
Referee #1 
 
I read once more a version of the paper and also the rebuttal letter in response to my first review. 
However, I am not satisfied with the provided answers on two major points raised in my first review. I 
am therefore recommending to ask the authors for another revision in order to give them the chance to 
properly address those concerns.  
 
We thank reviewer 1 for the comments. Below are our responses (in blue) to new comments #1 and #2, 
including the original comments and replies.  
 
Major Comment # 1 
 
(Original review) I suggest that comparisons with the official ITSG2016 monthly solutions are included 
in order to demonstrate the added-value of the GC approach over the standard L2 data. Note that 
comparisons against GRGS or JPL monthly solutions as already (partly) included in the paper will not 
be sufficient since ITSG2016 is commonly perceived as a GRACE series of particularly high quality.  
 
(Reply) The computation of Delta TWS from ITSG L2 solutions (like other L2 solutions) is subject to 
the post-processing filters and often followed by the application of empirical scaling factors, obtained 
from the land surface models. Our study provides a more rigorous way of computing Delta TWS without 
going through such ad hoc procedures. GRGS and JPL mascon are internally or post-processed and it 
is not expected users to apply (subjective) post- processing. This is the primary reason we validate our 
results with GRGS and JPL mascon.  
 
(Second review) I disagree. The results of the new method needs to be compared exactly to 
conventionally post-processed gravity fields of the very same L2 data source in order to demonstrate 
the superiority of the proposed method. Conventional postprocessing at least implies restoring spectral 
deficits (degree 1, 2) and the removal of correlated errors (Kusche et al., 2009; or Swenson and Wahr, 
2006). From my point of view, those are in no way just "ad hoc procedures".  
 
(Reply) We added the comparison with the ITSG solutions in the Figure 6 of the revised manuscript.  
The revised Figure 6 now compares the ΔTWS results from ITSG (a), JPL/Mascon (b), and GRGS 
solutions (c), and this study GC (e). This particular example of ITSG is from the DDK5 filtering in 
addition to usual replacement of degree-1 and degree-2/order-0 coefficients. For the reviewer’s 
information, we demonstrate how the different filters (for example, DDK1, DDK5, and DDK8 of 
Kusche et al., 2009) affect the computation of the storage in Figures S1 and S2.  
 

 
Figure S1: ΔTWS of April 2003, derived from the same ITSG solution with different post-processing 
filters (DDK1, DDK5, and DDK8) applied.  
 



 
Figure S2: Basin average ΔTWS of the North East Coast basin computed from ITSG-DDK1 and ITSG-
DDK8 solutions.  The RMS difference between two results is ~ 5.3 cm, greater than the amplitude of 
DDK1.  
 
 
 
Major Comment # 2 
 
(Original review) The GC approach assumes that model errors are normally distributed with zero mean 
(eq. 1). Authors should provide more evidence that this assumption is indeed justified in their setting.  
 
(Reply) R3: As the reviewer concerned, the GC approach is developed based on the least-square 
combination, which assumes the uncertainty following the normal distribution with zero mean and 
covariance C.  The derivation and setting of model uncertainty under the given assumption (e.g., zero 
mean) and its limitation are clarified in Sect. 4.2.  
“The GC approach assumes that model errors are normally distributed with zero mean. Any violation 
of this assumption will yield a bias in the combined solutions. Therefore, the mean value is removed 
from each ensemble member, ऒࡾ

ᇱ ൌ ऒࡾ െ  and the error covariance matrix of the model is ,ࡾ෩ࢎ
empirically computed as”  
 
(Second review) My original request was to provide evidence that the assumption of normal distribution 
is indeed justified. This was by no means attempted by the presented changes to the manuscript.  
 
(Reply) We thank the reviewer 1 for being patient to clarify the comment once again.  The distribution 
of the model errors is demonstrated in Figure S3 in this letter as well as Figure 2 in the revised 
manuscript.  The figure illustrates the histogram of the 210 ensemble members (ऒࡾ) for ∆SMtop, ∆SMrz, 
and ∆GWS, after removing the respective means (ࢎ෩ࡾ).  The normal distribution of the model error used 
in the GC approach is grounded on the distribution of ऒࡾ

ᇱ (ऒࡾ
ᇱ ൌ ऒࡾ െ  or the histogram of the (ࡾ෩ࢎ

ensembles. We revised the manuscript and added this new Figure in Section 4.2.  
 



 
Figure S3: Histograms of the model errors (ऒࡾ

ᇱ) computed from 210 ensemble members without the 
mean.  The basin averaged values (from all 10 Australian basins) of January 2003, for example, are 
used to compute the histogram.  
 



Referee #3 
 
This study introduces an inversion technique to use GRACE L1B data to improve the estimation of soil 
moisture and groundwater within Australia. As I mentioned in the previous round, I believe this line of 
research is interesting, however, I am not convinced that the proposed technique is well descried (with 
the current formulation it is not possible to re-do the work), and also it is not well justified (validation 
does not prove that the new method works any better than other available techniques). I recommend a 
reject / major review decision for this contribution.  
We thank the reviewer 3 for the comments. Below is our responses (R, in blue): 
 
Major Concerns: 
A number of my previous comments are not adequately addressed 
• The Methodology section needs to be specified, please add appendices to clearly how the equations 
are built. I cannot figure out how the normal equation is formulated, whether it includes KBRR and any 
orbital information? L120–> Please describe how the matrix A is derived and what are the entries. 
Similarly L128-L130 are unclear.  
R1: As written in the original and revised manuscripts, we use the monthly least-square normal equation 
data from ITSG that are built upon GRACE L1B data products including inter-satellite ranging data.  
To clarify this further, we revised Section 2 of the manuscript by highlighting the use of the normal 
equations and moving the observation equation part to the appendix. The GRACE normal equation data 
are available from, as already given in the manuscript:  
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016 
 
• The accuracy of recovery has not been justified a synthetic study should be added to show the 
framework recovers the introduced gravity signals with a sufficient accuracy, see e.g., 
https://academic.oup.com/gji/article/158/3/813/2062077  
• I cannot accept the following argument: “The approach optimally combines the GRACE’s least-
squares normal equations with CABLE to improve ΔSM and ΔGWS estimates.” Therefore, the 
accuracy of the estimated result is only compared with the model-only result (please see Fig. 6). The 
accuracy of our TWS estimate can reach < 2 cm, which is in line with the GRACE accuracy of ~ 2 cm 
globally (Wahr et al., 2006).  
R2: We are afraid that if we understand what is asked by this comment.  Of course, our method and 
numerical codes were already tested with synthetic data sets, before applying it to the real data. We 
have verified the accurate recovery (within the numerical precision) from the synthetic data. This should 
be clear from our least-squares development as detailed in the manuscript. In addition, the 
comprehensive accuracy estimates of different water storage components is presented in Figure 7 of the 
revised manuscript.  
 
A large part of the introduction is used to state other methods (e.g., assimilation and decomposition-
based inversion) are erroneous. If this is true, reliable evidences must be provided to indicate the 
presented method works better than other technique  
R3: The statements and related references regarding to signal decomposition were removed. For data 
assimilation, the evidences can be found in the references given (e.g., Girotto et al., 2016; Tian et al., 
2017). In this introduction section, we only provide the general background of how ∆GWS has been 
estimated from GRACE, we do not claim that our presented method works better than other technique.  
 
• L16: (e.g., time-variable gravity fields, i.e., Level 2 data, and ... 
R4: The statement is modified. 
 
• L21 remove ‘, not the post-processed Δ WS grid data.’ 
R5: Removed. 
 
• L27: ....combination maximizing the strength of the model and observations while suppressing the 
weaknesses. The approach .....   This is not well justified, in other words, the authors do not show 
combining the final grace products and models is worse than the proposed joint-inversion. 



R6: Revised. “The GRACE-combine (GC) approach is developed for optimal least-squares combination 
and the approach is applied to estimate…”. 
 
• L33-34: ... estimates likely due to limitation of GRACE’s temporal and spatial resolution... The way 
this has been validated in this study does not necessarily back this conclusion up. 
R7: Revised. “Significant improvement is found in groundwater storage while marginal improvement 
is observed in surface soil moisture estimates”. 
 
• GRACE information rigorously and negate these limitations, this study uses the fundamental 
R8: The statement is incomplete, and we do not take any action on this comment. 
 
• L48-L51, Also L55, 59,etc.: before the references add ‘e.g.,’ as these references are only examples of 
existing researches. 
R9: Done.  
 
• L61: (Schumacher et al., 2016,2018; Tangdamrongsub et al., 2017 ) 
Schumacher, M, Kusche, J & Döll, P, 2016, A systematic impact assessment of GRACE error 
correlations on data assimilation in hydrological models. Journal of Geodesy, vol 90., pp. 537-559 
Schumacher, M, Forootan, E, van Dijk, A, Schmied, HM, Crosbie, R, Kusche, J & Döll, P, 2018, 
Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation 
of GRACE data into the WaterGAP Global Hydrology Model. Remote Sensing of Environment, 204, 
pp212-228, doi:10.1016/j.rse.2017.10.029 
R10: References are added.  
 
• L80 ‘incorrect gravity information’ --> does it mean all previous researches are wrong? 
R11: The application of data tuning alters the original gravity information. This is self-explained.  
 
• L81 ‘ began to employ’ --> have applied the L2's (Schumacher etl al., 2016, 2018; Khaki et al., 2017 
a,b) 
Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., van Dijk, A., Schumacher, M., Pattiaratchi, 
C. (2017a), Assessing sequential data assimilation techniques for integrating GRACE data into a 
hydrological model. Advances in Water Resources, 107, pages 301-316, 
doi:10.1016/j.advwatres.2017.07.001 
Khaki, M., Schumacher, M., Forootan, E., Kuhn, M., Awange, J., van Dijk, A. (2017b), Accounting for 
spatial correlation errors in the assimilation of GRACE into hydrological models through localization. 
Advances in Water Resources, 108, pages 99-112, doi:10.1016/j.advwatres.2017.07.024 
R12: References are added.  
 
• L83 ‘still affected by the post-processing filter’ --> This statement is very negative, and criticizes other 
processing strategies without providing a real measure. As far as I understand, in an assimilation 
formulation, incorporating the full co-variance matrix is already very important, useful and sufficient. 
Other post-processing steps have less impacts on the final assimilation results. See Schumacher et al 
2018 and discussions for the Australian case study. If the authors suggest their approach is better than 
other formulations of signal separation, it should be validated and discussed.  
R13: Revised. “Some recent studies began to employ the full variance-covariance information in the 
data assimilation scheme to enhance the quality of the estimates (Eicker et al., 2014, Schumacher et al., 
2016; Tangdamrongsub et al., 2017; Khaki et al., 2017 a,b)”.  
 
• L86: It is not clear why this CABLE model has been selected 
R14: CABLE provides comprehensive water storage component suitable for our analysis, and 
particularly the code and model parameter are publicly available. The additional sentence is added to 
the text to clarify this: “CABLE is a public available land surface model, and can be used to estimate 
soil moisture and groundwater in terms of volumetric water content …”. 
 



• After L92: (Dis-)Similarity of this work with previous studies that use inversion techniques might be 
addressed, see e.g., https://academic.oup.com/gji/article/158/3/813/2062077 
R15: We thank for reviewer suggestion. The reference is addressed in the revised manuscript. 
 
• Please also report on the impact of choices, within the gravity inversion, on the final mass estimation 
see e.g., http://www.sciencedirect.com/science/article/pii/S0264370716301016?via%3Dihub  
R16: It is not clear what the reviewer means by this comment. There are various GRACE processing 
results around including the one the reviewer refers. It is not the focus of comparing all kinds of GRACE 
processing in this study, but demonstrating the way of using GRACE data with the actual covariance 
(normal equation) information. 
 
• After L98: You might add a discussion reflecting the fact GRACE data is sensitive to many processes. 
You select the signal over Australia to simplify the computation etc. 
R17: Revised. “One advantage of the study area is that the state vector can be defined mainly by soil 
moisture and groundwater as other hydrological components (e.g., glacier) are negligible.”. 
 
• L109: ‘from a model’ -->what does this mean? which model? 
R18: Revised.  “a land surface model”. 
 
• Equation5 --> matrices should be shown, e.g., add a appendix 
R19: Revised.  Please see R1. 
 
• L162: How is the contribution of the signal from outside removed or corrected? 
R20: The contribution of the signal from outside is removed using the GRGS solution. This was 
clearly described in Sect. 2 and Sect. 3.2 of the revised manuscript. 
 
• Equation11 --> Please discuss the condition of these matrices used in the inversion. 
R21: The matrix is well conditioned, and the condition number is around 104 – 105.  
 
• Co-variance estimation of the solution and whether it is representative of all measurements errors and 
model errors should be added. 
R22: Fundamentally, the errors estimated from the least-squares combination present both model and 
observation errors (please see Eq. (7)). We present the covariance estimates (in terms of standard error) 
in Fig. 7 of the revised manuscript.  
 
• 4.2 Model uncertainty --> From a hydrological point of view, model’s errors should contain those 
uncertainties related to parameters, forcing data and model structure. The current errors do not reflect 
all these three categories and even the assumptions, that are used to define the distribution of model 
parameters, are not that sophisticated. Therefore, the impact of over-/under-estimation of the model’s 
co-variance matrix on the final inversion results must be evaluated. 
R23: In this study, the model error contains uncertainties related to parameters, forcing data and model 
structure, as the reviewer mentioned. This is written very clearly in Sect. 4.2. In this paper, the model 
forcing data (mainly precipitation) and parameters are both perturbed. We estimate the precipitation 
error based on 7 different products, which we believe it provides more realistic error compared to a 
simple assumption (e.g., 10-30 % of the value) seen in the previous publications and current practices 
(e.g., Eicker et al., 2014; Tangdamrongsub et al., 2015). The offline sensitivity study of forcing data is 
also conducted, and it is found that the water storage estimate is most sensitive to precipitation data, 
and relatively less sensitive to the change of other forcing components (this is written in Sect. 4.1). This 
is the main reason the precipitation is mainly perturbed. The parameters are perturbed based on the 
recommendation of the previous literature and the omission error is also included. In fact, most of 
previous literature (e.g., Zaitchik et al., 2008; Forman et al., 2012; Eicker et al., 2014; Tian et al., 2017, 
etc.) adopt a very similar procedure of model error determination we use here.  
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 9 

Abstract 10 

An accurate estimation of soil moisture and groundwater is essential for monitoring the 11 

availability of water supply in domestic and agricultural sectors. In order to improve the 12 

water storage estimates, previous studies assimilated terrestrial water storage variation 13 

(∆ܹܶܵ) derived from Gravity Recovery and Climate Experiment (GRACE) into land surface 14 

models. However, the GRACE-derived ∆ܹܶܵ was generally computed from the high level 15 

products (e.g., time-variable gravity fields, i.e., Level 2, and land grid from the Level 3 product). 16 

The gridded data products are subjected to several drawbacks such as signal attenuation 17 

and/or distortion caused by posteriori filters, and a lack of error covariance information. The 18 

post-processing of GRACE data might lead to the undesired alteration of the signal and its 19 

statistical property. This study uses the GRACE least-squares normal equation data to exploit 20 

the GRACE information rigorously and negate these limitations. Our approach combines the 21 

GRACE’s least-squares normal equation (obtained from ITSG-Grace2016 product) with the 22 

results from the Community Atmosphere Land Exchange (CABLE) model to improve soil 23 

moisture and groundwater estimates. This study demonstrates, for the first time, an 24 

importance of using the GRACE raw data. The GRACE-combine (GC) approach is 25 

developed for optimal least-squares combination and the approach is applied to estimate the 26 

soil moisture and groundwater over 10 Australian river basins. The results are validated 27 

against the satellite soil moisture observation and the in-situ groundwater data. We 28 

demonstrate the GC approach delivers evident improvement of water storage estimates, 29 

consistently from all basins, yielding better agreement at seasonal and inter-annual time 30 

scales. Significant improvement is found in groundwater storage while marginal 31 

improvement is observed in surface soil moisture estimates.  32 

 33 

1. Introduction 34 

The changes of Terrestrial Water Storage (∆ܹܶܵ) derived from the Gravity Recovery And 35 

Climate Experiment (GRACE) data products have been used in the last decade to study 36 

global water resources, including groundwater depletion in India and Middle East (Rodell et 37 

al., 2009; Voss et al., 2013), water storage accumulation in Canada (Lambert et al., 2013), 38 

flood-influenced water storage fluctuation in Cambodia (Tangdamrongsub et al., 2016). The 39 

gravity data obtained from GRACE satellites are commonly processed and released in three 40 

different product levels (L) that increase in the amount of processing, L1B – satellite tracking 41 

data (e.g., Wu et al., 2006), L2 – global gravitational Stokes coefficients (e.g., Bettadpur, 42 
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2012), and L3 – global grids (e.g., Landerer and Swenson, 2012). The original (L1B) 43 

GRACE information is inevitably altered or sheered due to data processing and successive 44 

post-processing filterings, because the error covariance information is not propagated through 45 

each post-processing step. 46 

The GRACE-derived ∆ܹܶܵ has been computed widely from the higher-level products (e.g., 47 

L2 and L3) on which various ad hoc post-processing filters were applied (e.g., Gaussian 48 

smoothing filter (e.g., Jekeli, 1981), destripe filter (e.g., Swenson and Wahr, 2006)). ∆ܹܶܵ 49 

obtained from these filters lacks proper error covariance information and is attenuated and 50 

distorted. To overcome the signal attenuation in GRACE high-level products, empirical 51 

approaches have been developed, including the application of scale factors computed from 52 

land surface models (Landerer and Swenson, 2012) to the GRACE L3 products. GRACE 53 

uncertainty in high level product is usually unknown or assumed. For example, Zaitchik et al. 54 

(2008) derived empirically a global average uncertainty that is variable depending on choices 55 

of post-processing filters (Sakumura et al., 2014). Furthermore, GRACE error and sensitivity 56 

is dependent on latitudes due to the orbit convergence toward poles (Wahr et al., 2006) and 57 

any post-processing filters will alter the GRACE data and their error information. Rigorous 58 

statistical error information is of equal importance to derivation of ∆ܹܶܵ for data 59 

assimilation and model calibration (Tangdamrongsub et al., 2017; Schumacher et al., 2016, 60 

2018). ∆ܹܶܵ and its uncertainty estimates should be formulated directly from L1B data 61 

considering the complete statistical information. 62 

The GRACE information is not fully exploited in many studies. For example, groundwater 63 

storage variation (∆ܹܵܩ) is often computed by subtracting the soil moisture variation (∆ܵܯ) 64 

component simulated by the land surface model from GRACE-derived ∆ܹܶܵ data (Rodell et 65 

al., 2009, Famiglietti et al., 2011), assuming the model ∆ܵܯ is error-free. This may result in 66 

the inaccurate ∆ܹܵܩ and the associated error estimate as the uncertainties of observation and 67 

of the land surface model outputs are neglected in the combination (or regression) of two 68 

noisy data (e.g., Long et al., 2016). In data assimilation, the GRACE uncertainty is often 69 

derived empirically, not necessarily reflecting the actual GRACE error characteristics (e.g., 70 

Zaitchik et al., 2008; Tangdamrongsub et al., 2015; Tian et al., 2017). For example, Girotto et 71 

al. (2016) used L3 product and showed that it was necessary to adjust GRACE observation 72 

and its uncertainty in order to make their water storage estimates more accurate. Similarly, 73 

Tian et al. (2017) reported the need of applying a scale factor to GRACE uncertainty (from 74 

mascon product) in their GRACE assimilation process. It is apparent that the use of post-75 

processed GRACE products often requires data tuning, leading possibly to an integration of 76 

incorrect gravity information into the data assimilation system. Some recent studies began to 77 

employ the full variance-covariance information in the data assimilation scheme to enhance 78 

the quality of the estimates (Eicker et al., 2014, Schumacher et al., 2016; Tangdamrongsub et 79 

al., 2017; Khaki et al., 2017 a,b).  80 

This study aims to use the GRACE information of ∆ܹܶܵ measurement directly from the raw 81 

L1B data. The approach optimally combines the GRACE’s least-squares normal equations 82 

with the model simulation results from the Community Atmosphere Land Exchange 83 

(CABLE, Decker, 2015) to improve ∆ܵܯ and ∆ܹܵܩ estimates. The proposed approach 84 

presents three main advantages. Firstly, one can exploit the full GRACE signal and error 85 

information by using the normal equation data sets. Secondly, the approach is developed for 86 

optimal least-squares combination (e.g., Ramillien et al., 2004), which maximizes the model 87 
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and observation strength while simultaneously supressing their weaknesses. Finally, the 88 

method bypasses empirical, multiple-step post-processing filters.  89 

The main objective of this study is to present the GRACE-combined (GC) approach to 90 

estimate improved ∆ܵܯ and ∆ܹܵܩ at regional scales. We demonstrate our approach applied 91 

to 10 Australian river basins (Fig. 1a). One advantage of the study area is that the state vector 92 

can be defined mainly by ∆ܵܯ and ∆ܹܵܩ as other hydrological components (e.g., snow, 93 

glacier) are negligible. We validate the top layer of ∆ܵܯ estimates against the satellite soil 94 

moisture observation (the Advanced Microwave Scanning Radiometer aboard EOS (AMSR-95 

E), Njoku et al., 2003) over all 10 basins and the ∆ܹܵܩ estimates against the in-situ 96 

groundwater data available over Queensland and Victoria (Fig. 1b, 1c). 97 

This paper is outlined as follows: Firstly, the derivation of GC approach is presented in Sect. 98 

2 while the description of GRACE data processing, including the use of GRACE normal 99 

equation, is given in Sect. 3. Secondly, the CABLE modelling is outlined in Sect. 4. This 100 

includes the derivation of model uncertainty based on the quality of precipitation data and the 101 

model parameter inputs. The processing of validation data is also described in Sect. 4. 102 

Thirdly, Sect. 5 presents the result of ∆ܵܯ and ∆ܹܵܩ estimates and comparison to in-situ 103 

data. The long-term trends in the Australian mass variation over the last 13 years is also 104 

investigated in this section. 105 

 106 

2. A method of combining GRACE L1B data with land surface model outputs 107 

The statistical information of ∆ܹܶܵ computed from a land surface model can be written as: 108 

෩ࢎ ൌ ࢎ ൅ ࣕ; ࣕ~ࣨሺ૙, ۱ሻ,    (1) 109 

where ࢎ is the “truth” (unknown) model state vector while ࢎ෩ is the calculated state vector 110 

characterized with the model error ࣕ. The model error is assumed to have zero mean and 111 

covariance ۱.  112 

The term ࢎ is used to represent a vector including global ∆ܹܶܵ grid, and terms with a 113 

subscript ܴ (e.g., ࡾ۱ ,ࡾࢎ) is used to represent only a regional set of ∆ܹܶܵ (for example, in 114 

Australia). As such, the observation equation over a region can be rewritten as:  115 

ࡾ෩ࢎ ൌ ࡾࢎ ൅ ࣕ; ࣕ~ࣨሺ૙,  ሻ.     (2) 116ࡾ۱

As soil moisture and groundwater are the major components of ∆ܹܶܵ in Australia (surface 117 

water storage being insignificant), the vector	ࡾࢎ can be defined as:  118 

ࡾࢎ ൌ ሾ∆ࡹࡿ௧௢௣ ௥௭ࡹࡿ∆  119 (3)   ,ࢀሿࡿࢃࡳ∆

where ∆ࡹࡿ௧௢௣,	∆ࡹࡿ௥௭,	∆ࡿࢃࡳ represent the vectors of top (surface) soil moisture, root zone 120 

soil moisture, and groundwater storage variations, respectively. 121 

A least-squares normal equation of GRACE can be written as: 122 

࢞	ۼ ൌ  123 (4)    ࢉ

Where ۼ is a normal matrix, ࢞ contains the spherical harmonic coefficients (SHC) of the 124 

geopotential, and ࢊ is the normal vector. In this study, ۼ and ࢉ can be obtained from the 125 
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ITSG-Grace2016 products (Mayer-Gürr et al, 2016; 126 

https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016, see more 127 

details in Sect. 3.1). Eq. (4) can be written in terms of ࢎ as follows (see Appendix A for the 128 

derivation): 129 

ሺ۶۶܇ۼࢀ܇ࢀሻࢎ෡ ൌ  130 (5)   ࢉࢀ܇ࢀ۶

where ܇ converts ∆ܹܶܵ to geopotential coefficients considering the load Love numbers 131 

(e.g., Wahr et al., 1998) and ۶ is the operational matrix converting ∆ࡹࡿ௧௢௣,	∆ࡹࡿ௥௭, and 132 

 to ∆ܹܶܵ. Eq. (5) is based on the assumption that the GRACE orbital perturbation is a 133 ࡿࢃࡳ∆

result of ∆ܹܶܵ variation on the surface. If M is the number of model grid cells, Nmax is the 134 

maximum degree of the geopotential coefficients, and L=(Nmax+1)2–4 is the number of 135 

geopotential coefficients from GRACE, the dimension of ۶ ,܇, and ࢎ are L×M, M×3M, and 136 

3M×1, respectively. Note that, Eq. (5) is defined with the global grid of ࢎ. For a regional 137 

application, Eq. (5) can be modified as: 138 

ࡾ۶ൣ
ࡾ܇ࢀ

࢕۶	|	ࢀ
	ۼ	൧ࢀ࢕܇ࢀ ൤

ࡾ۶ࡾ܇
࢕۶࢕܇

൨	ቈ
ࡾ෡ࢎ
࢕෡ࢎ
቉ ൌ ࡾ۶ൣ

ࡾ܇ࢀ
࢕۶	|	ࢀ

 139 (6) ,ࢉ	൧ࢀ࢕܇ࢀ

where the subscript ܴ indicates the grid ∆ܹܶܵ only in a region of interest, and ݋ for the rest 140 

of the globe. If the number of the model grid cells associated with ܴ is J and that of the 141 

outside cells is M–J. As such, the dimensions of ,ࡾ۶ ,ࡾ܇	ࢎ෡,ࡾ	,࢕܇	,࢕۶	ࢎ෡࢕ are L×J, J×3J, 3J×1, 142 

L× (M–J), (M–J)×3(M–J), 3(M–J)×1, respectively. The dimension of ۼ	and	ࢉ	remain 143 

unchanged, since they are essentially from the normal equations of the original GRACE L1B 144 

data (to be discussed in the following section).  145 

From Eq. (6), the normal equations associated with ∆ܹܶܵ in the region of interest can then 146 

be written as 147 

ࡾ۶
ࡾ܇ࢀ

ࡾ෡ࢎࡾ۶ࡾ܇ۼࢀ ൌ ࡾ۶
ࡾ܇ࢀ

ࢉࢀ െ ࡾ۶
ࡾ܇ࢀ

 148 (7) ࢕෡ࢎ࢕۶࢕܇ۼࢀ

or 149 

ࡾ෡ࢎࡾۼ ൌ  150 (8)    ࡾࢉ

where ࡾۼ ൌ ࡾ۶
ࡾ܇ࢀ

ࡾࢉ and ࡾ۶ࡾ܇ۼࢀ ൌ ࡾ۶
ࡾ܇ࢀ

ࢉࢀ െ ࡾ۶
ࡾ܇ࢀ

 As seen, Eq. (7) is the 151 .࢕෡ࢎ࢕۶࢕܇ۼࢀ

regional representation of Eq. (5) where only the grid cells inside the study region are used, 152 

while the contribution from the grid cells outside the region needs to be removed or 153 

corrected. Combining the normal equation of Eq. (2) and Eq. (8), the optimal combined 154 

solution of ࢎ෡ࡾ can be resolved as follows: 155 

ࡾ෡ࢎ ൌ ൫۱ࡾ
ି૚ ൅ ൯ࡾۼ

ିଵ
൫۱ࡾ

ି૚ࢎ෩ࡾ ൅  ൯   (9) 156ࡾࢉ

The computation of model covariance matrix ۱ࡾ will be discussed in Sect. 4.2. The posteriori 157 

covariance of ࢎ෡ࡾ can be estimated as follows: 158 

઱෡ ൌ ሺ۱ࡾ
ିଵ ൅  ሻିଵ,    (10) 159ࡾۼ

and the uncertainty estimate of ࢎ෡ࡾ is simply calculated as: 160 
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෡ࢎ࣌ ൌ ට݀݅ܽ݃൫઱෡൯,       (11) 161 

where ݀݅ܽ݃ሺሻ represents the diagonal element of the given matrix. 162 

 163 

3. GRACE data 164 

3.1 GRACE least-squares normal equations  165 

In this study, the least-squares normal equations are obtained from the ITSG-Grace2016 166 

products between January 2003 and March 2016. All L1B data including KBR inter-satellite 167 

tracking data, attitude, accelerometer, GPS based kinematic orbit data and AOD1B 168 

corrections are reduced in terms of the normal equations. These data products are usually 169 

used to compute the Earth’s geopotential field to the maximum harmonic degree and order of 170 

90, or at a spatial resolution of ~220 km. The products contain the information of the normal 171 

matrix ۼ and the vector ࢉ (as shown in Eq. (4)) as well as the a-priori time-varying gravity 172 

field coefficients predicted with the GOCO05s solution (Mayer-Gürr et al., 2015). Note that 173 

the solution of the ITSG-Grace2016 normal equation is the anomalous geopotential 174 

coefficient vector (∆࢞), which is referenced to the a-priori time-varying gravity field (࢞૙), 175 

through: 176 

࢞∆	ۼ ൌ  177 (12)     ࢊ

where ࢊ and ࢞૙ are given. To obtain a complete gravity field variation between the study 178 

period (࢞ term in in Eq. (4)), the a-priori time-varying gravity field, ࢞૙ is firstly restored to 179 

Eq. (12), and the mean gravity field (࢞ഥ૙) computed from all ࢞૙ between January 2003 and 180 

March 2016 is then removed as follows:  181 

࢞∆ሺ	ۼ ൅ ૙࢞ െ ഥ૙ሻ࢞ ൌ ࢊ ൅ ૙࢞ሺࡺ െ  ഥ૙ሻ  (13) 182࢞

࢞	ۼ ൌ ࢊ ൅ ૙࢞ሺࡺ െ  ഥ૙ሻ    (14) 183࢞

Therefore, in Sect. 2 (e.g., Eq. (5)), the matrix ۼ remains unchanged while the vector ࢉ can 184 

be simply replaced by ࢉ ൌ ࢊ ൅ ૙࢞ሺࡺ െ  ഥ૙ሻ. 185࢞

 186 

3.2 GRACE-derived ∆ࡿࢃࢀ products 187 

Three monthly GRACE-derived ∆ܹܶܵ products are also used, the ITSG-Grace2016 DDK5 188 

solution (ITSG-DDK5 for short, http://icgem.gfz-potsdam.de/series/99_non-iso/ITSG-189 

Grace2016), the CNES/GRGS Release 3 (RL3) (GRGS for short, Lemoine et al., 2015; 190 

http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/grace-solutions-release-03) and the 191 

JPL RL05M mascon-CRI version 2 product (mascon for short, Watkins et al., 2015; Wiese et 192 

al., 2016; http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons). The ITSG-DDK5 193 

product is the post-processed version of the ITSG L2 solution where the non-isotropic filter 194 

DDK5 (Kusche et al., 2009) is applied. The DDK5 solution is empirically selected here to be 195 

a good balance between the over-smoothed (e.g., DDK1) and noisy (e.g., DDK8) solutions. 196 

The GRGS solution provides ∆ܹܶܵ at 1o×1o globally, derived from the Earth’s geopotential 197 

coefficients up to the maximum degree and order 80, and no filter nor scale factor is applied 198 

(L2 data product). Mascon provides ∆ܹܶܵ at equal-area 3o spherical cap grid globally. In 199 
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contrast to the ITSG-DDK5 and GRGS solutions, the mascon uses a gain factor derived from 200 

the land surface model (LSM) to restore mitigated signals and reduce leakage errors (L3 data 201 

products) (Watkins et al., 2015; Wiese et al., 2016). Additionally, mascon provides the 202 

∆ܹܶܵ uncertainty together with the solution. The uncertainty is computed based on several 203 

geophysical models (see Watkins et al. (2015) and Wiese et al. (2016) for more details). The 204 

uncertainty information is not available in the ITSG-DDK5 or GRGS product.  205 

The GRACE data are obtained between January 2003 and March 2016. After retrieval, the 206 

long-term mean value between January 2003 and March 2016 is computed and subtracted 207 

from the monthly products. To be consistent with CABLE grid spacing (see Sect. 4), the 208 

∆ܹܶܵ is computed using 0.5o spatial resolution. The coarse scale datasets (e.g., mascon, 209 

GRGS) are resampled to 0.5o×0.5o using the nearest grid values. 210 

In this study, the independent GRACE solutions are used for two main reasons: 211 

1. To obtain the ∆ܹܶܵ values outside Australia. As shown in Eq. (7), the ࢎ෡࢕ vector 212 

needs to be known, which can be from the GRACE-derived ∆ܹܶܵ solution. We use 213 

the GRGS solutions as the GRGS solution is not subject to the filter choice and it 214 

provides ∆ܹܶܵ at a spatial resolution comparable to the normal equation data.  215 

2. To compare with the ∆ܹܶܵ estimates from our approaches. All solutions are used to 216 

compare and validate our ∆ܹܶܵ estimates.  217 

 218 

 219 

4. Hydrology model and validation data 220 

4.1 Model setup 221 

The extensive description of the CABLE model is given in Decker (2015) and Ukkola et al. 222 

(2016). This section describes the model setup and specific changes applied to this study. 223 

CABLE is a public available land surface model and can be used to estimate soil moisture 224 

and groundwater in terms of volumetric water content every 3 hours at a 0.5o×0.5o spatial 225 

resolution. The soil moisture and groundwater storage can be simply computed by 226 

multiplying the estimates with thicknesses of various layers. For soil moisture, the thickness 227 

of 6 soil layers is 0.022, 0.058, 0.154, 0.409, 1.085, and 2.872 m, from top to bottom, 228 

respectively. The thickness of the groundwater layer is modeled to be 20 m uniformly. 229 

Recalling Eq. (3), ∆ࡹࡿ௧௢௣ is defined as the soil moisture storage variation at the top 0.022 m 230 

thick layer, while	∆ࡹࡿ௥௭ is the variation accumulated over the second to the bottom soil 231 

layers (depth between 0.022 m and 4.6 m). 232 

CABLE is initially forced with the data from the Global Soil Wetness Project Phase 3 233 

(GSWP3), which is currently available until December 2010 (http://hydro.iis.u-234 

tokyo.ac.jp/GSWP3, https://doi.org/10.20783/dias.501). We replace GSWP3 forcing data 235 

with GLDAS data (Rodell et al., 2004) to compute the water storage changes to 2016. The 236 

forcing data used in CABLE are precipitation, air temperature, snowfall rate, wind speed, 237 

humidity, surface pressure, and short-wave and long-wave downward radiations. To 238 

investigate the impact of different forcing data, the offline sensitivity study is conducted by 239 

comparing the water storage estimates computed using: 240 

1. All 8 forcing data components of GSWP3,  241 
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2. GSWP3 data with replacing one component obtained from GLDAS forcing data. 242 

It is found that the water storage estimate is most sensitive to the replacement of precipitation 243 

data, as expected, and relatively less sensitive to the change of other forcing components. We 244 

use the GLDAS forcing data in this study and also further test 7 different precipitation data 245 

products (see more details in Sect. 4.2). The forcing data are up/down sampled to a 0.5o×0.5o 246 

spatial grid to reconcile with the CABLE spatial resolution.  247 

 248 

4.2 Model uncertainty 249 

In this study, the CABLE uncertainty is derived from 210 ensemble estimates associated with 250 

different forcing data and model parameters. The 7 different precipitation products (see Table 251 

1) are used to run the model independently. Most products are available to present day while 252 

GSWP3, Princeton, and MERRA are only available until December 2010, December 2012, 253 

and February 2016, respectively. For each precipitation forcing, 30 ensembles are generated 254 

by perturbing the model parameters within +/– 10% of the nominal values. The perturbed size 255 

of 10% is similar to Dumedah and Walker (2014). Based on the CABLE structure, the ∆256 ࡹࡿ 

and ∆ࡿࢃࡳ estimates are most sensitive to the model parameters listed in Table 2. For 257 

example, the fractions of clay, sand, and silt (fclay, fsand, fsilt) are used to compute soil 258 

parameters including field capacity, hydraulic conductivity, and soil saturation which mainly 259 

affect soil moisture storage. Similarly, the drainage parameters (e.g., qsub, fp) control the 260 

amount of subsurface runoff, which has a direct impact on root zone soil moisture and 261 

groundwater storages.  262 

From ensemble generations, total ܭ ൌ 210 sets of the ensemble water storage estimates (ࢋࢎ) 263 

are obtained: 264 

ऒࡾ ൌ ሾࢋࢎ|௞ୀଵ ௞ୀଶ|ࢋࢎ ௞ୀଷ|ࢋࢎ …  ௞ୀ௄ሿ  (15) 265|ࢋࢎ

and the mean value of ऒࡾ is computed as follows: 266 

ࡾ෩ࢎ ൌ
ଵ

௄
∑ ௞|ࢋࢎ
௄
௞ୀଵ     (16) 267 

Note that due to the absence of GSWP3, Princeton, and MERRA data, the number of 268 

ensembles reduces to ܭ ൌ 180 after December 2010, ܭ ൌ 150 after December 2012, and ܭ ൌ 269 

120 after February 2016, respectively. The GC approach assumes that model errors are 270 

normally distributed with zero mean. Any violation of this assumption will yield a bias in the 271 

combined solutions. Therefore, the mean value is removed from each ensemble member, 272 

ऒࡾ
ᇱ ൌ ऒࡾ െ  and the error covariance matrix of the model is empirically computed as: 273 ,ࡾ෩ࢎ

ࡾ۱ ൌ ऒࡾ
ᇱሺऒࡾ

ᇱሻ் ሺܭ െ 1ሻ⁄    (17) 274 

The ࢎ෩ࡾ (Eq. (16)) and ۱ࡾ (Eq. (17)) terms can be directly used in Eq. (9). The distribution of 275 

model errors is demonstrated in Fig. 2. The figure illustrates the histogram of model errors 276 

(ऒࡾ
ᇱ) computed using 210 ensemble members of the model estimated ∆ࡹࡿ and ∆ࡿࢃࡳ in 277 

Jan 2003. The histogram indicates that the model error may be approximately described by a 278 

normal distribution as introduced in Eq. (1). 279 

Furthermore, in practice, the sampling error caused by finite sample size might lead to 280 

spurious correlations in the model covariance matrix (Hamill et al., 2001). The effect can be 281 
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reduced by applying an exponential decay with a particular spatial correlation length to ۱ࡾ. In 282 

this study, the correlation length is determined based on the empirical covariance of model 283 

estimated ∆ܹܶܵ. The covariance function of ∆ܹܶܵ is firstly assumed isotropic, and it is 284 

computed empirically based on the method given in Tscherning and Rapp (1974). The 285 

distance where the maximum value of the variance decreases to half is defined as the 286 

correlation length. The obtained values vary month-to-month, and the mean value of 250 km 287 

is used in this study.  288 

It is emphasized that the model omission error caused by imperfect modeling of hydrological 289 

process within the LSM is not taken into account in the above description. The omission error 290 

may increase the model covariance and introduce a bias as well. We account for the omission 291 

error by increasing 20% of the model covariance. (i.e., multiplying ۱ࡾ by 1.2). We determine 292 

such omission error based on trial-and-error such that it increases the model error (due to the 293 

omission error) but not exceeds the model error value reported by Dumedah and Walker 294 

(2014). We acknowledge that this is only a simple practical way of accounting for the 295 

omission error into the total model error. 296 

 297 

4.3 Validation data 298 

4.3.1 Satellite soil moisture observation 299 

The satellite observed surface soil moisture data is obtained from the Advanced Microwave 300 

Scanning Radiometer-Earth Observing System (AMSR-E) using the Land Parameter 301 

Retrieval Model (Njoku et al., 2003). The observation is used to validate our estimates of top 302 

soil moisture changes (∆ܵܯ௧௢௣). The AMSR-E product provides volumetric water content in 303 

the top layer derived from a passive microwave data (from NASA EOS Aqua satellite) and 304 

forward radiative transfer model. In this study, the level 3 product, available daily between 305 

June 2002 and June 2011 at 0.25o×0.25o spatial resolution is used (Owe et al., 2008). The 306 

measurements from ascending and descending overpasses are averaged for each frequency 307 

band (C and X). Then, the monthly mean value is computed by averaging the daily data 308 

within a month. To obtain the variation of the surface soil moisture, the long-term mean 309 

between June 2002 and June 2011 is removed from the monthly data. Regarding the different 310 

depth measured in CABLE and AMSR-E, the CDF-matching technique (Reichle and Koster, 311 

2004) is used to reduce the bias between the top soil moisture model and the observation. The 312 

CDF is built using the 2003-2004 data, and it is used for the entire period. There is no 313 

satellite observed or ground measured root zone soil moisture data for meaningful 314 

comparison with our results, particularly at continental scale. Validation of ∆ܵܯ௥௭ at regional 315 

and continental scales is currently unachievable due to a complete lack of observations at this 316 

spatial scale.  317 

 318 

4.3.2 In-situ groundwater 319 

The in-situ groundwater level from bore measurements are obtained from 2 different ground 320 

observation networks (see Fig. 1). The data in Queensland are obtained from Department of 321 

Natural Resources and Mines (DNRM) while the data in Victoria is from Department of 322 

Environment and Primary Industries (DWPI). More than 10,000 measurements are available 323 

from each network, but the data gap and outliers are present. Therefore, the bore 324 
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measurement is firstly filtered by removing the sites that present no data or data gap longer 325 

than 30 months during the study period.  326 

To obtain the monthly mean value, the hourly or daily data are averaged in a particular 327 

month. The outliers are detected and fixed using the Hampel filter (Pearson, 2005) where the 328 

remaining data gaps are filled using the cubic spline interpolation. To obtain the groundwater 329 

level variation, the long-term mean groundwater level computed between the study period is 330 

removed from the monthly values. The groundwater level variation (∆ܮ) is then converted to 331 

ܹܵܩ∆ using ܹܵܩ∆ ൌ ܵ௬ ∙ where ܵ௬ is specific yield. Based on Chen et al. (2016), ܵ௬ ,ܮ∆ ൌ 332 

0.1 is used for the Victoria network. Specific yields of Queensland’s network have been 333 

found ranging from 0.045 (Rassam et al., 2013) to 0.06 (Welsh 2008), and an averaged ܵ௬ ൌ 334 

0.05 is used in this study. Finally, the mean value computed from all data (in each network) is 335 

used to represent the in-situ data of the network. 336 

 337 

5. Results 338 

5.1 Model-only performance 339 

We study the model ∆ܹܶܵ changes under different meteorological forcing and land 340 

parameterization. Total 210 estimates of monthly ܹܶܵ (sum of ܵܯ௧௢௣,	ܵܯ௥௭, and ܹܵܩ) are 341 

obtained between January 2003 and March 2016 from the ensemble run based on 7 different 342 

precipitation inputs. Then, the averaged values of the ܹܶܵ estimates are computed from the 343 

30 precipitation-associated ensemble members. This results in 7 sets of monthly mean ܹܶܵ 344 

estimates from 7 different precipitation data. For each set, the monthly ∆ܹܶܵ is computed by 345 

removing the long-term mean computed between January 2003 and March 2016.  346 

The precipitation-based ∆ܹܶܵ are then compared with the GRACE-mascon solution (see 347 

Sect. 3.2) over 10 different Australian basins. The comparison is carried out between January 348 

2003 and March 2016. Due to the availability of the data, the periods used are shorter in cases 349 

of GSWP3, Princeton, and MERRA precipitation (see Table 1). The metric used to evaluate a 350 

goodness of fit between CABLE run and GRACE mascon estimates is the Nash-Sutcliff (NS) 351 

coefficient (see Eq. (B1)) (Fig. 3). 352 

Figure 3 demonstrates CABLE ∆ܹܶܵ varies noticeably by precipitation as well as locations. 353 

The area-weighted average values (see Eq. (B2)) computed from Princeton, GSWP3, and 354 

TRMM yields the model ∆ܹܶܵ reasonably agreeing with GRACE by giving the NS 355 

coefficient greater than 0.45, while MERRA, PERSIANN, and GLDAS show NS = ~0.3. The 356 

less agreement is mainly due to the quality of rainfall estimates over Australia. The NS of 357 

ECMWF is around 0.4.  358 

All model ensembles are consistent with the GRACE data over the Timor Sea and inner parts 359 

of Australia (e.g., LKE, MRD, NWP) where the NS value can reach as high as 0.9 (see, e.g., 360 

TRMM over TIM). On the contrary, the less agreement is found mostly over the coastal 361 

basins. Very small or even negative NS values indicate the misfit between CABLE and 362 

GRACE mascon solutions, and they are observed over the Indian Ocean (see GLDAS), North 363 

East Coast (see GSWP3, PERSIANN, TRMM), South East Coast (see MERRA, TRMM), 364 

South West Coast (see GSWP3, GLDAS, MERRA), and South West Plateau (see MERRA).  365 
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By averaging all ∆ܹܶܵ estimates from seven different precipitation datasets, the mean-366 

ensemble estimate (MN) delivers the best agreement with GRACE as seen by the highest 367 

average NS value (MN of AVG = 0.55) among all ensembles. Particularly, NS values are 368 

greater than 0.4 in all basins and no negative NS values are presented in MN. In average, it 369 

can be clearly seen that using the mean value (MN) is a viable option to increase the overall 370 

performance of the ∆ܹܶܵ estimates. Therefore, only CABLE MN result will be used in 371 

further analyses. The comparison with the GRGS GRACE solution was also evaluated (not 372 

shown here) and the overall results are similar to Fig. 3. 373 

 374 

5.2 Impact of GRACE on storage estimates 375 

5.2.1 Contribution of GRACE 376 

This section investigates the impact of the GC approach on the estimates of various water 377 

storage components. The ∆ܹܶܵ estimate obtained from the GC approach is demonstrated in 378 

Sect. 5.1, by comparing with the independent GRACE mascon solution. Figure 3 shows the 379 

GC result yields the highest NS values in all basins, outperforming all other CABLE runs. In 380 

average (AVG), the NS value increases by ~35% (0.55 to 0.74) from the MN case. The 381 

similar behaviour is also seen when compared with the GRGS GRACE solution (not shown); 382 

the average NS value increases from 0.50 to 0.74. This is not surprising as the GC approach 383 

uses the fundamental GRACE tracking data as GRACE mascon and GRGS solutions do. 384 

Improvement of NS coefficient indicates merely the successfulness of integrating GRACE 385 

data and the model estimates. 386 

Figures 4 and 5 show the GC results of ∆ܹܶܵ as well as ∆ܵܯ௧௢௣, ∆ܵܯ௥௭, and ∆ܹܵܩ in 387 

different basins. The monthly time-series and the de-seasonalized time-series are shown. In 388 

general, GRACE tends to increase ∆ܹܶܵ when the model ∆ܹܶܵ (MN) is predicted to be 389 

underestimated (see e.g., LKE, MRD, NWP, SWP, TIM between 2011 and 2012) and by 390 

decrease ∆ܹܶܵ when determined to be overestimated (see all basins between 2008 and 391 

2010). A clear example is seen over Gulf of Carpentaria (Fig. 4d), where CABLE 392 

overestimates ∆ܹܶܵ and produces phase delay between 2008 and 2010. The over estimated  393 

amplitude and phase delay seen in CABLE ∆ܹܵܩ during this above period (Fig. 4c) is 394 

caused by an overestimation of soil and groundwater storage. The positively biased soil and 395 

groundwater storage causes a phase delay by increasing the amount of time required for the 396 

subsurface drainage (baseflow) to reduce to soil and groundwater stores. The overestimation 397 

of water storage is the result of overestimated precipitation or underestimated 398 

evapotranspiration.  The amplitude and phase of the water storage estimate are adjusted 399 

toward GRACE observation in the GC approach. 400 

The impact of GRACE varies across the individual storage as well as across the geographical 401 

location (climate regime). In general, the major contributors to  ∆ܹܶܵ are ∆ܵܯ௥௭ and ∆402 .ܹܵܩ 

Due to a small store size (only ~2 cm thick), ∆ܵܯ௧௢௣	contributes only ~2 % to ∆ܹܶܵ. As 403 

such, ∆ܵܯ௥௭, and ∆ܹܵܩ have greater variations, which commonly lead to greater uncertainty 404 

compared to ∆ܵܯ௧௢௣, and therefore, the stores anticipate greater shares from the GRACE 405 

update. This behaviour is seen over all basins where the differences between CABLE-406 

simulated and GC ∆ܵܯ௥௭, and ∆ܹܵܩ estimates are greater (compared to ∆ܵܯ௧௢௣).  407 
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Furthermore, the impact of GRACE on ∆ܵܯ௥௭, and ∆ܹܵܩ is different across the continent. 408 

For example, over central and southern Australia (see e.g., LKE, MRD, NWP, SWP), the dry 409 

climate is responsible for a small amount of groundwater recharge and most of the infiltration 410 

is stored in soil compartments. In this climate condition, ∆ܵܯ௥௭ amplitude is significantly 411 

larger than ∆ܹܵܩ and it plays a greater role in ∆ܹܶܵ, and consequently, the GRACE 412 

contribution is mostly seen in ∆ܵܯ௥௭ component. Different behaviour is seen over the 413 

northern Australia (GOC, NEC, TIM) where ∆ܹܵܩ amplitude are greater (~40 % of ∆ܹܶܵ) 414 

compared to other basins (only ~17 % of ∆ܹܶܵ). This is due to the sufficient amount of 415 

rainfall over the wet climate region, replenishing groundwater recharges and resulting in 416 

greater variability in ∆ܹܵܩ. Therefore, compared to the dry climate basin, the GRACE 417 

contributes to ∆ܹܵܩ over these basins by the larger amount.  418 

 419 

5.2.2 Impact on long-term trend estimates 420 

The spatial patterns of the long-term trends of water storage changes over January 2003 and 421 

March 2016 are analysed before and after applying the GC approach (Fig. 6). For 422 

comparison, the long-term trends of ∆ܹܶܵ derived from the ITSG-DDK5, mascon, and 423 

GRGS solutions are also shown (Fig. 6a, 6b, 6c). From Fig. 6e, GRACE effectively changes 424 

the long-term trend estimates in most basins in a way the spatial pattern of the ∆ܹܶܵ trend of 425 

the GC solution consistent to the mascon and GRGS solutions, while satisfying the model 426 

processes and keeping the spatial resolution. The trend of ∆ܵܯ௧௢௣ is insignificant (Fig. 6f) 427 

and the GC approach does not change (Fig. 6g). The largest adjustment is seen in ∆ܵܯ௥௭ and 428 

 components, to be consistent with the GRACE data in most basins (Fig. 6i, 6k). 429 ܹܵܩ∆

GRACE shows significant changes in the ∆ܹܶܵ trend estimates particularly over the 430 

northern and western parts of the continent. The model estimates around the Gulf of 431 

Carpentaria basin show a strong negative trend that is inconsistent from the GRACE data. It 432 

is found that underestimated precipitation after 2012 is likely the cause of such an 433 

incompatible negative trend (see Fig. 4d). Applying the GC approach clearly improves the 434 

trend (Fig. 6d vs. 6e). The other example is seen over the western part of the continent (see 435 

rectangular area in Fig. 6d, 6e) where the averaged long-term trend of ∆ܹܶܵ was predicted 436 

to be –0.4 cm/year but changed to be –1.2 cm/year (see also Sect. 5.4) by the GC approach. 437 

The precipitation over the western Australia is understood to be overestimated after 2012, 438 

evidently seen by that the model ∆ܹܶܵ is always greater than the GC solution (see e.g., Fig. 439 

4h, 5d, 5p). The GC approach reveals that the water loss over the western Australia is at least 440 

twice greater than what has predicted by the CABLE model.  441 

In addition, the shortage of water storage in the south-eastern part of the continent from the 442 

millennium drought (McGrath et al., 2012) has been recovered (seen as a positive water 443 

storage trend in Fig. 6) after the rainfall between 2009 and 2012, while the western part is 444 

still drying out (seen as negative trends). The trend estimates in terms of mass change are 445 

discussed in more detail in Sect. 5.4.  446 

 447 

5.2.3 Reduction of uncertainty 448 

Influenced by climate pattern, the uncertainty of water storage estimates significantly varies 449 

across Australia. The uncertainty of the model estimate is computed from the variability 450 
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induced by different precipitation and model parameters while the uncertainty of GC solution 451 

is computed using Eq. (11). As expected, larger uncertainties are observed in ∆ܵܯ௥௭ and 452 

 ௧௢௣ is smaller than others 453ܯܵ∆ ௧௢௣ (an order of magnitude smaller) sinceܯܵ∆ than in ܹܵܩ∆

(Fig. 7). Over the wet basins, larger amplitude of the water storage leads to larger uncertainty, 454 

seen over Gulf of Carpentaria, North East Coast, South East Coast, and Timor Sea where the 455 

CABLE-simulated ∆ܹܶܵ uncertainty is approximately 28 % larger than other basins. The 456 

smaller uncertainty is found over the dry regions (e.g., LKE, SWP). In most basins, the 457 

uncertainty of ∆ܵܯ௥௭ is larger than the ∆ܹܵܩ, except the wet basins (e.g., GOC, NEC, TIM) 458 

where the greater groundwater recharge leads to a larger uncertainty of ∆459  .ܹܵܩ 

Figure 7 demonstrates how much the formal error of each of storage components is reduced 460 

by the GC approach. Overall, the estimated CABLE uncertainties averaged over all basins 461 

(AVG) are 0.2, 4.0, 4.0, and 5.7 cm for ∆ܵܯ௧௢௣, ∆ܵܯ௥௭ , ∆ܹܵܩ, and ∆ܹܶܵ, respectively. 462 

With the GC approach, the uncertainties of ∆ܵܯ௧௢௣, ∆ܵܯ௥௭ , ∆ܹܵܩ, and ∆ܹܶܵ decrease by 463 

approximately 26%, 35%, 39%, and 37%, respectively.  464 

It is worth mentioning that the model uncertainty is mainly influenced by the meteorological 465 

forcing data. The uncertainty of precipitation derived from seven different precipitation 466 

products is shown in Fig. 7e. The spatial pattern of the precipitation uncertainty is correlated 467 

with the uncertainty of water storage estimates. The larger water storage uncertainty is 468 

deduced from the larger precipitation uncertainty. The quality of precipitation forcing data is 469 

found to be an important factor to determine the accuracy of water storage computation. 470 

 471 

5.3 Comparison with independent data 472 

5.3.1 Soil moisture 473 

The ∆ܵܯ௧௢௣ estimates are compared with the AMSR-E derived soil moisture. The processing 474 

of AMSR-E data is described in Sect 4.3.1. The performance is assessed using Nash-Sutcliff 475 

coefficients, given in Table 3. In general, CABLE (MN) shows a good performance in the top 476 

soil moisture simulation showing NS value of >0.4 for most of the basins. The top soil 477 

moisture estimate shows slightly better agreement with the C-band measurement of the 478 

AMSR-E product. This is likely caused by the greater emitting depth of the C-band 479 

measurement (~1 cm), which is closer to the depth of the top soil layer (~2 cm) used in this 480 

study (Njoku et al., 2003).  481 

The GC approach leads to a small bit of improvement of the top soil estimate consistently 482 

from C- and X-band measurements and from all basins. No degradation of the NS value is 483 

observed in the GC solutions. The largest improvement is seen over LKE and NEC, where 484 

NS increases by 10 – 15%.  For other regions, the change in the NS coefficient may be 485 

incremental.  486 

 487 

5.3.2 Groundwater 488 

The ∆ܹܵܩ estimates from the model and the GC method are compared with the in situ data 489 

obtained from 2 different ground networks in Queensland and Vitoria. For each network, all 490 

 data inside the groundwater network boundary (see polygons in Fig. 1) are used to 491 ܹܵܩ∆

compute the average ∆ܹܵܩ time series. From the comparison given in Fig. 8, it is found that 492 
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the GC solutions of ∆ܹܵܩ follows the overall inter-annual pattern of CABLE but with a 493 

considerably larger amplitude. This results in a better agreement with the in situ ∆ܹܵܩ data 494 

seen from both networks. The NS coefficient of ∆ܹܵܩ between the estimates and the in situ 495 

data are given in Table 4. The CABLE ∆ܹܵܩ performs significantly better in Queensland 496 

(NS = ~0.5) than Victoria (NS = ~0.3). Significant improvement is found from the GC 497 

solutions in both networks, where the NS value increases from 0.5 to 0.6 (~ 22 %) in 498 

Queensland and from 0.3 to 0.6 (~85 %) in Victoria. Even greater improvement is seen when 499 

the inter-annual patterns are compared. The NS value increase from 0.5 to 0.7 (~ 32 %), and 500 

0.4 to 0.8 (~93 %) in Queensland and Victoria, respectively. 501 

The comparison of the long-term trend of ∆ܹܵܩ is also evaluated. The estimated trends in 502 

Queensland and Victoria are given in Table 4. Beneficially from the GC approach, the ∆503 ܹܵܩ 

trend is improved by approximately 20 % (from 0.4 to 0.6, compared to 1.6 cm/year) in 504 

Queensland. Increasing of ∆ܹܵܩ is mainly influenced by the large amount of rainfall during 505 

the 2009 – 2012 La Niña episodes (see Fig. 8a). In Victoria, significant improvement of 506 

 trend by about 76 % (from 0.1 to –0.2, compared to –0.3 cm/year) is observed. 507 ܹܵܩ∆

Similar improvement of long-term trend estimates is seen in de-seasonalized time series 508 

(improves by ~15 % in Queensland and by ~74 % in Victoria). Decreasing of ∆ܹܵܩ in 509 

Victoria is mainly due to the highly-demanded groundwater consumption by agriculture and 510 

domestic activities (van Dijk et al., 2007; Chen et al., 2016). As the groundwater 511 

consumption is not parameterized in CABLE, the decreasing of ∆ܹܵܩ estimate cannot 512 

properly captured in the model simulation. Applying GC approach effectively reduces the 513 

model deficiency and improves the quality of the groundwater estimations.  514 

 515 

5.4 Assessment of mass variation in the past 13 years 516 

Australia experiences significant climate variability; for example, the millennium drought 517 

starting from late ’90 (Van Dijk et al., 2013) and extremely wet condition during several La 518 

Niña episodes (Trenberth 2012; Han 2017). These periods are referred as “Big Dry” and “Big 519 

Wet” (Ummenhofer et al., 2009; Xie et al., 2016). To understand the total water storage 520 

(mass) variation influenced by these two distinct climate variabilities, the water storage 521 

change obtained from the GC approach during Big Dry and Big Wet is separately 522 

investigated over 10 basins. The time window between January 2003 and December 2009 is 523 

defined as the Big Dry period while between January 2010 and December 2012 is defined as 524 

the Big Wet period following Xie et al. (2016). In each period, the long-term trends of GC 525 

estimates of ∆ܹܶܵ, ∆ܵܯ௧௢௣, ∆ܵܯ௥௭ , and ∆ܹܵܩ are firstly calculated. Then, the total water 526 

storage variation (in meter) is simply obtained by multiplying the long-term trend (in m/year) 527 

with the number of years in the specific period, 7 years for Big Dry and 3 years for Big Wet. 528 

To obtain the mass variation, the water storage variation is multiplied by the area of the basin 529 

and the density of water (1000 kg/m3). The estimated mass variations during Big Dry and Big 530 

Wet are displayed in Fig. 9. The long-term mass variation of the entire period (January 2003 531 

– March 2016) is also shown.  532 

During Big Dry (2003 – 2009), a significant loss of total storage (40 – 60 Gton over 7 years) 533 

is observed over LKE, MRD, NWP, and SWP basins. The largest groundwater loss of >20 534 

Gton is found from LKE and MRD. No significant change is observed over the tropical 535 

climate regions (e.g., GOC, NEC). The mass loss mostly occurs in the root zone and 536 
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groundwater compartments where the sum of ∆ܵܯ௥௭ and ∆ܹܵܩ explains more than 90% of 537 

the ∆ܹܶܵ value. The mass loss is also observed in ∆ܵܯ௧௢௣ but >10 times smaller than 538 

 539  .ܹܵܩ∆ ௥௭ andܯܵ∆

During Big Wet (2010 – 2012), the basins like LKE, MRD and TIM exhibit the significant 540 

total storage gain of >100 Gton. The gain is particularly larger in ∆ܵܯ௥௭ over the basins that 541 

experienced the significant loss during Big Dry. For example, over LKE and MRD, the gain 542 

of ∆ܵܯ௥௭ is approximately 2 – 3 times greater than ∆ܹܵܩ. It implies that most of the 543 

infiltration (from the 2009 – 2012 La Niña rainfall) is stored as soil moisture through the long 544 

drought period, and that the groundwater recharge is secondary to the ∆ܵܯ௥௭ increase.  545 

The opposite behaviour is observed over the basins (such as NEC and GOC) that experienced 546 

mass gain during Big Dry. The water storage gain is greater in ∆ܹܵܩ compared to ∆ܵܯ௥௭. In 547 

NEC, ∆ܹܵܩ gain is ~8 times larger than ∆ܵܯ௥௭ during Big Wet. The soil compartment may 548 

be saturated during Big Dry and additional infiltration from the Big Wet precipitation leads to 549 

an increased groundwater recharge. The ∆ܵܯ௥௭ loss observed over GOC is simply caused by 550 

the timing selection of Big Wet period, which ends earlier (~2011) in GOC than in other 551 

basins. The ∆ܵܯ௥௭ gain becomes ~26 Gton if the Big Wet period is defined as 2008 – 2011. 552 

During the post-Big Wet period (2012 and afterwards), the decreasing trend of water storage 553 

is observed from all basins (see Fig. 4, 5). This is mainly caused by the decrease in 554 

precipitation after 2012 and by gradual water loss through evapotranspiration (Fasullo et al., 555 

2013). 556 

The overall water storage change in the last 13 years demonstrates that the severe water loss 557 

from most basins during Big Dry (the millennium drought) is balanced with the gain during 558 

Big Wet (the La Niña). The negative ∆ܹܶܵ estimated during Big Dry becomes positive in 559 

LKE, MRD, and SEC and less negative in TIM, and the greatest gain is observed from NEC 560 

by ~50 Gton during 13 year-period (see Fig. 9c). However, the water mass loss is still 561 

detected over the western basins (e.g., IND, NWP, SWP, SWC), and their magnitudes are 562 

even larger than the mass loss during Big Dry. For example, the greatest ∆ܹܶܵ loss of ~79 563 

Gton is observed over NWP, which is ~25 Gton greater than the loss during Big Dry (see Fig. 564 

9a and 9c). The basin is less affected by the La Niña, and the rainfall during Big Wet is 565 

clearly inadequate to support the water storage recovery in the basin. Rainfall deficiency also 566 

reduces the groundwater recharge, resulting in even more decreasing of ∆ܹܵܩ, compared to 567 

the Millennium Drought period (see Fig. 9j and 9l). The continual decrease in water storage 568 

over western basins is likely caused by the interaction of complex climate patterns like El 569 

Niño Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode cycles 570 

(Australian Bureau of Meteorology, 2012; Xie et al., 2016).  571 

 572 

5.5 Comparison of GC approach with alternatives 573 

The simplest approach to estimate ∆ܹܵܩ is to subtract the model soil moisture component 574 

from GRACE ∆ܹܶܵ data, without considering uncertainty in the model output, as used in 575 

Rodell et al. (2009) and Famiglietti et al. (2011). This method is called Approach 1 (App 1). 576 

In Approach 2 (App 2) as in Tangdamrongsub et al. (2017), by accounting for the uncertainty 577 

of model outputs and GRACE data, the water storage states are updated through a Kalman 578 

filter:  579 
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ࡾ෡ࢎ ൌ ࡾ෩ࢎ ൅ ࡾ۶۱
ࢀ۶܀ሺ۶ࢀ ൅ ࢈ሻି૚൫ࡾ۱ െ  ൯   (18) 580ࡾ෩ࢎ۶

where ࢎ෩ࡾ۱ ,۶ ,ࡾ are described in Sect. 2, ࢈ is an observation vector containing GRACE-581 

derived ∆ܹܶܵ, and ܀ is an error variance-covariance matrix of the observation. The 582 

GRACE-derived ∆ܹܶܵ and its error information is obtained from the mascon solution. The 583 

matrix ܀ is a (diagonal) error variance matrix since no covariance information is given in the 584 

mascon product. Note that the model uncertainty remains the same as in GC approach (Sect. 585 

4.2). The different results from App1 and App2 are mainly attributed to the different estimates 586 

of the uncertainty. 587 

The ∆ܹܵܩ estimates from App1, App2 and GC in Queensland and Victoria are shown in 588 

Fig. 10. It is clearly seen that ∆ܹܵܩ from App1 are overestimated while the one from App2 589 

fits the ground data significantly better. This behaviour was also seen in Tangdamrongsub et 590 

al. (2017) that the water storage estimates tend to be overestimated when error components 591 

such as spatial correlation error were neglected as in App1. ∆ܹܵܩ from App2 shows clear 592 

improvements in terms of NS coefficients in both networks. Considering the de-seasonalized 593 

 estimates, in Queensland, the trend increases from 0.39 ± 0.03 to 0.42 ± 0.03 cm/year 594 ܹܵܩ∆

(improves by 1.5%), and the NS value increases from 0.46 to 0.53. In Victoria, the trend 595 

decreases from 0.73 ± 0.10 to 0.46 ± 0.05 cm/year (improves by 27%), and the NS value 596 

increases from –0.89 to 0.30. Although App2 is not yet as good as the GC solution based on 597 

the most comprehensive error propagation, this simple test demonstrates an important of 598 

considering the uncertainty. The reason of App2 being less accurate than GC is likely due to 599 

too simplified error information implemented in App2.  600 

 601 

6. Conclusion 602 

This study presents an approach of combining the raw GRACE observation with model 603 

simulation to improve water storage estimates over Australia. Distinct from other methods, 604 

we exploit the fundamental GRACE satellite tracking data and the full data error variance-605 

covariance information to avoid alteration of signal and measurement error information 606 

present in higher level data products.  607 

We compare groundwater storage estimates from GC approach and two other approaches, 608 

subject to inclusion of GRACE uncertainty in the ∆ܹܵܩ calculation. Validating three results 609 

of ∆ܹܵܩ against the in situ groundwater data, we find that the GC approach delivers the 610 

most accurate groundwater estimate, followed by the approach based on incomplete 611 

information of GRACE’s data error. The poorest estimate of groundwater storage is seen 612 

when the GRACE uncertainty is completely ignored. This confirms the critical value of using 613 

the complete GRACE signal and error information at the raw data level.  614 

The analysis of water storage change between 2003 and 2016 reveals that half of the 615 

continent (5 out of 10 basins) is still not fully recovered from the Millennium Drought. The 616 

TWS decrease in Western Australia has been most characteristic, and the GC approach finds 617 

that the water loss mainly occurs in groundwater layer. Rainfall inadequacy is attributed to 618 

the continual dry condition, leading to a greater decreasing of groundwater recharge and 619 

storage over Western Australia.  620 
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The land surface model we used is deficient in anthropogenic groundwater consumption. The 621 

model calibration will never help, and the groundwater consumption must be brought in by 622 

external sources. On the contrary, the statistical approach like our GC approach may be 623 

useful to fill in the missing component and lead to a more comprehensive water storage 624 

inventory.  625 

However, it is difficult to constrain different water storage components by only using total 626 

storage observation like GRACE. In addition, it is challenging to improve surface soil 627 

moisture varying rapidly in time, using a monthly mean GRACE observation. Tian et al. 628 

(2017) utilized the satellite soil moisture observation from the Soil Moisture and Ocean 629 

Salinity (SMOS, Kerr et al., 2001) in addition to GRACE data for their data assimilation and 630 

showed a clear improvement in the top soil moisture estimate. The GC approach with 631 

complementary observations at higher temporal resolution should be considered particularly 632 

to enhance the surface soil moisture computation. 633 

Furthermore, the GC approach can be simply extended for GRACE data assimilation. 634 

Assimilating the raw GRACE data into land surface models like CABLE enables the model 635 

state and parameter to be adjusted with the realistic error information, allowing reliable 636 

storage computation. The GC data assimilation will be developed in our future study.  637 
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Appendix A: Least-squares normal equation of GRACE 647 

A linearized GRACE satellite-tracking observation equation is formulated as:  648 

࢟ ൌ ࢞ۯ ൅ ;ࢋ ,ሺ૙ࣨ~ࢋ ઱ሻ,    (A1) 649 

where ࢟ is the observation vector containing various kinds of L1B data including the inter-650 

satellite ranging data, ۯ is the design (partial derivative) matrix relating the data and the 651 

Earth gravity field variations, ࢞ contains the Stokes coefficients of time-varying geopotential 652 

fields (e.g., Wahr et al., 1998), and ࢋ is the L1B data noise, which has zero mean and 653 

covariance ઱. Eq. (A1) can be modified explicitly in terms of soil moisture and groundwater 654 

storage variations as: 655 

࢟ ൌ ࢎഥ۶܇܁ۯ ൅ ;ࢋ ,ሺ૙ࣨ~ࢋ ઱ሻ,   (A2) 656 

where ܁ contains a factor used to convert ∆ܹܶܵ to geopotential coefficients considering the 657 

load Love numbers (e.g., Wahr et al., 1998), ܇ഥ converts the gridded data into the 658 

corresponding spherical harmonic coefficients. For convenience, the term ܇ ൌ  ഥ is used in 659܇܁

the further derivation. A least-squares solution of Eq. (A2) is given as: 660 

ሺ۶ࢀۯࢀ܇ࢀ઱ିଵ۶܇ۯሻࢎ෡ ൌ  661 (A3)  .࢟઱ିଵࢀۯࢀ܇ࢀ۶

It can be simplified as: 662 

෡ࢎ	۶܇	ۼࢀ܇ࢀ۶ ൌ  663 (A4)   ,ࢉࢀ܇ࢀ۶

where ۼ ൌ ࢉ and ۯ઱ିଵࢀۯ ൌ  Eq. (A4) is identical to Eq. (5). 664 .࢟઱ିଵࢀۯ

 665 

 666 

Appendix B: Nash-Sutcliff coefficient and area-weighted average 667 

Nash-Sutcliff coefficient (NS) is computed as follows: 668 

ܰܵ ൌ 1 െ
∑ ሺ࢏࢟ െ ଙෝ࢞ ሻଶ
ே
௜ୀଵ

∑ ሺ࢏࢟ െ ഥሻଶே࢟
௜ୀଵ

ሺB1ሻ 669 

where ࢟ is an observation vector, ࢟ഥ is the mean of the observation, ࢞ෝ is a vector containing 670 

the simulated result, ݅ is the index of observation, and ܰ is the number of observation. 671 

Area-weighted average (ܼ̅) is compute as follows: 672 

ܼ̅ ൌ
∑ ௝̅ݖ௝ݓ
ெ
௝ୀଵ

∑ ௝ெݓ
௝ୀଵ

ሺB2ሻ 673 

where ݓ is the area size, ̅ݖ is the mean value inside the considered area, ݆ is the area index, 674 

and ܯ is the number of considered area. 675 

  676 
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Table 1. Precipitation data from 7 different products used in this study, the Global Soil 882 

Wetness Project Phase 3 (GSWP3), the Global Land Data Assimilation System (GLDAS), 883 

the Tropical Rainfall Measuring Mission (TRMM), the Modern-Era Retrospective Analysis 884 

for Research and Applications (MERRA), the European Centre for Medium-Range Weather 885 

Forecasts (ECMWF), the Princeton's Global Meteorological Forcing Dataset (Princeton), and 886 

the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 887 

Networks (PERSIANN). The temporal resolution of all products is 3 hours. Most products 888 

are available to present while GSWP3, MERRA, and Princeton terminate earlier. 889 

Product Availability Spatial 
resolution 

References 

GSWP3 1901/01 – 
2010/12 

0.5o×0.5o http://hydro.iis.u-
tokyo.ac.jp/GSWP3 

GLDAS 
(NOAH025SUBP 3H) 

2000/03 –
present 

0.25o×0.25o Rodell et al. (2004) 

TRMM (3B42) 1998/01 –
present 

0.25o×0.25o Huffman et al. (2007) 

MERRA 
(MSTMNXMLD.5.2.0) 

1980/01 – 
2016/02 

0.5o×0.67o Rienecker et al. (2011) 

ECMWF (ERA-Interim) 1979/01 –
present 

0.75o×0.75o Dee et al. (2011) 

Princeton (V2 0.5o) 1987/01 – 
2012/12 

0.5o×0.5o Sheffield et al. (2005) 

PERSIANN (3 hr) 2002/03 – 
present 

0.25o×0.25o Sorooshian et al. (2000) 

 890 

 891 

Table 2. Model parameters that are sensitive to SM and GWS estimates. The following 892 

parameters were perturbed using the additive noise with the boundary conditions given in the 893 

last column. The further parameter description can be found in Decker (2015) and Ukkola et 894 

al. (2016).  895 

Parameter Name Spatial 
variability 

Perturbed 
range 

fclay, fsand, fsilt Fraction of clay, sand, and silt Yes 0 – 1  
fsat Fraction of grid cell that is saturated No 810 – 990 
qsub Maximum rate of subsurface drainage 

assuming a fully saturated soil column 
No 0.009 – 0.01 

fp Tuneable parameter controlling drainage speed No 1.9 – 2.2  
 896 

  897 
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Table 3. NS coefficients between top soil moisture estimates and the satellite soil moisture 898 

observations from AMSR-E products over 10 different Australian basins. The area-weighted 899 

average value (AVG) is also shown. 900 

 C-band X-band 
 CABLE GC CABLE GC 
GOC 0.67  0.68 0.58  0.60 
IND 0.53  0.54 0.41  0.41 
LKE 0.48  0.53 0.36  0.42 
MRD 0.77  0.80 0.75  0.78 
NEC 0.34  0.39 0.14  0.19 
NWP 0.33  0.36 0.38  0.42 
SEC 0.68  0.68 0.69  0.71 
SWC 0.85  0.85 0.89  0.89 
SWP 0.55  0.56 0.46  0.48 
TIM 0.44  0.45 0.16  0.16 
AVG 0.53  0.56 0.47  0.50 

 901 

 902 

Table 4. NS coefficient and long-term trend of ∆ܹܵܩ estimated from the model-only and 903 

GC solutions in Queensland and Victoria groundwater network. The long-term trend of the 904 

in-situ data is also shown. 905 

 Queensland Victoria 
 In-situ CABLE GC In-situ CABLE GC 
Original time-series 
NS [-] - 0.49 0.60 - 0.34 0.63 

Trend 
[cm/year] 

1.60 ± 0.05  0.39 ± 0.02  0.63 ± 0.05 –0.27 ±  
0.05 

0.10 ± 002 –0.18 ± 0.03 

De-seasonalized time-series 
NS [-] - 0.50 0.66 - 0.43 0.83 

Trend 
[cm/year] 

1.60 ± 0.05 0.39 ± 0.02 0.57 ± 0.04 –0.25 ± 
0.05 

0.10 ± 0.02 –0.16 ± 0.03 

  906 
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 907 

Figure 1. (a) Geographical location of 10 Australian river basins. Red and blue polygons 908 

indicate the boundaries of groundwater networks in Queensland (b) and Victoria (c), 909 

respectively. Triangles (in b and c) represent the selected bore locations used in this study.  910 
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 912 

Figure 2: Histograms of the model errors computed from 210 ensemble members (ऒࡾ
ᇱ) 913 

without the mean. The basin averaged values (from all 10 Australian basins) of January 2003, 914 

for example, are shown.  915 

   916 
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 917 

Figure 3. NS coefficients between the model and GRACE-mascon ∆ܹܶܵ over 10 Australian 918 

basins (in ordinate). The NS values were computed based on CABLE ∆ܹܶܵ computed with 919 

7 different precipitation data (in abscissa), GSWP3 (GS), GLDAS (GL), ECMWF (EC), 920 

MERRA (MR), PERSIANN (PR), TRMM (TR). The NS value of the mean ∆ܹܶܵ estimates 921 

(the average of 7 variants) is also shown (MN). The area-weighted average NS value over all 922 

basins is also shown (AVG). The NS value of ∆ܹܶܵ from the GRACE-combined (GC) 923 

approach is shown in the last column. The full name of the basins can be found in Fig. 1. 924 

   925 
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 926 

Figure 4. The monthly time series of ∆ܵܯ௧௢௣, ∆ܵܯ௥௭, ∆ܹܵܩ, and ∆ܹܶܵ estimated from 927 

model (blue) and GC (red) solutions over Gulf of Carpentaria (GOC), Indian Ocean (IND), 928 

Lake Eyre (LKE), Murray-Darling (MRD), and North East Coast (NEC). The de-929 

seasonalized time series is also shown.  930 
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 932 

Figure 5. Similar to Fig. 3, but estimated over North West Plateau (NWP), South East Coast 933 

(SEC), South West Coast (SWC), South West Plateau (SWP), and Timor Sea (TIM). 934 
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 936 

Figure 6. Long-term trends of ∆ܹܶܵ (d, e), ∆ܵܯ௧௢௣ (f, g), ∆ܵܯ௥௭ (h, i), and ∆ܹܵܩ (j, k) 937 

estimated from the model-only (second column) and the GC solutions (third column). Results 938 

of GRACE ∆ܹܶܵ independently from ITSG-DDK5 (a), mascon (b), and GRGS solution (c) 939 

are also shown. The eastern part of North West Plateau basin is shown as a rectangle polygon 940 

in (d) and (e). 941 
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 943 

Figure 7. Uncertainties of ∆ܵܯ௧௢௣, ∆ܵܯ௥௭, ∆ܹܵܩ, and ∆ܹܶܵ estimated from the model 944 

(blue) and the GC solutions (red) in 10 different Australian basins. The uncertainty of the 945 

precipitation is shown in (e). The area-weighted average value (AVG) is also shown. 946 
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 948 

Figure 8. The monthly time series of ∆ܹܵܩ estimated from the model, GC solutions, and 949 

measured from the in situ groundwater network in Queensland (a) and Victoria (b). De-950 

seasonalized time series are shown in thick lines. 951 
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 953 

Figure 9. Mass changes (Gton, Giga tonne) of ∆ܹܶܵ, ∆ܵܯ௧௢௣, ∆ܵܯ௥௭, and ∆ܹܵܩ estimated 954 

from GC solutions over 10 Australian basins in 3 different periods, Big Dry (January 2003 – 955 

December 2009), Big Wet (January 2010 – December 2012), and entire period (January 2003 956 

– March 2016). 957 
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 959 

Figure 10. ∆ܹܵܩ estimated from Approach 1 (App1) and Approach 2 (App2) in Queensland 960 

(a) and Victoria (b). The in-situ groundwater network data and the GC solutions are also 961 

shown. De-seasonalized time series are shown in thick lines. 962 
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