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Abstract 8 

An accurate estimation of soil moisture and groundwater is essential for monitoring the 9 
availability of water supply in domestic and agricultural sectors. In order to improve the 10 
water storage estimates, previous studies assimilated terrestrial water storage variation 11 
( ) derived from Gravity Recovery and Climate Experiment (GRACE) into land surface 12 
models. However, the GRACE-derived  was generally computed from the high level 13 
products (e.g., land grid). The gridded data products are subjected to several drawbacks such 14 
as signal attenuation and/or distortion caused by ad hoc posteriori filters, and a lack of error 15 
covariance information. The consequence is undesired alteration of  data and its 16 
statistical property. To exploit the GRACE information rigorously and negate these 17 
limitations, this study uses the fundamental GRACE satellite tracking Level 1B (L1B) data, 18 
not the post-processed  grid data. The approach combines the GRACE’s least-squares 19 
normal equation (full error variance-covariance information) of L1B data with the results 20 
from the Community Atmosphere Land Exchange (CABLE) model to improve soil moisture 21 
and groundwater estimates. This study demonstrates, for the first time, an importance of 22 
using the raw GRACE data. The GRACE-combine (GC) approach is developed for optimal 23 
least-squares combination maximizing the strength of the model and observations while 24 
suppressing the weaknesses. The approach is applied to estimate the soil moisture and 25 
groundwater over 10 Australian river basins and the results are validated against the satellite 26 
soil moisture observation and the in-situ groundwater data. We demonstrate the GC approach 27 
delivers evident improvement of water storage estimates, consistently from all basins, 28 
yielding better agreement at seasonal and inter-annual time scales. Significant improvement 29 
is found in groundwater storage while marginal improvement is observed in surface soil 30 
moisture estimates likely due to limitation of GRACE’s temporal and spatial resolution.  31 

 32 

1. Introduction 33 

The changes of Terrestrial Water Storage ( ) derived from the Gravity Recovery And 34 
Climate Experiment (GRACE) data products have been used in the last decade to study 35 
global water resources, including groundwater depletion in India and Middle East (Rodell et 36 
al., 2009; Voss et al., 2013), water storage accumulation in Canada (Lambert et al., 2013), 37 
flood-influenced water storage fluctuation in Cambodia (Tangdamrongsub et al., 2016). The 38 
gravity data obtained from GRACE satellites are commonly processed and released in three 39 
different product levels (L) that increase in the amount of processing, L1B – satellite tracking 40 
data (Wu et al., 2006), L2 – global gravitational Stokes coefficients (Bettadpur, 2012), and 41 
L3 – global grids (Landerer and Swenson, 2012). The original (L1B) GRACE information is 42 
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inevitably altered or sheered due to data processing and successive post-processing filterings, 43 
because the error covariance information is not propagated through each post-processing step. 44 

The GRACE-derived  has been computed widely from the higher-level products (e.g., 45 
L2 and L3) on which various ad hoc post-processing filters were applied (e.g., Gaussian 46 
smoothing filter (Jekeli, 1981), destripe filter (Swenson and Wahr, 2006)).  obtained 47 
from these filters lacks proper error covariance information and is attenuated and distorted. 48 
To overcome the signal attenuation in GRACE high-level products, empirical approaches 49 
have been developed, including the application of scale factors computed from land surface 50 
models (Landerer and Swenson, 2012) to the GRACE L3 products. GRACE uncertainty in 51 
high level product is usually unknown or assumed. For example, Zaitchik et al. (2008) 52 
derived empirically a global average uncertainty that is variable depending on choices of 53 
post-processing filters (Sakumura et al., 2014). Furthermore, GRACE error and sensitivity is 54 
dependent on latitudes due to the orbit convergence toward poles (Wahr et al., 2006) and any 55 
post-processing filters will alter the GRACE data and their error information. Rigorous 56 
statistical error information is of equal importance to derivation of  for data 57 
assimilation and model calibration (Tangdamrongsub et al., 2017).  and its uncertainty 58 
estimates should be formulated directly from L1B data considering the complete statistical 59 
information. 60 

The GRACE information is not fully exploited in many studies. For example, groundwater 61 
storage variation ( ) is often computed by subtracting the soil moisture variation ( ) 62 
component simulated by the land surface model from GRACE-derived  data (Rodell et 63 
al., 2009, Famiglietti et al., 2011), assuming the model  is error-free. This may result in 64 
the inaccurate  and the associated error estimate as the uncertainties of GRACE and of 65 
the land surface model outputs are neglected in the combination of two noisy data. In data 66 
assimilation application, albeit its importance, the GRACE uncertainty is commonly derived 67 
empirically not necessarily reflecting the true GRACE error characteristics (e.g., Zaitchik et 68 
al., 2008; Tangdamrongsub et al., 2015; Tian et al., 2017). For example, Girotto et al. (2016) 69 
used L3 product and showed that it was necessary to adjust GRACE observation and its 70 
uncertainty in order to make their water storage estimates more accurate. Similarly, Tian et 71 
al. (2017) reported the need of applying a scale factor to GRACE uncertainty (from mascon 72 
product) in their GRACE assimilation process. It is apparent that the use of post-processed 73 
GRACE products often requires data tuning, leading possibly to an integration of incorrect 74 
gravity information into the data assimilation system. Some recent studies began to employ 75 
the full variance-covariance information in the data assimilation scheme (Eicker et al., 2014, 76 
Schumacher et al., 2016; Tangdamrongsub et al., 2017), however, the GRACE signal used 77 
were still affected by the post-processing filters.  78 

This study aims to use the GRACE information of  measurement directly from the raw 79 
L1B data. The approach optimally combines the GRACE’s least-squares normal equations 80 
with the model simulation results from the Community Atmosphere Land Exchange 81 
(CABLE, Decker, 2015) to improve  and  estimates. The proposed approach 82 
presents three main advantages. Firstly, one can exploit the full GRACE signal and error 83 
information by using the normal equation data sets. Secondly, the approach is developed for 84 
optimal least-squares combination, which maximizes the model and observation strength 85 
while simultaneously supressing their weaknesses. Finally, the method bypasses empirical, 86 
multiple-step post-processing filters.  87 
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The main objective of this study is to present the GRACE-combined (GC) approach to 88 
estimate improved  and  at regional scales. We demonstrate our approach applied 89 
to 10 Australian river basins (Fig. 1a). We validate the top layer of  estimates against the 90 
satellite soil moisture observation (the Advanced Microwave Scanning Radiometer aboard 91 
EOS (AMSR-E), Njoku et al., 2003) over all 10 basins and the  estimates against the 92 
in-situ groundwater data available over Queensland and Victoria (Fig. 1b, 1c). 93 

This paper is outlined as follows: Firstly, the derivation of GC approach is presented in Sect. 94 
2 while the description of GRACE data processing, including the use of GRACE normal 95 
equation is given in Sect. 3. Secondly, the CABLE modelling is outlined in Sect. 4. This 96 
includes the derivation of model uncertainty based on the quality of precipitation data and the 97 
model parameter inputs. The processing of validation data is also described in Sect. 4. 98 
Thirdly, Sect. 5 presents the result of  and  estimates and comparison to in-situ 99 
data. The long-term trends in the Australian mass variation over the last 13 years is also 100 
investigated in this section. In Sect. 6, the purposed approach is discussed in terms of 101 
effectiveness, and data assimilation implementation.  102 
 103 

2. A method of combining GRACE L1B data with land surface model outputs 104 

The statistical information of  computed from a model can be written as: 105 

= + ; ~ ( , ),    (1) 106 

where  is the “truth” (unknown) model state vector while  is the calculated state vector 107 
characterized with the model error . The model error is assumed to have zero mean and 108 
covariance .  109 

The term  is used to represent a vector including global  grid, and terms with a 110 
subscript  (e.g., , ) is used to represent only a regional set of  (for example, in 111 
Australia). As such, the observation equation over a region can be rewritten as:  112 

= + ; ~ ( , ).      (2) 113 

As soil moisture and groundwater are the major components of  in Australia (surface 114 
water storage being insignificant), the vector  can be defined as:  115 

= [ ] ,   (3) 116 

where , ,  represent the vectors of top (surface) soil moisture, root zone 117 
soil moisture, and groundwater storage variations, respectively. 118 

A linearized GRACE satellite-tracking observation equation is formulated as:  119 

= + ; ~ ( , ),     (4) 120 

where  is the observation vector containing the L1B inter-satellite ranging data,  is the 121 
design (partial derivative) matrix relating the data and the Earth gravity field variations,  122 
contains the Stokes coefficients of time-varying geopotential fields (e.g., Wahr et al., 1998), 123 
and  is the L1B data noise, which has zero mean and covariance . Eq. (4) can be modified 124 
explicitly in terms of soil moisture and groundwater storage variations as: 125 
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= + ; ~ ( , ),   (5) 126 

where  contains a factor used to convert  to geopotential coefficients considering the 127 
load Love numbers (e.g., Wahr et al., 1998),  converts the gridded data into the 128 
corresponding spherical harmonic coefficients, and  is the operational matrix converting 129 

, , and  to . This model is based on the assumption that the 130 
GRACE orbital perturbation is a result of  variation on the surface, which is very 131 
particular in Australia. For convenience, the term =  is used in the further derivation. If 132 
M is the number of model grid cells, Nmax is the maximum degree of the geopotential 133 
coefficients, and L=(Nmax+1)2–4 is the number of geopotential coefficients, the dimension of 134 

, , and  are L×M, M×3M, and 3M×1, respectively.  135 

A least-squares solution of Eq. (5) is given as: 136 

( ) = .  (6) 137 

It can be simplified as: 138 

  = ,   (7) 139 

where =  and = . (The rationales of introducing  and  are explained 140 
in the following section). Note that, the above derivations (Eq. (5) – Eq. (7)) are defined with 141 
the global grid of . For a regional application, Eq. (7) can be modified as: 142 

 |    =  |  , (8) 143 

where the subscript  indicates the grid  only in a region of interest, and  for the rest 144 
of the globe. If the number of the model grid cells associated with  is J and that of the 145 
outside cells is M–J. As such, the dimensions of , , , , ,  are L×J, J×3J, 3J×1, 146 
L× (M–J), (M–J)×3(M–J), 3(M–J)×1, respectively. The dimension of  and  remain 147 
unchanged, since they are essentially from the normal equations of the original GRACE L1B 148 
data (to be discussed in the following section).  149 

From Eq. (8), the normal equations associated with  in the region of interest can then 150 
be written as 151 

=  (9) 152 

or 153 

=     (10) 154 

where =  and = . As seen, Eq. (9) is the 155 
regional representation of Eq. (7) where only the grid cells inside the study region are used, 156 
while the contribution from the grid cells outside the region needs to be removed or 157 
corrected. Combining the normal equation of Eq. (2) and Eq. (10), the optimal combined 158 
solution of  can be resolved as follows: 159 

= + +    (11) 160 
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The computation of model covariance matrix  will be discussed in Sect. 4.2. The posteriori 161 
covariance of  can be estimated as follows: 162 

= ( + ) ,     (12) 163 

and the uncertainty estimate of  is simply calculated as: 164 

= ,       (13) 165 

where () represents the diagonal element of the given matrix. 166 
 167 

3. GRACE data 168 

3.1 GRACE least-squares normal equations  169 

In this study, the least-squares normal equations are obtained from the ITSG-Grace2016 170 
products (Mayer-Gürr et al, 2016; https://www.tugraz.at/institute/ifg/downloads/gravity-field-171 
models/itsg-grace2016) between January 2003 and March 2016. All L1B data including KBR 172 
inter-satellite tracking data, attitude, accelerometer, GPS based kinematic orbit data and 173 
AOD1B corrections are reduced in terms of the normal equations. These data products are 174 
usually used to compute the Earth’s geopotential field to the maximum harmonic degree and 175 
order of 90, or at a spatial resolution of ~220 km. The products contain the information of the 176 
normal matrix  and the vector  (as shown in Eq. (7)) as well as the a-priori time-varying 177 
gravity field coefficients predicted with the GOCO05s solution (Mayer-Gürr et al., 2015). 178 
Note that the solution of the ITSG-Grace2016 normal equation is the anomalous geopotential 179 
coefficient vector ( ), which is referenced to the a-priori time-varying gravity field ( ), 180 
through: 181 

=      (14) 182 

where  and  are given. To obtain a complete gravity field variation between the study 183 
period (  term in in Eq. (4)), the a-priori time-varying gravity field,  is firstly restored to 184 
Eq. (14), and the mean gravity field ( ) computed from all  between January 2003 and 185 
March 2016 is then removed as follows:  186 

 ( + ) = + ( )  (15) 187 

 = + ( )    (16) 188 

Therefore, in Sect. 2 (e.g., Eq. (7) – (11)), the matrix  remains unchanged while the vector  189 
can be simply replaced by = + ( ). 190 
 191 

3.2 GRACE-derived  products 192 

Two monthly GRACE-derived  products are also used, the CNES/GRGS Release 3 193 
(RL3) (GRGS for short, Lemoine et al., 2015) and the JPL RL05M mascon-CRI version 2 194 
product (mascon for short, Watkins et al., 2015; Wiese et al., 2016). The GRGS solution 195 
provides  at 1o×1o globally, derived from the Earth’s geopotential coefficients up to the 196 
maximum degree and order 80, and no filter nor scale factor is applied (L2 data product). 197 
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Mascon provides  at equal-area 3o spherical cap grid globally. In contrast to the GRGS 198 
solution, the mascon uses a gain factor derived from the land surface model (LSM) to restore 199 
mitigated signals and reduce leakage errors (L3 data products) (Watkins et al., 2015; Wiese et 200 
al., 2016). Additionally, mascon provides the  uncertainty together with the solution. 201 
The uncertainty is computed based on several geophysical models (see Watkins et al. (2015) 202 
and Wiese et al. (2016) for more details). The uncertainty information is not available in the 203 
GRGS product.  204 

The  products are obtained between January 2003 and March 2016. The GRGS 205 
solution is retrieved from http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-206 
solutions-release-03 while the mascon is from http://grace.jpl.nasa.gov/data/get-207 
data/jpl_global_mascons. After retrieval, the long-term mean value between January 2003 208 
and March 2016 is computed and subtracted from the monthly products. To be consistent 209 
with CABLE grid spacing (see Sect. 4), the spatial resolution of two datasets are resampled to 210 
0.5o×0.5o using the nearest grid values. 211 

In this study, these two independent GRACE solutions are used for two main reasons: 212 

1. To obtain the  values outside Australia. As shown in Eq. (9), the  vector 213 
needs to be known, which can be from the GRACE-derived  solution. We use 214 
the GRGS solutions as the GRGS solution provides  at a spatial resolution 215 
comparable to the normal equation data.  216 

2. To compare with the  estimates from our approaches. Both GRGS and mascon 217 
solutions are used to compare and validate our  estimates. 218 

 219 

4. Hydrology model and validation data 220 

4.1 Model setup 221 

The extensive description of the CABLE model is given in Decker (2015) and Ukkola et al. 222 
(2016). This section describes the model setup and specific changes applied for this study. 223 
CABLE can be used to estimate soil moisture and groundwater in terms of volumetric water 224 
content every 3 hours at a 0.5o×0.5o spatial resolution. The soil moisture and groundwater 225 
storage can be simply computed by multiplying the estimates with thicknesses of various 226 
layers. For soil moisture, the thickness of 6 soil layers is 0.022, 0.058, 0.154, 0.409, 1.085, 227 
and 2.872 m, from top to bottom, respectively. The thickness of the groundwater layer is 228 
modelled to be 20 m uniformly. Recalling Eq. (3),  is defined as the soil moisture 229 
storage variation at the top 0.022 m thick layer, while  is the variation accumulated 230 
over the second to the bottom soil layers (depth between 0.022 cm and 4.6 m). 231 

CABLE is initially forced with the data from the Global Soil Wetness Project Phase 3 232 
(GSWP3) (Dirmeyer et al., 2011; http://hydro.iis.u-tokyo.ac.jp/GSWP3), which is currently 233 
available until December 2010. We replace GSWP3 forcing data with GLDAS data (Rodell 234 
et al., 2004) to compute the water storage changes to 2016. The forcing data used in CABLE 235 
are precipitation, air temperature, snowfall rate, wind speed, humidity, surface pressure, and 236 
short-wave and long-wave downward radiations. To investigate the impact of different 237 
forcing data, the offline sensitivity study is conducted by comparing the water storage 238 
estimates computed using: 239 
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1. All 8 forcing data components of GSWP3,  240 
2. GSWP3 data with replacing one component obtained from GLDAS forcing data. 241 

It is found that the water storage estimate is most sensitive to the replacement of precipitation 242 
data, as expected, and relatively less sensitive to the change of other forcing components. We 243 
use the GLDAS forcing data in this study and also further test 7 different precipitation data 244 
products (see more details in Sect. 4.2). The forcing data are up/down sampled to a 0.5o×0.5o 245 
spatial grid to reconcile with the CABLE spatial resolution.  246 
 247 

4.2 Model uncertainty 248 

In this study, the CABLE uncertainty is derived from 210 ensemble estimates associated with 249 
different forcing data and model parameters. The 7 different precipitation products (see Table 250 
1) are used to run the model independently. Most products are available to present day while 251 
GSWP3, Princeton, and MERRA are only available until December 2010, December 2012, 252 
and February 2016, respectively. For each precipitation forcing, 30 ensembles are generated 253 
by perturbing the model parameters within +/– 10% of the nominal values. The perturbed size 254 
of 10% is similar to Dumedah and Walker (2014). Based on the CABLE structure, the  255 
and  estimates are most sensitive to the model parameters listed in Table 2. For 256 
example, the fractions of clay, sand, and silt (fclay, fsand, fsilt) are used to compute soil 257 
parameters including field capacity, hydraulic conductivity, and soil saturation which mainly 258 
affect soil moisture storage. Similarly, the drainage parameters (e.g., qsub, fp) control the 259 
amount of subsurface runoff, which has a direct impact on root zone soil moisture and 260 
groundwater storages.  261 

From ensemble generations, total = 210 sets of the ensemble water storage estimates ( ) 262 
are obtained: 263 

= [ | | | … | ]  (17) 264 

and the mean value of  is computed as follows: 265 

= |     (18) 266 

Note that due to the absence of GSWP3, Princeton, and MERRA data, the number of 267 
ensembles reduce to = 180 after December 2010, = 150 after December 2012, and = 268 
120 after February 2016, respectively. The mean value is removed from each ensemble 269 
member, = , and the error covariance matrix of the model is empirically 270 
computed as: 271 

= ( ) ( 1)   (19) 272 

The  (Eq. (18)) and  (Eq. (19)) terms can be directly used in Eq. (11). 273 

Note that the sampling error caused by finite sample size might lead to spurious correlations 274 
in the model covariance matrix (Hamill et al., 2001). The effect can be reduced by applying 275 
an exponential decay with a particular spatial correlation length to . In this study, the 276 
correlation length is determined based on the empirical covariance of model estimated 277 

. The covariance function of  is firstly assumed isotropic, and it is computed 278 
empirically based on the method given in Tscherning and Rapp (1974). The distance where 279 
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the maximum value of the variance decreases to half is defined as the correlation length. The 280 
obtained values vary month-to-month, and the mean value of 250 km is used in this study.  281 

It is emphasized that the model omission error caused by imperfect modelling of hydrological 282 
process within the LSM is not taken into account in the above description. We assume for 283 
such model error by increasing 20% of the model covariance. (i.e., multiplying  by 1.2). 284 
 285 

4.3 Validation data 286 

4.3.1 Satellite soil moisture observation 287 

The satellite observed surface soil moisture data is obtained from the Advanced Microwave 288 
Scanning Radiometer-Earth Observing System (AMSR-E) cooperating the Land Parameter 289 
Retrieval Model (Njoku et al., 2003). The observation is used to validate our estimates of top 290 
soil moisture changes ( ). The AMSR-E product provides volumetric water content in 291 
the top layer derived from a passive microwave data (from NASA EOS Aqua satellite) and 292 
forward radiative transfer model. In this study, the level 3 product, available daily between 293 
June 2002 and June 2011 at 0.25o×0.25o spatial resolution is used (Owe et al., 2008). The 294 
measurements from ascending and descending overpasses are averaged for each frequency 295 
band (C and X). Then, the monthly mean value is computed by averaging the daily data 296 
within a month. To obtain the variation of the surface soil moisture, the long-term mean 297 
between June 2002 and June 2011 is removed from the monthly data. Regarding the different 298 
depth measured in CABLE and AMSR-E, the CDF-matching technique (Reichle and Koster, 299 
2004) is used to reduce the bias between the top soil moisture model and the observation. 300 
Since there is no satellite observed or ground measured root zone soil moisture data for 301 
meaningful comparison with our results, particularly at continental scale. Validation of 302 

 at regional and continental scales is currently unachievable due to a complete lack of 303 
observations at this spatial scale.  304 
 305 

4.3.2 In-situ groundwater 306 

The in-situ groundwater level from bore measurements are obtained from 2 different ground 307 
observation networks (see Fig. 1). The data in Queensland are obtained from Department of 308 
Natural Resources and Mines (DNRM) while the data in Victoria is from Department of 309 
Environment and Primary Industries (DWPI). More than 10,000 measurements are available 310 
from each network, but the data gap and outliers are present. Therefore, the bore 311 
measurement is firstly filtered by removing the sites that present no data or data gap longer 312 
than 30 months during the study period.  313 

To obtain the monthly mean value, the hourly or daily data are averaged in a particular 314 
month. The outliers are detected and fixed using the Hampel filter (Pearson, 2005) where the 315 
remaining data gaps are filled using the cubic spline interpolation. To obtain the groundwater 316 
level variation, the long-term mean groundwater level computed between the study period is 317 
removed from the monthly values. The groundwater level variation ( ) is then converted to 318 

 using = , where  is specific yield. Based on Chen et al. (2016), = 319 
0.1 is used for the Victoria network. Specific yields of Queensland’s network have been 320 
found ranging from 0.045 (Rassam et al., 2013) to 0.06 (Welsh 2008), and an averaged = 321 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-318
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



9 
 

0.05 is used in this study. Finally, the mean value computed from all data (in each network) is 322 
used to represent the in-situ data of the network. 323 
 324 

5. Results 325 

5.1 Model-only performance 326 

We study the model  changes under different meteorological forcing and land 327 
parameterization. Total 210 estimates of monthly  (sum of , , and ) are 328 
obtained between January 2003 and March 2016 from the ensemble run based on 7 different 329 
precipitation inputs. Then, the averaged values of the  estimates are computed from the 330 
30 precipitation-associated ensemble members. This results in 7 sets of monthly mean  331 
estimates from 7 different precipitation data. For each set, the monthly  is computed by 332 
removing the long-term mean computed between January 2003 and March 2016.  333 

The precipitation-based  are then compared with the GRACE-mascon solution (see 334 
Sect. 3.2) over 10 different Australian basins. The comparison is carried out between January 335 
2003 and March 2016. Due to the availability of the data, the periods used are shorter in cases 336 
of GSWP3, Princeton, and MERRA precipitation (see Table 1). The metric used to evaluate a 337 
goodness of fit between CABLE run and GRACE mascon estimates is the Nash-Sutcliff (NS) 338 
coefficient (see Eq. (A1)) (Fig. 2). 339 

Figure 2 demonstrates CABLE  varies noticeably by precipitation as well as locations. 340 
The area-weighted average values (see Eq. (A2)) computed from Princeton, GSWP3, and 341 
TRMM yields the model  reasonably agreeing with GRACE by giving the NS 342 
coefficient greater than 0.45, while MERRA, PERSIANN, and GLDAS show NS = ~0.3. The 343 
less agreement is mainly due to the quality of rainfall estimates over Australia. The NS of 344 
ECMWF is around 0.4.  345 

All model ensembles are consistent with the GRACE data over Timor Sea and inner parts of 346 
Australia (e.g., LKE, MRD, NWP) where the NS value can reach as high as 0.9 (see e.g., 347 
TRMM over TIM). On the contrary, the less agreement is found mostly over the coastal 348 
basins. Very small or even negative NS values indicate the misfit between CABLE and 349 
GRACE mascon solutions, and they are observed over Indian Ocean (see GLDAS), North 350 
East Coast (see GSWP3, PERSIANN, TRMM), South East Coast (see MERRA, TRMM), 351 
South West Coast (see GSWP3, GLDAS, MERRA), and South West Plateau (see MERRA).  352 

By averaging all  estimates from 7 different precipitation, the mean-ensemble estimate 353 
(MN) delivers the best agreement with GRACE as seen by the highest average NS value (MN 354 
of AVG = 0.55) among all ensembles. Particularly, NS values are greater than 0.4 in all 355 
basins and no negative NS values are presented in MN. In average, it can be clearly seen that 356 
using the mean value (MN) is a viable option to increase the overall performance of the 357 

 estimates. Therefore, only CABLE MN result will be used in further analyses. The 358 
comparison with the GRGS GRACE solution was also evaluated (not shown here) and the 359 
overall results are similar to Fig. 2. 360 
5.2 Impact of GRACE on storage estimates 361 

5.2.1 Contribution of GRACE 362 
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This section investigates the impact of the GC approach on the estimates of various water 363 
storage components. The  estimate obtained from the GC approach is demonstrated in 364 
Sect. 5.1, by comparing with the independent GRACE mascon solution. Figure 2 shows the 365 
GC result yields the highest NS values in all basins, outperforming all other CABLE runs. In 366 
average (AVG), the NS value increases by ~35% (0.55 to 0.74) from the MN case. The 367 
similar behaviour is also seen when compared with the GRGS GRACE solution (not shown); 368 
the average NS value increases from 0.50 to 0.74. This is not surprising as the GC approach 369 
uses the fundamental GRACE tracking data as GRACE mascon and GRGS solutions do. 370 
Improvement of NS coefficient indicates merely the successfulness of integrating GRACE 371 
data and the model estimates.  372 

Figure 3 shows the GC results of  as well as , , and  in different 373 
basins. The monthly time-series and the de-seasonalized time-series are shown. In general, 374 
GRACE tends to increase  when the model  (MN) is predicted to be 375 
underestimated (see e.g., LKE, MRD, NWP, SWP, TIM between 2011 and 2012) and by 376 
decrease  when determined to be overestimated (see all basins between 2008 and 377 
2010). A clear example is seen over Gulf of Carpentaria (Fig. 3d), where CABLE 378 
overestimates  and produces phase delay between 2008 and 2010. The over estimated  379 
amplitude and phase delay seen in CABLE  during this above period (Fig. 3c) is 380 
caused by an overestimation of soil and groundwater storage. The positively biased soil and 381 
groundwater storage causes a phase delay by increasing the amount of time required for the 382 
subsurface drainage (baseflow) to reduce to soil and groundwater stores. The overestimation 383 
of water storage is the result of overestimated precipitation or underestimated 384 
evapotranspiration.  The amplitude and phase of the water storage estimate are adjusted 385 
toward GRACE observation in the GC approach. 386 

The impact of GRACE varies across the individual storage as well as across the geographical 387 
location (climate regime). In general, the major contributors to   are  and . 388 
Due to a small store size (only ~2 cm thick),  contributes only ~2 % to . As 389 
such, , and  have greater variations, which commonly lead to greater uncertainty 390 
compared to , and therefore, the stores anticipate greater shares from the GRACE 391 
update. This behaviour is seen over all basins where the differences between CABLE-392 
simulated and GC , and  estimates are greater (compared to ).  393 

Furthermore, the impact of GRACE on , and  is different across the continent. 394 
For example, over central and southern Australia (see e.g., LKE, MRD, NWP, SWP), the dry 395 
climate is responsible for a small amount of groundwater recharge and most of the infiltration 396 
is stored in soil compartments. In this climate condition,  amplitude is significantly 397 
larger than  and it plays a greater role in , and consequently, the GRACE 398 
contribution is mostly seen in  component. Different behaviour is seen over the 399 
northern Australia (GOC, NEC, TIM) where  amplitude are greater (~40 % of ) 400 
compared to other basins (only ~17 % of ). This is due to the sufficient amount of 401 
rainfall over the wet climate region, replenishing groundwater recharges and resulting in 402 
greater variability in . Therefore, compared to the dry climate basin, the GRACE 403 
contributes to  over these basins by the larger amount.  404 
 405 

5.2.2 Impact on long-term trend estimates 406 
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The spatial patterns of the long-term trends of water storage changes over January 2003 and 407 
March 2016 are analysed before and after applying the GC approach (Fig. 5). For 408 
comparison, the long-term trends of  derived from the mascon and GRGS solutions are 409 
also shown (Fig. 5a, 5b). From Fig. 5d, GRACE effectively changes the long-term trend 410 
estimates in most basins in a way the spatial pattern of the  trend of the GC solution 411 
consistent to the mascon and GRGS solutions, while satisfying the model processes and 412 
keeping the spatial resolution. The trend of  is insignificant (Fig. 5e) and the GC 413 
approach does not change (Fig. 5f). The largest adjustment is seen in  and  414 
components, to be consistent with the GRACE data in most basins (Fig. 5h, 5j). 415 

GRACE shows significant changes in the  trend estimates particularly over the 416 
northern and western parts of the continent. The model estimates around the Gulf of 417 
Carpentaria basin show a strong negative trend that is inconsistent from the GRACE data. It 418 
is found that underestimated precipitation after 2012 is likely the cause of such an 419 
incompatible negative trend (see Fig. 3d). Applying the GC approach clearly improves the 420 
trend (Fig. 5c vs. 5d). The other example is seen over the western part of the continent (see 421 
rectangular area in Fig. 5c, 5d) where the averaged long-term trend of  was predicted 422 
to be –0.4 cm/year but changed to be –1.2 cm/year (see also Sect. 5.4) by the GC approach. 423 
The precipitation over the western Australia is understood to be overestimated after 2012, 424 
evidently seen by that the model  is always greater than the GC solution (see e.g., Fig. 425 
3h, 4d, 4p). The GC approach reveals that the water loss over the western Australia is at least 426 
twice greater than what has predicted by the CABLE model.  427 

In addition, the shortage of water storage in the south-eastern part of the continent from the 428 
millennium drought (McGrath et al., 2012) has been recovered (seen as a positive water 429 
storage trend in Fig. 5) after the rainfall between 2009 and 2012, while the western part is 430 
still drying out (seen as negative trends). The trend estimates in terms of mass change is 431 
discussed in more detail in Sect. 5.4.  432 
 433 

5.2.3 Reduction of uncertainty 434 

Influenced by climate pattern, the uncertainty of water storage estimates significantly varies 435 
across Australia. The uncertainty of the model estimate is computed from the variability 436 
induced by different precipitation and model parameters while the uncertainty of GC solution 437 
is computed using Eq. (13). As expected, larger uncertainties are observed in  and 438 

 than in  (an order of magnitude smaller) since  is smaller than others 439 
(Fig. 6). Over the wet basins, larger amplitude of the water storage leads to larger uncertainty, 440 
seen over Gulf of Carpentaria, North East Coast, South East Coast, and Timor Sea where the 441 
CABLE-simulated  uncertainty is approximately 28 % larger than other basins. The 442 
smaller uncertainty is found over the dry regions (e.g., LKE, SWP). In most basins, the 443 
uncertainty of  is larger than the , except the wet basins (e.g., GOC, NEC, TIM) 444 
where the greater groundwater recharge leads to a larger uncertainty of .  445 

Figure 6 demonstrates how much the formal error of each of storage components is reduced 446 
by the GC approach. Overall, the estimated CABLE uncertainties averaged over all basins 447 
(AVG) are 0.2, 4.0, 4.0, and 5.7 cm for ,  , , and , respectively. 448 
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With the GC approach, the uncertainties of ,  , , and  decrease by 449 
approximately 26%, 35%, 39%, and 37%, respectively.  450 

It is worth mentioning that the model uncertainty is mainly influenced by the meteorological 451 
forcing data. The uncertainty of precipitation derived from 7 different precipitation products 452 
is shown in Fig. 6e. The spatial pattern of the precipitation uncertainty is correlated with the 453 
uncertainty of water storage estimates. The larger water storage uncertainty is deduced from 454 
the larger precipitation uncertainty. The quality of precipitation forcing data is found to be an 455 
important factor to determine the accuracy of water storage computation. 456 
 457 

5.3 Comparison with independent data 458 

5.3.1 Soil moisture 459 

The  estimates are compared with the AMSR-E derived soil moisture. The processing 460 
of AMSR-E data is described in Sect 4.3.1. The performance is assessed using Nash-Sutcliff 461 
coefficients, given in Table 3. In general, CABLE (MN) shows a good performance in the top 462 
soil moisture simulation showing NS value of >0.4 for most of the basins. The top soil 463 
moisture estimate shows slightly better agreement with the C-band measurement of the 464 
AMSR-E product. This is likely caused by the greater emitting depth of the C-band 465 
measurement (~1 cm), which is closer to the depth of the top soil layer (~2 cm) used in this 466 
study (Njoku et al., 2003).  467 

The GC approach leads to a small bit of improvement of the top soil estimate consistently 468 
from C- and X-band measurements and from all basins. No degradation of the NS value is 469 
observed in the GC solutions. The largest improvement is seen over LKE and NEC, where 470 
NS increases by 10 – 15%.  For other regions, the change in the NS coefficient may be 471 
incremental.  472 
 473 

5.3.2 Groundwater 474 

The  estimates from the model and the GC method are compared with the in situ data 475 
obtained from 2 different ground networks in Queensland and Vitoria. For each network, all 476 

 data inside the groundwater network boundary (see polygons in Fig. 1) are used to 477 
compute the average  time series. From the comparison given in Fig. 7, it is found that 478 
the GC solutions of  follows the overall inter-annual pattern of CABLE but with a 479 
considerably larger amplitude. This results in a better agreement with the in situ  data 480 
seen from both networks. The NS coefficient of  between the estimates and the in situ 481 
data are given in Table 4. The CABLE  performs significantly better in Queensland 482 
(NS = ~0.5) than Victoria (NS = ~0.3). Significant improvement is found from the GC 483 
solutions in both networks, where the NS value increases from 0.5 to 0.6 (~ 22 %) in 484 
Queensland and from 0.3 to 0.6 (~85 %) in Victoria. Even greater improvement is seen when 485 
the inter-annual patterns are compared. The NS value increase from 0.5 to 0.7 (~ 32 %), and 486 
0.4 to 0.8 (~93 %) in Queensland and Victoria, respectively. 487 

The comparison of the long-term trend of  is also evaluated. The estimated trends in 488 
Queensland and Victoria are given in Table 4. Beneficially from the GC approach, the  489 
trend is improved by approximately 20 % (from 0.4 to 0.6, compared to 1.6 cm/year) in 490 
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Queensland. Increasing of  is mainly influenced by the large amount of rainfall during 491 
the 2009 – 2012 La Niña episodes (see Fig. 7a). In Victoria, significant improvement of 492 

 trend by about 76 % (from 0.1 to –0.2, compared to –0.3 cm/year) is observed. 493 
Similar improvement of long-term trend estimates is seen in de-seasonalized time series 494 
(improves by ~15 % in Queensland and by ~74 % in Victoria). Decreasing of  in 495 
Victoria is mainly due to the highly-demanded groundwater consumption by agriculture and 496 
domestic activities (van Dijk et al., 2007; Chen et al., 2016). As the groundwater 497 
consumption is not parameterized in CABLE, the decreasing of  estimate cannot 498 
properly captured in the model simulation. Applying GC approach effectively reduces the 499 
model deficiency and improves the quality of the groundwater estimations.  500 
 501 

5.4 Assessment of mass variation in the past 13 years 502 

Australia experiences significant climate variability; for example the millennium drought 503 
starting from late ’90 (Van Dijk et al., 2013) and extremely wet condition during several La 504 
Niña episodes (Trenberth 2012; Han 2017). These periods are referred as “Big Dry” and “Big 505 
Wet” (Ummenhofer et al., 2009; Xie et al., 2016). To understand the total water storage 506 
(mass) variation influenced by these two distinct climate variabilities, the water storage 507 
change obtained from the GC approach during Big Dry and Big Wet is separately 508 
investigated over 10 basins. The time window between January 2003 and December 2009 is 509 
defined as the Big Dry period while between January 2010 and December 2012 is defined as 510 
the Big Wet period following Xie et al. (2016). In each period, the long-term trends of GC 511 
estimates of , ,  , and  are firstly calculated. Then, the total water 512 
storage variation (in meter) is simply obtained by multiplying the long-term trend (in m/year) 513 
with the number of years in the specific period, 7 years for Big Dry and 3 years for Big Wet. 514 
To obtain the mass variation, the water storage variation is multiplied by the area of the basin 515 
and the density of water (1000 kg/m3). The estimated mass variations during Big Dry and Big 516 
Wet are displayed in Fig. 8. The long-term mass variation of the entire period (January 2003 517 
– March 2016) is also shown.  518 

During Big Dry (2003 – 2009), a significant loss of total storage (40 – 60 Gton over 7 years) 519 
is observed over LKE, MRD, NWP, and SWP basins. The largest groundwater loss of >20 520 
Gton is found from LKE and MRD. No significant change is observed over the tropical 521 
climate regions (e.g., GOC, NEC). The mass loss mostly occurs in the root zone and 522 
groundwater compartments where the sum of  and  explains more than 90% of 523 
the  value. The mass loss is also observed in  but >10 times smaller than 524 

 and .  525 

During Big Wet (2010 – 2012), the basins like LKE, MRD and TIM exhibit the significant 526 
total storage gain of >100 Gton. The gain is particularly larger in  over the basins that 527 
experienced the significant loss during Big Dry. For example, over LKE and MRD, the gain 528 
of  is approximately 2 – 3 times greater than . It implies that most of the 529 
infiltration (from the 2009 – 2012 La Niña rainfall) is stored as soil moisture through the long 530 
drought period, and that the groundwater recharge is secondary to the  increase.  531 

The opposite behaviour is observed over the basins (such as NEC and GOC) that experienced 532 
mass gain during Big Dry. The water storage gain is greater in  compared to . In 533 
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NEC,  gain is ~8 times larger than  during Big Wet. The soil compartment may 534 
be saturated during Big Dry and additional infiltration from the Big Wet precipitation leads to 535 
an increased groundwater recharge. The  loss observed over GOC is simply caused by 536 
the timing selection of Big Wet period, which ends earlier (~2011) in GOC than in other 537 
basins. The  gain becomes ~26 Gton if the Big Wet period is defined as 2008 – 2011. 538 
During the post-Big Wet period (2012 and afterwards), the decreasing trend of water storage 539 
is observed from all basins (see Fig. 3, 4). This is mainly caused by the decrease in 540 
precipitation after 2012 and by gradual water loss through evapotranspiration (Fasullo et al., 541 
2013). 542 

The overall water storage change in the last 13 years demonstrates that the severe water loss 543 
from most basins during Big Dry (the millennium drought) is balanced with the gain during 544 
Big Wet (the La Niña). The negative  estimated during Big Dry becomes positive in 545 
LKE, MRD, and SEC and less negative in TIM, and the greatest gain is observed from NEC 546 
by ~50 Gton during 13 year-period (see Fig. 8c). However, the water mass loss is still 547 
detected over the western basins (e.g., IND, NWP, SWP, SWC), and their magnitudes are 548 
even larger than the mass loss during Big Dry. For example, the greatest  loss of ~79 549 
Gton is observed over NWP, which is ~25 Gton greater than the loss during Big Dry (see Fig. 550 
8a and 8c). The basin is less affected by the La Niña, and the rainfall during Big Wet is 551 
clearly inadequate to support the water storage recovery in the basin. Rainfall deficiency also 552 
reduces the groundwater recharge, resulting in even more decreasing of , compared to 553 
the Millennium Drought period (see Fig. 8j and 8l). The continual decrease in water storage 554 
over western basins is likely caused by the interaction of complex climate patterns like El 555 
Niño Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode cycles 556 
(Australian Bureau of Meteorology, 2012; Xie et al., 2016).  557 
 558 

6. Further development of GC approach 559 

6.1 Comparison of GC approach with alternatives 560 

The simplest approach to estimate  is to subtract the model soil moisture component 561 
from GRACE  data, without considering uncertainty in the model output, as used in 562 
Rodell et al. (2009) and Famiglietti et al. (2011). This method is called Approach 1 (App 1). 563 
In Approach 2 (App 2) as in Tangdamrongsub et al. (2017), by accounting for the uncertainty 564 
of model outputs and GRACE data, the water storage states are updated through a Kalman 565 
filter:  566 

= + ( + )    (20) 567 

where , ,  are described in Sect. 2,  is an observation vector containing GRACE-568 
derived , and  is an error variance-covariance matrix of the observation. The 569 
GRACE-derived  and its error information is obtained from the mascon solution. The 570 
matrix  is a (diagonal) error variance matrix since no covariance information is given in the 571 
mascon product.  572 

The  estimates from App1, App2 and GC in Queensland and Victoria are shown in 573 
Fig. 9. It is clearly seen that  from App1 are overestimated while the one from App2 574 
fits the ground data significantly better. This behaviour was also seen in Tangdamrongsub et 575 
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al. (2017) that the water storage estimates tend to be overestimated when error components 576 
such as spatial correlation error were neglected as in App1.  from App2 shows clear 577 
improvements in terms of NS coefficients in both networks. Considering the de-seasonalized 578 

 estimates, in Queensland, the trend increases from 0.39 ± 0.03 to 0.42 ± 0.03 cm/year 579 
(improves by 1.5%), and the NS value increases from 0.46 to 0.53. In Victoria, the trend 580 
decreases from 0.73 ± 0.10 to 0.46 ± 0.05 cm/year (improves by 27%), and the NS value 581 
increases from –0.89 to 0.30. Although App2 is not yet as good as the GC solution based on 582 
the most comprehensive error propagation, this simple test demonstrates an important of 583 
considering the uncertainty. The reason of App2 being less accurate than GC is likely due to 584 
too simplified error information implemented in App2.  585 
 586 

6.2 GC data assimilation approach 587 

We so far discussed the GC approach to update the water storage estimates independently 588 
every month. The approach can be easily expanded to sequentially update the model initial 589 
states whenever the GRACE observation is available (for example, every day) as in data 590 
assimilation (DA) like ensemble Kalman filter (Evensen, 2003) and particle filter (Weerts 591 
and El Serafy, 2006). We briefly describe a way of modifying the GC approach suitable for 592 
DA. The ensemble of simulated monthly water storage estimates is predicted based on the set 593 
of ensemble forcing data and model parameters. This is simply running CABLE for K 594 
(number of ensemble) times. When GRACE observation is available, the updated state is 595 
computed:  596 

= ( + ) +     (21) 597 

where the subscript  represents the ensemble or perturbed version of the original vector or 598 
matrix (see e.g., Eq. (11)). The dimension of , ,  is 3J×K. The estimated  can 599 
be directly used as in the initial state for the next time step for CABLE run (Eicker et al., 600 
2014; Tangdamrongsub et al., 2015; Tian et al., 2017), or used in the repeated run to avoid 601 
any spurious jump of the water storage estimates between the each step (Forman et al., 2012; 602 
Tangdamrongsub et al., 2017). This sequential update process can be carried out as long as 603 
desired. The feasibility of GRACE DA has been demonstrated with “devised” uncertainty 604 
(covariance) information. As a future work, we will develop new DA approach on the basis 605 
of full error information of GRACE data by using the least-squares normal equation and thus 606 
carrying the error information from the fundamental (satellite tracking) data level.  607 
 608 

7. Conclusion 609 

This study presents an approach of combining the raw GRACE observation with model 610 
simulation to improve water storage estimates over Australia. Distinct from other methods, 611 
we exploit the fundamental GRACE satellite tracking data and the full data error variance-612 
covariance information to avoid alteration of signal and measurement error information 613 
present in higher level data products.  614 

We compare groundwater storage estimates from GC approach and two other approaches, 615 
subject to inclusion of GRACE uncertainty in  calculation. Validating three results of 616 

 against the in situ groundwater data, we find that the GC approach delivers the most 617 
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accurate groundwater estimate, followed by the approach based on incomplete information of 618 
GRACE’s data error. The poorest estimate of groundwater storage is seen when the GRACE 619 
uncertainty is completely ignored. This confirms the critical value of using the complete 620 
GRACE signal and error information at the raw data level.  621 

The analysis of water storage change between 2003 and 2016 reveals that half of the 622 
continent (5 out of 10 basins) is still not fully recovered from the Millennium Drought. The 623 
TWS decrease in Western Australia has been most characteristic and the GC approach finds 624 
that the water loss mainly occur in groundwater layer. Rainfall inadequacy is attributed to the 625 
continual dry condition, leading to a greater decreasing of groundwater recharge and storage 626 
over Western Australia.  627 

The land surface model we used is deficient in anthropogenic groundwater consumption. The 628 
model calibration will never help and the groundwater consumption must be brought in by 629 
external sources. On the contrary, the statistical approach like our GC approach may be 630 
useful to fill in the missing component and lead to a more comprehensive water storage 631 
inventory.  632 

However, it is difficult to constrain different water storage components by only using total 633 
storage observation like GRACE. In addition, it is challenging to improve surface soil 634 
moisture varying rapidly in time, using a monthly mean GRACE observation. Tian et al. 635 
(2017) utilized the satellite soil moisture observation from the Soil Moisture and Ocean 636 
Salinity (SMOS, Kerr et al., 2001) in addition to GRACE data for their data assimilation and 637 
showed a clear improvement in the top soil moisture estimate. The GC approach with 638 
complementary observations at higher temporal resolution should be considered particularly 639 
to enhance the surface soil moisture computation. 640 

Finally, the GC approach can be simply extended for GRACE data assimilation. Assimilating 641 
the raw GRACE data into land surface models like CABLE enables the model state and 642 
parameter to be adjusted with the realistic error information, allowing reliable storage 643 
computation. The GC data assimilation will be developed in our future study.  644 
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Appendix: Nash-Sutcliff coefficient and area-weighted average 652 

Nash-Sutcliff coefficient (NS) is computed as follows: 653 

= 1 ( )
( )

    (A1) 654 

where  is an observation vector,  is the mean of the observation,  is a vector containing 655 
the simulated result,  is the index of observation, and  is the number of observation. 656 

Area-weighted average ( ) is compute as follows: 657 

=      (A2) 658 

where  is the area size,  is the mean value inside the considered area,  is the area index, 659 
and  is the number of considered area. 660 

  661 
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Table 1. Precipitation data from 7 different products used in this study, the Global Soil 853 
Wetness Project Phase 3 (GSWP3), the Global Land Data Assimilation System (GLDAS), 854 
the Tropical Rainfall Measuring Mission (TRMM), the Modern-Era Retrospective Analysis 855 
for Research and Applications (MERRA), the European Centre for Medium-Range Weather 856 
Forecasts (ECMWF), the Princeton's Global Meteorological Forcing Dataset (Princeton), and 857 
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 858 
Networks (PERSIANN). The temporal resolution of all products are 3 hours. Most products 859 
are available to present while GSWP3, MERRA, and Princeton terminate earlier. 860 

Product Availability Spatial 
resolution 

References 

GSWP3 1901/01 – 
2010/12 

0.5o×0.5o Dirmeyer et al. (2006) 

GLDAS 
(NOAH025SUBP 3H) 

2000/03 –
present 

0.25o×0.25o Rodell et al. (2004) 

TRMM (3B42) 1998/01 –
present 

0.25o×0.25o Huffman et al. (2007) 

MERRA 
(MSTMNXMLD.5.2.0) 

1980/01 – 
2016/02 

0.5o×0.67o Rienecker et al. (2011) 

ECMWF (ERA-Interim) 1979/01 –
present 

0.75o×0.75o Dee et al. (2011) 

Princeton (V2 0.5o) 1987/01 – 
2012/12 

0.5o×0.5o Sheffield et al. (2005) 

PERSIANN (3 hr) 2002/03 – 
present 

0.25o×0.25o Sorooshian et al. (2000) 

 861 

 862 

Table 2. Model parameters that are sensitive to SM and GWS estimates. The following 863 
parameters were perturbed using the additive noise with the boundary conditions given in the 864 
last column. The further parameter description can be found in Decker (2015) and Ukkola et 865 
al. (2016).  866 

Parameter Name Spatial 
variability 

Perturbed 
range 

fclay, fsand, fsilt Fraction of clay, sand, and silt Yes 0 – 1  
fsat Fraction of grid cell that is saturated No 810 – 990 
qsub Maximum rate of subsurface drainage 

assuming a fully saturated soil column 
No 0.009 – 0.01 

fp Tuneable parameter controlling drainage speed No 1.9 – 2.2  
 867 
  868 
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Table 3. NS coefficients between top soil moisture estimates and the satellite soil moisture 869 
observations from AMSR-E products over 10 different Australian basins. The area-weighted 870 
average value (AVG) is also shown. 871 

 C-band X-band 
 CABLE GC CABLE GC 
GOC 0.67  0.68 0.58  0.60 
IND 0.53  0.54 0.41  0.41 
LKE 0.48  0.53 0.36  0.42 
MRD 0.77  0.80 0.75  0.78 
NEC 0.34  0.39 0.14  0.19 
NWP 0.33  0.36 0.38  0.42 
SEC 0.68  0.68 0.69  0.71 
SWC 0.85  0.85 0.89  0.89 
SWP 0.55  0.56 0.46  0.48 
TIM 0.44  0.45 0.16  0.16 
AVG 0.53  0.56 0.47  0.50 
 872 

 873 

Table 4. NS coefficient and long-term trend of  estimated from the model-only and 874 
GC solutions in Queensland and Victoria groundwater network. The long-term trend of the 875 
in-situ data is also shown. 876 

 Queensland Victoria 
 In-situ CABLE GC In-situ CABLE GC 
Original time-series 
NS [-] - 0.49 0.60 - 0.34 0.63 
Trend 
[cm/year] 

1.60 ± 0.05  0.39 ± 0.02  0.63 ± 0.05 –0.27 ±  
0.05 

0.10 ± 002 –0.18 ± 0.03 

De-seasonalized time-series 
NS [-] - 0.50 0.66 - 0.43 0.83 
Trend 
[cm/year] 

1.60 ± 0.05 0.39 ± 0.02 0.57 ± 0.04 –0.25 ± 
0.05 

0.10 ± 0.02 –0.16 ± 0.03 
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 878 

Figure 1. (a) Geographical location of 10 Australian river basins. Red and blue polygons 879 
indicate the boundaries of groundwater networks in Queensland (b) and Victoria (c), 880 
respectively. Triangles (in b and c) represent the selected bore locations used in this study.  881 
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 883 

Figure 2. NS coefficients between the model and GRACE-mascon  over 10 Australian 884 
basins (in ordinate). The NS values were computed based on CABLE  computed with 885 
7 different precipitation data (in abscissa), GSWP3 (GS), GLDAS (GL), ECMWF (EC), 886 
MERRA (MR), PERSIANN (PR), TRMM (TR). The NS value of the mean  estimates 887 
(the average of 7 variants) is also shown (MN). The area-weighted average NS value over all 888 
basins is also shown (AVG). The NS value of  from the GRACE-combined (GC) 889 
approach is shown in the last column. The full name of the basins can be found in Fig. 1. 890 
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 892 

Figure 3. The monthly time series of , , , and  estimated from 893 
model (blue) and GC (red) solutions over Gulf of Carpentaria (GOC), Indian Ocean (IND), 894 
Lake Eyre (LKE), Murray-Darling (MRD), and North East Coast (NEC). The de-895 
seasonalized time series is also shown.  896 
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 898 

Figure 4. Similar to Fig. 3, but estimated over North West Plateau (NWP), South East Coast 899 
(SEC), South West Coast (SWC), South West Plateau (SWP), and Timor Sea (TIM). 900 
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 902 

Figure 5. Long-term trends of  (c, d),  (e, f),  (g, h), and  (i, j) 903 
estimated from the model-only (left) and the GC solutions (right). Results of GRACE  904 
independently from mascon (a) and GRGS solution (b) are also shown. The eastern part of 905 
North West Plateau basin is shown as a rectangle polygon in (c) and (d). 906 
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 908 

Figure 6. Uncertainties of , , , and  estimated from the model 909 
(blue) and the GC solutions (red) in 10 different Australian basins. The uncertainty of the 910 
precipitation is shown in (e). The area-weighted average value (AVG) is also shown. 911 
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 913 

Figure 7. The monthly time series of  estimated from the model, GC solutions, and 914 
measured from the in situ groundwater network in Queensland (a) and Victoria (b). De-915 
seasonalized time series are shown in thick lines. 916 
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 918 

Figure 8. Mass changes (Gton, Giga tonne) of , , , and  estimated 919 
from GC solutions over 10 Australian basins in 3 different periods, Big Dry (January 2003 – 920 
December 2009), Big Wet (January 2010 – December 2012), and entire period (January 2003 921 
– March 2016). 922 
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 924 

Figure 9.  estimated from Approach 1 (App1) and Approach 2 (App2) in Queensland 925 
(a) and Victoria (b). The in-situ groundwater network data and the GC solutions are also 926 
shown. De-seasonalized time series are shown in thick lines. 927 
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