/E series of geostationary meteorological satellites. The Discrete Ordinates Radiative Transfer Program 

for a Multi-Layered Plane-Parallel Medium (DISORT) method is used in the retrievals for radiation 

transfer calculations (Shi et al. 2011).” 

6) Comment: 

P5L13, Xin et al. 2013 should be Li et al. 2013. 

Response: 

Thanks for your comment, we corrected the mistake in L26, P4. 

7) Comment: 

In terms of spatial comparison, are there any seasonal differences besides the annual precipitation? 

How about some daily statistics (e.g., rainfall frequency, intensity, dry spells)? 

Response: 

We fell appreciate for your advice! However, we only have the independent precipitation observation 

data of the year 2014. Generally, winter in China covers from December to February in the following 

year, which mean that the CMA observation data in winter is unavailable. Besides, the CN05.1 and 

GLDAS used in this study is monthly scale data, some daily statistics cannot be provided. In order to 

make up these problem, we added the evaluation in monthly scale and the results we shown in Table 3 

and section 4.3. “The evaluation results of monthly scale are listed in Table 3. According to the metrics, 

CLDAS performs best in most of the months of 2014.” 

  



Table 3. Statistical metrics of monthly precipitation in 2014 between forcing data set and MWR rain gauge observations. 

 

  

Time 

Bias   RMSE 

CN05.1 CMFD CLDAS GLDAS   CN05.1 CMFD CLDAS GLDAS 

Jan. 23.62  2.37  -1.85  -0.48   29.53  19.70  8.90  8.26  

Feb. 48.04  31.53  4.74  20.43   59.13  59.87  26.19  37.15  

Mar. 61.37  14.81  -9.26  12.50   77.02  37.54  36.43  59.47  

Apr. 62.83  17.93  -8.47  12.39   79.06  47.63  35.86  67.15  

May 66.23  24.72  13.32  39.51   93.05  66.51  52.63  105.35  

June 40.11  23.59  0.49  19.48   74.53  67.77  50.06  87.73  

July 18.68  7.38  -0.24  1.04   67.86  78.26  59.45  92.06  

Aug. 22.37  -53.29  3.57  11.01   62.51  78.93  47.46  74.30  

Sept. 4.58  -21.18  -8.57  1.74   36.81  45.66  32.35  44.09  

Oct. 26.07  -17.59  5.56  8.72   37.11  38.95  27.76  32.35  

Nov. 26.73  -21.04  -2.91  14.36   37.71  34.76  25.95  40.79  

Dec. 8.99  -5.43  -4.33  -1.65    14.90  16.97  9.40  10.84  

Annual 421.38 273.68 234.39 427.71  403.16 3.80 -7.93 139.06 



8) Comment: 

The radiation results are more convincing, and the different sources for three datasets make the 

comparison more meaningful. But some discussions can be given on why CMFD outperforms. 

Response: 

We gave an explanation in section 6. “The reason is that there are only about 100 radiation stations 

that were sparsely deployed in China since 1961 and the radiation observation data may be unusable 

because it often include erroneous values and missing data (Shi et al. 2008), therefore, the radiation 

observation data merged in CLDAS and GLDAS are limited. However, for CMFD, it merged the 50-year 

data set of daily surface solar radiation at 716 CMA stations which was aforementioned in section 2.1.2. 

Though this data set is estimated by model, it is widely validated and its performance is pretty well. As a 

result, shortwave radiation of CMFD is closer to observation data.” 

 

  



2.3 Response to referee#2 

1) Comment: 

The data used to evaluate the GLDAS, CLDAS and CMFD is not independent at all. This may lead 

to some mistake results. Actually, if you want to do an objective evaluation, independent data source is 

absolutely essential. 

Response: 

Thanks for your valuable comment! By following your comments and editor’s suggestion, we have 

obtained an independent precipitation data set observed by a rain gauge network operated by the Ministry 

of Water Resource (MWR) of China. We used this independent MWR precipitation observation data to 

evaluate forcing data sets and the new results was shown in section 4.3, “the annual mean precipitation 

data of CMFD and CLDAS are more consistent with the MWR observation. However, the performance 

of GLDAS and CN05.1 are not as good as others. Their RMSE are about twice bigger than that of CLDAS. 

Also, it is obvious that the dispersion degree of GLDAS is the biggest compared with other data sets 

which indicate that GLDAS changes greatly in spatial. From the pattern of Fig. 6 (a) and the high bias of 

CN05.1, we can conclude that the annual mean precipitation in Hubei, Hunan and Jiangxi province are 

heavily overestimated by CN05.1. The evaluation results of monthly precipitation are listed in Table 3. 

According to the metrics, CLDAS performs best in most of the months of 2014. Fig. 7 also confirms that 

CLDAS performs well because the orange points representing CLDAS are concentrated together, located 

in a region where the correlation coefficient is between 0.6 and 0.9, the standardized deviation is close to 

1 and the unbiased RMSE is low. This reflects that the quality of monthly precipitation of CLDAS is 

stable and reliable. However, the performance of other data sets in the monthly scale varies greatly, 

especially for CMFD and CN05.1.” We gave a detailed explanation in the response to editor. 



Table 3. Statistical metrics of monthly precipitation in 2014 between forcing data set and MWR rain gauge observations. 

Time 

Bias   RMSE 

CN05.1 CMFD CLDAS GLDAS   CN05.1 CMFD CLDAS GLDAS 

Jan. 23.62  2.37  -1.85  -0.48   29.53  19.70  8.90  8.26  

Feb. 48.04  31.53  4.74  20.43   59.13  59.87  26.19  37.15  

Mar. 61.37  14.81  -9.26  12.50   77.02  37.54  36.43  59.47  

Apr. 62.83  17.93  -8.47  12.39   79.06  47.63  35.86  67.15  

May 66.23  24.72  13.32  39.51   93.05  66.51  52.63  105.35  

June 40.11  23.59  0.49  19.48   74.53  67.77  50.06  87.73  

July 18.68  7.38  -0.24  1.04   67.86  78.26  59.45  92.06  

Aug. 22.37  -53.29  3.57  11.01   62.51  78.93  47.46  74.30  

Sept. 4.58  -21.18  -8.57  1.74   36.81  45.66  32.35  44.09  

Oct. 26.07  -17.59  5.56  8.72   37.11  38.95  27.76  32.35  

Nov. 26.73  -21.04  -2.91  14.36   37.71  34.76  25.95  40.79  

Dec. 8.99  -5.43  -4.33  -1.65    14.90  16.97  9.40  10.84  

Annual 421.38 273.68 234.39 427.71  403.16 3.80 -7.93 139.06 



 

Figure 6: Comparison of the precipitation from (a) CN05.1, (b) CMFD, (c) CLDAS, and (d) GLDAS against MWR rain gauge 

observation. The color bar on the right indicates the number of MWR rain gauges in one 0.25°×0.25° grid. 



 

Figure 7: Taylor diagram for the monthly/annual precipitation of CN05.1 (black), CMFD (blue), CLDAS (orange), and GLDAS 

(green).  

2) Comment: 

The authors are not familiar with the techniques used to develop the GLDAS, CLDAS and CMFD. 

It can be seed from the wrong references cited by the authors. The author should correct these mistake in 

the future. 

Response: 

We need apologize for the wrong references in our manuscript. We modified the instruction of data 

sets we used and corrected the references in section 2. Moreover, in order to analyze the performance of 

CMFD deeply, we invited another author of CMFD (Kun Yang is one author of it), Dr. Jie He, as a co-

author to discuss the techniques used in developing forcing data. 

“The CMFD forcing data set was developed by the Institute of Tibetan Plateau Research, Chinese 

Academy of Sciences (He and Yang, 2011). This product covers the region of 70.0°E -140.0°E and 

15.0°N -55.0°N, and includes precipitation, downward  shortwave radiation, downward longwave 

radiation, 2-meter air temperature, specific humidity, wind speed and surface pressure. Tropical Rainfall 



Measuring Mission (TRMM) 3B42 precipitation data is used as the background field of precipitation data. 

However, TRMM has no valid data in the north of 40°N in most of the time. Therefore, GLDAS is used 

in these regions to solve this problem. Gauge observation data from 740 stations of CMA are used to 

correct systematic deviations in background data. The Global Energy and Water cycle Experiment - 

Surface Radiation Budget (GEWEX-SRB) radiation data provide the background field for the shortwave 

radiation data of CMFD. Notably, GLDAS also used to replace GEWEX-SRB in its unavailable time and 

region. Shortwave radiation data estimated with CMA station data which has been mentioned in 2.1.2 is 

also used. Other basic information of the data is listed in Table 1.  

CLDAS-V2.0 was developed by CMA (Shi et al. 2014) and its spatial coverage is 60°E -160°E, 0°N 

-65°N. This is hourly gridded data with a spatial resolution of 0.0625°×0.0625°. CLDAS includes land 

surface forcing data, such as precipitation, shortwave radiation, temperature, specific humidity, wind 

speed and surface pressure, as well as soil status variables. It is a relatively new product, with current 

temporal coverage from 2008 to 2017. Precipitation is combined and interpolated from two products, one 

is the Climate Prediction Center Morphing Technique (CMORPH) product and the other is an hourly 

merged precipitation product (V1.0) made by CMA which based on the observation data from automatic 

weather stations in China and CMORPH products through probability density function (PDF) and optimal 

interpolation (OI) merging algorithm (Shen et al. 2014). Shortwave radiation is retrieved from the FY-

2C/E series of geostationary meteorological satellites. The Discrete Ordinates Radiative Transfer Program 

for a Multi-Layered Plane-Parallel Medium (DISORT) method is used in the retrievals for radiation 

transfer calculations (Shi et al. 2011). 

The 0.25°×0.25° monthly GLDAS-1 forcing data from the NOAH model is provided by the US 

National Aeronautics and Space Administration (NASA). From 2001 to the present, this version makes 

use of National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Merged 

Analysis of Precipitation (CMAP) fields, which merged satellite data (IR and microwave) and gauge data. 

CMAP fields are spatially and temporally disaggregated by Global Data Assimilation System (GDAS) 

modeled precipitation fields. A procedure and cloud and snow products from the Air Force Weather 

Agency (AFWA) Agricultural Meteorology modeling system (AGRMET) are used to calculate 

downward shortwave radiation fluxes (Rui and Beaudoing, 2017; Rodell et al. 2004.).” 

3) Comment: 

The title "Evaluation and Comparison……". Some times, the Evaluation is included the Comparison. 

Response: 

Thank you for the advice! We changed the title as “Evaluation of Multiple Forcing Data Sets for 



Precipitation and Shortwave Radiation over Mainland China”. 

4) Comment: 

It is hard to determine which dataset is better than others if only judging from some traditional 

statistical metrics. 

Response: 

Very appreciate! We added the Taylor diagram to further describe the degree of correspondence 

between forcing data and observation data. It shows the ratio of standardized deviations, correlation 

coefficient and unbiased RMSE between forcing data and observation data, and these statistics can 

quantify how closely the forcing data resembles the observation. As for precipitation, “Fig. 7 also 

confirms that CLDAS performs well because the orange points representing CLDAS are concentrated 

together, located in a region where the correlation coefficient is between 0.6 and 0.9, the standardized 

deviation is close to 1 and the unbiased RMSE is low. This reflects that the quality of monthly 

precipitation of CLDAS is stable and reliable. However, the performance of other data sets in the monthly 

scale varies greatly, especially for CMFD and CN05.1.” As for shortwave radiation, compared with CMA 

station data, “Fig. 9 show that the unbiased RMSE between CMFD and CMA stations is the smallest and 

the correlation coefficient is the highest, the standardized deviation ratio is the closest to 1. These metrics 

of CLDAS perform better than GLDAS which indicate that CLDAS is more resemble to the observation 

than GLDAS. ” Compared with CERN station data, “the metrics of CMFD shown in Fig. 9 perform the 

best which indicates that the estimation of CMFD for shortwave radiation is more precise than for CLDAS 

and GLDAS in these areas, and GLDAS is worse compared with CLDAS.” Compared with the eight 

observation stations in the Heihe River basin and two observation stations in the Tibetan Plateau, 

“CLDAS has the smallest unbiased RMSE and the closest standardized deviation compared to the 

observation. The correlation coefficient between GLDAS and observation is the highest followed by 

CMFD and CLDAS, while the RMSE and relative bias of CLDAS and GLDAS are about 2 and 10 times 

that of CMFD, respectively.” 

 

  



28 

 

 
Figure 7: Taylor diagram for the monthly/annual precipitation of CN05.1 (black), CMFD (blue), CLDAS (orange), and GLDAS 

(green).  
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Figure 9: Taylor diagram for the shortwave radiation of CMFD (blue), CLDAS (orange), and GLDAS (green). 
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3 List of all relevant changes made in the manuscript 

1) Title: Delete “comparerion”. 

2) P1, L17-32: Modified the abstract as the referee#1 advised. 

3) Section 2.1.1: Added an introduction of independent precipitation observation data. 

4) Section 2.2: Added some information about the forcing data sets and corrected the mistakes as the 5 

referee pointed. 

5) Section 3 (P6, L20): Changed the resample method and the results were shown in P9, L26-31. 

6) Section 3 (P6, L23-26): Added Taylor diagram and the results were shown in Fig. 7 and Fig. 9. 

7) Section 4.1 and 4.2: Evaluated the updated precipitation of CMFD and regard CN05.1 as other 

forcing data sets instead of the reference data. 10 

8) Section 4.3: The independent precipitation observation data were used to evaluate forcing data sets 

in annual and monthly scale. 

9) Section 6: Added the part of discussion to analyze why the forcing data sets have such performance. 
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Abstract. Precipitation and shortwave radiation play important roles in climatic, hydrological and biogeochemical cycles. 

Currently, several global and regional forcing data sets, such as Global Land Data Assimilation System (GLDAS), China 

Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) and China Meteorological Forcing Dataset 15 

(CMFD), can provide estimates of these two variables for China, while CN05.1, an interpolation product of CMA gauge 

observation, can provide high resolution precipitation for China. In this study, precipitation and shortwave radiation from 

CN05.1, CMFD, CLDAS and GLDAS were inter-compared with one another and against independent ground station 

observations during 2008-2014. The results demonstrate that all the four forcing data sets can capture the spatial distribution 

characteristics of precipitation over mainland China while the annual mean precipitation of CLDAS is smaller than others in 20 

most area. The time series of precipitation anomaly from the forcing data sets also match well with each other expect CMFD 

after August 2014. All forcing data sets show the temporal variations in dry region are greater than wet region. Compared with 

the independent precipitation observation data provided by the Ministry of Water Resources (MWR) in the middle and lower 

reaches of the Yangtze River, CLDAS performs best and the annual mean precipitation of CMFD also match well with the 

MWR station data. However, GLDAS shows a large dispersion degree and CN05.1 obviously overestimates the precipitation 25 

with the highest bias in eight months. As for shortwave radiation, CMFD is consistent with observation data, while CLDAS 

and GLDAS heavily overestimate shortwave radiation when compared against station data. Spatially, the three forcing data 

sets have some common distribution features. Compared with CMFD, CLDAS and GLDAS have higher radiation values in 

most areas of mainland China. However, the metrics we calculated indicate that CLDAS performs better than GLDAS. For 

temporal variations, CLDAS is closer to CMFD than GLDAS, while their amplitude of anomalies are diverse. Also, the 30 

temporal variation difference of shortwave radiation from the three forcing data sets mainly exists the south of 34°N. Findings 

from this study can provide guidance to communities regarding the performance of different forcing data over mainland China. 

 

1 Introduction 

Precipitation and shortwave radiation are the fundamental water and energy sources of land surface biological, physical and 35 

chemical processes (Zhao and Zhu 2015; Zhang et al. 2010). They can affect the moisture and heat exchange between the 
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atmosphere and the land surface (Pan et al. 2014; Tian et al. 2007; Fekete et al. 2004; Gottschalck et al. 2005). Also, these two 

variables are the basic meteorological forcing inputs for land process simulations such as crop simulation, hydrologic modeling, 

dryland expansion estimation and dust events analysis (Bart and Lettenmaier 2004; Tang et al. 2007, 2008; Huang et al. 2015; 

Kang et al. 2016). Therefore, accurate precipitation and shortwave radiation data are essential for studies of climate change 

and land surface processes. 5 

Although conventional measurement at stations can obtain the "true value" of the measured variable, it can only represent local 

scale information (Maurer 2002, Bogh et al. 2003), and is unable to depict the characteristics of spatial variation completely 

and continuously due to the limited number and location of stations (Duan et al 2012). In the late 1980s, data assimilation 

technology was proposed to reconstruct high resolution forcing data of historical climate (Xie et al. 2011, Zhao et al. 2010), 

and this brought unprecedented opportunities for researchers. These forcing data sets, which usually include precipitation, 10 

shortwave radiation, temperature, specific humidity, wind speed, surface pressure, and other meteorological data, are derived 

by assimilating numerical weather forecast information, ground observation data and remote sensing data together (Xie et al. 

2011, Zhao et al. 2010, Pan et al. 2010). There are many forcing data sets currently available, such as that from the National 

Centers for Environmental Prediction and the National Center for Atmospheric Research reanalysis (NCEP/NCAR, Kalnay et 

al. 1996; Kistler et al. 2001), Global Land Data Assimilation System (GLDAS, Rodell et al. 2004), European Center for 15 

Medium-range Weather Forecasts (ECMWF) reanalysis ERA-Interim (Dee et al. 2011), Japanese 55-year Reanalysis (JRA-

55, Kobayashi et al. 2015). In recent years, Chinese researchers have made great progress in developing forcing data. Two 

forcing data sets, namely China Meteorological Forcing Dataset (CMFD, released by the Institute of Tibetan Plateau Research, 

Chinese Academy of Sciences, He and Yang, 2011)and the China Meteorological Administration (CMA) Land Data 

Assimilation System (CLDAS, Shi et al. 2014), which cover China have been produced. Also, a data set named CN05.1 20 

(released by National climate center of CMA) which merely interpolating CMA gauge data was made (Wu and Gao 2013). 

These forcing data sets are widely used because of their high spatial resolution, long time span over large areas and convenience 

of obtaining and processing. For example, CMFD forcing data set has been used to simulate the permafrost and seasonally 

frozen ground conditions on the Tibetan Plateau (Gao and Wang, 2013), to analyze precipitation impacts on vegetation spring 

phenology (Shen et al. 2015), to model land surface water and energy cycles of a mesoscale watershed (Xue et al. 2013), and 25 

to assess the climate and human impacts on surface water resources in the middle reaches of the Yellow River (Hu et al. 2015). 

Additionally, CMFD and GLDAS forcing data sets have been used to improve land surface temperature modeling for dry land 

in China (Chen et al. 2011). GLDAS has also been applied to analyze the long-term terrestrial water storage variations in the 

Yangtze River basin (Huang et al. 2013), and the newly released CLDAS forcing data set has been adopted in a recent study 

of drought monitoring (Han, 2015). CN05.1 also has been used in many fields, such as simulating climate change over China 30 

(Gao et al. 2013) and studying the shift of western Pacific subtropical high (Huang et al. 2015). 

However, the forcing data, either generated by interpolation ground observations or derived from reanalysis data, generally 

have considerable uncertainties (Qian et al. 2006). The bias associated with a forcing data set can be propagated into model 

results (Wang et al, 2016), which in turn may show unrealistic results if the forcing data sets are not reliable (Cosgrove et al., 
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2003). For example, errors in precipitation and shortwave radiation have a great impact on simulations of soil moisture, runoff 

and heat fluxes (Luo et al., 2003). As a result, it is necessary to evaluate the accuracy of the data sets so that the bias of these 

forcing data sets are fully recognized before they can be applied to land surface studies (Pan et al. 2014).Some studies have 

been conducted to evaluate the forcing data sets. Wang et al. (2014, 2016) assessed the applicability of GLDAS monthly 

precipitation data in China from 1979 to 2012, and found that both GLDAS-1 and GLDAS-2 precipitation matched well with 5 

observation precipitation data by visual inspection. Wang et al. (2016) evaluated CMFD daily precipitation data over the 

Qinghai-Tibetan Plateau from 2009 to 2012 and found that it mainly showed an overestimation for more than 255 days of the 

year. Wang et al. (2011) validated the GLDAS-1 daily and monthly precipitation data in a mesoscale basin in northeast China 

and concluded that GLDAS was of high quality for daily and monthly precipitation during March 2003 to March 2006. Wang 

and Zeng (2012) evaluated six reanalysis products (i.e., MERRA, NCEP–NCAR, CFSR, ERA-40,ERA-Interim, and GLDAS-10 

1) using in situ measurements at 63 weather stations over the Tibetan Plateau and the result showed that GLDAS had the best 

overall performance for both daily and monthly precipitation.  

Though the quality of GLDAS has been relatively well evaluated in previous studies, it is not bias free and the credibility of 

GLDAS in recent years over continental China is still unclear. On the other hand, CN05.1, CMFD and CLDAS are developed 

and maintained by Chinese scientists and they are supposed to have high accuracy and reliability because more ground 15 

observation data have been put into them. However, so far, there is no comprehensive evaluation over mainland China are 

conducted around these forcing data sets. In this study, the performance of CN05.1, CMFD, CLDAS and GLDAS in terms of 

precipitation and shortwave radiation were inter-compared and evaluated against available in situ observation. Such inter-

comparison will benefit researchers to select meteorological forcing data, and in turn help the producer to further improve the 

quality of forcing data. 20 

2 Used data 

2.1 Observation data 

2.1.1 Station precipitation data 

Precipitation observed by a rain gauge network maintained by the Hydrology Bureau in the Ministry of Water Resources 

(MWR) of China were used as reference data (Xu et al. 2016). In this study, we used the precipitation data observed by rain 25 

gauges located in Hubei, Hunan and Jiangxi province in 2014. It should be note that the MWR precipitation data is independent 

of the forcing date sets, in which the ground stations are operating by CMA. After quality control procedures, there are 5490 

station can be used in this study. Their location are shown in Fig. 1. 

2.1.2 Shortwave radiation station data 

We used two kinds of shortwave radiation station data to verify the forcing data sets. The first kind is from CMA, but attention 30 

must be paid to CMFD, as their radiation is estimated from a hybrid model and thus is not fully independent of the radiation 

data used for evaluation. The other kind is from independent station data which are not included in the forcing data sets. Fig. 

2 shows the station distribution. 

1) Shortwave radiation station data from CMA 
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A daily surface solar radiation data set updated to 2010 is offered by the Data Assimilation and Modeling Center for Tibetan 

Multi-spheres (http://dam.CMFD.ac.cn/). This data set is produced by two kind of data. The first is estimated by hybrid model 

(Yang et al. 2001, 2006) with the air temperature, air pressure, relative humidity, and sunshine duration at 716 CMA stations. 

The other is estimated by ANN-based (Artificial Neural Network) model at 96 radiation stations which, because of its high 

accuracy, was used to correct the hybrid model estimate dynamically at a monthly scale. The ANN-based model is trained with 5 

recent observation data to estimate the earlier periods at 96 radiation stations (Tang et al. 2013). In this paper, we selected 625 

stations with full data for 2008-2010. 

2) Independent station data 

① Shortwave radiation station from CERN 

The Chinese Ecosystem Research Network (CERN) was established in 1988 by the Chinese Academy of Sciences (Su et al. 10 

2005). The 2008-2014 shortwave radiation observation data used in this paper are provided by 35 field experimental stations 

in CERN covering various ecosystems, including farmland, forest, grassland, lakes and the sea. As shown in Fig. 2, these 

stations are located evenly over mainland China and cover various climate types and land cover types. Meanwhile, CERN 

stations are independent of CMA stations which are partly used in CMFD and CLDAS. Therefore, CERN is a perfect reference 

to assess the performance of these three forcing data sets, although the gauge density is not so high. 15 

② Shortwave radiation station from HiWATER 

Shortwave radiation observation data from eight stations in the Heihe River have been collected from the Heihe Watershed 

Allied Telemetry Experimental Research (HiWATER, Li et al. 2013) and it is widely used for land surface process studies (Liu 

et al. 2016; Cheng et al. 2014). There are 2-3 sites distributed in the upper, middle and downstream of the Heihe River basin.  

③Shortwave radiation station from the TPE Database 20 

A daily shortwave radiation record from the Meteorological dataset of the Ngari Desert Observation and Research Station and 

from the Meteorological dataset of the Muztagh Ata Station for Westerly Environment Observation and Research, was obtained 

from the Third Pole Environment (TPE) Database (http://www.tpedatabase.cn), as shown in Fig. 2.These two stations were 

used as a supplement to evaluate the performance of the three reanalysis data sets on the west Tibetan Plateau where there are 

very few CMA ground stations. 25 

2.2 Forcing data sets 

2.2.1 CN05.1 

CN05.1 provides precipitation and daily mean, minimum and maximum temperature data (Wu and Gao 2013). In this paper, 

the 0.25°×0.25° gridded monthly precipitation data over mainland China was used. It was interpolated from more than 2000 

gauge stations over mainland China, and an “anomaly approach” (New et al. 2000) was applied in the interpolation. 30 

Considering that the meteorological stations mainly distribute in the eastern China where the economy is more developed and 

the terrain is more flat, CN05.1 may have big uncertainties in western China. 
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2.2.2 CMFD 

The CMFD forcing data set was developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (He 

and Yang, 2011). This product covers the region of 70.0°E -140.0°E and 15.0°N -55.0°N, and includes precipitation, downward  

shortwave radiation, downward longwave radiation, 2-meter air temperature, specific humidity, wind speed and surface 

pressure. Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data is used as the background field of 5 

precipitation data. However, TRMM has no valid data in the north of 40°N in most of the time. Therefore, GLDAS is used in 

these regions to solve this problem. Gauge observation data from 740 stations of CMA are used to correct systematic deviations 

in background data. The Global Energy and Water cycle Experiment - Surface Radiation Budget (GEWEX-SRB) radiation 

data provide the background field for the shortwave radiation data of CMFD. Notably, GLDAS also used to replace GEWEX-

SRB in its unavailable time and region. Shortwave radiation data estimated with CMA station data which has been mentioned 10 

in 2.1.2 is also used. Other basic information of the data is listed in Table 1.  

2.2.3 CLDAS 

The version we evaluated is CLDAS-V2.0 (abbreviated as CLDAS in this paper), it was developed by CMA (Shi et al. 2014) 

and its spatial coverage is 60°E -160°E, 0°N -65°N. This is hourly gridded data with a spatial resolution of 0.0625°×0.0625°. 

CLDAS includes land surface forcing data, such as precipitation, shortwave radiation, temperature, specific humidity, wind 15 

speed and surface pressure, as well as soil status variables. It is a relatively new product, with temporal coverage from 2008 

to 2017. Precipitation is combined and interpolated from two products, one is the Climate Prediction Center Morphing 

Technique (CMORPH) product and the other is an hourly merged precipitation product (V1.0) made by CMA which based on 

the observation data from automatic weather stations in China and CMORPH products through probability density function 

(PDF) and optimal interpolation (OI) merging algorithm (Shen et al. 2014). Shortwave radiation is retrieved from the FY-2C/E 20 

series of geostationary meteorological satellites. The Discrete Ordinates Radiative Transfer Program for a Multi-Layered 

Plane-Parallel Medium (DISORT) method is used in the retrievals for radiation transfer calculations (Shi et al. 2011). 

2.2.4 GLDAS 

The 0.25°×0.25° monthly GLDAS-1 forcing data from the NOAH model (abbreviated as GLDAS in this paper) is provided 

by the US National Aeronautics and Space Administration (NASA). From 2001 to the present, this version makes use of 25 

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Merged Analysis of Precipitation 

(CMAP) fields, which merged satellite data (IR and microwave) and gauge data. CMAP fields are spatially and temporally 

disaggregated by Global Data Assimilation System (GDAS) modeled precipitation fields. Air Force Weather Agency (AFWA) 

Agricultural Meteorology modeling system (AGRMET) provided cloud and snow products, and then the AFWA supplied 

procedure was adopted to calculate downward shortwave and longwave radiation fluxes (Rui and Beaudoing, 2017; Rodell et 30 

al. 2004). 

3 Methodology 

Precipitation and shortwave radiation were evaluated from various spatial and temporal scales. In terms of spatial scale, the 

patterns of each data were compared and three metrics were computed, i.e. average precipitation over mainland China (Mean), 
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standard deviation (SD) and coefficient of variation (CV), the latter two can reflect the degree of dispersion of the data set 

itself. For temporal scale, monthly anomalies of precipitation were derived by subtracting the seven-year monthly climatology 

from each data element. Temporal coefficient variation (TCV) was computed to demonstrate the fluctuation characteristics of 

the forcing data sets in time series. The larger this value, the greater the temporal difference. In order to make a further 

comparison, CMFD and CLDAS were resampled to 0.25°×0.25° (same as the CN05.1 and GLDAS) by the bilinear resampling 5 

method. To verify the accuracy of each forcing data sets using gauge observations data, a pixel-point method (Chen et al. 2013) 

was applied by pairing gauge observation data from the corresponding grids of these three forcing products. Root Mean 

Squared Error (RMSE) and bias were selected as evaluation metrics of the pixel-point comparison.  Bias reflects the degree 

to which the measured value is over- or under-estimated. To further describe the degree of correspondence between forcing 

data and observation data, a Taylor diagram (Taylor 2001) is used. It shows the ratio of standardized deviations, correlation 10 

coefficient and unbiased RMSE between forcing data and observation data, and these statistics can quantify how closely the 

forcing data resembles the observation. The formulations of these metrics are as follows: 

SD = √
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1            (1) 
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(2) 15 

Correlation coefficient =
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∑ 𝑥𝑖

𝑁
𝑖=1

∑ 𝑦𝑖
𝑁
𝑖=1

− 1                                                                                                                                                

(6) 

TCV =
√

1

𝑚
∑ (𝑡𝑗−𝑡̅)2𝑚

𝑗=1

𝑡̅
                                                                                                                                                           

(7) 25 

where xi is the element of data sets and 𝑥̅ is the average value of this data set; yi is the element of the reference data set and 

𝑦̅ is the average for data yi; N is the number of points in the data; m is the number of months during 2008 to 2014; tj is 

precipitation or shortwave radiation value of per month of each grid point in the data sets and 𝑡̅ is the average of tj. 



37 

 

4 Evaluation of precipitation data 

4.1 Spatial distribution of precipitation 

It is obvious that all the data sets reveal a gradual increasing pattern of annual mean precipitation from northwest to southeast 

in mainland China (Fig. 3). The distribution of precipitation from CMFD is similar to that of CN05.1. However, they still have 

difference in western China, such as in the Tibetan Plateau. Compared with CN05.1 and CMFD, the area where the annual 5 

mean precipitation is higher than 1500mm is smaller in CLDAS and GLDAS. Besides, the precipitation of CLDAS in north 

China is smaller than others. As shown in Table 2, the Mean value of CLDAS is significant lower than CN05.1 while CMFD 

has the highest Mean value. As for SD and CV, CN05.1, CMFD and GLDAS are closer.  

4.2 Temporal variation of precipitation 

Fig. 4 shows the time series of monthly mean precipitation anomalies averaged over mainland China. The forcing data sets 10 

match well with each other, which indicate that all forcing data sets can reflect the inter-annual and decadal variability of 

precipitation over mainland China. Noticeably, a relatively low negative anomaly after August in 2014 are shown in CMFD. 

The temporal standard deviation of each grid is divided by the average precipitation during the seven-year period to obtain the 

TCV as shown in Fig. 5. It can be seen that the spatial distribution of TCV of the four data sets are similar to each other in 

southeast China where generally have smaller TCV values. Also, all of they can reflect that in the north of China, precipitation 15 

changes greater in temporal. The TCV of CMFD is similar to that of CN05.1 while the TCV of CLDAS and GLDAS are higher 

in most areas of north China especially in dry regions (Xinjiang, Gansu and Inner Mongolia) where the TCV are higher than 

1.5. For CLDAS, the area where the TCV value are higher than 1.0 are larger than other forcing data sets and its Mean value 

is the biggest.  

4.3 Compared with MWR station data 20 

When compared the spatial distribution of four forcing data sets, it is clear that there are obvious differences among them in 

the middle and lower reaches of the Yangtze River (red polygon shown in Fig. 3). Therefore, we use the independent MWR 

observation data to further evaluate forcing data in this region. As shown in Fig. 6, the annual mean precipitation data of 

CMFD and CLDAS are more consistent with the MWR observation. However, the performance of GLDAS and CN05.1 are 

not as good as others. Their RMSE are about twice bigger than that of CLDAS. Also, it is obvious that the dispersion degree 25 

of GLDAS is the biggest compared with other data sets which indicate that GLDAS changes greatly in spatial. From the pattern 

of Fig. 6 (a) and the high bias of CN05.1, we can conclude that the annual mean precipitation in Hubei, Hunan and Jiangxi 

province are heavily overestimated by CN05.1. The evaluation results of monthly precipitation are listed in Table 3. According 

to the metrics, CLDAS performs best in most of the months of 2014. Fig. 7 also confirms that CLDAS performs well because 

the orange points representing CLDAS are concentrated together, located in a region where the correlation coefficient is 30 

between 0.6 and 0.9, the standardized deviation is close to 1 and the unbiased RMSE is low. This reflects that the quality of 

monthly precipitation of CLDAS is stable and reliable. However, the performance of other data sets in the monthly scale varies 

greatly, especially for CMFD and CN05.1.  
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5 Evaluation of shortwave radiation data 

5.1 Comparison against ground measurements 

A comparison between gauge observations and forcing data was carried out to examine which one was closest to the ground 

observations. What stands out in Fig. 8 (a), (d) and (g) is that compared with the stations from CMA, the points of CMFD are 

distributed around the diagonal evenly, while CLDAS and GLDAS have a much higher shortwave radiation value in about 96% 5 

points. Fig. 8 (a) and Fig. 9 show that, the unbiased RMSE, relative bias and RMSE between CMFD and CMA stations are the 

smallest and the correlation coefficient is the highest, the standardized deviation ratio is the closest to 1. These metrics of 

CLDAS perform better than GLDAS which indicate that CLDAS is more resemble to the observation than GLDAS. The high 

correlation may be due to the use of these site observations when producing CMFD, leading the comparison results do not 

convince enough.  10 

To make up for this problem, we use the observation data from CERN, which is not merged into these forcing data sets. As 

shown in Fig. 8 (b), (e), (h), the results are similar to the evaluation results by CMA. The shortwave radiation of CMFD 

coincides well with the observation data, on the contrary, most stations are also significantly overestimated by CLDAS and 

GLDAS. Additionally, the metrics of CMFD shown in Fig. 9 perform the best which indicates that the estimation of CMFD 

for shortwave radiation is more precise than for CLDAS and GLDAS in these areas, and GLDAS is worse compared with 15 

CLDAS. 

Due to the fact that the distribution of CERN observation stations relatively sparse in western China, this paper supplements 

the data of eight observation stations in the Heihe River basin and two observation stations in the Tibetan Plateau to validate 

the three forcing data sets. As shown in Fig. 8 (c), (f) and (i), in these ten stations, CMFD is closer to the in situ observation, 

while both CLDAS and GLDAS show an obvious overestimation of shortwave radiation against gauge observation. As for 20 

other statistical indicators, CLDAS has the smallest unbiased RMSE and the closest standardized deviation compared to the 

observation. The correlation coefficient between GLDAS and observation is the highest followed by CMFD and CLDAS, 

while the RMSE and relative bias of CLDAS and GLDAS are about 2 and 10 times that of CMFD, respectively. In the study 

of Qi et al. (2015), GLDAS was also found to overestimates shortwave radiation from March 2000 to December 2007 in the 

Biliu Basin which is located in a coastal region of China. Besides, Wang et al. (2011) proved that shortwave radiation at the 25 

Changchun, Shenyang and Yanji stations in China was also overestimates by GLDAS from 2000 to 2006. 

5.2 Spatial distribution of shortwave radiation 

As mentioned above, the shortwave radiation data of CMFD matches well with the station data so we used this as reference 

data to evaluate the performance of CLDAS and GLDAS over mainland China. 

As can be seen from Fig. 10, the distribution of shortwave radiation of the three forcing data sets have some common 30 

characteristics. They all have a similar spatial pattern showing that the shortwave radiation in western China is higher than in 

the east, while the largest shortwave radiation value appears in the Tibetan Plateau and the value in northeast China is relatively 

low. It is clear from Fig. 10 (a) that for CMFD’s estimation, the regions where the shortwave radiation are more than 200W m-

2 only locate in seven provinces (i.e. Xinjiang, Inner Mongolia, Qinghai, Tibet, Sichuan and Yunnan), and these areas are 
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relatively small except Tibet and Qinghai. In contrast, CLDAS is similar to GLDAS, the areas where shortwave radiation are 

more than 200W m-2 are very large and they extend to north China such as Hebei and Shandong province. Especially, for 

GLDAS, this phenomenon even appears in southeast China. In addition, the Mean values of CLDAS and GLDAS are higher 

than CMFD, while its degree of dispersion was relatively larger as indicated by a smaller SD and CV (Table 4). 

The difference among the three forcing data sets is shown in Fig. 11. It can be found that CLDAS and GLDAS have a much 5 

higher shortwave radiation than CMFD in most regions. More than 95% of the area over mainland China shows a positive 

difference for CLDAS when compared with CMFD, especially in some areas of Xinjiang province and the area 24°N-44°N, 

105°E-120°E. When compared with CMFD, GLDAS is also significantly higher except over the Tibetan Plateau. In terms of 

the statistical metrics shown in Table 4, the absolute value of average difference, RMSE, and the relative bias between CMFD 

and CLDAS are smaller and the correlation coefficient of the three forcing data sets are all around 0.9. Overall, CLDAS and 10 

GLDAS are similar, both being higher than CMFD in most regions of mainland China. 

5.3 Temporal variation of shortwave radiation 

As shown in Fig. 12, the change trend of anomaly of CMFD and CLDAS match well with each other, but the anomaly 

amplitudes of these two data sets are different. The magnitude of the fluctuation of GLDAS is larger than others. There are 52 

months when the difference between GLDAS and CMFD is greater than that of CLDAS. The anomaly of CLDAS is always 15 

positive after year 2013, which indicates that the shortwave radiation estimated by this product is clearly higher than the 

climatology mean value. This phenomenon also appears in GLDAS in most of the months of 2012-2014. As for the statistical 

metrics shown in Table 5, the RMSE and relative bias between CMFD CLDAS are smaller than the values between CMFD 

and GLDAS and their correlation coefficient are not high. 

The spatial pattern of TCV for shortwave radiation of the three forcing data sets have some common characteristics, the highest 20 

TCV appears in northwest and northeast China while the smallest TCV can be found in southwest China. For the south of 

34°N, the TCV of CLDAS is lower than 0.25 while CMFD is higher than 0.25 in the southeast. In addition, the estimation of 

TCV in CMFD and GLDAS has an obviously higher value in the vicinity of Sichuan province and Chongqing province than 

the surrounding areas. The TCV of the three data sets are similar to each other north of 34°N and the difference mainly lies in 

the south of China. The characteristics mentioned above are shown in Fig. 13. 25 

6 Discussion 

Based on the preceding analysis, we can see that though these forcing data sets have some common characteristics and can 

reflect the features of precipitation and shortwave radiation over mainland China, they have many difference due to different 

resolution, the various data they merged and the diverse algorithm they used. For precipitation, the spatial distribution of 

forcing data sets were compared and their quality in the middle and lower reaches of the Yangtze River were evaluated.  30 

CLDAS performs better both in annual and monthly scale, this is not surprise because CLDAS merges data at more than 30000 

stations which can improve the data quality greatly. The precipitation of CMFD performs well at annual mean but not so at 

monthly scale, and its heavily decrease of precipitation after August 2014 is abnormal. As far as we concern, the CMFD used 

less precipitation station data than CN05.1 and CLDAS, which influences its quality in 2014. GLDAS as a global data, the 
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precision in mainland China is limited due to the observation data of China merged in it may be not enough. Though both 

CMFD and GLDAS merged remote sensing data, they are not similar because the station data they used are different. As for 

CN05.1 which was made by purely station data and mathematical method, it is reasonable that it performs worse than other 

forcing data sets in station-sparse regions. 

Comparing the forcing data sets and observation data, it was found that the shortwave radiation of CMFD perform better than 5 

the other two. The reason is that there are only about 100 radiation stations that were sparsely deployed in China since 1961 

and the radiation observation data may be unusable because it often include erroneous values and missing data (Shi et al. 2008), 

therefore, the radiation observation data merged in CLDAS and GLDAS are limited. However, for CMFD, it merged the 50-

year data set of daily surface solar radiation at 716 CMA stations which was aforementioned in section 2.1.2. Though this data 

set is estimated by model, it is widely validated and its performance is pretty well. As a result, shortwave radiation of CMFD 10 

is closer to observation data. 

7 Conclusions 

In recent years, increasingly forcing data sets have been developed aiming to provide better support for climate, agriculture 

and hydrological researches. In this study, precipitation and shortwave radiation data provided by CN05.1, CMFD, CLDAS 

and GLDAS were inter-compared and evaluated over mainland China which can help users to choose a better data sets. For 15 

precipitation, all the four forcing data sets reflect similar spatial distribution characteristics, i.e. a gradual increase from 

northwest to southeast in mainland China. The results also indicate that precipitation estimated by CLDAS is smaller than 

other data sets in most area of mainland China. When considering temporal variability, the monthly mean precipitation 

anomalies of the four forcing data sets match well with each other, but CMFD has abnormal performance after August 2014. 

The TCV are closely related to the amount of precipitation, the values of dry region usually higher than wet region. In addition, 20 

the mean value of CLDAS and the area where the TCV is higher than 1.0 is larger than the others. Compared with the MWF 

observation data of 2014 in the middle and lower reaches of the Yangtze River, CLDAS shows the best performance in both 

annual and monthly scale with the lowest RMSE and highest correlation coefficient. The annual mean precipitation of CMFD 

also match well with station data, while its quality at monthly scale is to be improved. We also found that CN05.1 heavily 

overestimates the precipitation in this region. 25 

In terms of shortwave radiation, comparisons against ground shortwave radiation observation show that the shortwave radiation 

value is significantly overestimated by CLDAS and GLDAS, and usually they have a much higher RMSE and relative bias 

value, and relatively low correlation coefficient. Compared with GLDAS, CLDAS performs better. In contrast, CMFD is closer 

to the observation data and most of its statistical metrics perform much better. All forcing data sets show higher values in 

western China than in eastern China, and the largest shortwave radiation value exists in the Tibetan Plateau. Also, the spatial 30 

characteristics of CLDAS and GLDAS are similar, with both of their values being higher than CMFD in most areas of mainland 

China, while the metrics between CLDAS and CMFD are better than those of GLDAS. The time series of anomaly shows that 

GLDAS fluctuates heavily while CMFD is more stable. The temporal variability of the three forcing data sets is more similar 

north of 34°N, while the difference in the south is larger. All the results reflect the fact that temporal variation of shortwave 
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radiation in the north of China is larger than that in the south. 

To sum up, there is no data sets that performs the best in terms of both precipitation and shortwave radiation. CLDAS has the 

highest spatial and temporal resolution, and it performs best in terms of precipitation. However, the shortwave radiation is 

obviously overestimated by CLDAS. CMFD also has high resolution and its shortwave radiation data matches well with the 

station data; its annual mean precipitation is reliable but its monthly precipitation needs improvements. Both precipitation and 5 

shortwave radiation data from GLDAS over mainland China need to be improved, so does to the precipitation of CN05.1. As 

these products are widely used and being developed, our results could benefit researchers for forcing data selection and 

uncertainty quantification and also could provide clues for data producers to further improve their data sets. Meanwhile, the 

results of this inter-comparison highlights that big uncertainties exist in the currently available forcing data, especially in the 

west region of mainland China where the density of ground stations is low, and where there is a need to improve the quality of 10 

forcing data in these regions. 
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Table 1.  Basic information of the data sets used in this paper. 

Name Type Analyzed period Available period Variables 

Spatial 

resolution 

Number 

of sites 

CN05.1 forcing data set 2008-2014 1961-2014 precipitation 0.25°  

CMFD forcing data set 2008-2014 1979-2016 precipitation; shortwave radiation 0.1°  

CLDAS forcing data set 2008-2014 2008-2016 precipitation; shortwave radiation 0.0625°  

GLDAS forcing data set 2008-2014 2000-2016 precipitation; shortwave radiation 0.25°  

Hydrology 

Bureau data 

Observation data 2014 2014 precipitation  5490 

CMA observation data 2008-2010 Different at each site shortwave radiation  625 

CERN observation data 2008-2014 Different at each site shortwave radiation  35 

HiWATER observation data Different at each site Different at each site shortwave radiation  8 

TPE Database observation data Different at each site Different at each site shortwave radiation   2 
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Table 2.  Spatial statistical metrics of annual mean precipitation from 2008 to 2014. 

Metrics CN05.1 CMFD CLDAS GLDAS 

Mean(mm yr-1) 612.09  637.65  508.58  609.44  

SD(mm yr-1) 497.61  511.09  429.50  506.55  

CV 0.81  0.80  0.84  0.83  
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Table 3.  Statistical metrics of monthly precipitation in 2014 between forcing data set and MWR rain gauge observations. 

Time 

Bias   RMSE 

CN05.1 CMFD CLDAS GLDAS   CN05.1 CMFD CLDAS GLDAS 

Jan. 23.62  2.37  -1.85  -0.48   29.53  19.70  8.90  8.26  

Feb. 48.04  31.53  4.74  20.43   59.13  59.87  26.19  37.15  

Mar. 61.37  14.81  -9.26  12.50   77.02  37.54  36.43  59.47  

Apr. 62.83  17.93  -8.47  12.39   79.06  47.63  35.86  67.15  

May 66.23  24.72  13.32  39.51   93.05  66.51  52.63  105.35  

June 40.11  23.59  0.49  19.48   74.53  67.77  50.06  87.73  

July 18.68  7.38  -0.24  1.04   67.86  78.26  59.45  92.06  

Aug. 22.37  -53.29  3.57  11.01   62.51  78.93  47.46  74.30  

Sept. 4.58  -21.18  -8.57  1.74   36.81  45.66  32.35  44.09  

Oct. 26.07  -17.59  5.56  8.72   37.11  38.95  27.76  32.35  

Nov. 26.73  -21.04  -2.91  14.36   37.71  34.76  25.95  40.79  

Dec. 8.99  -5.43  -4.33  -1.65    14.90  16.97  9.40  10.84  

Annual 421.38 273.68 234.39 427.71  403.16 3.80 -7.93 139.06 
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Table 4.  Spatial statistical metrics of annual mean shortwave radiation and bias from 2008 to 2014 (CMFD was used as reference 

data when average difference, RMSE, relative bias and correlation coefficient were calculated). 

Metrics CMFD CLDAS GLDAS 

Mean(W m-2) 178.60  202.26  203.13  

SD(W m-2) 31.13  28.82  20.99  

CV 0.17  0.14  0.10  

Average difference (W m-2) -- 23.72  24.57  

RMSE(W m-2) -- 27.55  28.61  

Relative bias -- 0.14  0.15  

Correlation coefficient -- 0.89  0.92  
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Table 5.  Statistical metrics of monthly mean shortwave radiation deseasonalized anomalies among forcing data sets during 2008-

2014. 

Metrics CLDAS-CMFD GLDAS-CMFD 

RMSE(W m-2) 5.14  5.79  

Relative bias 1.14  1.66  

Correlation coefficient 0.50  0.62  
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Figure 2: Locations of the rain gauges operated by the Ministry of Water Resources of China, used as an independent precipitation 

data source in this study. 
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Figure 2: Locations of shortwave radiation stations over mainland China investigated in this study. 
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Figure 3: Spatial distribution of annual mean precipitation (over 2008-2014, unit: mm yr-1). (a)-(d) are the result for CN05.1, CMFD, 

CLDAS, GLDAS, respectively. 
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Figure 4: Time series of monthly mean precipitation anomalies from CN05.1 (black), CMFD (blue), CLDAS (orange) and GLDAS 

(green). 
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Figure 5: Distribution of TCV of (a) CN05.1, (b) CMFD, (c) CLDAS, and (d) GLDAS precipitation from 2008 to 2014. 
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Figure 6: Comparison of the precipitation from (a) CN05.1, (b) CMFD, (c) CLDAS, and (d) GLDAS against MWR rain gauge 

observation. The color bar on the right indicates the number of MWR rain gauges in one 0.25°×0.25° grid. 
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Figure 7: Taylor diagram for the monthly/annual precipitation of CN05.1 (black), CMFD (blue), CLDAS (orange), and GLDAS 

(green).  
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Figure 8: The relationship between shortwave radiation from forcing data and observation data. 
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Figure 9: Taylor diagram for the shortwave radiation of CMFD (blue), CLDAS (orange), and GLDAS (green). 
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Figure 10: Spatial distribution of annual mean shortwave radiation of three forcing data set (over 2008-2014, unit: W m-2). 
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Figure 11: Shortwave radiation difference among three forcing data sets and corresponding histogram from CMFD and CLDAS (a 

and c) and GLDAS and CMFD (b and d). 
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Figure 12: Time series of monthly mean shortwave radiation anomalies from CMFD (blue), CLDAS (orange) and GLDAS (green) 

(unit: W m-2). 
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Figure 13: Distribution of TCV of shortwave radiation from forcing data sets. 

 

 


