
Reviewer 1 Comments and Response: 1 

 2 

Compared to the previous version, this updated version of the manuscript has 3 
improved a lot. Although I should note that not all suggestions raised have been 4 
accounted for. However, the performed work, results and conclusions are well 5 
presented.  6 
There is only one final detail that I would like to see altered before I feel the 7 
manuscript is ready for publication. At multiple places (both in the abstract and 8 
conclusion) the authors talk about 1100 of radar precipitation observations. 9 
However, this is just 46 days of data. At another location details are provided that 10 
actually 400 of the 1100 hours contained precipitation. I would therefore suggest 11 
that the authors alter the 1100 into 400 hours of precipitation 12 

 13 

We thank the reviewer for the above comments. We have updated the necessary changes throughout 14 
the manuscript to properly reflect the correct number of days and precipitation amounts. 15 
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 37 

 38 

Reviewer 2 Comments and Responses: 39 

 40 

The paper could provide a long-term verification of dual-pol QPE algorithms which is relevant 41 

for hydrology. The authors stress that they focus on the range effect but this is in 42 

contradiction with the extended list of objectives in the introduction and the limited amount 43 

of results related to range in the conclusions 44 

We appreciate this comment. We have added discussion in the conclusions to elaborate upon this 45 

aspect. We also added elaboration in the list of objects (near line 79 on page 3) to emphasize the range 46 

effect. 47 

The number of data is limited. Why only one year? Why only 46 days of precipitation are 48 

available when the normal is around 100 days? 49 

We chose a random year for the analyses to be conducted, we elaborated that 100 days have 50 

‘measureable’ rainfall (i.e., greater than trace) whereas 50 days have greater than 0.5mm in of rainfall. 51 

Therefore, the 46 days chosen / analyzed falls near the average amount of days with appreciable 52 

rainfall. 53 

The conclusions are short and do not summarize clearly the main findings (i.e. the algorithm’s 54 

relative performance in function of the range). A proper discussion on the validity and 55 

possible cause of the different results is missing 56 

Thank you for this comment. We have expanded upon the conclusions which were lacking in wrapping 57 

the paper up. 58 

The information on the data and their quality is still limited while it seems some observation 59 

errors affect the results. Which type of quality control is effectively performed by WDSS-II on 60 

the radar data? Why not using the one-hour precipitation product of NOAA as reference? 61 

Why using the Mesonet network when the higher resolution CoCoRaHS is considered as 62 

better by the authors? The data selection criteria and choice of statistics are not sufficiently 63 

discussed. 64 

We have added a more detailed description of the quality controlled techniques implemented, which 65 

would mitigate large errors in QPE from various modules within the WDSS-II framework. We did not 66 

consider using the DP rate as a reference, as that is more of a heuristic algorithm that blends multiple 67 

different algorithms together (it is difficult to determine whether they implement R(KDP), R(Z,ZDR), etc.) 68 

without doing a deep analysis of the radar parameter values as well as the particular algorithm 69 

implemented at each time. Furthermore, it is difficult to determine whether each of the 3 radar 70 

locations implement the same sort of dual-pol radar equation at the same times. Lastly, We 71 

implemented the Mesonet data due to the timing in which the current study was conducted. The 72 

authors have follow-up studies which utilize CoCoRaHS, HADS, MADIS, and other gauge locations. 73 
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In Figure 2, the results vary a lot between the algorithm’s and the radars making 74 

interpretations difficult. I am surprised by the bad performance of KDP (did you check the 75 

cause visually?). The tentative explanations of radar issues for specific gauges (e.g. bright 76 

band effect) are not robust. In Figure 3-8, only the overall best and worst algorithm’s are 77 

shown, which is too limited (I would present the best of each type). It is often unclear for 78 

which algorithm an interpretation is valid.  79 

We thank the reviewer for these comments. After checking visually, bright-banding were present in 80 

several cases, but the w2qcnndp as well as w2qcnn algorithms should have handled them effectively 81 

(cases slip through, of course). We have addressed this within the text which is primarily the result of 82 

the large biases observed in spite of larger distance from the radar. The algorithms represented via 83 

Figures 3-8 are labeled within the caption and represent the best-performing R(Z,ZDR) and worst 84 

performing R(ZDR,KDP) algorithms. This helps to highlight differences between the algorithms not only 85 

between the warm, but also the cool season.  86 

The results of similar studies (including from the authors) are not properly reviewed. Is there 87 

a connection with your recently submitted article on X-Band? 88 

We have seen similarities with the superiority of R(Z,ZDR) algorithms over R(ZDR,KDP) or R(KDP). We 89 

did, as well, see superiority with the R(Z)-Convective equation as well. 90 

The description of the statistical analyses needs to be much more clear and precise (proper 91 

definition and interpretation, thresholds used for zeros, selection of hit only data) 92 

We appreciate this comment, and have elaborated on the definition of thresholds and hit only at the 93 

end of the statistical analyses section in which more than 2 tips were needed for calculations to be 94 

implemented. 95 

The new title sounds a bit odd to me 96 

We have changed the title of the article to make it flow better. 97 

The abstract has not been improved as suggested and is not consistent with the conclusions. 98 

We appreciate this reviewer comment, and have expanded on the abstract to better reflect the 99 

conclusion, make it easier to read, and fixed some spelling errors. 100 

The comments have not been taken into account. There is still part of the methodology in the 101 

”results” section. 102 

We thank the reviewer for this comment, and we have moved text to/from the methodology and results 103 

section to better reflect the text within each section. 104 

No significant efforts have been made to improve the text structure, terminology and style. 105 

There are annoying editing errors at this stage (e.g. a repeated sentence on line 212) 106 

We have moved text around throughout the methodology and results to create a better-flowing 107 

manuscript. 108 
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Some definitions are still incorrect or imprecise 109 

The authors thank the reviewer for this comment. We have gone through the text and ensured accuracy 110 

in the definition and spelling of each acronym. 111 

The results section is still not clear nor concise. There are too much points in Figure 2. There 112 

are too much plots in the figures. I would show only NMB, NME, PoFD, PoD. Paragraphs over 113 

the different radars could be combined. What is exactly on figures 2-8 : best at each point 114 

(your response) or only R(Z,ZDR) (figure caption)? 115 

We have utilized only the best algorithm from the set of R(Z,ZDR) equations and the worst algorithm 116 

from the set of R(ZDR,KDP) equations as these consistently showed to be the best and worst, 117 

respectively. We have implemented the data from each of the statistical analyses to better represent 118 

the performance of each algorithm at each radar. Some results would not have been accounted for or 119 

even could have been completely missed without some of the statistical measures analyzed in this 120 

fashion. 121 

The number and quality of the references are acceptable but they are often cited for 122 

anecdotal reasons (e.g. Figueras et al. on line 381). They are best used for discussion in the 123 

introduction and conclusions sections. 124 

We have altered our references and moved them around to be more appropriate for the current study. 125 

 126 
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 164 

Abstract. Since the advent of dual-polarization radar technology, many studies have been conducted to 165 

determine the extent to which the differential reflectivity (ZDR) and specific differential phase shift 166 

(KDP) add benefits to estimating rain rates (R) compared to reflectivity (Z) alone. It has been previously 167 

noted that this new technology provides significant improvement to rain rate estimation, primarily for 168 

ranges within 125 km of the radar. Beyond this range, it is unclear as to whether the National Weather 169 

Service conventional R(Z)-Convective algorithm is superior, as little research has investigated radar 170 

precipitation estimate performance at larger ranges. The current study investigates the performance of 171 

three radars, St. Louis (KLSX), Kansas City (KEAX), and Springfield (KSGF), MO, with 15 tipping 172 

bucket gauges serving as ground-truth to the radars. With over 300 hours of precipitation data were 173 

analyzed for the current study, it was found that, in general, performance degraded with range beyond, 174 
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approximately, 150 km from each of the radars. Probability of detection in addition to bias values 175 

decreased, while the false alarm rates increased as range increased. Bright-band contamination was 176 

observed to play a potential role as large increases in the absolute bias and overall error values near 120 177 

km for the cool season, and 150 km in the warm season. Furthermore, upwards of 60% of the total error 178 

was due to precipitation falsely estimated, while 20% of the total error was due to missed precipitation. 179 

Correlation coefficient values increased by as much as 0.4 when these instances were removed from the 180 

analyses (i.e., hits only). Overall, due to the lowest normalized standard error of less than 1.0, a National 181 

Severe Storms Laboratory (NSSL) R(Z,ZDR) equation was determined to be the most robust, while a 182 

R(ZDR,KDP) algorithm recorded NSE values as much as 5. The addition of dual-polarized technology 183 

was shown to better estimate quantitative precipitation estimates than the conventional equation. The 184 

analyses further our understanding in the strengths and limitations of the Next Generation Radar system 185 

overall, and from a seasonal perspective. 186 

 187 

Abstract. Since the advent of dual-polarizedation radar technology, many studies have been conducted to 188 

determine the extent to which the differential reflectivity (ZDR) and specific differential phase shift 189 

(KDP) add benefits to estimating rain rates (R) compared to reflectivity (Z). It has been previously noted 190 

that this new technology provides significant improvement to rain rate estimation, but only for ranges 191 

within 125 km from of the radar. Beyond this range, it is unclear as to whether the National Weather 192 

Service conventional R(Z)-Convective algorithm is superior, as little research has investigated radar 193 

precipitation estimate performance at large ranges. The current study investigates the performance of 194 

three radars, St. Louis (KLSX), Kansas City (KEAX), and Springfield (KSGF), MO, with respect to 195 

range, with 15 terrestrial-based tipping bucket gauges served serving as ground-truth to the radars. Over 196 

1100 300 hours of precipitation data were analyzed for the current study. It was found that, in general, 197 

performance degraded with range beyond, approximately, 150 km from the radar. Probability of detection 198 

in addition to bias values decreased, while the false alarm rateios increased as range increased. Bright-199 

Formatted: Indent: Left:  0.5",  No bullets or

Formatted: Highlight

Formatted: Highlight



band contamination was observed to play a potential role as large increases in the absolute bias and 200 

overall error values near 120 km for the cool season, and 150 km in the warm season. Addition of dual-201 

polarized technology was shown to better estimate quantitative precipitation estimates than the 202 

conventional equation. The analyses found further our understanding in the strengths and limitations of 203 

the Next Generation Radar system overall, and from a seasonal perspective. 204 

1 Introduction 205 

In 2012, the National Weather Service (NWS) began upgrading the Next Generation Radar 206 

(NEXRAD) system from single- to dual-polarization. The potential benefits of this upgrade were 207 

investigated by the National Severe Storms Laboratory (NSSL) and the Cooperative Institute for 208 

Mesoscale Meteorological Studies. These advantages include, but are not limited to, (1) significant 209 

improvement in radar rainfall estimation (Ryzhkov et al., 2005; Gourley et al., 2010) through better 210 

representation of precipitation shape (Brandes et al., 2002; Gorgucci et al., 2000, 2006), (2) 211 

discrimination between solid and liquid precipitation (Zrnic and Ryzhkov, 1996), allowing for better 212 

distinction between areas of heavy rain and hail (Park et al., 2009; Giangrande and Ryzhkov, 2008; 213 

Cunha et al., 2013),  (3) identifying the melting layer position in the radar field (Straka et al., 2000; Park 214 

et al., 2009), and (4) calculating drop-size distributions retrieved from measurements of reflectivity (Z), 215 

differential reflectivity (ZDR), and specific differential phase shift (KDP) as opposed to using ground-216 

based point located disdrometers (Zhang et al., 2001; Brandes et al., 2004; Anagnostou et al., 2008).  217 

Rain rate retrieval by weather radars is an estimation based upon the dielectric properties of the 218 

hydrometeors encountered in the atmosphere. Therefore, there is no direct measurement of rainfall, and 219 

this inherently introduces error. However, dual-polarized radar technology allows for in-depth analyses on 220 

the microphysics of precipitation that single-polarization was incapable of conducting. In spite of this 221 

technology, conflicting studies report the benefits for quantitative precipitation estimation (QPE). For 222 

example, Gourley et al. (2010) and Cunha et al. (2015) reported that conventional R(Z) algorithms have 223 

significantly better bias than algorithms containing ZDR and/or KDP, while others (e.g., Ryzhkov et al., 224 



2013; Simpson et al., 2016) report the opposite. This could be due, at least in part, to the fact that 225 

hydrometeor types (e.g., rain versus hail) vary on spatial scales that cannot be easily resolved by even 226 

densely gauged networks. 227 

Multiple studies have found that the performance of radar rain rate estimates decrease as range 228 

increases (Smith et al., 1996; Ryzhkov et al., 2003) which is caused, primarily, by degradation of beam 229 

quality with range. Furthermore, the researchers also discuss how the probability of detection at larger 230 

ranges decreases, as the radar beam overshoots shallow, stratiform precipitation, especially winter 231 

precipitation. Bright-banding can also play a crucial role in significantly increasing the amount of 232 

precipitation estimated by the radar, prompting many researchers to produce automated bright-band 233 

detection algorithms (e.g., Zhang et al., 2008; . Zhang and Qi, 2010). 234 

Despite these overall disadvantages, studies have shown that radar rainrate algorithms seldom 235 

exceed absolute errors on the order of 10 mm h-1. However, many of these studies have looked at a small 236 

sample of rain events (on the order of 10-50 hours) (Kitchen and Jackson, 1993; Smith et al., 1996; 237 

Ryzhkov et al., 2003; Gourley et al., 2010; Cunha et al., 2013). Long-term performances of weather radar 238 

are becoming more common in recent years as the availability of data becomes more abundant (e.g., 239 

Haylock et al., 2008; Goudenhoofdt and Delobbe, 2012; Fairman et al., 2015; Goudenhoofdt and 240 

Delobbe, 2015). Additionally, few studies (e.g., Smith et al., 1996; Cunha et al., 2015; Simpson et al., 241 

2016) quantified QPE errors including the probability of detection and false alarm ratio. In order to gain a 242 

better understanding of the performance of weather radars on rain rate estimates, more data must be 243 

collected over a broad range of precipitation regimes in addition to an overall broader region of interest. 244 

The overarching objective of the current study was to assess the performance of three different 245 

radars within the state of Missouri at various ranges from the radar, using terrestrial-based tipping bucket 246 

gauges as ground-truth data. Radar rain rate estimation algorithms include 55 algorithms encompassing 247 

standard R(Z) relations as well as algorithms containing dual-polarization variables including differential 248 

reflectivity (ZDR) and the specific differential phase shift (KDP). A rain rate echo classification 249 



algorithm was also tested for performance in correctly identifying the suitable rain rate algorithm to 250 

choose based on the Z, ZDR, and KDP radar fields. The current work expands upon that of Simpson et al. 251 

(2016) such that a larger sample of data was analyzed (over 300 hours of rainfall data from forty-six 252 

separate days in 2014) to encompass multiple different precipitation regimes for both summer and winter, 253 

with several ground-truth tipping buckets to analyze the performance of three separate radars as a 254 

function of range, and further expanding upon the effects of erroneous precipitation estimates on the 255 

overall radar error. Objectives for this study included, (1) statistically analyze the performance of each 256 

radar at various ranges (compared against the gauges), (2) compute (a) the amount of precipitation 257 

incorrectly estimated by the radar (quantifying the probability of false detection) and (b) the amount of 258 

precipitation incorrectly missed by the radar but measured by the rain gauge, (3) test the overall best radar 259 

rain rate algorithm, and (4) perform objectives (1), (2), and (3) while the data is separated into warm and 260 

cool seasons which have been shown to result in significantly different QPE’s (Smith et al., 1996; 261 

Ryzhkov et al., 2003; Cunha et al., 2015). 262 

In 2012, the National Weather Service (NWS) began upgrading the Next Generation Radar 263 

(NEXRAD) system from single- to dual-polarization. The potential benefits of this upgrade were 264 

investigated by the National Severe Storms Laboratory (NSSL) and the Cooperative Institute for 265 

Mesoscale Meteorological Studies. These advantages include, but are not limited to, (1) significant 266 

improvement in radar rainfall estimation (Ryzhkov et al., 2005; Gourley et al., 2010) through better 267 

representation of precipitation shape (Brandes et al., 2002; Gorgucci et al., 2000, 2006), (2) 268 

discrimination between solid and liquid precipitation (Zrnic and Ryzhkov, 1996), allowing for better 269 

distinction between areas of heavy rain and hail (Park et al., 2009; Giangrande and Ryzhkov, 2008; 270 

Cunha et al., 2013),  (3) identifying the melting layer position in the radar field (Straka et al., 2000; Park 271 

et al., 2009), and (4) calculating drop-size distributions retrieved from measurements of reflectivity (Z), 272 

differential reflectivity (ZDR), and specific differential phase shift (KDP) as opposed to using ground-273 

based point located disdrometers (Zhang et al., 2001; Brandes et al., 2004; Anagnostou et al., 2008).  274 



Rain rate retrieval by weather radars is an estimation based upon the dielectric properties of the 275 

hydrometeors encountered in the atmosphere. Therefore, there is no direct measurement of rainfall, and 276 

this inherently introduces error. However, dual-polarized radar technology allows for in-depth analyses on 277 

the microphysics of precipitation that single-polarization was incapable of conducting. In spite of this 278 

technology, conflicting studies report the benefits for quantitative precipitation estimation (QPE). For 279 

example, Gourley et al. (2010) and Cunha et al. (2015) reported that conventional R(Z) algorithms have 280 

significantly better bias than algorithms containing ZDR and/or KDP, while others (e.g., Ryzhkov et al., 281 

2013; Simpson et al., 2016) report the opposite. This could be due, at least in part, to the fact that 282 

hydrometeor types (e.g., rain versus hail) vary on spatial scales that cannot be easily resolved by even 283 

densely gauged networks. 284 

Multiple studies have found that, in general, the performance of radar rain rate estimates decrease 285 

as range increases (Smith et al., 1996; Ryzhkov et al., 2003) which is caused, primarily, by degradation of 286 

beam quality and broadening of the beam with range. Furthermore, the researchers also discuss how the 287 

probability of detection at larger ranges decreases, as the radar beam overshoots shallow, stratiform 288 

precipitation, including winter storms. Bright-banding can also play a crucial role in significantly 289 

increasing the amount of precipitation estimated by the radar.  290 

Despite these overall disadvantages, studies have shown that radar rainrate algorithms seldom 291 

exceed absolute errors on the order of 10 mm h-1. However, many of these studies have looked at a small 292 

sample of rain events (on the order of 10-50 hours) (Kitchen and Jackson, 1993; Smith et al., 1996; 293 

Ryzhkov et al., 2003; Gourley et al., 2010; Cunha et al., 2013). Long-term performances of weather radar 294 

are becoming more common in recent years as the availability of data becomes more abundant (e.g., 295 

Haylock et al., 2008; Goudenhoofdt and Delobbe, 2012; Fairman et al., 2015; Goudenhoofdt and 296 

Delobbe, 2015). Additionally, few studies (e.g., Smith et al., 1996; Cunha et al., 2015; Simpson et al., 297 

2016) quantified meteorologically significant measures including the probability of detection and false 298 

alarm ratio. In order to get a better understanding of the performance of weather radars on rain rate 299 



estimates, more data must be collected over a broad range of precipitation regimes in addition to an 300 

overall broader region of interest. 301 

The overarching objective of the current study was to assess the overall performance of three 302 

different radars within the state of Missouri at various ranges from the radar, using terrestrial-based 303 

tipping bucket gauges as ground-truth data. Radar rain rate estimation algorithms include 55 algorithms 304 

encompassing standard R(Z) relations, in addition toand algorithms containing dual-polarization variables 305 

including ZDR and KDP. A rain rate echo classification algorithm was also tested for performance in 306 

correctly identifying the suitable rain rate algorithm to choose based on the Z, ZDR, and KDP radar 307 

fields. The current work expands upon that of Simpson et al. (2016) such that a larger sample of data were 308 

was analyzed (over 10300 hours of rainfall data from forty-six separate days in 2014) to encompass 309 

multiple different precipitation regimes for both summer and winter, with several ground-truth tipping 310 

buckets to analyze the performance of three separate radars as a function of range, and further expanding 311 

upon the effects of erroneous precipitation estimates on the overall radar error. Objectives for this study 312 

included, (1) statistically analyze the performance of each radar at various ranges (compared against the 313 

terrestrial-based gauges), (2) compute (a) the amount of precipitation incorrectly estimated by the radar 314 

(quantifying the probability of false detection) and (b) the amount of precipitation incorrectly missed by 315 

the radar but measured by the rain gauge, (3) test the overall best radar rain rate algorithm, and (4) 316 

perform objectives (1), (2), and (3) while the data is separated into warm and cool seasons which have 317 

been shown to result in significantly different QPE’s (Smith et al., 1996; Ryzhkov et al., 2003; Cunha et 318 

al., 2015). 319 

 320 

2 Study area and methods 321 

2.1 Study area 322 
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National Weather Service radars from St. Louis (KLSX), Kansas City (KEAX), and Springfield 323 

(KSGF), MO are able to scan the majority of the state of Missouri. Because of this, the three 324 

aforementioned radars were used to assess overall performance in estimating precipitation for this study. 325 

Each radar covered a 200-km radius for which a different number of gauges were within the domain: 326 

KLSX, KEAX, and KSGF covered 9, 8, and 5 gauges, respectively (Figure 1).  327 

Missouri is characterized as a continental type of climate, marked by relatively strong seasonality. 328 

Furthermore, Missouri is subject to frequent changes in temperature, primarily due to its inland location 329 

and its lack of proximity to any large lakes. All of Missouri experiences below-freezing temperatures on a 330 

yearly-basis. For example, the majority of the state typically registers, 110 days with temperatures below 331 

freezing, while the Bootheel (i.e., southeast region) records, on average, 70 days of below freezing day 332 

temperatures, emphasizing the typical northwest to southeast warming pattern of temperatures observed 333 

in the state. Because of the large variability in temperature, the warm and cool seasons were defined from 334 

an agronomic perspective, primarily taking probabilities of freezing into account. Based on the 335 

climatological averages of Missouri, from 1983 to 2013, November through April registered average 336 

minimum temperatures below freezing, and was considered the cool season, while May through 337 

October’s minimum average temperature were above freezing and constituted the warm season. 338 

Missouri is characterized as a continental type of climate, marked by relatively strong seasonality. 339 

Furthermore, Missouri is subject to frequent changes in temperature, primarily due to its inland location 340 

and its lack of proximity to any large lakes. All of Missouri experiences below-freezing temperatures on a 341 

yearly-basis. For example, the majority of the state experiences, on average, 110 days with temperatures 342 

below freezing, while the Bootheel (i.e., southeast region) registers, on average, 70 days of below 343 

freezing daytemperatures. This elaborates upon the typical northwest to southeast warming pattern of 344 

temperatures observed in the state. Because of the large variability in temperature, the warm and cool 345 

seasons were defined from an agronomic perspective, primarily taking probabilities of freezing into 346 

account. Based on the climatological averages of Missouri, from 1983 to 2013, November through April 347 



registered average minimum temperatures below freezing, and was considered the cool season, while 348 

May through October’s minimum average temperature were above freezing and constituted the warm 349 

season. 350 

 351 

2.2 Rainfall data 352 

In order for the results to be comparable across the domains of the three radars it was necessary to 353 

select days on which rain was observed widely across the state. Although measureable rainfall occurs on 354 

more than 100 days of the year in Missouri with only 50 days typically recording greater than 25.4 mm in 355 

2014 had 46 days with measurable rainfall throughout the state. Furthermore, occurrence of rain was 356 

defined as the observation of an amount greater than 0.5 mm (equivalent to two rain gauge tips) in an 357 

hour. This amounted to a total of approximately 300 hours of rain across those 46 days. This represents a 358 

relatively standard year of rainfall for the state of Missouri. Furthermore, the days were chosen based on 359 

availability of data from the National Climate Data Center’s (NCDC) Hierarchal Data Storage System 360 

(HDSS) for all three radars, in addition to error-free performance notes from each of the gauges used. The 361 

dates analyzed were split near evenly between warm (May – October) and cool (November – April), 362 

therefore encompassing an overall performance of each of the radars throughout the year with no 363 

preferential bias towards rain or snow. Additionally, days were distributed evenly during the summer 364 

between convective and stratiform events with a threshold of 38 dBZ (Gamache and Houze, 1982). 365 

Terrestrial-based precipitation gauge data were collected from 15 separate weather stations within the 366 

Missouri Mesonet, established by the Commercial Agriculture Program of University Extension (Table 367 

1). All precipitation data were aggregated in hourly intervals to match the temporal resolution of the 368 

gauges. Observed precipitation data were collected using Campbell Scientific TE525 tipping buckets 369 

located at each of the locations for the study (Table 1). The precipitation gauges have a 15.4 cm orifice 370 

which funnels to a fulcrum which registers 0.254 mm of rainfall per tip. The performance of each gauge is 371 



maximized between 0 and 50°C, for which each day of the study’s temperature did not exceed. Accuracy 372 

in gauge measurements range between -1 to 1%, -3 to 0%, and -5 to 0% for precipitation up to 25.4 mm 373 

hr-1, 25.4 to 50.8 mm hr-1, and 50.8 to 76.2 mm hr-1, respectively, which are, primarily, associated with 374 

local random errors and errors in tip-counting schemes (Kitchen and Blackall, 1992; Habib et al., 2001). 375 

 Each tipping bucket is located, approximately, 1 m above the ground in areas clear of buildings 376 

and properly maintained vegetation height to mitigate turbulence effects (Habib et al., 1999). Due to the 377 

well-maintained nature of the mesonet gauges, these errors were assumed negligible and, therefore, 378 

allowed for the gauges to be representative of the true rainfall rate. In spite of the non-homogeneous 379 

spacing of the gauges, unbiased statistics including the normalized mean bias and normalized standard 380 

error were utilized. 381 

In order for the results to be comparable across the domains of the three radars it was necessary to select 382 

days on which rain was observed widely across the state. Although rainfall occurs on more than 100 days 383 

of the year in Missouri, in 2014 only 46 days had rain widespread enough for this study. Further to this, 384 

occurrence of rain was defined as the observation of an amount greater than 0.254 mm (equivalent to a 385 

single rain gauge tip) in an hour. This amounted to a total of approximately 300 hours of rain across those 386 

46 days. This resultsrepresents in a relatively standard year of rainfall for the state of Missouri. 387 

Furthermore, the days were chosen based on availability of data from the National Climate Data Center’s 388 

(NCDC) Hierarchal Data Storage System (HDSS) for all three radars, in addition to error-free 389 

performance notes from each of the gauges used. The dates analyzed were split near evenly between 390 

warm (May – October) and cool (November – April), therefore encompassing an overall performance of 391 

each of the radars throughout the year with no preferential bias towards rain or snow. Additionally, days 392 

were distributed evenly during the summer between convective and stratiform events with a threshold of 393 

38 dBZ (Gamache and Houze, 1982). 394 

Terrestrial-based (ground-truthed) precipitation gauge data were collected from 15 separate weather 395 

stations within the Missouri Mesonet, established by the Commercial Agriculture Program of University 396 
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Extension (Table 1). All precipitation data were aggregated in hourly intervals to match the temporal 397 

resolution of the ground-truthed gauges. Forty-six out of 365 days for the year of 2014 were analyzed 398 

based on precipitation being registered across the entire study domain (Figure 1). Of these 46 days, 399 

approximately 300 out of 1,104 hours of precipitation occurred such that the tipping buckets recorded 400 

more than one tip (i.e., greater than 0.254 mm) for each location. This results in a relatively standard year 401 

of rainfall for the state of Missouri. Furthermore, the days were chosen based on availability of data from 402 

the National Climate Data Center’s (NCDC) Hierarchal Data Storage System (HDSS) for all three radars, 403 

in addition to error-free performance notes from each of the gauges used. The dates analyzed were split 404 

near evenly between warm (May – October) and cool (November – April), therefore encompassing an 405 

overall performance of each of the radars throughout the year with no preferential bias towards rain or 406 

snow. Additionally, days were distributed evenly during the summer between convective and stratiform 407 

events with a threshold of 38 dBZ (Gamache and Houze, 1982). 408 

Observed precipitation data were collected using Campbell Scientific TE525 tipping buckets located at 409 

each of the locations for the study (Table 1). The precipitation gauges have a 15.4 cm orifice which 410 

funnels to a fulcrum which registers 0.01 mm of rainfall per tip. The performance of each gauge is 411 

maximized between 0 and 50°C, for which each day of the study’s temperature did not exceed. Accuracy 412 

in gauge measurements range between -1 to 1%, -3 to 0%, and -5 to 0% for precipitation up to 25.4 mm 413 

hr-1, 25.4 to 50.8 mm hr-1, and 50.8 to 76.2 mm hr-1, respectively, which are, primarily, associated with 414 

local random errors and errors in tip-counting schemes (Kitchen and Blackall, 1992; Habib et al., 2001). 415 

 Each tipping bucket is located, approximately, 1 m above the ground in areas clear of buildings and 416 

properly maintained vegetation height to mitigate turbulence effects (Habib et al., 1999). Due to the well-417 

maintained nature of the mesonet gauges, these errors were assumed negligible and, therefore, allowed for 418 

the gauges to be representative of the true rainfall rate. In spite of the non-homogeneous spacing of the 419 

gauges, unbiased statistics including the normalized mean bias and normalized standard error were 420 

utilized. 421 
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 422 

2.3 Radar data and radar-rainfall algorithms 423 

Next Generation Radar (NEXRAD) level-II data were retrieved from the NCDC’s HDSS. Files were 424 

analyzed processed using the Weather Decision Support System – Integrated Information (WDSS-II) 425 

program (Lakshmanan et al., 2007a) to assess reflectivity (Z) in addition to dual-polarized radar variables 426 

including differential reflectivity (ZDR) and specific differential phase shift (KDP). Many different 427 

quality control techniques are available (e.g., Lakshmanan et al., 2007b, 2010, 2014) and implemented 428 

upon the radar data with WDSS-II. Three other variables were also generated based on a KDP-based 429 

smoothing field (Ryzhkov et al., 2003) for reflectivity, differential reflectivity, and specific differential 430 

phase: DSMZ, DZDR, and DKDP, respectively. These were implemented to determine whether the 431 

additional KDP-smoothing fields tend to over- or underestimate QPE’s (Simpson et al., 2016). A rain rate 432 

echo classification variable (RREC) was also computed, which chooses whether an R(Z), R(KDP), 433 

R(Z,ZDR), or R(ZDR, KDP) algorithm is implemented in estimating rain rates based on the radar fields 434 

of Z, ZDR, and KDP (Kessinger et al., 2003) to determine whether a multi-parameter algorithm is 435 

superior to a single algorithm.  436 

All seven variables (Z, ZDR, KDP, DSMZ, DZDR, DKDP, and RREC) were converted from their native 437 

polar grid to 256 x 256 1 km Cartesian grids, where the lowest radar elevation scans (0.5°) were used to 438 

mitigate uncalculated effects from evaporation and wind drift. An average of 5 minute scans were used 439 

for each of the variables, which were aggregated to hourly totals to be compared to the hourly tipping-440 

bucket accumulations. In spite of previous reports suggesting 5 minute to hourly aggregates can have 441 

significant effects on QPE (e.g., Fabry et al. 1994), Shucksmith et al. (2011) present evidence that 442 

accumulation overestimation did not exceed 26% for a pixel size of 1 km.  443 

The latitude and longitude of each of the 15 gauges were matched with the radar pixel that corresponds to 444 

the Cartesian grid value of the seven radar variables which were then implemented in rain rate 445 
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calculations. These rain-rate calculations were calculated using the equations presented by Ryzhkov et al. 446 

(2005) (Table 2), which were gathered from multiple studies using disdrometers to derive a relationship 447 

between reflectivity, differential reflectivity, and specific differential phase (Bringi and Chandrasekar, 448 

2001; Brandes et al., 2002; Illingworth and Blackman, 2002; Ryzhkov et al., 2003). Standard R(Z) 449 

algorithms were also included to test whether the addition of dual-polarized technology improves QPE’s.  450 

With the use of both Z, ZDR, KDP, and DSMZ, DZDR, and DKDP fields produced by WDSS-II, the 451 

number of algorithms tested was 55. This includes the three standard single-polarized algorithms 452 

(stratiform, convective, and tropical) which were calculated using reflectivity R(Z), and then calculated as 453 

R(DSMZ), while algorithms 1-6 (R(KDP)) were also calculated as R(DKDP). Algorithms 7-11 (R(Z, 454 

ZDR)) were additionally calculated as R(Z, DZDR), R(DSMZ, ZDR), and R(DSMZ, DZDR), while the 455 

same four combinations of non- and KDP-smoothed fields were applied to the R(KDP, ZDR) algorithms 456 

(12-15).  457 

 458 

2.4 Statistical analyses 459 

To test the performance of each algorithm, several statistical analyses were calculated. The average 460 

difference (Bias) was calculated as 461 

N

GR
Bias

ii 


)(
          (1) 462 

where Ri is each hourly aggregated radar estimated rainfall amount calculated from one of the 55 463 

algorithms, Gi is the hourly aggregated gauge (observed) measurement, and N is the total number of 464 

observations which, for this study, was 1,104 hours. A second statistical parameter, the normalized mean 465 

bias (NMB), was calculated as 466 
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The normalized mean bias is included in the analyses due to the fact that overestimations (i.e., radar 468 

estimates larger than gauge measurements) and underestimations (i.e., radar estimates smaller than gauge 469 

measurements) are treated proportionately. This is directly analogous to choosing the mean absolute error 470 

(MAE) opposed to the standard deviation as the MAE does not penalize smaller or larger errors, 471 

obscuring the overall results (Chai and Draxler, 2014). Bias measurements (Bias and NMB) were 472 

calculated to determine whether radar derived rain rates were over- or under-estimated in comparison to 473 

the gauges. However, to calculate the overall magnitude of error associated with the performance of the 474 

radars, the absolute values of (1) and (2) were performed to yield the mean absolute error (MAE), and 475 

normalized standard error (NSE), respectively.  476 

 Several other meteorological parameters were calculated, including probability of detection 477 

(PoD) which was calculated as 478 


 


||

|0&0|

i

iii

G

RGR
PoD         (3) 479 

where the bullet ( ) indicates “if”, to determine how accurate the radars were at correctly detecting 480 

precipitation. The probability of detection values range between 0.0 (radar did not detect any precipitation 481 

correctly) and 1.0 (radar detected the occurrence of all precipitation 100% correctly). The probability of 482 

false detection takes into account the amount of precipitation the radars incorrectly estimated when the 483 

gauges recorded zero values, and was calculated as 484 
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Quantitative measures including the missed precipitation amount (MPA) and the false precipitation 486 

amount (FPA) were defined such that 487 

  )0&0( iii RGRMPA         (5) 488 



 489 

 490 

  )0&0( iii RGRFPA                      (6) 491 

which analyzes the total amount of precipitation due to misses and false alarms. The total 492 

precipitation error was also recorded to assess the overall error from each radar. 493 

 494 

 495 

3 Results and discussion 496 

3.1 Overall algorithm performance 497 

To test the overall performance of each radar, it was necessary to determine the overall best algorithm for 498 

each statistical measure. The best algorithm from each grouping of equations was determined to have the 499 

lowest normalized standard error (NSE), indicating the best performance relative to the gauge-recorded 500 

precipitation amount (Ryzhkov et al., 2005). This reduces the impact of bias inherent within the dataset 501 

between warm/cool season, stratiform/convective events, and allows for statistical measurements in spite 502 

of the (typical) non-Gaussian behavior of precipitation (Kleiber et al., 2012; Alaya et al., 2017).  503 

From the results obtained, the three R(Z) three R(DSMZ) displayed a particular bias in favor of the R(Z)-504 

Convective algorithm for all three radars with R(Z)-Stratiform displaying similar performance (Figure 505 

2a). This could be due, at least in part, to the near-equal stratiform and convective precipitation regimes 506 

throughout 2014. Although errors generally increased as range increased for KEAX and KLSX, the 507 

results were nebulous for KSGF. The lowest NSE values were, typically, closest to each of the radars 508 

(between 0.4 and 0.8), with the notable exception of the closest gauge to KSGF. In general, the RREC 509 

performed worst, potentially due to the algorithm’s ability to correctly assess the hydrometeors present 510 
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(Cifelli et al., 2011; Yang et al. 2016). Additionally, the poor performance by the R(DSMZ)-Tropical 511 

equation is due to the lack of tropical precipitation within Central Missouri. Overall, the KDP-smoothed 512 

reflectivity fields (DSMZ) performed worse than their counter-parts, resulting in over-prediction of 513 

precipitation and, thus, larger errors (Simpson et al., 2016). Errors did not exceed 2.4 for any of these 514 

algorithms. 515 

However, the performance of the KDP-smoothed KDP field (DKDP) performed better than the original 516 

specific differential phase shift field (Figure 2b). For nearly all gauges for each of the 3 radars, 517 

R(DKDP)4 performed the best, with NSE values ranging from 1.4 to 4.1. The range of NSE values were 518 

largest at KEAX, while the spread was relatively small for KLSX and KSGF. In spite of this, the overall 519 

spread of the performance of the 12 KDP algorithms varied greatly (average of 2 NSE units), exhibiting 520 

the sensitivity of KDP estimates on QPE (Ryzhkov et al., 2005; Cunha et al., 2013). In general, the 521 

NSSL-derived R(KDP) equations (i.e., equations 4-6) outperformed those from Bringi and Chandrasekar 522 

(2001, equation 1), Brandes et al. (2002, equation 2), and Illingworth and Blackman (2002, equation 3). 523 

Regardless, the magnitudes were all, approximately, more than 1 NSE unit than the performance of the 524 

R(Z) algorithms. 525 

The algorithms with the lowest NSE values were equations 7-11. For example, the overall lowest NSE 526 

was at a distance of 130 km from KEAX (0.3), with no locations exceeding NSE values of 2.0 (Figure 527 

2c). The large values at the closest location for KSGF (85 km, 1.3 – 1.9 NSE units), and the fifth closest 528 

gauge to KLSX (135 km, 1.3 – 1.8 NSE units), Cook Station, were similar to the R(Z) and R(DSMZ) 529 

results, indicating potential issues with reflectivity measurements. Additionally, these locations were the 530 

closest in performance to the R(KDP) and R(DKDP) NSE values. Observations from this gauge (Cook 531 

Station) indicated hail occurred during the evening of 01 August, for which KDP estimates would be 532 

more ideal than Z for QPE (Ryzhkov et al. 2005; Kumjian 2013a; Cunha et al. 2015). In spite of this, the 533 

overall spread in performance of the R(Z,ZDR) equations were less than the R(KDP) equations, 534 



demonstrating the robust performance of R(Z,ZDR) for QPE (Wang and Chandrasekar 2010; Seo et al., 535 

2015). 536 

The R(ZDR,KDP) algorithms performed the worst, overall (Figure 2d). In spite of the differential 537 

reflectivity being implemented, the overall NSE values increased in magnitude, exceeding 6 units for the 538 

second gauge analyzed by KEAX. Algorithms containing DKDP measurements performed better than 539 

simply KDP, demonstrating that even with the scaling behavior of ZDR, DKDP is superior to KDP 540 

estimates. This provides a potential solution to the noisy-ness that tends to be exhibited in the KDP field 541 

(Ruzanski and Chandrasekar 2012).  542 

Due to the overall NSE values obtained, for the remainder of the analyses, equation 11 (i.e., R(Z,ZDR)5) 543 

and equation 13 (i.e., R(ZDR,KDP)2) will be utilized as the best and worst algorithms, respectively. 544 

Equations containing DZDR were not included in the following discussion due to the very large QPE 545 

errors for each radar. 546 

 547 

3.2 KEAX 548 

The overall bias showed that there was a positive bias, peaking near 5.5 mm hr-1 at the second gauge for 549 

KEAX, approximately 115 km from the radar for both the best and worst performing algorithms (Figure 550 

3). This corresponds well with the spike in falsely detected precipitation recorded, which is canceled by 551 

the maximum in missed precipitation at the second distance of, approximately, 150 km. The overall worst 552 

algorithm, equation 13, an R(ZDR,KDP) relationship, revealed a decreasing trend in bias as the distance 553 

from the radar increased. For example, a bias of 4 mm hr-1 was observed at a distance of 75 km from the 554 

radar, whereas the bias reduced to 3 mm hr-1 at distances near 175 km.  This could be due, at least in part, 555 

to the algorithm’s utilization of KDP which performs poorly in frozen (especially light) precipitation 556 

(Zrnic and Ryzhkov, 1996; Kumjian 2013a), causing the overestimation. Conversely, the algorithm with 557 

the lowest bias was an R(Z,ZDR) algorithm (equation 11). There was a maximum in the bias calculations 558 
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while utilizing equation 11 near 120 km, similar to equation 13, however, there was a more pronounced 559 

minimum in the data near 150 km. Furthermore, it appears the data oscillates around a bias value of 0 mm 560 

hr-1 when using equation 13. This could be due to ZDR’s capability to respond to precipitation shape 561 

(Kumjian 2013a), which helps to scale the reflectivity portion of the rainfall estimation algorithm to a 562 

more accurate value (Seo et al., 2015). In general, the cool season displayed a larger magnitude of error in 563 

terms of bias for both algorithms. 564 

The normalized mean bias (NMB) reveals the same trend in values for bias but with an overall decrease in 565 

magnitude. It is important to note, however, that the algorithms that tend to perform the worst (e.g., 566 

algorithms containing KDP) result in anomalous range responses which would be due, at least in part, to a 567 

stronger response to precipitation type. This indicates that observations above the melting layer are 568 

dominant for which QPE’s tend not to be calculated (Cifelli et al., 2011; Seo et al., 2015) but are 569 

important for regions devoid of adequate radar coverage (Ryzhkov et al., 2003; Simpson et al., 2016). 570 

The absolute bias and normalized standard error (NSE) shows the same maxima in the data at the second 571 

gauge (Brunswick) that was present in the bias data (6.2 mm hr-1 and 5.6, respectively) . However, a 572 

second maxima is located at the fifth gauge at, approximately, 150 km (Linneus) with values of 5.9 mm 573 

hr-1 and 4.0, respectively. Bright-band issues are detected due, at least in part, to the increased missed 574 

precipitation amount (240 mm) at this particular distance for the R(ZDR,KDP) equation (i.e., worst 575 

performing algorithm). There was also a pronounced minimum in the absolute bias and NSE results at the 576 

fourth gauge for equations 11 and 13, 4.0 mm hr-1 and 0.8 mm hr-1, and 2.8 and 0.8, respectively, 577 

potentially indicating an idealized range of QPE for KEAX. Furthermore, the historical records at this 578 

particular gauge showed less issues (e.g., clogging) than any of the others analyzed by the KEAX radar. 579 

This highlights the importance of choosing ground-truth data, in particular tipping buckets which are 580 

prone to numerous errors (Ciach and Krajewski, 1999b).The largest contributions to the NSE and NMB 581 

were due to the warm season. 582 



The probability of detection (PoD) results indicate a large difference in algorithm choice for correctly 583 

detecting precipitation. The low PoD at, approximately 150 km, indicates overshooting of the beam. This 584 

is further evidenced by the MPA results, as about 225 mm of precipitation was missed by the radar at 150 585 

km, whereas only 100 mm of precipitation was missed by the radar at the second gauge at 120 km. 586 

Although equation 11, an R(Z,ZDR) algorithm was superior in terms of the bias, the same algorithm with 587 

a KDP-smoothed reflectivity value, R(DSMZ,ZDR) revealed the overall least amount of falsely missed 588 

precipitation (by 10 mm). However, the summation of the amount of precipitation falsely detected (PoFD) 589 

by KEAX showed a larger source of error than the MPA in terms of magnitude. For example, at the 590 

second (fifth) gauge, only 100 (225) mm of precipitation was missed by the radar, but over 700 (725) mm 591 

of precipitation was incorrectly estimated by the radar. 592 

Correlation coefficient (CC) values for any of the 9 stations analyzed by KEAX ranges from 0.02 593 

(Linneus, 151 km) to 0.93 for the cool season (St. Joseph, 115 km). The lowest R2 were due to a 594 

combination of false alarms and misses. For example, the CC for the warm seasons at Sanborn (170 km) 595 

and Jefferson Farm (173 km) were 0.22 and 0.24, respectively, whereas when the instances of false 596 

alarms and misses were removed, increased to 0.48 and 0.52. Few locations (Brunswick, 114 km and 597 

Versailles, 129 km) saw little improvement in the CC values when only hits were analyzed (less than 0.1 598 

increase), indicating the mean absolute error (in terms of hits) contributed the largest portion of error. 599 

 600 

3.3 KLSX 601 

Unlike the KEAX data, the gauges used for analyses for the KLSX radar span between 90 – 150 km. 602 

Furthermore, 5 out of the 8 gauges were located within 10 km of range from one-another, near 140 km 603 

from the radar, limiting the data available for analyses between 100 and 140 km (Figure 5).  604 

The bias and NMB both show a relatively modest peak in values near the second gauge of 5 mm , which 605 

decreases to approximately 3.6 mm  at the third gauge, 120 km from the radar. The worst performing 606 
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algorithm, equation 13, was the same R(ZDR,KDP) relation as the worst KEAX bias and NMB data. 607 

Additionally, the overall trend of decreasing bias and NMB as distance from the radar increases was 608 

noted, presumably due to overshooting effects similar to the KEAX data. Furthermore, the overall non-609 

biased results from the R(Z,ZDR) equation demonstrates its robust capabilities in QPE, in spite of its 610 

sensitivity to calibration (Zrnic et al., 2005; Bechini et al., 2008). 611 

The double maxima in the absolute bias graph are present as with the KEAX data, but are not as 612 

pronounced. For example, the absolute bias at 95 km and 140 km from KLSX were 5.9 mm  and 1.1 mm , 613 

and 4.9 mm  and 1.4 mm  for equations 13 and 11, respectively. Additionally, the overall minima in the 614 

absolute bias for both KEAX and KLSX are at, approximately, 125 km from the radar (3.9 mm hr-1 and 615 

1.0 mm hr-1, respectively, for equations 13 and 11). The relative distance from the radars are the same, 616 

where the two maxima for KEAX were at 115 and 150 km, while the maxima were at, approximately, 617 

100 and 140 km for KLSX. The overall best and worst performing algorithms at KLSX for the absolute 618 

bias and NSE were equations 11 and 13, the R(Z,ZDR) and R(ZDR,KDP) algorithms, respectively.  619 

The magnitude of error in terms of absolute bias, normalized mean bias, and normalized standard error, 620 

all showed a decreasing pattern as distance from KLSX increased. This was due, primarily, from a 621 

maximum in the false precipitation amount at 95 km from the radar. Historical notes at this location 622 

indicate frequent clogging of the rain gauge, either due to bugs or leaves. From a particular series of 623 

events spanning from 01 to 04 April and 01 to 03 August, 2014, over 130 mm of precipitation occurred 624 

during each period which was not captured by the gauge, resulting in a large amount of overall error. 625 

These results indicate the important of dual gauges in the same vicinity (Krajewski et al. 1998; Ciach and 626 

Krajewski 1999). Interestingly, the cool season displayed a larger NSE (5 % for R(ZDR,KDP)) 627 

potentially due to the very low probability of detection (0.2) at this range of 118 km. 628 

One of the main differences between the KLSX and KEAX data was the decreased probability of 629 

detection at 120 km for KLSX, while there was an increased probability of detection for KEAX. In 630 

general, the PoD values were worse for KLSX when compared to KEAX. For example, equation 11 had 631 



no PoD values below 0.90, whereas no PoD values exceeded 0.84 for KLSX. There was also a slight 632 

trend of increasing PoD values as distance from the St. Louis radar increased and, at one point near 140 633 

km, the best algorithm, R(DSMZ) convective and the worst algorithm, KDP1, were not significantly 634 

different (p < 0.10). Additionally, the maxima in the PoD while utilizing KDP1 corresponds to a minima 635 

in the R(DSMZ) detection percentage, which is well correlated by the similarly valued MPA results.  636 

The missed precipitation amount (MPA) displayed the cool season contributed the most, whereas the 637 

warm season contributed the most amount of false precipitation amount. The R(Z,ZDR) equation only 638 

registered, on average, 25 mm of MPA and 160 mm of FPA, whereas the R(ZDR,KDP) equation was 639 

very dependent upon range. For example, the FPA from R(ZDR,KDP) decreased as range increased from 640 

the radar from a maximum of, approximately, 850 mm to 620 mm. However, the fifth-furthest gauge (137 641 

km from KLSX) displayed a sharp increase in the MPA for both cool seasons (above 100 mm). 642 

 643 

 644 

 3.4 KSGF 645 

  646 

In spite that the KLSX and KEAX data strongly suggests false precipitation errors near 100 km in 647 

addition to bright-banding near 150 km from the radars, the KSGF results reveal an overall smooth 648 

decrease (increase) of error with range (Figure 7) for R(ZDR,KDP) and R(Z,ZDR), accordingly. One of 649 

the main reasons for this could be due to the fact that only 5 gauges were analyzed from KSGF (the 650 

fewest of the 3 radars analyzed), smoothing the overall trend lines.  651 

The bias remained relatively constant near -0.3 mm for R(Z,ZDR), whereas the bias exhibited a sharp 652 

decrease from 4 mm to 2.7 mm over a distance of, approximately, 100 km. In general, the cool season 653 
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displayed the lower of bias magnitudes when compared to the warm season, similar to the KEAX results. 654 

This may be due, at least in part, to the low PoFD values for the warm season close to the KSGF radar. 655 

Similar to the bias, the absolute bias for R(Z,ZDR) was constant at all ranges (near 1 mm) whereas the 656 

R(ZDR,KDP) equation decreased from 5.2 mm to 3.8 mm. This is potentially due to the low cool season 657 

PoD values (below 0.6), while the warm season R(ZDR,KDP) values (near 0.8) remained constant. A 658 

larger contribution from more correctly detected precipitation in addition to the decreasing trends in the 659 

NMB and NSE would result in a lower absolute bias.  660 

The closest location (90 km) typically displayed the largest errors for the R(ZDR,KDP) equation, and 661 

then decreased in error magnitude as range increased. In spite of this, the PoFD results indicate both 662 

algorithms increased in PoFD values as range increased, with the warm season typically dominating, 663 

particularly due to the large convective clouds dominate in the warm season. False detection values as 664 

low as 0.01 for the cool season while utilizing R(Z,ZDR) were observed at distances near 100 km and 140 665 

km from the radar. 666 

Normalized standard error values increased from 0.7 % at a distance of 105 km to 1.8 % at a distance of 667 

185 km for R(Z,ZDR). Large NSE values for the warm season (7.5 %) were calculated for R(ZDR,KDP) 668 

which decreased to 3.8 % at 185 km from the radar. Furthermore, this was the only instance when the 669 

warm season was less than the cool season in terms of NSE. Otherwise, the overall NSE decreased from 5 670 

% to 3.9 % for R(ZDR,KDP). The NMB followed a similar trend for the KDP-containing algorithm, with 671 

a noticeable exception at the second gauge (105 km from KSGF), where the overall NSE was closer to the 672 

warm than cool season. This is due to the low PoFD values at this location, in addition to a smaller 673 

difference between the two algorithm’s FPA measurements. 674 

The MPA results, unlike for KEAX and KLSX, displayed a larger range of performance between seasons. 675 

However, the warm season still exhibited the overall best performance in terms of MPA, yet contributed 676 

the most to the FPA for both R(Z,ZDR) and R(ZDR,KDP). In spite of the MPA typically increasing as 677 



range increased, the FPA was more nebulous. For example, the second gauge (105 km from KSGF) had 678 

the overall lowest NSE (0.8 %), MPA (15 mm), and FPA (95 mm) for R(Z,ZDR). The third-furthest 679 

location (142 km) resulted in slightly larger errors, overall, while the fourth-furthest location had errors 680 

similar to the second gauge (105 km). Then, at the furthest tipping bucket location (185 km), NSE values 681 

increased, whereas FPA and MPA decreased. Therefore, the furthest location’s errors are due, primarily, 682 

from discrepancies between precipitation magnitude between the gauge and radar.  683 

Excluding Versailles (142 km from KSGF), the cool season exhibited larger R2 values in comparison to 684 

the cool season (Figure 8). Furthermore, CC values exceeded 0.9 when false alarms and misses were 685 

excluded from Mt. Grove (101 km) and was 0.84 when included. Otherwise, the other four stations 686 

analyzed by the Springfield radar displayed many counts of false alarms and misses, leading to low R2 687 

values. 688 

 Due to the relatively large ranges from the Springfield (KSGF) radar, most of the correlation 689 

coefficient values were low in comparison to either KLSX or KEAX. For the warm (cool) season without 690 

false alarms and misses, R2 values ranged from 0.44 (0.38) and 0.34 (0.36) for KLSX and KSGF, 691 

respectively, at Cook Station (119 and 185 km). Similarly, the CC values ranged from 0.61 (0.71) to 0.42 692 

(0.56) at Green Ridge (76 and 154 km) for KEAX and KSGF, accordingly.  693 

 694 

 695 

  696 

4 Conclusions 697 

Dual-polarization technology was implemented to the National Weather Service Next Generation Radar 698 

network in the Spring of 2012 to, primarily, improve quantitative precipitation estimation and 699 

hydrometeor classification.  The current study observed over 1,100 hours of precipitation data with three 700 
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separate radars in Missouri using 55 algorithms including the three conventional R(Z) radar rain-rate 701 

estimation algorithms (stratiform, convective, and tropical) along with a myriad of R(KDP), R(Z,ZDR), 702 

and R(ZDR,KDP) algorithms which can be found in Ryzhkov et al. (2005). Additionally, a KDP-703 

smoothing field of reflectivity, differential reflectivity, and the specific differential phase shift (DSMZ, 704 

DZDR, and DKDP, respectively) were measured and used for analyses. Unlike previous studies, the 705 

current work emphasizes the amount of precipitation correctly and incorrectly estimated by the radar in 706 

comparison to the terrestrial based precipitation gauges through measurements of the missed and false 707 

precipitation amount. 708 

For all three radars, Kansas City, St. Louis, and Springfield, MO (KEAX, KLSX, and KSGF, 709 

respectively), the majority of precipitation error (over 60%) was contributed by the amount of 710 

precipitation falsely detection by the radar (up to 725 mm), while 20% was due to the radar missing the 711 

precipitation (up to 225 mm) for KEAX. Similar magnitudes of error were reported for KLSX and KSGF, 712 

with an overall error in precipitation for each radar ranging between 250 mm for the best performing of 713 

the 55 algorithms, equation 11 (an R(Z,ZDR) algorithm), and up to 2000 mm for the worst performing 714 

algorithms, R(ZDR,KDP) equation 13. The R(Z,ZDR) equation (an NSSL algorithm) was determined to 715 

be the most robust due to it registering the lowest NSE. 716 

The data was divided into summer (May – October) and winter (November – April) months resulting in 717 

652 hours for summer, and 452 hours for winter (59 and 41% of the entire data, respectively).  Despite the 718 

winter data contributing less than the summertime data, it accounted for 20% of the overall MPA, and 719 

40% to the overall PoFD.  The R2 values were less during the winter in comparison to the warm season 720 

primarily due to the smaller magnitude of precipitation that occurred. Furthermore, CC values increased 721 

by as much as 0.4 when instances of hits and misses were removed from the analyses, resulting in the 722 

warm season to outperform the cool season CC values at particularly short ranges from the radar. 723 

These results aid in our understanding in the possibilities for hydrometeorological studies. Nearly 50% of 724 

the 1,100 hours analyzed for the study consisted of either falsely estimated precipitation by the radar, or 725 



missed by the radar. Furthermore, these errors accumulate between 500 to 2,000 mm of precipitation 726 

depending on the algorithms chosen.  Although the overall performance increased when false alarms and 727 

misses were removed, correlation coefficient values still, typically, remained below 0.50 at ranges beyond 728 

130 km.  729 

Furthermore, results demonstrate the issues with analyzing QPE from a single gauge, explaining why the 730 

Community Collaborative Rain, Hail, and Snow Network (Kelsch 1998; Cifelli et al., 2005; Reges et al., 731 

2016) tends to be more utilized since results have shown that measurements or quality controlled-732 

techniques made by CoCoRaHS are significantly more accurate than rain gauges (Simpson et al., 2017), 733 

especially for convective events (Moon et al. 2009). 734 
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 884 

2.3 Radar data and radar-rainfall algorithms 885 

Next Generation Radar (NEXRAD) level-II data were retrieved from the NCDC’s HDSS. Files 886 

were processed using the Weather Decision Support System – Integrated Information (WDSS-II) program 887 

(Lakshmanan et al., 2007a) to assess reflectivity (Z) in addition to dual-polarized radar variables 888 

including differential reflectivity (ZDR) and specific differential phase shift (KDP). Three other variables 889 

were also generated based on a KDP-based smoothing field (Ryzhkov et al., 2003) for reflectivity, 890 

differential reflectivity, and specific differential phase: DSMZ, DZDR, and DKDP, respectively. These 891 

were implemented to determine whether the additional KDP-smoothing fields tend to over- or 892 

underestimate QPE’s (Simpson et al., 2016). A rain rate echo classification variable (RREC) was also 893 

computed, which chooses whether an R(Z), R(KDP), R(Z,ZDR), or R(ZDR, KDP) algorithm is 894 

implemented in estimating rain rates based on the radar fields of Z, ZDR, and KDP (Kessinger et al., 895 

2003) to determine whether a multi-parameter algorithm is superior to a single algorithm.  896 

All seven variables (Z, ZDR, KDP, DSMZ, DZDR, DKDP, and RREC) were converted from 897 

their native polar grid to 256 x 256 1 km Cartesian grids, where the lowest radar elevation scans (0.5°) 898 

were used to mitigate uncalculated effects from evaporation and wind drift. An average of 5 minute scans 899 

were used for each of the variables, which were aggregated to hourly totals to be compared to the hourly 900 

tipping-bucket accumulations. In spite of previous reports suggesting 5 minute to hourly aggregates can 901 
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have significant effects on QPE (e.g., Fabry et al. 1994), Shucksmith et al.’s (2011) criterion of present 902 

accumulation exceeding 26% for a pixel size of 1 km was not reached.  903 

The latitude and longitude of each of the 15 gauges were matched with the radar pixel that 904 

corresponds to the Cartesian grid value of the seven radar variables which were then implemented in rain 905 

rate calculations. These rain-rate calculations were calculated using the equations presented by Ryzhkov 906 

et al. (2005) (Table 2), which were gathered from multiple studies using disdrometers to derive a 907 

relationship between reflectivity, differential reflectivity, and specific differential phase (Bringi and 908 

Chandrasekar, 2001; Brandes et al., 2002; Illingworth and Blackman, 2002; Ryzhkov et al., 2003). 909 

Standard R(Z) algorithms were also included to test whether the addition of dual-polarized technology 910 

improves QPE’s.  911 

With the use of both Z, ZDR, KDP, and DSMZ, DZDR, and DKDP fields produced by WDSS-II, 912 

the number of algorithms tested was 55. This includes the three standard single-polarized algorithms 913 

(stratiform, convective, and tropical) which were calculated using reflectivity R(Z), and then calculated as 914 

R(DSMZ), while algorithms 1-6 (R(KDP)) were also calculated as R(DKDP). Algorithms 7-11 (R(Z, 915 

ZDR)) were additionally calculated as R(Z, DZDR), R(DSMZ, ZDR), and R(DSMZ, DZDR), while the 916 

same four combinations of non- and KDP-smoothed fields were applied to the R(KDP, ZDR) algorithms 917 

(12-15). Quality controlling methods for the algorithms include mitigation of clutter, sun spikes, beam 918 

blockage, anomalous propagation, and removal of non-precipitation echoes (including biological and 919 

chaff returns) through w2qcnn the w2qcnndp algorithms (Lakshmanan et al., 2007b, 2010, 2014).  920 

 921 

2.4 Statistical analyses 922 

To test the performance of each algorithm, several statistical analyses were calculated. The 923 

average difference (Bias) was calculated as 924 
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where Ri is each hourly aggregated radar estimated rainfall amount calculated from one of the 55 926 

algorithms, Gi is the hourly aggregated gauge (observed) measurement, and N is the total number of 927 

observations which, for this study, was 300 hours. A second statistical parameter, the normalized mean 928 

bias (NMB), was calculated as 929 
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The normalized mean bias is included in the analyses due to the fact that overestimations (i.e., radar 931 

estimates larger than gauge measurements) and underestimations (i.e., radar estimates smaller than gauge 932 

measurements) are treated proportionately. This is directly analogous to choosing the mean absolute error 933 

(MAE) opposed to the standard deviation as the MAE does not penalize smaller or larger errors, 934 

obscuring the overall results (Chai and Draxler, 2014). Bias measurements (Bias and NMB) were 935 

calculated to determine whether radar derived rain rates were over- or under-estimated in comparison to 936 

the gauges. However, to calculate the overall magnitude of error associated with the performance of the 937 

radars, the absolute values of (1) and (2) were performed to yield the mean absolute error (MAE), and 938 

normalized standard error (NSE), respectively.  939 

 Several other meteorological parameters were calculated, including probability of detection 940 

(PoD) which was calculated as 941 
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where the bullet ( ) indicates “if”, to determine how accurate the radars were at correctly detecting 943 

precipitation. The probability of detection values range between 0.0 (radar did not detect any precipitation 944 
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correctly) and 1.0 (radar detected the occurrence of all precipitation 100% correctly). The probability of 945 

false detection takes into account the amount of precipitation the radars incorrectly estimated when the 946 

gauges recorded zero values, and was calculated as 947 
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Quantitative measures including the missed precipitation amount (MPA) and the false precipitation 949 

amount (FPA) were defined such that 950 

  )0&0( iii RGRMPA         (5) 951 

  )0&0( iii RGRFPA                      (6) 952 

which analyzes the total amount of precipitation due to misses and false alarms. The total 953 

precipitation error was also recorded to assess the overall error from each radar.  954 

 955 

3 Results and discussion 956 

3.1 Overall algorithm performance 957 

To test the overall performance of each radar, it was necessary to determine the overall best 958 

algorithm for each statistical measure. The best algorithm from each grouping of equations was 959 

determined to have the lowest normalized standard error (NSE), indicating the best performance relative 960 

to the gauge-recorded precipitation amount (Ryzhkov et al., 2005). This reduces the impact of bias 961 

inherent within the dataset between warm/cool season, stratiform/convective events, and allows for 962 

statistical measurements in spite of the (typical) non-Gaussian behavior of precipitation (Kleiber et al., 963 

2012; Alaya et al., 2017).  964 
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From the results obtained, the three R(Z), three R(DSMZ), and RREC algorithms displayed a 965 

particular bias in favor of the R(Z)-Convective algorithm for all three radars with R(Z)-Stratiform 966 

displaying similar performance (Figure 2a). This could be due, at least in part, to the near-equal stratiform 967 

and convective precipitation regimes throughout 2014. Although errors generally increased as range 968 

increased for KEAX and KLSX, the results were nebulous for KSGF. The lowest NSE values were, 969 

typically, closest to each of the radars (between 0.4 and 0.8), with the notable exception of the closest 970 

gauge to KSGF. In general, the RREC performed worst at the largest of ranges, potentially due to the 971 

algorithm’s ability to incorrectly assess the hydrometeors present (Cifelli et al., 2011; Yang et al. 2016). 972 

Additionally, the poor performance by the R(DSMZ)-Tropical equation is due to the lack of tropical 973 

precipitation within Central Missouri. Overall, the KDP-smoothed reflectivity fields (DSMZ) performed 974 

worse than their counter-parts, resulting in over-prediction of precipitation and, thus, larger errors 975 

(Simpson et al., 2016). Errors did not exceed 2.4 NSE units for any of these algorithms. 976 

However, the performance of the KDP-smoothed KDP field (DKDP) performed better than the 977 

original specific differential phase shift field (Figure 2b). For nearly all gauges for each of the 3 radars, 978 

R(DKDP)4 performed the best, with NSE values ranging from 1.4 to 4.1. The range of NSE values were 979 

largest at KEAX, while the spread was relatively small for KLSX and KSGF. In spite of this, the overall 980 

spread of the performance of the 12 KDP algorithms varied greatly (average of 2 NSE units), exhibiting 981 

the sensitivity of KDP estimates on QPE (Ryzhkov et al., 2005; Cunha et al., 2013). In general, the 982 

NSSL-derived R(KDP) equations (i.e., equations 4-6) outperformed those from Bringi and Chandrasekar 983 

(2001, equation 1), Brandes et al. (2002, equation 2), and Illingworth and Blackman (2002, equation 3). 984 

Regardless, the magnitudes were all, approximately, more than 1 NSE unit than the performance of the 985 

R(Z) algorithms. 986 

The algorithms with the lowest NSE values were equations 7-11. For example, the overall lowest 987 

NSE was at a distance of 130 km from KEAX (0.3), with no locations exceeding NSE values of 2.0 988 

(Figure 2c). The large values at the closest location for KSGF (85 km, 1.3 – 1.9 NSE units), and the fifth 989 



closest gauge to KLSX (135 km, 1.3 – 1.8 NSE units), Cook Station, were similar to the R(Z) and 990 

R(DSMZ) results, indicating potential issues with reflectivity measurements. Additionally, these locations 991 

were the closest in performance to the R(KDP) and R(DKDP) NSE values. Observations from this gauge 992 

(Cook Station) indicated hail occurred during the evening of 01 August, for which KDP estimates would 993 

be more ideal than Z for QPE (Ryzhkov et al. 2005; Kumjian 2013a; Cunha et al. 2015). In spite of this, 994 

the overall spread in performance of the R(Z,ZDR) equations were less than the R(KDP) equations, 995 

demonstrating the robust performance of R(Z,ZDR) for QPE (Wang and Chandrasekar 2010; Seo et al., 996 

2015). 997 

The R(ZDR,KDP) algorithms performed the worst, overall (Figure 2d). In spite of the differential 998 

reflectivity being implemented, the overall NSE values increased in magnitude, exceeding 6 units for the 999 

second gauge analyzed by KEAX. Algorithms containing DKDP measurements performed better than 1000 

simply KDP, demonstrating that even with the scaling behavior of ZDR, DKDP is superior to KDP 1001 

estimates. This provides a potential solution to the noisy-ness that tends to be exhibited in the KDP field 1002 

(Ruzanski and Chandrasekar 2012).  1003 

Due to the overall NSE values obtained, for the remainder of the analyses, equation 11 (i.e., 1004 

R(Z,ZDR)5) and equation 13 (i.e., R(ZDR,KDP)2) will be utilized as the best and worst algorithms, 1005 

respectively. Equations containing DZDR were not included in the following discussion due to the very 1006 

large QPE errors for each radar. 1007 

 1008 

3.2 KEAX 1009 

The overall bias showed that there was a positive bias, peaking near 5.5 mm hr-1 at the second 1010 

gauge for KEAX, approximately 115 km from the radar for both the best and worst performing 1011 

algorithms (Figure 3). This corresponds well with the spike in falsely detected precipitation recorded, 1012 

which is canceled by the maximum in missed precipitation at the second distance of, approximately, 150 1013 



km. The overall worst algorithm, equation 13, an R(ZDR,KDP) relationship, revealed a decreasing trend 1014 

in bias as the distance from the radar increased. For example, a bias of 4 mm hr-1 was observed at a 1015 

distance of 75 km from the radar, whereas the bias reduced to 3 mm hr-1 at distances near 175 km.  This 1016 

could be due, at least in part, to the algorithm’s utilization of KDP which performs poorly in frozen 1017 

(especially light) precipitation (Zrnic and Ryzhkov, 1996; Kumjian 2013a), causing the overestimation. 1018 

Conversely, the algorithm with the lowest bias was an R(Z,ZDR) algorithm (equation 11). There was a 1019 

maximum in the bias calculations while utilizing equation 11 near 120 km, similar to equation 13, 1020 

however, there was a more pronounced minimum in the data near 150 km. Furthermore, it appears the 1021 

data oscillates around a bias value of 0 mm hr-1 when using equation 13. This could be due to ZDR’s 1022 

capability to respond to precipitation shape (Kumjian 2013a), which helps to scale the reflectivity portion 1023 

of the rainfall estimation algorithm to a more accurate value (Seo et al., 2015). In general, the cool season 1024 

displayed a larger magnitude of error in terms of bias for both algorithms. 1025 

The normalized mean bias (NMB) reveals the same trend in values for bias but with an overall 1026 

decrease in magnitude. It is important to note, however, that the algorithms that tend to perform the worst 1027 

(e.g., algorithms containing KDP) result in anomalous range responses which would be due, at least in 1028 

part, to a stronger response to precipitation type. This indicates that observations above the melting layer 1029 

are dominant for which QPE’s tend not to be calculated (Cifelli et al., 2011; Seo et al., 2015) but are 1030 

important for regions devoid of adequate radar coverage (Ryzhkov et al., 2003; Simpson et al., 2016). 1031 

The absolute bias and normalized standard error (NSE) shows the same maxima in the data at the 1032 

second gauge (Brunswick) that was present in the bias data (6.2 mm hr-1 and 5.6, respectively) . However, 1033 

a second maxima is located at the fifth gauge at, approximately, 150 km (Linneus) with values of 5.9 mm 1034 

hr-1 and 4.0, respectively. Bright-band issues are detected due, at least in part, to the increased missed 1035 

precipitation amount (240 mm) at this particular distance for the R(ZDR,KDP) equation (i.e., worst 1036 

performing algorithm). There was also a pronounced minimum in the absolute bias and NSE results at the 1037 

fourth gauge for equations 11 and 13, 4.0 mm hr-1 and 0.8 mm hr-1, and 2.8 and 0.8, respectively, 1038 



potentially indicating an idealized range of QPE for KEAX. Furthermore, the historical records at this 1039 

particular gauge showed less issues (e.g., clogging) than any of the others analyzed by the KEAX radar. 1040 

This highlights the importance of choosing ground-truth data, in particular tipping buckets which are 1041 

prone to numerous errors (Ciach and Krajewski, 1999b).The largest contributions to the NSE and NMB 1042 

were due to the warm season. 1043 

The probability of detection (PoD) results indicate a large difference in algorithm choice for 1044 

correctly detecting precipitation. The low PoD at, approximately 150 km, indicates overshooting of the 1045 

beam. This is further evidenced by the MPA results, as about 225 mm of precipitation was missed by the 1046 

radar at 150 km, whereas only 100 mm of precipitation was missed by the radar at the second gauge at 1047 

120 km. Although equation 11, an R(Z,ZDR) algorithm was superior in terms of the bias, the same 1048 

algorithm with a KDP-smoothed reflectivity value, R(DSMZ,ZDR) revealed the overall least amount of 1049 

falsely missed precipitation (by 10 mm). However, the summation of the amount of precipitation falsely 1050 

detected (PoFD) by KEAX showed a larger source of error than the MPA in terms of magnitude. For 1051 

example, at the second (fifth) gauge, only 100 (225) mm of precipitation was missed by the radar, but 1052 

over 700 (725) mm of precipitation was incorrectly estimated by the radar. 1053 

Correlation coefficient (CC) values for any of the 9 stations analyzed by KEAX ranges from 0.02 1054 

(Linneus, 151 km) to 0.93 for the cool season (St. Joseph, 115 km). The lowest R2 were due to a 1055 

combination of false alarms and misses. For example, the CC for the warm seasons at Sanborn (170 km) 1056 

and Jefferson Farm (173 km) were 0.22 and 0.24, respectively, whereas when the instances of false 1057 

alarms and misses were removed, increased to 0.48 and 0.52. Few locations (Brunswick, 114 km and 1058 

Versailles, 129 km) saw little improvement in the CC values when only hits were analyzed (less than 0.1 1059 

increase), indicating the mean absolute error (in terms of hits) contributed the largest portion of error. 1060 

 1061 

3.3 KLSX 1062 



Unlike the KEAX data, the gauges used for analyses for the KLSX radar span between 90 – 150 1063 

km. Furthermore, 5 out of the 8 gauges were located within 10 km of range from one-another, near 140 1064 

km from the radar, limiting the data available for analyses between 100 and 140 km (Figure 5).  1065 

The bias and NMB both show a relatively modest peak in values near the second gauge of 5 mm , 1066 

which decreases to approximately 3.6 mm  at the third gauge, 120 km from the radar. The worst 1067 

performing algorithm, equation 13, was the same R(ZDR,KDP) relation as the worst KEAX bias and 1068 

NMB data. Additionally, the overall trend of decreasing bias and NMB as distance from the radar 1069 

increases was noted, presumably due to overshooting effects similar to the KEAX data. Furthermore, the 1070 

overall non-biased results from the R(Z,ZDR) equation demonstrates its robust capabilities in QPE, in 1071 

spite of its sensitivity to calibration (Zrnic et al., 2005; Bechini et al., 2008). 1072 

The double maxima in the absolute bias graph are present as with the KEAX data, but are not as 1073 

pronounced. For example, the absolute bias at 95 km and 140 km from KLSX were 5.9 mm  and 1.1 mm , 1074 

and 4.9 mm  and 1.4 mm  for equations 13 and 11, respectively. Additionally, the overall minima in the 1075 

absolute bias for both KEAX and KLSX are at, approximately, 125 km from the radar (3.9 mm hr-1 and 1076 

1.0 mm hr-1, respectively, for equations 13 and 11). The relative distance from the radars are the same, 1077 

where the two maxima for KEAX were at 115 and 150 km, while the maxima were at, approximately, 1078 

100 and 140 km for KLSX. The overall best and worst performing algorithms at KLSX for the absolute 1079 

bias and NSE were equations 11 and 13, the R(Z,ZDR) and R(ZDR,KDP) algorithms, respectively.  1080 

The magnitude of error in terms of absolute bias, normalized mean bias, and normalized standard 1081 

error, all showed a decreasing pattern as distance from KLSX increased. This was due, primarily, from a 1082 

maximum in the false precipitation amount at 95 km from the radar. Historical notes at this location 1083 

indicate frequent clogging of the rain gauge, either due to bugs or leaves. From a particular series of 1084 

events spanning from 01 to 04 April and 01 to 03 August, 2014, over 130 mm of precipitation occurred 1085 

during each period which was not captured by the gauge, resulting in a large amount of overall error. 1086 

These results indicate the important of dual gauges in the same vicinity (Krajewski et al. 1998; Ciach and 1087 



Krajewski 1999). Interestingly, the cool season displayed a larger NSE (5 % for R(ZDR,KDP)) 1088 

potentially due to the very low probability of detection (0.2) at this range of 118 km. 1089 

One of the main differences between the KLSX and KEAX data was the decreased probability of 1090 

detection at 120 km for KLSX, while there was an increased probability of detection for KEAX. In 1091 

general, the PoD values were worse for KLSX when compared to KEAX. For example, equation 11 had 1092 

no PoD values below 0.90, whereas no PoD values exceeded 0.84 for KLSX. There was also a slight 1093 

trend of increasing PoD values as distance from the St. Louis radar increased and, at one point near 140 1094 

km, the best algorithm, R(DSMZ) convective and the worst algorithm, KDP1, were not significantly 1095 

different (p < 0.10). Additionally, the maxima in the PoD while utilizing KDP1 corresponds to a minima 1096 

in the R(DSMZ) detection percentage, which is well correlated by the similarly valued MPA results.  1097 

The missed precipitation amount (MPA) displayed the cool season contributed the most, whereas 1098 

the warm season contributed the most amount of false precipitation amount. The R(Z,ZDR) equation only 1099 

registered, on average, 25 mm of MPA and 160 mm of FPA, whereas the R(ZDR,KDP) equation was 1100 

very dependent upon range. For example, the FPA from R(ZDR,KDP) decreased as range increased from 1101 

the radar from a maximum of, approximately, 850 mm to 620 mm. However, the fifth-furthest gauge (137 1102 

km from KLSX) displayed a sharp increase in the MPA for both cool seasons (above 100 mm). 1103 

 1104 

 3.4 KSGF 1105 

  1106 

In spite that the KLSX and KEAX data strongly suggests false precipitation errors near 100 km in 1107 

addition to bright-banding near 150 km from the radars, the KSGF results reveal an overall smooth 1108 

decrease (increase) of error with range (Figure 7) for R(ZDR,KDP) and R(Z,ZDR), accordingly. One of 1109 

the main reasons for this could be due to the fact that only 5 gauges were analyzed from KSGF (the 1110 

fewest of the 3 radars analyzed), smoothing the overall trend lines.  1111 



The bias remained relatively constant near -0.3 mm for R(Z,ZDR), whereas the bias exhibited a 1112 

sharp decrease from 4 mm to 2.7 mm over a distance of, approximately, 100 km. In general, the cool 1113 

season displayed the lower of bias magnitudes when compared to the warm season, similar to the KEAX 1114 

results. This may be due, at least in part, to the low PoFD values for the warm season close to the KSGF 1115 

radar. 1116 

Similar to the bias, the absolute bias for R(Z,ZDR) was constant at all ranges (near 1 mm) 1117 

whereas the R(ZDR,KDP) equation decreased from 5.2 mm to 3.8 mm. This is potentially due to the low 1118 

cool season PoD values (below 0.6), while the warm season R(ZDR,KDP) values (near 0.8) remained 1119 

constant. A larger contribution from more correctly detected precipitation in addition to the decreasing 1120 

trends in the NMB and NSE would result in a lower absolute bias.  1121 

The closest location (90 km) typically displayed the largest errors for the R(ZDR,KDP) equation, 1122 

and then decreased in error magnitude as range increased. In spite of this, the PoFD results indicate both 1123 

algorithms increased in PoFD values as range increased, with the warm season typically dominating, 1124 

particularly due to the large convective clouds dominate in the warm season. False detection values as 1125 

low as 0.01 for the cool season while utilizing R(Z,ZDR) were observed at distances near 100 km and 140 1126 

km from the radar. 1127 

Normalized standard error values increased from 0.7 % at a distance of 105 km to 1.8 % at a 1128 

distance of 185 km for R(Z,ZDR). Large NSE values for the warm season (7.5 %) were calculated for 1129 

R(ZDR,KDP) which decreased to 3.8 % at 185 km from the radar. Furthermore, this was the only 1130 

instance when the warm season was less than the cool season in terms of NSE. Otherwise, the overall 1131 

NSE decreased from 5 % to 3.9 % for R(ZDR,KDP). The NMB followed a similar trend for the KDP-1132 

containing algorithm, with a noticeable exception at the second gauge (105 km from KSGF), where the 1133 

overall NSE was closer to the warm than cool season. This is due to the low PoFD values at this location, 1134 

in addition to a smaller difference between the two algorithm’s FPA measurements. 1135 



The MPA results, unlike for KEAX and KLSX, displayed a larger range of performance between 1136 

seasons. However, the warm season still exhibited the overall best performance in terms of MPA, yet 1137 

contributed the most to the FPA for both R(Z,ZDR) and R(ZDR,KDP). In spite of the MPA typically 1138 

increasing as range increased, the FPA was more nebulous. For example, the second gauge (105 km from 1139 

KSGF) had the overall lowest NSE (0.8 %), MPA (15 mm), and FPA (95 mm) for R(Z,ZDR). The third-1140 

furthest location (142 km) resulted in slightly larger errors, overall, while the fourth-furthest location had 1141 

errors similar to the second gauge (105 km). Then, at the furthest tipping bucket location (185 km), NSE 1142 

values increased, whereas FPA and MPA decreased. Therefore, the furthest location’s errors are due, 1143 

primarily, from discrepancies between precipitation magnitude between the gauge and radar.  1144 

Excluding Versailles (142 km from KSGF), the cool season exhibited larger R2 values in 1145 

comparison to the cool season (Figure 8). Furthermore, CC values exceeded 0.9 when false alarms and 1146 

misses were excluded from Mt. Grove (101 km) and was 0.84 when included. Otherwise, the other four 1147 

stations analyzed by the Springfield radar displayed many counts of false alarms and misses, leading to 1148 

low R2 values. 1149 

 Due to the relatively large ranges from the Springfield (KSGF) radar, most of the correlation 1150 

coefficient values were low in comparison to either KLSX or KEAX. For the warm (cool) season without 1151 

false alarms and misses, R2 values ranged from 0.44 (0.38) and 0.34 (0.36) for KLSX and KSGF, 1152 

respectively, at Cook Station (119 and 185 km). Similarly, the CC values ranged from 0.61 (0.71) to 0.42 1153 

(0.56) at Green Ridge (76 and 154 km) for KEAX and KSGF, accordingly.  1154 

  1155 

4 Conclusions 1156 

Dual-polarization technology was implemented to the National Weather Service Next Generation 1157 

Radar network in the Spring of 2012 to, primarily, improve quantitative precipitation estimation and 1158 

hydrometeor classification.  The current study observed over 300 hours of precipitation data with three 1159 



separate radars in Missouri using 55 algorithms including the three conventional R(Z) radar rain-rate 1160 

estimation algorithms (stratiform, convective, and tropical) along with a myriad of R(KDP), R(Z,ZDR), 1161 

and R(ZDR,KDP) algorithms which can be found in Ryzhkov et al. (2005). Additionally, a KDP-1162 

smoothing field of reflectivity, differential reflectivity, and the specific differential phase shift (DSMZ, 1163 

DZDR, and DKDP, respectively) were measured and used for analyses. Unlike previous studies, the 1164 

current work emphasizes the amount of precipitation correctly and incorrectly estimated by the radar in 1165 

comparison to the terrestrial based precipitation gauges through measurements of the missed and false 1166 

precipitation amount. 1167 

For all three radars, Kansas City, St. Louis, and Springfield, MO (KEAX, KLSX, and KSGF, 1168 

respectively), the majority of precipitation error (over 60%) was contributed by the amount of 1169 

precipitation falsely detection by the radar (up to 725 mm), while 20% was due to the radar missing the 1170 

precipitation (up to 225 mm) for KEAX. Similar magnitudes of error were reported for KLSX and KSGF, 1171 

with an overall error in precipitation for each radar ranging between 250 mm for the best performing of 1172 

the 55 algorithms, equation 11 (an R(Z,ZDR) algorithm), and up to 2000 mm for the worst performing 1173 

algorithms, R(ZDR,KDP) equation 13. The R(Z,ZDR) equation (an NSSL algorithm) was determined to 1174 

be the most robust due to it registering the lowest NSE. These values of false precipitation amount and 1175 

missed precipitation amount generally increased as range from the radar increased. 1176 

Most algorithms showed a degradation in the normalized standard error with range. In particular, 1177 

the KDP-smoothed equations displayed larger biases and NSE values than their non-KDP counterparts, 1178 

with the exception of R(KDP) algorithms themselves. Some larger errors were recorded at gauge 1179 

locations close to the radar, potentially due to bright-banding effects which were determined to be due to 1180 

the large false precipitation amount analyzed at these locations.  1181 

The data was divided into summer (May – October) and winter (November – April; 59 and 41% 1182 

of the entire data, respectively).  Despite the winter data contributing less than the summertime data, it 1183 

accounted for 20% of the overall MPA, and 40% to the overall PoFD.  The R2 values were less during the 1184 



winter in comparison to the warm season primarily due to the smaller magnitude of precipitation that 1185 

occurred. Furthermore, CC values increased by as much as 0.4 when instances of hits and misses were 1186 

removed from the analyses, resulting in the warm season to outperform the cool season CC values at 1187 

particularly short ranges from the radar. 1188 

These results aid in our understanding in the possibilities for hydrometeorological studies. Nearly 1189 

50% of the 300 hours where precipitation occurred analyzed for the study consisted of either falsely 1190 

estimated precipitation by the radar, or missed by the radar. Furthermore, these errors accumulate 1191 

between 500 to 2,000 mm of precipitation depending on the algorithms chosen.  Although the overall 1192 

performance increased when false alarms and misses were removed, correlation coefficient values still, 1193 

typically, remained below 0.50 at ranges beyond 130 km.  1194 

Furthermore, results demonstrate the issues with analyzing QPE from a single gauge, explaining 1195 

why the Community Collaborative Rain, Hail, and Snow Network (Kelsch 1998; Cifelli et al., 2005; 1196 

Reges et al., 2016) or other densely-gauged networks (e.g., the Hydrometeorological Automated Data 1197 

System, HADS, Meteorological Assimilation Data Ingest System, MADIS) tends to be more utilized 1198 

since results have shown that measurements or quality controlled-techniques made by these organizations, 1199 

especially CoCoRaHS, are significantly more accurate than rain gauges (Simpson et al., 2017), especially 1200 

for convective events (Moon et al. 2009). 1201 
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 1366 

Table 1. Terrestrial-based precipitation gauge locations used for the study in addition to the National 1367 

Weather Service Radars Springfield, MO (KSGF), Kansas City, MO (KEAX), and St. Louis, MO 1368 

(KLSX) used in conjunction with each gauge. 1369 

Gauge Location Latitude (°N) Longitude (°W) Radar(s) Used 

Bradford 38.897236 -92.218070 KLSX, KEAX 

Brunswick 39.412667 -93.196500 KEAX 

Capen Park 38.929237 -92.321297 KLSX, KEAX 

Cook Station 37.797945 -91.429645 KLSX, KSGF 

Green Ridge 38.621147 -93.416652 KEAX, KSGF 

Jefferson Farm 38.906992 -92.269976 KLSX, KEAX 

Lamar 37.493366 -94.318185 KSGF 

Linneus 39.856919 -93.149726 KEAX 



Monroe City 39.635314 -91.725370 KLSX 

Mountain Grove 37.153865 -92.268831 KSGF 

Sanborn Field 38.942301 -92.320395 KLSX, KEAX 

St. Joseph 39.757821 -94.794567 KEAX 

Vandalia 39.302300 -91.513000 KLSX 

Versailles 38.434700 -92.853733 KEAX, KSGF 

Williamsburg 38.907350 -91.734210 KLSX 
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Table 2. List of single- and dual-polarimetric algorithms used for radar rainfall estimates. 1375 
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 1394 

Figure 1. Study location (Missouri) with St. Louis (KLSX), Kansas City (KEAX), and Springfield 1395 

(KSGF), MO radars (triangles) overlaid with 50-, 100-, and 150-km range rings in addition to the 15 1396 

terrestrial-based precipitation gauges utilizeed as ground-truthed data. 1397 
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 1401 

Figure 2. Normalized standard error values for the overall performance of the a) 3 R(Z), 3 R(DSMZ), 1402 

and RREC algorithms, b) 6 R(KDP) and 6 R(DKDP) algorithms (equations 1-6 from Table 2), c) 5 1403 

R(Z,ZDR) and 5 R(DSMZ,ZDR) algorithms (equations 7-11 from Table 2), and d) 4 R(ZDR,KDP) 1404 

and 4 R(ZDR,DKDP) algorithms (equations 12-15 from Table 2) for the three radars utilized for the 1405 

current study. 1406 



 1407 

Figure 3. Values of analyses from the Kansas City (KEAX) radar. Dashed lines and points represent 1408 

the analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points 1409 

represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors 1410 

represent analyses conducted during the warm and cool seasons, and overall, respectively. 1411 
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 1421 

Figure 4. Correlation coefficient values for the 9 locations analyzed by the Kansas City (KEAX) radar 1422 

with the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season 1423 

data, respectively. The top two numbers on each plot indicate the overall R2 value, whereas the 1424 

bottom two numbers represent the R2 when false alarms and misses are removed. 1425 
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 1429 

Figure 5. Values of analyses from the St. Louis (KLSX) radar. Dashed lines and points represent the 1430 

analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points represent 1431 

the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors represent 1432 

analyses conducted during the warm and cool seasons, and overall, respectively. 1433 
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 1443 

Figure 6. Correlation coefficient values for the 8 locations analyzed by the St. Louis (KLSX) radar 1444 

with the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season 1445 

data, respectively. The top two numbers on each plot indicate the overall R2 value, whereas the 1446 

bottom two numbers represent the R2 when false alarms and misses are removed. 1447 
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1450 

Figure 7. Values of analyses from the Springfield (KSGF) radar. Dashed lines and points represent 1451 

the analyses of the worst-performing algorithm (R(ZDR,KDP)) while the solid lines and points 1452 

represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black colors 1453 

represent analyses conducted during the warm and cool seasons, and overall, respectively. 1454 
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 1464 

Figure 8. Correlation coefficient values for the 5 locations analyzed by the Springfield (KSGF) radar with 1465 

the R(Z,ZDR) NSSL equation. Blue and red scatter points represent the cool and warm season data, 1466 

respectively. The top two numbers on each plot indicate the overall R2 value, whereas the bottom two 1467 

numbers represent the R2 when false alarms and misses are removed. 1468 
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