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 11 

Abstract. Since the advent of dual-polarization radar technology, many studies have been conducted to 12 

determine the extent to which the differential reflectivity (ZDR) and specific differential phase shift 13 

(KDP) add benefits to estimating rain rates (R) compared to reflectivity (Z) alone. It has been previously 14 

noted that this new technology provides significant improvement to rain rate estimation, primarily for 15 

ranges within 125 km of the radar. Beyond this range, it is unclear as to whether the National Weather 16 

Service conventional R(Z)-Convective algorithm is superior, as little research has investigated radar 17 

precipitation estimate performance at larger ranges. The current study investigates the performance of 18 

three radars, St. Louis (KLSX), Kansas City (KEAX), and Springfield (KSGF), MO, with 15 tipping 19 

bucket gauges serving as ground-truth to the radars. With over 300 hours of precipitation data were 20 

analyzed for the current studyit was found that, in general, performance degraded with range beyond, 21 

approximately, 150 km from each of the radars. Probability of detection in addition to bias values 22 

decreased, while the false alarm rates increased as range increased. Bright-band contamination was 23 

observed to play a potential role as large increases in the absolute bias and overall error values near 120 24 

km for the cool season, and 150 km in the warm season. Furthermore, upwards of 60% of the total error 25 

was due to precipitation falsely estimated, while 20% of the total error was due to missed precipitation. 26 

Correlation coefficient values increased by as much as 0.4 when these instances were removed from the 27 

analyses (i.e., hits only). Overall, due to the lowest normalized standard error of less than 1.0, a National 28 



Severe Storms Laboratory (NSSL) R(Z,ZDR) equation was determined to be the most robust, while a 29 

R(ZDR,KDP) algorithm recorded NSE values as much as 5. The addition of dual-polarized technology 30 

was shown to better estimate quantitative precipitation estimates than the conventional equation. The 31 

analyses further our understanding in the strengths and limitations of the Next Generation Radar system 32 

overall, and from a seasonal perspective. 33 

1 Introduction 34 

In 2012, the National Weather Service (NWS) began upgrading the Next Generation Radar 35 

(NEXRAD) system from single- to dual-polarization. The potential benefits of this upgrade were 36 

investigated by the National Severe Storms Laboratory (NSSL) and the Cooperative Institute for 37 

Mesoscale Meteorological Studies. These advantages include, but are not limited to, (1) significant 38 

improvement in radar rainfall estimation (Ryzhkov et al., 2005; Gourley et al., 2010) through better 39 

representation of precipitation shape (Brandes et al., 2002; Gorgucci et al., 2000, 2006), (2) 40 

discrimination between solid and liquid precipitation (Zrnic and Ryzhkov, 1996), allowing for better 41 

distinction between areas of heavy rain and hail (Park et al., 2009; Giangrande and Ryzhkov, 2008; 42 

Cunha et al., 2013),  (3) identifying the melting layer position in the radar field (Straka et al., 2000; Park 43 

et al., 2009), and (4) calculating drop-size distributions retrieved from measurements of reflectivity (Z), 44 

differential reflectivity (ZDR), and specific differential phase shift (KDP) as opposed to using ground-45 

based point located disdrometers (Zhang et al., 2001; Brandes et al., 2004; Anagnostou et al., 2008).  46 

Rain rate retrieval by weather radars is an estimation based upon the dielectric properties of the 47 

hydrometeors encountered in the atmosphere. Therefore, there is no direct measurement of rainfall, and 48 

this inherently introduces error. However, dual-polarized radar technology allows for in-depth analyses on 49 

the microphysics of precipitation that single-polarization was incapable of conducting. In spite of this 50 

technology, conflicting studies report the benefits for quantitative precipitation estimation (QPE). For 51 

example, Gourley et al. (2010) and Cunha et al. (2015) reported that conventional R(Z) algorithms have 52 

significantly better bias than algorithms containing ZDR and/or KDP, while others (e.g., Ryzhkov et al., 53 



2013; Simpson et al., 2016) report the opposite. This could be due, at least in part, to the fact that 54 

hydrometeor types (e.g., rain versus hail) vary on spatial scales that cannot be easily resolved by even 55 

densely gauged networks. 56 

Multiple studies have found thatthe performance of radar rain rate estimates decrease as range 57 

increases (Smith et al., 1996; Ryzhkov et al., 2003) which is caused, primarily, by degradation of beam 58 

quality with range. Furthermore, the researchers also discuss how the probability of detection at larger 59 

ranges decreases, as the radar beam overshoots shallow, stratiform precipitation, especially winter 60 

precipitation. Bright-banding can also play a crucial role in significantly increasing the amount of 61 

precipitation estimated by the radar, prompting many researchers to produce automated bright-band 62 

detection algorithms (e.g., Zhang et al., 2008; . Zhang and Qi, 2010). 63 

Despite these overall disadvantages, studies have shown that radar rainrate algorithms seldom 64 

exceed absolute errors on the order of 10 mm h-1. However, many of these studies have looked at a small 65 

sample of rain events (on the order of 10-50 hours) (Kitchen and Jackson, 1993; Smith et al., 1996; 66 

Ryzhkov et al., 2003; Gourley et al., 2010; Cunha et al., 2013). Long-term performances of weather radar 67 

are becoming more common in recent years as the availability of data becomes more abundant (e.g., 68 

Haylock et al., 2008; Goudenhoofdt and Delobbe, 2012; Fairman et al., 2015; Goudenhoofdt and 69 

Delobbe, 2015). Additionally, few studies (e.g., Smith et al., 1996; Cunha et al., 2015; Simpson et al., 70 

2016) quantified QPE errors including the probability of detection and false alarm ratio. In order to gain a 71 

better understanding of the performance of weather radars on rain rate estimates, more data must be 72 

collected over a broad range of precipitation regimes in addition to an overall broader region of interest. 73 

The overarching objective of the current study was to assess the performance of three different 74 

radars within the state of Missouri at various ranges from the radar, using terrestrial-based tipping bucket 75 

gauges as ground-truth data. Radar rain rate estimation algorithms include 55 algorithms encompassing 76 

standard R(Z) relationsas well as algorithms containing dual-polarization variables including differential 77 

reflectivity (ZDR) and the specific differential phase shift (KDP). A rain rate echo classification 78 



algorithm was also tested for performance in correctly identifying the suitable rain rate algorithm to 79 

choose based on the Z, ZDR, and KDP radar fields. The current work expands upon that of Simpson et al. 80 

(2016) such that a larger sample of data was analyzed (over 300 hours of rainfall data from forty-six 81 

separate days in 2014) to encompass multiple different precipitation regimes for both summer and winter, 82 

with several ground-truth tipping buckets to analyze the performance of three separate radars as a 83 

function of range, and further expanding upon the effects of erroneous precipitation estimates on the 84 

overall radar error. Objectives for this study included, (1) statistically analyze the performance of each 85 

radar at various ranges (compared against the gauges), (2) compute (a) the amount of precipitation 86 

incorrectly estimated by the radar (quantifying the probability of false detection) and (b) the amount of 87 

precipitation incorrectly missed by the radar but measured by the rain gauge, (3) test the overall best radar 88 

rain rate algorithm, and (4) perform objectives (1), (2), and (3) while the data is separated into warm and 89 

cool seasons which have been shown to result in significantly different QPE’s (Smith et al., 1996; 90 

Ryzhkov et al., 2003; Cunha et al., 2015). 91 

 92 

2 Study area and methods 93 

2.1 Study area 94 

National Weather Service (NWS) radars from St. Louis (KLSX), Kansas City (KEAX), and 95 

Springfield (KSGF), MO are able to scan the majority of the state of Missouri. Because of this, the three 96 

aforementioned radars were used to assess overall performance in estimating precipitation for this study. 97 

Each radar covered a 200-km radius for which a different number of gauges were within their domains: 98 

KLSX, KEAX, and KSGF covered 9, 8, and 5 gauges, respectively (Figure 1).  99 

Missouri is characterized as a continental type of climate, marked by relatively strong seasonality. 100 

Furthermore, Missouri is subject to frequent changes in temperature, primarily due to its inland location 101 

and its lack of proximity to any large lakes. All of Missouri experiences below-freezing temperatures on a 102 



yearly-basis. For example, the majority of the state typically registers, 110 days with temperatures below 103 

freezing, while the Bootheel (i.e., southeast region) records, on average, 70 days of below freezing day 104 

temperatures,emphasizing the typical northwest to southeast warming pattern of temperatures observed in 105 

the state. Because of the large variability in temperature, the warm and cool seasons were defined from an 106 

agronomic perspective, primarily taking probabilities of freezing into account. Based on the 107 

climatological averages of Missouri, from 1983 to 2013, November through April registered average 108 

minimum temperatures below freezing, and was considered the cool season, while May through 109 

October’s minimum average temperature were above freezing and constituted the warm season. 110 

 111 

2.2 Rainfall data 112 

In order for the results to be comparable across the domains of the three radars it was necessary to 113 

select days on which rain was observed widely across the state. Although measureable rainfall occurs on 114 

more than 100 days of the year in Missouri with only 50 days typically recording greater than 25.4 mm in 115 

2014 had 46 days with measurable rainfall throughout the state. Furthermore, occurrence of rain was 116 

defined as the observation of an amount greater than 0.5 mm (equivalent to two rain gauge tips) in an 117 

hour. This amounted to a total of approximately 300 hours of rain across those 46 days. This represents a 118 

relatively standard year of rainfall for the state of Missouri. Furthermore, the days were chosen based on 119 

availability of data from the National Climate Data Center’s (NCDC) Hierarchal Data Storage System 120 

(HDSS) for all three radars, in addition to error-free performance notes from each of the gauges used. The 121 

dates analyzed were split near evenly between warm (May – October) and cool (November – April), 122 

therefore encompassing an overall performance of each of the radars throughout the year with no 123 

preferential bias towards rain or snow. Additionally, days were distributed evenly during the summer 124 

between convective and stratiform events with a threshold of 38 dBZ (Gamache and Houze, 1982). 125 



Terrestrial-based precipitation gauge data were collected from 15 separate weather stations within the 126 

Missouri Mesonet, established by the Commercial Agriculture Program of University Extension (Table 127 

1). All precipitation data were aggregated in hourly intervals to match the temporal resolution of the 128 

gauges.Observed precipitation data were collected using Campbell Scientific TE525 tipping buckets 129 

located at each of the locations for the study (Table 1). The precipitation gauges have a 15.4 cm orifice 130 

which funnels to a fulcrum which registers 0.254 mm of rainfall per tip. The performance of each gauge is 131 

maximized between 0 and 50°C, for which each day of the study’s temperature did not exceed. Accuracy 132 

in gauge measurements range between -1 to 1%, -3 to 0%, and -5 to 0% for precipitation up to 25.4 mm 133 

hr-1, 25.4 to 50.8 mm hr-1, and 50.8 to 76.2 mm hr-1, respectively, which are, primarily, associated with 134 

local random errors and errors in tip-counting schemes (Kitchen and Blackall, 1992; Habib et al., 2001). 135 

 Each tipping bucket is located, approximately, 1 m above the ground in areas clear of buildings 136 

and properly maintained vegetation height to mitigate turbulence effects (Habib et al., 1999). Due to the 137 

well-maintained nature of the mesonet gauges, these errors were assumed negligible and, therefore, 138 

allowed for the gauges to be representative of the true rainfall rate. In spite of the non-homogeneous 139 

spacing of the gauges, unbiased statistics including the normalized mean bias and normalized standard 140 

error were utilized. 141 

 142 

2.3 Radar data and radar-rainfall algorithms 143 

Next Generation Radar (NEXRAD) level-II data were retrieved from the NCDC’s HDSS. Files 144 

were processed using the Weather Decision Support System – Integrated Information (WDSS-II) program 145 

(Lakshmanan et al., 2007a) to assess reflectivity (Z) in addition to dual-polarized radar variables 146 

including differential reflectivity (ZDR) and specific differential phase shift (KDP). Three other variables 147 

were also generated based on a KDP-based smoothing field (Ryzhkov et al., 2003) for reflectivity, 148 

differential reflectivity, and specific differential phase: DSMZ, DZDR, and DKDP, respectively. These 149 



were implemented to determine whether the additional KDP-smoothing fields tend to over- or 150 

underestimate QPE’s (Simpson et al., 2016). A rain rate echo classification variable (RREC) was also 151 

computed, which chooses whether an R(Z), R(KDP), R(Z,ZDR), or R(ZDR, KDP) algorithm is 152 

implemented in estimating rain rates based on the radar fields of Z, ZDR, and KDP (Kessinger et al., 153 

2003) to determine whether a multi-parameter algorithm is superior to a single algorithm.  154 

All seven variables (Z, ZDR, KDP, DSMZ, DZDR, DKDP, and RREC) were converted from 155 

their native polar grid to 256 x 256 1 km Cartesian grids, where the lowest radar elevation scans (0.5°) 156 

were used to mitigate uncalculated effects from evaporation and wind drift. An average of 5 minute scans 157 

were used for each of the variables, which were aggregated to hourly totals to be compared to the hourly 158 

tipping-bucket accumulations. In spite of previous reports suggesting 5 minute to hourly aggregates can 159 

have significant effects on QPE (e.g., Fabry et al. 1994), Shucksmith et al.’s (2011) criterion of present 160 

accumulation exceeding 26% for a pixel size of 1 km was not reached.  161 

The latitude and longitude of each of the 15 gauges were matched with the radar pixel that 162 

corresponds to the Cartesian grid value of the seven radar variables which were then implemented in rain 163 

rate calculations. These rain-rate calculations were calculated using the equations presented by Ryzhkov 164 

et al. (2005) (Table 2), which were gathered from multiple studies using disdrometers to derive a 165 

relationship between reflectivity, differential reflectivity, and specific differential phase (Bringi and 166 

Chandrasekar, 2001; Brandes et al., 2002; Illingworth and Blackman, 2002; Ryzhkov et al., 2003). 167 

Standard R(Z) algorithms were also included to test whether the addition of dual-polarized technology 168 

improves QPE’s.  169 

With the use of both Z, ZDR, KDP, and DSMZ, DZDR, and DKDP fields produced by WDSS-II, the 170 

number of algorithms tested was 55. This includes the three standard single-polarized algorithms 171 

(stratiform, convective, and tropical) which were calculated using reflectivity R(Z), and then calculated as 172 

R(DSMZ), while algorithms 1-6 (R(KDP)) were also calculated as R(DKDP). Algorithms 7-11 (R(Z, 173 

ZDR)) were additionally calculated as R(Z, DZDR), R(DSMZ, ZDR), and R(DSMZ, DZDR), while the 174 



same four combinations of non- and KDP-smoothed fields were applied to the R(KDP, ZDR) algorithms 175 

(12-15). Quality controlling methods for the algorithms include mitigation of clutter, sun spikes, beam 176 

blockage, anomalous propagation, and removal of non-precipitation echoes (including biological and 177 

chaff returns) through w2qcnn the w2qcnndp algorithms (Lakshmanan et al., 2007b, 2010, 2014).  178 

2.4 Statistical analyses 179 

To test the performance of each algorithm, several statistical analyses were calculated. The 180 

average difference (Bias) was calculated as 181 

N
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where Ri is each hourly aggregated radar estimated rainfall amount calculated from one of the 55 183 

algorithms, Gi is the hourly aggregated gauge (observed) measurement, and N is the total number of 184 

observations which, for this study, was 300 hours. A second statistical parameter, the normalized mean 185 

bias (NMB), was calculated as 186 
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The normalized mean bias is included in the analyses due to the fact that overestimations (i.e., radar 188 

estimates larger than gauge measurements) and underestimations (i.e., radar estimates smaller than gauge 189 

measurements) are treated proportionately. This is directly analogous to choosing the mean absolute error 190 

(MAE) opposed to the standard deviation as the MAE does not penalize smaller or larger errors, 191 

obscuring the overall results (Chai and Draxler, 2014). Bias measurements (Bias and NMB) were 192 

calculated to determine whether radar derived rain rates were over- or under-estimated in comparison to 193 

the gauges. However, to calculate the overall magnitude of error associated with the performance of the 194 

radars, the absolute values of (1) and (2) were performed to yield the mean absolute error (MAE), and 195 

normalized standard error (NSE), respectively.  196 



 Several other meteorological parameters were calculated, including probability of detection 197 

(PoD) which was calculated as 198 
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where the bullet ( ) indicates “if”, to determine how accurate the radars were at correctly detecting 200 

precipitation. The probability of detection values range between 0.0 (radar did not detect any precipitation 201 

correctly) and 1.0 (radar detected the occurrence of all precipitation 100% correctly). The probability of 202 

false detection takes into account the amount of precipitation the radars incorrectly estimated when the 203 

gauges recorded zero values, and was calculated as 204 
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Quantitative measures including the missed precipitation amount (MPA) and the false precipitation 206 

amount (FPA) were defined such that 207 

  )0&0( iii RGRMPA         (5) 208 

  )0&0( iii RGRFPA                      (6) 209 

which analyzes the total amount of precipitation due to misses and false alarms. The total 210 

precipitation error was also recorded to assess the overall error from each radar.  211 

 212 

3 Results and discussion 213 

3.1 Overall algorithm performance 214 



To test the overall performance of each radar, it was necessary to determine the overall best 215 

algorithm for each statistical measure. The best algorithm from each grouping of equations was 216 

determined to have the lowest normalized standard error (NSE), indicating the best performance relative 217 

to the gauge-recorded precipitation amount (Ryzhkov et al., 2005). This reduces the impact of bias 218 

inherent within the dataset between warm/cool season, stratiform/convective events, and allows for 219 

statistical measurements in spite of the (typical) non-Gaussian behavior of precipitation (Kleiber et al., 220 

2012; Alaya et al., 2017).  221 

From the results obtained, the three R(Z), three R(DSMZ), and RREC algorithms displayed a 222 

particular bias in favor of the R(Z)-Convective algorithm for all three radars with R(Z)-Stratiform 223 

displaying similar performance (Figure 2a). This could be due, at least in part, to the near-equal stratiform 224 

and convective precipitation regimes throughout 2014. Although errors generally increased as range 225 

increased for KEAX and KLSX, the results were nebulous for KSGF. The lowest NSE values were, 226 

typically, closest to each of the radars (between 0.4 and 0.8), with the notable exception of the closest 227 

gauge to KSGF. In general, the RREC performed worst at the largest of ranges, potentially due to the 228 

algorithm’s ability to incorrectly assess the hydrometeors present (Cifelli et al., 2011; Yang et al. 2016). 229 

Additionally, the poor performance by the R(DSMZ)-Tropical equation is due to the lack of tropical 230 

precipitation within Central Missouri. Overall, the KDP-smoothed reflectivity fields (DSMZ) performed 231 

worse than their counter-parts, resulting in over-prediction of precipitation and, thus, larger errors 232 

(Simpson et al., 2016). Errors did not exceed 2.4 NSE units for any of these algorithms. 233 

However, the performance of the KDP-smoothed KDP field (DKDP) performed better than the 234 

original specific differential phase shift field (Figure 2b). For nearly all gauges for each of the 3 radars, 235 

R(DKDP)4 performed the best, with NSE values ranging from 1.4 to 4.1. The range of NSE values were 236 

largest at KEAX, while the spread was relatively small for KLSX and KSGF. In spite of this, the overall 237 

spread of the performance of the 12 KDP algorithms varied greatly (average of 2 NSE units), exhibiting 238 

the sensitivity of KDP estimates on QPE (Ryzhkov et al., 2005; Cunha et al., 2013). In general, the 239 



NSSL-derived R(KDP) equations (i.e., equations 4-6) outperformed those from Bringi and Chandrasekar 240 

(2001, equation 1), Brandes et al. (2002, equation 2), and Illingworth and Blackman (2002, equation 3). 241 

Regardless, the magnitudes were all, approximately, more than 1 NSE unit than the performance of the 242 

R(Z) algorithms. 243 

The algorithms with the lowest NSE values were equations 7-11. For example, the overall lowest 244 

NSE was at a distance of 130 km from KEAX (0.3), with no locations exceeding NSE values of 2.0 245 

(Figure 2c). The large values at the closest location for KSGF (85 km, 1.3 – 1.9 NSE units), and the fifth 246 

closest gauge to KLSX (135 km, 1.3 – 1.8 NSE units), Cook Station, were similar to the R(Z) and 247 

R(DSMZ) results, indicating potential issues with reflectivity measurements. Additionally, these locations 248 

were the closest in performance to the R(KDP) and R(DKDP) NSE values. Observations from this gauge 249 

(Cook Station) indicated hail occurred during the evening of 01 August, for which KDP estimates would 250 

be more ideal than Z for QPE (Ryzhkov et al. 2005; Kumjian 2013a; Cunha et al. 2015). In spite of this, 251 

the overall spread in performance of the R(Z,ZDR) equations were less than the R(KDP) equations, 252 

demonstrating the robust performance of R(Z,ZDR) for QPE (Wang and Chandrasekar 2010; Seo et al., 253 

2015). 254 

The R(ZDR,KDP) algorithms performed the worst, overall (Figure 2d). In spite of the differential 255 

reflectivity being implemented, the overall NSE values increased in magnitude, exceeding 6 units for the 256 

second gauge analyzed by KEAX. Algorithms containing DKDP measurements performed better than 257 

simply KDP, demonstrating that even with the scaling behavior of ZDR, DKDP is superior to KDP 258 

estimates. This provides a potential solution to the noisy-ness that tends to be exhibited in the KDP field 259 

(Ruzanski and Chandrasekar 2012).  260 

Due to the overall NSE values obtained, for the remainder of the analyses, equation 11 (i.e., 261 

R(Z,ZDR)5) and equation 13 (i.e., R(ZDR,KDP)2) will be utilized as the best and worst algorithms, 262 

respectively. Equations containing DZDR were not included in the following discussion due to the very 263 

large QPE errors for each radar. 264 



 265 

3.2 KEAX 266 

The overall bias showed that there was a positive bias, peaking near 5.5 mm hr-1 at the second 267 

gauge for KEAX, approximately 115 km from the radar for both the best and worst performing 268 

algorithms (Figure 3). This corresponds well with the spike in falsely detected precipitation recorded, 269 

which is canceled by the maximum in missed precipitation at the second distance of, approximately, 150 270 

km. The overall worst algorithm, equation 13, an R(ZDR,KDP) relationship, revealed a decreasing trend 271 

in bias as the distance from the radar increased. For example, a bias of 4 mm hr-1 was observed at a 272 

distance of 75 km from the radar, whereas the bias reduced to 3 mm hr-1 at distances near 175 km.  This 273 

could be due, at least in part, to the algorithm’s utilization of KDP which performs poorly in frozen 274 

(especially light) precipitation (Zrnic and Ryzhkov, 1996; Kumjian 2013a), causing the overestimation. 275 

Conversely, the algorithm with the lowest bias was an R(Z,ZDR) algorithm (equation 11). There was a 276 

maximum in the bias calculations while utilizing equation 11 near 120 km, similar to equation 13, 277 

however, there was a more pronounced minimum in the data near 150 km. Furthermore, it appears the 278 

data oscillates around a bias value of 0 mm hr-1 when using equation 13. This could be due to ZDR’s 279 

capability to respond to precipitation shape (Kumjian 2013a), which helps to scale the reflectivity portion 280 

of the rainfall estimation algorithm to a more accurate value (Seo et al., 2015). In general, the cool season 281 

displayed a larger magnitude of error in terms of bias for both algorithms. 282 

The normalized mean bias (NMB) reveals the same trend in values for bias but with an overall 283 

decrease in magnitude. It is important to note, however, that the algorithms that tend to perform the worst 284 

(e.g., algorithms containing KDP) result in anomalous range responses which would be due, at least in 285 

part, to a stronger response to precipitation type. This indicates that observations above the melting layer 286 

are dominant for which QPE’s tend not to be calculated (Cifelli et al., 2011; Seo et al., 2015) but are 287 

important for regions devoid of adequate radar coverage (Ryzhkov et al., 2003; Simpson et al., 2016). 288 



The absolute bias and normalized standard error (NSE) shows the same maxima in the data at the 289 

second gauge (Brunswick) that was present in the bias data (6.2 mm hr-1 and 5.6, respectively) . However, 290 

a second maxima is located at the fifth gauge at, approximately, 150 km (Linneus) with values of 5.9 mm 291 

hr-1 and 4.0, respectively. Bright-band issues are detected due, at least in part, to the increased missed 292 

precipitation amount (240 mm) at this particular distance for the R(ZDR,KDP) equation (i.e., worst 293 

performing algorithm). There was also a pronounced minimum in the absolute bias and NSE results at the 294 

fourth gauge for equations 11 and 13, 4.0 mm hr-1 and 0.8 mm hr-1, and 2.8 and 0.8, respectively, 295 

potentially indicating an idealized range of QPE for KEAX. Furthermore, the historical records at this 296 

particular gauge showed less issues (e.g., clogging) than any of the others analyzed by the KEAX radar. 297 

This highlights the importance of choosing ground-truth data, in particular tipping buckets which are 298 

prone to numerous errors (Ciach and Krajewski, 1999b).The largest contributions to the NSE and NMB 299 

were due to the warm season. 300 

The probability of detection (PoD) results indicate a large difference in algorithm choice for 301 

correctly detecting precipitation. The low PoD at, approximately 150 km, indicates overshooting of the 302 

beam. This is further evidenced by the MPA results, as about 225 mm of precipitation was missed by the 303 

radar at 150 km, whereas only 100 mm of precipitation was missed by the radar at the second gauge at 304 

120 km. Although equation 11, an R(Z,ZDR) algorithm was superior in terms of the bias, the same 305 

algorithm with a KDP-smoothed reflectivity value, R(DSMZ,ZDR) revealed the overall least amount of 306 

falsely missed precipitation (by 10 mm). However, the summation of the amount of precipitation falsely 307 

detected (PoFD) by KEAX showed a larger source of error than the MPA in terms of magnitude. For 308 

example, at the second (fifth) gauge, only 100 (225) mm of precipitation was missed by the radar, but 309 

over 700 (725) mm of precipitation was incorrectly estimated by the radar. 310 

Correlation coefficient (CC) values for any of the 9 stations analyzed by KEAX ranges from 0.02 311 

(Linneus, 151 km) to 0.93 for the cool season (St. Joseph, 115 km). The lowest R2 were due to a 312 

combination of false alarms and misses. For example, the CC for the warm seasons at Sanborn (170 km) 313 



and Jefferson Farm (173 km) were 0.22 and 0.24, respectively, whereas when the instances of false 314 

alarms and misses were removed, increased to 0.48 and 0.52. Few locations (Brunswick, 114 km and 315 

Versailles, 129 km) saw little improvement in the CC values when only hits were analyzed (less than 0.1 316 

increase), indicating the mean absolute error (in terms of hits) contributed the largest portion of error. 317 

 318 

3.3 KLSX 319 

Unlike the KEAX data, the gauges used for analyses for the KLSX radar span between 90 – 150 320 

km. Furthermore, 5 out of the 8 gauges were located within 10 km of range from one-another, near 140 321 

km from the radar, limiting the data available for analyses between 100 and 140 km (Figure 5).  322 

The bias and NMB both show a relatively modest peak in values near the second gauge of 5 mm , 323 

which decreases to approximately 3.6 mm  at the third gauge, 120 km from the radar. The worst 324 

performing algorithm, equation 13, was the same R(ZDR,KDP) relation as the worst KEAX bias and 325 

NMB data. Additionally, the overall trend of decreasing bias and NMB as distance from the radar 326 

increases was noted, presumably due to overshooting effects similar to the KEAX data. Furthermore, the 327 

overall non-biased results from the R(Z,ZDR) equation demonstrates its robust capabilities in QPE, in 328 

spite of its sensitivity to calibration (Zrnic et al., 2005; Bechini et al., 2008). 329 

The double maxima in the absolute bias graph are present as with the KEAX data, but are not as 330 

pronounced. For example, the absolute bias at 95 km and 140 km from KLSX were 5.9 mm  and 1.1 mm , 331 

and 4.9 mm  and 1.4 mm  for equations 13 and 11, respectively. Additionally, the overall minima in the 332 

absolute bias for both KEAX and KLSX are at, approximately, 125 km from the radar (3.9 mm hr-1 and 333 

1.0 mm hr-1, respectively, for equations 13 and 11). The relative distance from the radars are the same, 334 

where the two maxima for KEAX were at 115 and 150 km, while the maxima were at, approximately, 335 

100 and 140 km for KLSX. The overall best and worst performing algorithms at KLSX for the absolute 336 

bias and NSE were equations 11 and 13, the R(Z,ZDR) and R(ZDR,KDP) algorithms, respectively.  337 



The magnitude of error in terms of absolute bias, normalized mean bias, and normalized standard 338 

error, all showed a decreasing pattern as distance from KLSX increased. This was due, primarily, from a 339 

maximum in the false precipitation amount at 95 km from the radar. Historical notes at this location 340 

indicate frequent clogging of the rain gauge, either due to bugs or leaves. From a particular series of 341 

events spanning from 01 to 04 April and 01 to 03 August, 2014, over 130 mm of precipitation occurred 342 

during each period which was not captured by the gauge, resulting in a large amount of overall error. 343 

These results indicate the important of dual gauges in the same vicinity (Krajewski et al. 1998; Ciach and 344 

Krajewski 1999). Interestingly, the cool season displayed a larger NSE (5 % for R(ZDR,KDP)) 345 

potentially due to the very low probability of detection (0.2) at this range of 118 km. 346 

One of the main differences between the KLSX and KEAX data was the decreased probability of 347 

detection at 120 km for KLSX, while there was an increased probability of detection for KEAX. In 348 

general, the PoD values were worse for KLSX when compared to KEAX. For example, equation 11 had 349 

no PoD values below 0.90, whereas no PoD values exceeded 0.84 for KLSX. There was also a slight 350 

trend of increasing PoD values as distance from the St. Louis radar increased and, at one point near 140 351 

km, the best algorithm, R(DSMZ) convective and the worst algorithm, KDP1, were not significantly 352 

different (p < 0.10). Additionally, the maxima in the PoD while utilizing KDP1 corresponds to a minima 353 

in the R(DSMZ) detection percentage, which is well correlated by the similarly valued MPA results.  354 

The missed precipitation amount (MPA) displayed the cool season contributed the most, whereas 355 

the warm season contributed the most amount of false precipitation amount. The R(Z,ZDR) equation only 356 

registered, on average, 25 mm of MPA and 160 mm of FPA, whereas the R(ZDR,KDP) equation was 357 

very dependent upon range. For example, the FPA from R(ZDR,KDP) decreased as range increased from 358 

the radar from a maximum of, approximately, 850 mm to 620 mm. However, the fifth-furthest gauge (137 359 

km from KLSX) displayed a sharp increase in the MPA for both cool seasons (above 100 mm). 360 

 361 



 3.4 KSGF 362 

  363 

In spite that the KLSX and KEAX data strongly suggests false precipitation errors near 100 km in 364 

addition to bright-banding near 150 km from the radars, the KSGF results reveal an overall smooth 365 

decrease (increase) of error with range (Figure 7) for R(ZDR,KDP) and R(Z,ZDR), accordingly. One of 366 

the main reasons for this could be due to the fact that only 5 gauges were analyzed from KSGF (the 367 

fewest of the 3 radars analyzed), smoothing the overall trend lines.  368 

The bias remained relatively constant near -0.3 mm for R(Z,ZDR), whereas the bias exhibited a 369 

sharp decrease from 4 mm to 2.7 mm over a distance of, approximately, 100 km. In general, the cool 370 

season displayed the lower of bias magnitudes when compared to the warm season, similar to the KEAX 371 

results. This may be due, at least in part, to the low PoFD values for the warm season close to the KSGF 372 

radar. 373 

Similar to the bias, the absolute bias for R(Z,ZDR) was constant at all ranges (near 1 mm) 374 

whereas the R(ZDR,KDP) equation decreased from 5.2 mm to 3.8 mm. This is potentially due to the low 375 

cool season PoD values (below 0.6), while the warm season R(ZDR,KDP) values (near 0.8) remained 376 

constant. A larger contribution from more correctly detected precipitation in addition to the decreasing 377 

trends in the NMB and NSE would result in a lower absolute bias.  378 

The closest location (90 km) typically displayed the largest errors for the R(ZDR,KDP) equation, 379 

and then decreased in error magnitude as range increased. In spite of this, the PoFD results indicate both 380 

algorithms increased in PoFD values as range increased, with the warm season typically dominating, 381 

particularly due to the large convective clouds dominate in the warm season. False detection values as 382 

low as 0.01 for the cool season while utilizing R(Z,ZDR) were observed at distances near 100 km and 140 383 

km from the radar. 384 



Normalized standard error values increased from 0.7 % at a distance of 105 km to 1.8 % at a 385 

distance of 185 km for R(Z,ZDR). Large NSE values for the warm season (7.5 %) were calculated for 386 

R(ZDR,KDP) which decreased to 3.8 % at 185 km from the radar. Furthermore, this was the only 387 

instance when the warm season was less than the cool season in terms of NSE. Otherwise, the overall 388 

NSE decreased from 5 % to 3.9 % for R(ZDR,KDP). The NMB followed a similar trend for the KDP-389 

containing algorithm, with a noticeable exception at the second gauge (105 km from KSGF), where the 390 

overall NSE was closer to the warm than cool season. This is due to the low PoFD values at this location, 391 

in addition to a smaller difference between the two algorithm’s FPA measurements. 392 

The MPA results, unlike for KEAX and KLSX, displayed a larger range of performance between 393 

seasons. However, the warm season still exhibited the overall best performance in terms of MPA, yet 394 

contributed the most to the FPA for both R(Z,ZDR) and R(ZDR,KDP). In spite of the MPA typically 395 

increasing as range increased, the FPA was more nebulous. For example, the second gauge (105 km from 396 

KSGF) had the overall lowest NSE (0.8 %), MPA (15 mm), and FPA (95 mm) for R(Z,ZDR). The third-397 

furthest location (142 km) resulted in slightly larger errors, overall, while the fourth-furthest location had 398 

errors similar to the second gauge (105 km). Then, at the furthest tipping bucket location (185 km), NSE 399 

values increased, whereas FPA and MPA decreased. Therefore, the furthest location’s errors are due, 400 

primarily, from discrepancies between precipitation magnitude between the gauge and radar.  401 

Excluding Versailles (142 km from KSGF), the cool season exhibited larger R2 values in 402 

comparison to the cool season (Figure 8). Furthermore, CC values exceeded 0.9 when false alarms and 403 

misses were excluded from Mt. Grove (101 km) and was 0.84 when included. Otherwise, the other four 404 

stations analyzed by the Springfield radar displayed many counts of false alarms and misses, leading to 405 

low R2 values. 406 

 Due to the relatively large ranges from the Springfield (KSGF) radar, most of the correlation 407 

coefficient values were low in comparison to either KLSX or KEAX. For the warm (cool) season without 408 

false alarms and misses, R2 values ranged from 0.44 (0.38) and 0.34 (0.36) for KLSX and KSGF, 409 



respectively, at Cook Station (119 and 185 km). Similarly, the CC values ranged from 0.61 (0.71) to 0.42 410 

(0.56) at Green Ridge (76 and 154 km) for KEAX and KSGF, accordingly.  411 

  412 

4 Conclusions 413 

Dual-polarization technology was implemented to the National Weather Service Next Generation 414 

Radar network in the Spring of 2012 to, primarily, improve quantitative precipitation estimation and 415 

hydrometeor classification.  The current study observed over 300 hours of precipitation data with three 416 

separate radars in Missouri using 55 algorithms including the three conventional R(Z) radar rain-rate 417 

estimation algorithms (stratiform, convective, and tropical) along with a myriad of R(KDP), R(Z,ZDR), 418 

and R(ZDR,KDP) algorithms which can be found in Ryzhkov et al. (2005). Additionally, a KDP-419 

smoothing field of reflectivity, differential reflectivity, and the specific differential phase shift (DSMZ, 420 

DZDR, and DKDP, respectively) were measured and used for analyses. Unlike previous studies, the 421 

current work emphasizes the amount of precipitation correctly and incorrectly estimated by the radar in 422 

comparison to the terrestrial based precipitation gauges through measurements of the missed and false 423 

precipitation amount. 424 

For all three radars, Kansas City, St. Louis, and Springfield, MO (KEAX, KLSX, and KSGF, 425 

respectively), the majority of precipitation error (over 60%) was contributed by the amount of 426 

precipitation falsely detection by the radar (up to 725 mm), while 20% was due to the radar missing the 427 

precipitation (up to 225 mm) for KEAX. Similar magnitudes of error were reported for KLSX and KSGF, 428 

with an overall error in precipitation for each radar ranging between 250 mm for the best performing of 429 

the 55 algorithms, equation 11 (an R(Z,ZDR) algorithm), and up to 2000 mm for the worst performing 430 

algorithms, R(ZDR,KDP) equation 13. The R(Z,ZDR) equation (an NSSL algorithm) was determined to 431 

be the most robust due to it registering the lowest NSE. These values of false precipitation amount and 432 

missed precipitation amount generally increased as range from the radar increased. 433 



Most algorithms showed a degradation in the normalized standard error with range. In particular, 434 

the KDP-smoothed equations displayed larger biases and NSE values than their non-KDP counterparts, 435 

with the exception of R(KDP) algorithms themselves. Some larger errors were recorded at gauge 436 

locations close to the radar, potentially due to bright-banding effects which were determined to be due to 437 

the large false precipitation amount analyzed at these locations.  438 

The data was divided into summer (May – October) and winter (November – April; 59 and 41% 439 

of the entire data, respectively).  Despite the winter data contributing less than the summertime data, it 440 

accounted for 20% of the overall MPA, and 40% to the overall PoFD.  The R2 values were less during the 441 

winter in comparison to the warm season primarily due to the smaller magnitude of precipitation that 442 

occurred. Furthermore, CC values increased by as much as 0.4 when instances of hits and misses were 443 

removed from the analyses, resulting in the warm season to outperform the cool season CC values at 444 

particularly short ranges from the radar. 445 

These results aid in our understanding in the possibilities for hydrometeorological studies. Nearly 446 

50% of the 300 hours where precipitation occurred analyzed for the study consisted of either falsely 447 

estimated precipitation by the radar, or missed by the radar. Furthermore, these errors accumulate 448 

between 500 to 2,000 mm of precipitation depending on the algorithms chosen.  Although the overall 449 

performance increased when false alarms and misses were removed, correlation coefficient values still, 450 

typically, remained below 0.50 at ranges beyond 130 km.  451 

Furthermore, results demonstrate the issues with analyzing QPE from a single gauge, explaining 452 

why the Community Collaborative Rain, Hail, and Snow Network (Kelsch 1998; Cifelli et al., 2005; 453 

Reges et al., 2016) or other densely-gauged networks (e.g., the Hydrometeorological Automated Data 454 

System, HADS, Meteorological Assimilation Data Ingest System, MADIS) tends to be more utilized 455 

since results have shown that measurements or quality controlled-techniques made by these organizations, 456 

especially CoCoRaHS, are significantly more accurate than rain gauges (Simpson et al., 2017), especially 457 

for convective events (Moon et al. 2009). 458 



 459 

Author Contribution. N. Fox designed the experiment and provided feedback while M. Simpson carried 460 

out the calculations and wrote the manuscript. 461 

Acknowledgements. This material is based upon work supported by the National Science Foundation 462 

under Award Number IIA-1355406. Any opinions, findings, and conclusions or recommendations 463 

expressed in this material are those of the authors and do not necessarily reflect the views of the National 464 

Science Foundation. 465 

 466 

References 467 

Alaya, M.A., Ourda, T.B.M.J., Chebana, F.: Non-Gaussian spatiotemporal simulation of multisite 468 

precipitation: Downscaling framework. Climate Dynamics, 2017. doi: 469 

https://doi.org/10.1007/s00382-017-3578-0. 470 

Anagnostou, M.N., Anagnostou, E.N., Vulpiani, G., Montopoli, M., Marzano, F.S., Vivekanandan, J.: 471 

Evaluation of X-band polarimetric-radar estimates of drop-size distributions from coincident S-472 

band polarimetric estimated and measured raindrop spectra. IEEE Transactions on Geoscience 473 

and Remote Sensing, 46, 3067-3075, 2008. 474 

Bechini, R., Baldini, L., Cremonini, R., Gorgucci, E.: Differential reflectivity calibration for operational 475 

radars. Journal of Atmospheric and Oceanic Technology, 25, 1542-1555, 2009. 476 

Berne, A. and Uijlenhoet, R.: A stochastic model of range profiles of raindrop size distributions: 477 

application to radar attenuation correction, Geophysical Research Letters, 32, 2005, doi: 478 

https://doi.org/10.1029/2004GL021899. 479 



Berne, A. and Krajewski, W.F.: Radar for hydrology: Unfulfilled promise or unrecognized potential? 480 

Advances in Water Resources, 51, 357-366, 2013. 481 

Bringi, V.N. and Chandrasekar, V.: Polarimetric Doppler weather radar, principles and applications. 482 

Cambridge University Press: Cambridge, UK, 636, 2001. 483 

Brandes, E.A., Zhang, G., Vivekanandan, J.: Experiments in rainfall estimation with a polarimetric radar in 484 

a subtropical environment, Journal of Applied Meteorology, 41, 674–685, 2002. 485 

Brandes, E.A., Zhang, G., Vivekanandan, J.: Drop size distribution retrieval with polarimetric radar: model 486 

and application, Journal of Applied Meteorology, 43, 461-475, 2004. 487 

Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments 488 

against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-1250, 2014. 489 

Ciach, G.J., Krajewski, W.F.: On the estimation of radar rainfall error variance. Advances in Water 490 

Resources, 22, 585-595, 1999a. 491 

Ciach, G.J. and Krajewski, W.F.: Radar-raingage comparisons under observational uncertainties. Journal 492 

of Applied Meteorology, 38, 1519-1525, 1999b. 493 

Ciach, G.J.: Local random errors in tipping-bucket rain gauge measurements. Journal of Atmospheric and 494 

Oceanic Technology, 20, 752-759, 2002. 495 

Cifelli, R., Doesken, N., Kennedy, P., Carey, L.S., Rutledge, S.A., Gimmestad, C., Depue, T.: The community 496 

collaborative rain, hail, and snow network: Informal education for scientists and citizens. 497 

Bulletin of the American Meteorological Society, 86, 1069-1077, 2005. 498 



Cunha, L.K., Smith, J.A., Baeck, M.L., Krajewski, W.F.: An early performance of the NEXRAD dual-499 

polarization radar rainfall estimates for urban flood applications. Weather and Forecasting, 28, 500 

1478-1497, 2013. 501 

Cunha, L.K., Smith, J.A., Krajewski, W.F., Baeck, M.L., Seo, B.: NEXRAD NWS polarimetric precipitation 502 

product evaluation for IFloods. Journal of Hydrometeorology, 16, 1676-1699, 2015. 503 

Delrieu, G., Andrieu, H., Creutin, J.D.: Quantification of path-integrated attenuation for X- and C-band 504 

weather radar systems operating in Mediterranean heavy rainfall. Journal of Applied 505 

Meteorology, 39, 840-850, 2000. 506 

Fabry, F., Bellon, A., Duncan, M.R., Austin, G.L.: High resolution rainfall measurements by radar for very 507 

small basins: the sampling problem reexamined. Journal of Hydrology, 161, 415-428, 1994. 508 

Fairman, J.G., Schultz, D.M., Kirschbaum, D.J., Gray, S.L., Barrett, A.I.: A radar-based rainfall climatology 509 

of Great Britain and Ireland. Weather, 70, 153-158, 2012. doi: 510 

https://doi.org/10.1002/wea.2486. 511 

Gamache, J.F. and Houze, R.A.: Mesoscale air motions associated with a tropical squall line. Monthly 512 

Weather Review, 110, 118–135, 1982. 513 

Giangrande, S.E. and Ryzhkov, A.V.: Estimation of rainfall based on the results of polarimetric echo 514 

classification. Journal of Applied Meteorology, 47, 2445-2460, 2008. 515 

Gorgucci, E., Scarchilli, G., Chandrasekar, V.: Calibration of radars using polarimetric techniques. IEEE 516 

Transactions in Geoscience and Remote Sensing, 30, 853-858, 1992.Gorgucci, E., Scarschilli, G., 517 

Chandrasekar, V., Bringi, V.N.: Measurement of mean raindrop shape from polarimetric radar 518 

observations. Journal of the Atmospheric Sciences, 57, 3406-3413, 2000. 519 



Gorgucci, E., Baldini, L., Chandrasekar, V.: What is the shape of a raindrop? An answer from radar 520 

measurements. Journal of the Atmospheric Sciences, 63, 3033-3044, 2006. 521 

Goudenhoofdt, E., Delobbe, L.: Long-term evaluation of radar QPE using VPR correction and radar-gauge 522 

merging. International Association of Hydrological Sciences Publications, 351, 249-254, 2012. 523 

Goudenhoofdt, E., Delobbe, L.: Generation and verification of rainfall estimates from 10-yr volumetric 524 

weather radar measurements. Journal of Hydrometeorology, 133, 1191-1204, 2016. 525 

Gourley, J.J., Giangrande, S.E., Hong, Y., Flamig, Z., Schuur, T., Vrugt, J.: Impacts of polarimetric radar 526 

observations on hydrologic simulation. Journal of Hydrometeorology, 11, 781-796, 2010. 527 

Habib, E., Krajewski, W.F., Nespor, V., Kruger, A.: Numerical simulation studies of rain gauge data 528 

correction due to wind effect. Journal of Geophysical Research, 104, 723–734, 1999. 529 

Habib, E., Krajewski, W.F., Kruger, A.: Sampling errors of tipping-bucket rain gauge measurements. 530 

Journal of Hydrological Engineering, 6, 159–166, 2001. 531 

Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., New, M.: A European daily high-532 

resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of 533 

Geophysical Research, 113, 2008. doi: https://doi.org/10.1029/2008JD010201 534 

Holleman, I., Huuskonen, A., Gill, R., Tabary, P.: Operational monitoring of radar differential reflectivity 535 

using the sun. Journal of Atmospheric and Oceanic Technology, 27, 881-887, 2010. 536 

Hubbert, J.C.: Differential reflectivity calibration and antenna temperature. Journal of Atmospheric and 537 

Oceanic Technology, 34, 1885-1906, 2017. 538 



Illingworth, A., Blackman, T.A.: The need to represent raindrop size spectra as normalized gamma 539 

distributions for the interpretation of polarization radar observations. Journal of Applied 540 

Meteorology, 41, 286-297, 2002. 541 

Kelsch, M.: The Fort Collins flash flood: Exceptional rainfall and urban runoff. Preprints, 19th Conference 542 

on severe local storms, Minneapolis, MN, American Meteorological Society, 404-407, 1998. 543 

Kitchen, M. and Blackall, M.: Representativeness errors in comparisons between radar and gauge 544 

measurements of rainfall. Journal of Hydrology, 134, 13–33, 1992. 545 

Kleiber, W., Katz, R.W., Rajagopalan, B.: Daily spatiotemporal precipitation simulation using latent and 546 

transformed Gaussian processes. Water Resources Research, 48, 2012. doi: 547 

https://doi.org/10.1029/2011WR011105.Kessinger, C., Ellis, S., Van Andel, J.: The radar echo 548 

classifier: a fuzzy logic algorithm for theWSR-88D. 19th Conf. on Inter. Inf. Proc. Sys. (IIPS) for 549 

Meteor., Ocean., and Hydr., Amer. Meteor. Soc., Long Beach, CA, 2003. 550 

Kitchen, M. and Jackson, P.M.: Weather radar performance at long range – simulated and observed. 551 

Journal of Applied Meteorology, 32, 975-985, 1993. 552 

Krajewski, W.F., Kruger, A., Nespor, V.: Experimental and numerical studies of small-scale rainfall 553 

measurements and variability. Water Science and Technology, 37, 131-138. 554 

Kumjian, M.R.: Principles and applications of dual-poarization weather radar. Part 1: Description of the 555 

polarimetric radar variables. Journal of Operational Meteorology, 1, 226-242, 2013a. 556 

Kumjian, M.R.: Principles and applications of dual-poarization weather radar. Part 2: Warm and cold 557 

season applications. Journal of Operational Meteorology, 1, 243-264, 2013b. 558 

Kumjian, M.R.: Principles and applications of dual-poarization weather radar. Part 3: Artifacts. Journal of 559 

Operational Meteorology, 1, 265-274, 2013c. 560 



Lakshmanan, V., Smith, T., Stumpf, G., Hondl, K.: The warning decision support system—integrated 561 

information. Weather and Forecasting, 22, 596–612, 2007a. 562 

Lakshmanan, V., Fritz, A., Smith, T., Hondl, K., Stumpf, G.: An automated technique to quality control 563 

radar reflectivity data. Journal of Applied Meteorology and Climatology, 46, 288-305, 2007b. 564 

Lakshmanan, V., Zhang, J., Howard, K.: A technique to censor biological echoes in radar reflectivity data. 565 

Journal of Applied Meteorology and Climatology, 49, 453-462, 2010. 566 

Lakshmanan, V., Karstens, C., Krause, J., Tang, L,: Quality control of weather radar data using 567 

polarimetric variables. Journal of Atmospheric and Oceanic Technology, 31, 1234-1249, 2014. 568 

Moon, J.T., Guinan, P.E., Snider, D.J., Lupo, A.R.: CoCoRaHS in Missouri: Four years later, the importance 569 

of observations. Transactions of the Missouri Academy of Science, 43, 7-18, 2009. 570 

Park, H.S., Ryzhkov, A.V., Zrnic, D.S.: The hydrometeor classification algorithm for the polarimetric WSR-571 

88DL Description and application to an MCS. Weather and Forecasting, 24, 730-748, 2009. 572 

Reges, H.W., Doesken, N., Turner, J., Newman, N., Bergantino, A., Schwalbe, Z.: CoCoRaHS: The 573 

evolution and accomplishments of a volunteer rain gauge network. Bulletin of the American 574 

Meteorological Society, 97, 1831-1846, 2016. 575 

Ruzanski, E., Chandrasekar, V.: Nowcasting rainfall fields derived from specific differential phase. Journal 576 

of Applied Meteorology and Climatology, 51, 1950-1959, 2012. 577 

Ryzhkov, A.V., Giangrande, S., Schurr, T.: Rainfall measurements with the polarimetric WSR-88D radar. 578 

National Severe Storms Laboratory Rep. Norman: OK, 98, 2003. 579 

Ryzhkov, A.V., Giangrande, S., Schurr, T.: Rainfall estimation with a polarimetric prototype of WSR-88D. 580 

Journal of Applied Meteorology, 44, 502–515, 2005. 581 



Scarchilli, G., Gorgucci, E., Chandrasekar, V., Dobaie, A.: Self-consistency of polarization diversity 582 

measurement of rainfall. IEEE Transactions in Geoscience and Remote Sensing, 34, 22-26, 1996. 583 

Shucksmith, P.E., Sutherland-Stacey, L., Austin, G.L.: The spatial and temporal sampling errors inherent 584 

in low resolution radar estimates of rainfall. Meteorological Applications, 18, 354-360, 2011. 585 

Simpson, M.J., Hubbart, J.A., Fox, N.I.: Ground truthed performance of single and dual-polarized radar 586 

rain rates at large ranges. Hydrological Processes, 30, 3692-3703, 2016. 587 

Simpson, M.J., Hirsch, A., Grempler, K., Lupo, A.R.: The importance of choosing precipitation datasets. 588 

Hydrological Processes, 1-13. doi: https://doi.org/10.1002/hyp.11381. 589 

Seo, B.-C., Dolan, B., Krajewski, W., Rutledge, S.A., Petersen, W.: Comparison of single- and dual-590 

polarization-based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies 591 

project. Journal of Hydrometeorology, 16, 1658-1675, 2015. 592 

Smith, J.A., Seo, D.J., Baeck, M.L., Hudlow, M.D.: An intercomparison study of NEXRAD precipitation 593 

estimates. Water Resources Research, 32, 2035-2045, 1996. 594 

Straka, J.M., Zrnic, D.S., Ryzhkov, A.V.: Bulk hydrometeor classification and quantification using 595 

polarimetric radar data: Synthesis of relations. Journal of Applied Meteorology, 39, 1341-1372, 596 

2000. 597 

Yang, L., Yang, Y., Liu, P., Wang, L.: Radar-derived quantitative precipitation estimation based on 598 

precipitation classification. Advances in Meteorology, 2016, 2016. doi: 599 

https://doi.org/10.1155/2016/2457489. 600 

Zhang, G., Vivekanandan, J., Brandes, E.A.: A method for estimating rain rate and drop size distribution 601 

from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 602 

39, 830-841, 2001. 603 

Zhang, J., Youcun, Q.: A real-time algorithm for the correction of brightband effects in radar-derived 604 

QPE. Journal of Hydrometeorology, 11, 1157-1171. 605 



Zhang, J., Langston, C., Howard, K.: Brightband identification based on vertical profiles of reflectivity 606 

from the WSR-88D. Journal of Atmospheric and Oceanic Technology, 25, 1859-1872. 607 

Zrnic, D.S., Ryzhkov, A.V.: Advantages of rain measurements using specific differential phase. Journal of 608 

Atmosphere and Oceanic Technology, 13, 454-464, 1996. 609 

Zrnic, D.S., Ryzhkov, A.V.: Polarimetry for weather surveillance radars. Bulletin of American 610 

Meteorological Society, 80, 389-406, 1999. 611 

Zrnic, D.S., Melknikov, V.M., Carter, J.K.: Calibrating differential reflectivity on the WSR-88D. Journal of 612 

Atmospheric and Oceanic Technology, 23, 944-951, 2005. 613 

 614 

Table 1. Terrestrial-based precipitation gauge locations used for the study in addition to the National 615 

Weather Service Radars Springfield, MO (KSGF), Kansas City, MO (KEAX), and St. Louis, MO 616 

(KLSX) used in conjunction with each gauge. 617 

Gauge Location Latitude (°N) Longitude (°W) Radar(s) Used 

Bradford 38.897236 -92.218070 KLSX, KEAX 

Brunswick 39.412667 -93.196500 KEAX 

Capen Park 38.929237 -92.321297 KLSX, KEAX 

Cook Station 37.797945 -91.429645 KLSX, KSGF 

Green Ridge 38.621147 -93.416652 KEAX, KSGF 

Jefferson Farm 38.906992 -92.269976 KLSX, KEAX 

Lamar 37.493366 -94.318185 KSGF 

Linneus 39.856919 -93.149726 KEAX 

Monroe City 39.635314 -91.725370 KLSX 

Mountain Grove 37.153865 -92.268831 KSGF 

Sanborn Field 38.942301 -92.320395 KLSX, KEAX 



St. Joseph 39.757821 -94.794567 KEAX 

Vandalia 39.302300 -91.513000 KLSX 

Versailles 38.434700 -92.853733 KEAX, KSGF 

Williamsburg 38.907350 -91.734210 KLSX 

 618 
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 620 
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 622 

Table 2. List of single- and dual-polarimetric algorithms used for radar rainfall estimates. 623 
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Figures 641 



 642 

Figure 1. Study location (Missouri) with St. Louis (KLSX), Kansas City (KEAX), and Springfield 643 

(KSGF), MO radars (triangles) overlaid with 50-, 100-, and 150-km range rings in addition to the 15 644 

terrestrial-based precipitation gauges utilizeed as ground-truthed data. 645 
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 649 

Figure 2. Normalized standard error values for the overall performance of the a) 3 R(Z), 3 R(DSMZ), 650 

and RREC algorithms, b) 6 R(KDP) and 6 R(DKDP) algorithms (equations 1-6 from Table 2), c) 5 651 

R(Z,ZDR) and 5 R(DSMZ,ZDR) algorithms (equations 7-11 from Table 2), and d) 4 R(ZDR,KDP) 652 

and 4 R(ZDR,DKDP) algorithms (equations 12-15 from Table 2) for the three radars utilized for the 653 

current study. 654 



 655 

Figure 3. Values of analyses from the Kansas City (KEAX) radar. Dashed lines and points represent 656 

the analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points 657 

represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors 658 

represent analyses conducted during the warm and cool seasons, and overall, respectively. 659 
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 669 

Figure 4. Correlation coefficient values for the 9 locations analyzed by the Kansas City (KEAX) radar 670 

with the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season 671 

data, respectively. The top two numbers on each plot indicate the overall R2 value, whereas the 672 

bottom two numbers represent the R2 when false alarms and misses are removed. 673 
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 677 

Figure 5. Values of analyses from the St. Louis (KLSX) radar. Dashed lines and points represent the 678 

analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points represent 679 

the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors represent 680 

analyses conducted during the warm and cool seasons, and overall, respectively. 681 
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 691 

Figure 6. Correlation coefficient values for the 8 locations analyzed by the St. Louis (KLSX) radar 692 

with the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season 693 

data, respectively. The top two numbers on each plot indicate the overall R2 value, whereas the 694 

bottom two numbers represent the R2 when false alarms and misses are removed. 695 
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698 

Figure 7. Values of analyses from the Springfield (KSGF) radar. Dashed lines and points represent 699 

the analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points 700 

represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors 701 

represent analyses conducted during the warm and cool seasons, and overall, respectively. 702 
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 712 

Figure 8. Correlation coefficient values for the 5 locations analyzed by the Springfield (KSGF) radar with 713 

the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season data, 714 

respectively. The top two numbers on each plot indicate the overall R2 value, whereas the bottom two 715 

numbers represent the R2 when false alarms and misses are removed. 716 
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