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Abstract. River water-quality time series often exhibit fractal scaling, which here refers to 1 

autocorrelation that decays as a power law over some range of scales. Fractal scaling presents 2 

challenges to the identification of deterministic trends to avoid false inference on the statistical 3 

significance of trends, but traditional methods for estimating spectral slope (β) or other 4 

equivalent scaling parameters (e.g., Hurst exponent) are generally inapplicable to irregularly 5 

sampled data. Here we consider two types of estimation approaches for irregularly sampled data 6 

and evaluate their performance using synthetic time series. These time series were generated 7 

such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from 8 

white noise (β = 0) to Brown noise (β = 2), and (2) their sampling gap intervals mimic the 9 

sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in 10 

real water-quality data. The results suggest that none of the existing methods fully account for 11 

the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using 12 

interpolation for gap filling when examining auto-correlation, as the interpolation methods 13 

consistently under-estimate or over-estimate β under a wide range of prescribed β values and gap 14 

distributions. Second, the long-established Lomb-Scargle spectral method also consistently 15 
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under-estimates β. A previously-published modified form, using only the lowest 5% of the 16 

frequencies for spectral slope estimation, has very poor precision, although the overall bias is 17 

small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the 18 

smallest bias and root-mean-squared error among all methods for a wide range of prescribed β 19 

values and gap distributions. The aliasing method, however, does not itself account for sampling 20 

irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is 21 

recommended for estimating β in irregular time series until improved methods are developed. 22 

Finally, all methods’ performances depend strongly on the sampling irregularity, highlighting 23 

that the accuracy and precision of each method are data-specific. Accurately quantifying the 24 

strength of fractal scaling in irregular water-quality time series remains an unresolved challenge 25 

for the hydrologic community and for other disciplines that must grapple with irregular sampling. 26 
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1. Introduction 30 

1.1. Autocorrelations in Time Series 31 

It is well known that time series from natural systems often exhibit auto-correlation, that is, 32 

observations at each time step are correlated with observations one or more time steps in the past. 33 

This property is usually characterized by the autocorrelation function (ACF), which is defined as 34 

follows for a process 𝑋𝑡 at lag k: 35 

𝛾(𝑘) = 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑘) (1) 

In practice, auto-correlation has been frequently modeled with classical techniques such as auto-36 

regressive (AR) or auto-regressive moving-average (ARMA) models (Darken et al., 2002; Yue 37 

et al., 2002; Box et al., 2008). These models assume that the underlying process has short-term 38 

memory, i.e., the ACF decays exponentially with lag k (Box et al., 2008). 39 

Although the short-term memory assumption holds sometimes, it cannot adequately describe 40 

many time series whose ACFs decay as a power law (thus much slower than exponentially) and 41 

may not reach zero even for large lags, which implies that the ACF is non-summable. This 42 
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property is commonly referred to as long-term memory or fractal scaling, as opposed to short-43 

term memory (Beran, 2010). 44 

Fractal scaling has been increasingly recognized in studies of hydrological time series, 45 

particularly for the common task of trend identification. Such hydrological series include 46 

riverflow (Montanari et al., 2000; Khaliq et al., 2008; Khaliq et al., 2009; Ehsanzadeh and 47 

Adamowski, 2010), air and sea temperature (Fatichi et al., 2009; Lennartz and Bunde, 2009; 48 

Franzke, 2012b; Franzke, 2012a), conservative tracers (Kirchner et al., 2000; Kirchner et al., 49 

2001; Godsey et al., 2010), and non-conservative chemical constituents (Kirchner and Neal, 50 

2013; Aubert et al., 2014). Because for fractal scaling processes the variance of the sample mean 51 

converges to zero much slower than the rate of n-1 (n: sample size), the fractal scaling property 52 

must be taken into account to avoid "false positives" (Type I errors) when inferring the statistical 53 

significance of trends (Cohn and Lins, 2005; Fatichi et al., 2009; Ehsanzadeh and Adamowski, 54 

2010; Franzke, 2012a). Unfortunately, as stressed by Cohn and Lins (2005), it is “surprising that 55 

nearly every assessment of trend significance in geophysical variables published during the past 56 

few decades has failed [to do so]”, and a similar tendency is evident in the decade following that 57 

statement as well.  58 

1.2. Overview of Approaches for Quantification of Fractal Scaling 59 

Several equivalent metrics can be used to quantify fractal scaling. Here we provide a review 60 

of the definitions of such processes and several typical modeling approaches, including both 61 

time-domain and frequency-domain techniques, with special attention to their reconciliation. For 62 

a more comprehensive review, readers are referred to Beran et al. (2013), Boutahar et al. (2007), 63 

and Witt and Malamud (2013). 64 

Strictly speaking, Xt is called a stationary long-memory process if the condition 65 

𝑙𝑖𝑚
𝑘→∞

𝑘𝛼𝛾(𝑘) = 𝐶1 > 0 (2) 

where C1 is a constant, is satisfied by some 𝛼 ∈ (0,1) (Boutahar et al., 2007; Beran et al., 2013). 66 

Equivalently, Xt is a long-memory process if, in the spectral domain, the condition 67 

𝑙𝑖𝑚
𝜔→0

|𝜔|𝛽𝑓(𝜔) = 𝐶2 > 0 (3) 

is satisfied by some 𝛽 ∈ (0,1), where C2 is a constant and 𝑓(𝜔) is the spectral density function 68 

of Xt, which is related to ACF as follows (which is also known as the Wiener-Khinchin theorem): 69 
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𝑓(𝜔) =
1

2𝜋
∑ 𝛾(𝑘)𝑒−𝑖𝑘𝜔
∞

𝑘=−∞

 (4) 

where 𝜔 is angular frequency (Boutahar et al., 2007). 70 

One popular model for describing long-memory processes is the so-called fractional auto-71 

regressive integrated moving-average model, or ARFIMA (p, q, d), which is an extension of 72 

ARMA models and is defined as follows: 73 

(1 − 𝐵)𝑑𝜑(𝐵)𝑋𝑡 = 𝜓(𝐵)𝜀𝑡 (5) 

where 𝜀𝑡 is a series of independent, identically distributed Gaussian random numbers ~ (0, 𝜎𝜀
2), 74 

B is the backshift operator (i.e., BXt = Xt-1), and functions 𝜑(∙) and 𝜓(∙) are polynomials of order 75 

p and q, respectively. The fractional differencing parameter d is related to the parameter α in Eq. 76 

(2) as follows: 77 

𝑑 =
1 − 𝛼

2
∈ (−0.5, 0.5) (6) 

(Beran et al., 2013; Witt and Malamud, 2013).  78 

In addition to a slowly decaying ACF, a long-memory process manifests itself in two other 79 

equivalent fashions. One is the so-called “Hurst effect”, which states that, on a log-log scale, the 80 

range of variability of a process changes linearly with the length of time period under 81 

consideration. This power-law slope is often referred to as the “Hurst exponent” or “Hurst 82 

coefficient” H (Hurst, 1951), which is related to d as follows: 83 

𝐻 = 𝑑 + 0.5 (7) 

(Beran et al., 2013; Witt and Malamud, 2013). The second equivalent description of long-84 

memory processes, this time from a frequency-domain perspective, is “fractal scaling”, which 85 

describes a power-law decrease in spectral power with increasing frequency, yielding power 86 

spectra that are linear on log-log axes (Lomb, 1976; Scargle, 1982; Kirchner, 2005). 87 

Mathematically, this inverse proportionality can be expressed as: 88 

𝑓(𝜔) = 𝐶3|𝜔|
−𝛽 (8) 

where 𝐶3 is a constant and the scaling exponent β is termed the “spectral slope.” In particular, for 89 

spectral slopes of zero, one, and two, the underlying processes are termed as “white”, “pink” (or 90 

“flicker”), and “Brown” (or “red”) noises, respectively (Witt and Malamud, 2013). Illustrative 91 

examples of these three noises are shown in Figure 1a-1c. 92 

In addition, it can be shown that the spectral density function for ARFIMA (p,d,q) is 93 



 

5 

𝑓(𝜔) =
𝜎𝜀
2

2𝜋

|𝜓(𝑒−𝑖𝜔)|
2

|𝜑(𝑒−𝑖𝜔)|2
|1 − 𝑒−𝑖𝜔|

−2𝑑
 (9) 

for −𝜋 < 𝜔 < 𝜋 (Boutahar et al., 2007; Beran et al., 2013). For |𝜔| ≪ 1, Eq. (9) can be 94 

approximated by: 95 

𝑓(𝜔) = 𝐶4|𝜔|
−2𝑑 (10) 

with 96 

𝐶4 =
𝜎𝜀
2

2𝜋

|𝜓(1)|2

|𝜑(1)|2
 (11) 

Eq. (10) thus exhibits the asymptotic behavior required for a long-memory process given by Eq. 97 

(3). In addition, a comparison of Eq. (10) and (8) reveals that, 98 

𝛽 = 2𝑑 (12) 

Overall, these derivations indicate that these different types of scaling parameters (i.e., α, d, and 99 

H and β) can be used equivalently to describe the strength of fractal scaling. Specifically, their 100 

equivalency can be summarized as follows: 101 

𝛽 = 2𝑑 = 1 − 𝛼 = 2𝐻 − 1 (13) 

It should be noted, however, that the parameters d, α, and H are only applicable over a fixed 102 

range of fractal scaling, which is equivalent to (-1, 1) in terms of β. 103 

1.3. Motivation and Objective of this Work 104 

To account for fractal scaling in trend analysis, one must be able to first quantify the strength 105 

of fractal scaling for a given time series. Numerous estimation methods have been developed for 106 

this purpose, including Hurst rescaled range analysis, Higuchi’s method, Geweke and Porter-107 

Hudak’s method, Whittle’s maximum likelihood estimator, detrended fluctuation analysis, and 108 

others (Taqqu et al., 1995; Montanari et al., 1997; Montanari et al., 1999; Rea et al., 2009; 109 

Stroe-Kunold et al., 2009). For brevity, these methods are not elaborated here; readers are 110 

referred to Beran (2010) and Witt and Malamud (2013) for details. While these estimation 111 

methods have been extensively adopted, they are unfortunately only applicable to regular (i.e., 112 

evenly spaced) data, e.g., daily streamflow discharge, monthly temperature, etc. In practice, 113 

many types of hydrological data, including river water-quality data, are often sampled irregularly 114 

or have missing values, and hence their strengths of fractal scaling cannot be readily estimated 115 

with the above traditional estimation methods. 116 
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Thus, estimation of fractal scaling in irregularly sampled data is an important challenge for 117 

hydrologists and practitioners. Many data analysts may be tempted to interpolate the time series 118 

to make it regular and hence analyzable (Graham, 2009). Although technically convenient, 119 

interpolation can be problematic if it distorts the series’ autocorrelation structure (Kirchner and 120 

Weil, 1998). In this regard, it is important to evaluate various types of interpolation methods 121 

using carefully designed benchmark tests and to identify the scenarios under which the 122 

interpolated data can yield reliable (or, alternatively, biased) estimates of spectral slope. 123 

Moreover, quantification of fractal scaling in real-world water-quality data is subject to 124 

several common complexities. First, water-quality data are rarely normally distributed; instead, 125 

they are typically characterized by log-normal or other skewed distributions (Hirsch et al., 1991; 126 

Helsel and Hirsch, 2002), with potential consequences for β estimation. Moreover, water-quality 127 

data also tend to exhibit long-term trends, seasonality, and flow-dependence (Hirsch et al., 1991; 128 

Helsel and Hirsch, 2002), which can also affect the accuracy of β estimate. Thus, it may be more 129 

plausible to quantify β in transformed time series after accounting for the seasonal patterns and 130 

discharge-driven variations in the original time series, which is also the approach taken in this 131 

work. For the trend aspect, however, it remains a puzzle whether the data set should be de-132 

trended before conducting β estimation. Such de-trending treatment can certainly affect the 133 

estimated value of β and hence the validity of (or confidence in) any inference made regarding 134 

the statistical significance of temporal trends in the time series. This somewhat circular issue is 135 

beyond the scope of our current work -- it has been previously discussed in the context of short-136 

term memory (Zetterqvist, 1991; Darken et al., 2002; Yue et al., 2002; Noguchi et al., 2011; 137 

Clarke, 2013; Sang et al., 2014), but it is not well understood in the context of fractal scaling (or 138 

long-term memory) and hence presents an important area for future research. 139 

In the above context, the main objective of this work was to use Monte Carlo simulation to 140 

systematically evaluate and compare two broad types of approaches for estimating the strength 141 

of fractal scaling (i.e., spectral slope β) in irregularly sampled river water-quality time series. 142 

Specific aims of this work include the following: 143 

(1) To examine the sampling irregularity of typical river water-quality monitoring data and 144 

to simulate time series that contain such irregularity; and 145 

(2) To evaluate two broad types of approaches for estimating β in simulated irregularly 146 

sampled time series. 147 
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The first type of approach includes several forms of interpolation techniques for gap filling, thus 148 

making the data regular and analyzable by traditional estimation methods. The second type of 149 

approach includes the well-known Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) and 150 

a recently developed wavelet method combined with a spectral aliasing filter (Kirchner and Neal, 151 

2013). The latter two methods can be directly applied to irregularly spaced data; here we aim to 152 

compare them with the interpolation techniques. Details of these various approaches are 153 

provided in Section 3.1. 154 

This work was designed to make several specific contributions. First, it uses benchmark tests 155 

to quantify the performance of a wide range of methods for estimating fractal scaling in 156 

irregularly sampled water-quality data. Second, it proposes an innovative and general approach 157 

for modeling sampling irregularity in water-quality records. Third, while this work was not 158 

intended to compare all published estimation methods for fractal scaling, it does provide and 159 

demonstrate a generalizable framework for data simulation (with gaps) and β estimation, which 160 

can be readily applied toward the evaluation of other methods that are not covered here. Last but 161 

not least, while this work was intended to help hydrologists and practitioners understand the 162 

performance of various approaches for water-quality time series, the findings and approaches 163 

may be broadly applicable to irregularly sampled data in many other scientific disciplines. 164 

The rest of the paper is organized as follows. We propose a general approach for modeling 165 

sampling irregularity in typical river water-quality data and discuss our approach for simulating 166 

irregularly sampled data (Section 2). We then introduce the various methods for estimating 167 

fractal scaling in irregular time series and compare their estimation performance (Section 3). We 168 

close with a discussion of the results and implications (Section 4). 169 

2. Quantification of Sampling Irregularity in River Water-Quality Data 170 

2.1. Modeling of Sampling Irregularity 171 

River water-quality data are often sampled irregularly. In some cases, samples are taken 172 

more frequently during particular periods of interest, such as high flows or drought periods; here 173 

we will address the implications of the irregularity, but not the (intentional) bias, inherent in such 174 

a sampling strategy. In other cases, the sampling is planned with a fixed sampling interval (e.g., 175 

1 day) but samples are missed (or lost, or fail quality-control checks) at some time steps during 176 

implementation. In still other cases, the sampling is intrinsically irregular because, for example, 177 
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one cannot measure the chemistry of rainfall on rainless days or the chemistry of a stream that 178 

has dried up. Theoretically, any deviation from fixed-interval sampling can affect the subsequent 179 

analysis of the time series. 180 

To quantify the sampling irregularity, we propose a simple and general approach that can be 181 

applied to any time series of monitoring data. Specifically, for a given time series with N points, 182 

the time intervals between adjacent samples are calculated; these intervals themselves make up a 183 

time series of N-1 points that we call Δt. In addition, the following parameters are calculated to 184 

quantify its sampling irregularity: 185 

 L = the length of the period of record, 186 

 N = the number of samples in the record, 187 

 Δtnominal = the nominal sampling interval under regular sampling (e.g., Δtnominal = 1 day 188 

for daily samples), 189 

 Δt* = Δt /Δtnominal, the sample intervals non-dimensionalized by the nominal sampling 190 

interval, 191 

 Δtaverage = L/(N – 1) the average of all the entries in Δt. 192 

The quantification is illustrated with two simple examples. The first example contains data 193 

sampled every hour from 1:00 am to 11:00 am on one day. In this case, L = 10 hours, N = 11 194 

samples, Δt = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} hour, and Δtnominal = Δtaverage = 1 hour. The second 195 

example contains data sampled at 1:00 am, 3:00 am, 4:00 am, 8:00 am, and 11:00 am. In this 196 

case, L = 10 hours, N = 5 samples, Δt = {2, 1, 4, 3} hours, Δtnominal = 1 hour, and Δtaverage = 2.5 197 

hours. It is readily evident that the first case corresponds to fixed-interval (regular) sampling that 198 

has the property of Δtaverage/Δtnominal = 1 (dimensionless), whereas the second case corresponds to 199 

irregular sampling for which Δtaverage/Δtnominal > 1. 200 

The dimensionless set Δt* contains essential information for determining sampling 201 

irregularity. This set is modeled as independent, identically distributed values drawn from a 202 

negative binomial (NB) distribution. This distribution has two dimensionless parameters, the 203 

shape parameter (λ) and the mean parameter (μ), which collectively represent the irregularity of 204 

the samples. The NB distribution is a flexible distribution that provides a discrete analogue of a 205 

gamma distribution. The geometric distribution, itself the discrete analogue of the exponential 206 

distribution, is a special case of the NB distribution when λ = 1. 207 
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The parameters μ and λ represent different aspects of sampling irregularity, as illustrated by 208 

the examples shown in Figure 2. The mean parameter μ represents the fractional increase in the 209 

average interval between samples due to gaps: μ = mean(Δt*) – 1 = (Δtaverage – Δtnominal)/Δtnominal. 210 

Thus the special case of μ = 0 corresponds to regular sampling (i.e., Δtaverage = Δtnominal), whereas 211 

any larger value of μ corresponds to irregular sampling (i.e., Δtaverage > Δtnominal) (Figure 2c). The 212 

shape parameter λ characterizes the similarity of gaps to each other; that is, a small λ indicates 213 

that the samples contain gaps of widely varying lengths, whereas a large λ indicates that the 214 

samples contain many gaps of similar lengths (Figure 2a-2b).  215 

To visually illustrate these gap distributions, representative samples of irregular time series 216 

are presented in Figure 1 for the three special processes described above (Section 1.2), i.e., 217 

white noise, pink noise, and Brown noise. Specifically, three different gap distributions, namely, 218 

NB(λ = 1, μ = 1), NB(λ = 1, μ = 14), and NB(λ = 0.01, μ = 1), were simulated and each was 219 

applied to convert the three original (regular) time series (Figure 1a-1c) to irregular time series 220 

(Figure 1d-1l). These simulations clearly illustrate the effects of the two parameters λ and μ. In 221 

particular, compared with NB(λ = 1, μ = 1), NB(λ = 1, μ = 14) shows a similar level of sampling 222 

irregularity (same λ) but a much longer average gap interval (larger μ). Again compared with 223 

NB(λ = 1, μ = 1), NB(λ = 0.01, μ = 1) shows the same average interval (same μ) but a much more 224 

irregular (skewed) gap distribution that contains a few very large gaps (smaller λ). 225 

2.2. Examination of Sampling Irregularity in Real River Water-Quality Data 226 

The above modeling approach was applied to real water-quality data from two large river 227 

monitoring networks in the United States to examine sampling irregularity. One such network is 228 

the Chesapeake Bay River Input Monitoring program, which typically samples streams bi-229 

monthly to monthly, accompanied with additional sampling during stormflows (Langland et al., 230 

2012; Zhang et al., 2015). These data were obtained from the U.S. Geological Survey National 231 

Water Information System (http://doi.org/10.5066/F7P55KJN). The other network is the Lake 232 

Erie and Ohio tributary monitoring program, which typically samples streams at a daily 233 

resolution (National Center for Water Quality Research, 2015). For each site, we determined the 234 

NB parameters to quantify sampling irregularity. The mean parameter μ can be estimated as 235 

described above, and the shape parameter λ can be calculated directly from the mean and 236 

variance of Δt* as follows: λ = μ2/[var(Δt*) – μ] = (mean(Δt*) – 1)2/[var(Δt*) – mean(Δt*) + 1]. 237 

Alternatively, a maximum likelihood approach can be used, which employs the “fitdist” function 238 

http://doi.org/10.5066/F7P55KJN
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in the “fitdistrplus” R package (Delignette-Muller and Dutang, 2015). In general, the two 239 

approaches have produced similar results, which are summarized in Table 1, with two examples 240 

of fitted NB distributions shown in Figure 3.  241 

For the Chesapeake Bay River Input Monitoring program (9 sites), total nitrogen (TN) and 242 

total phosphorus (TP) are taken as representatives of water-quality constituents. According to the 243 

maximum likelihood approach, the shape parameter λ varies between 0.7 and 1.2 for TN and 244 

between 0.8 and 1.1 for TP (Table 1). These λ values are around 1.0, reflecting the fact that 245 

these sites have relatively even gap distributions (i.e., relatively balanced counts of large and 246 

small gaps). The mean parameter μ varies between 9.5 and 19.6 for TN and between 13.4 and 247 

24.4 for TP in the Chesapeake monitoring network, corresponding to Δtaverage of 10.5–20.6 days 248 

for TN and 14.4–25.4 days for TP, respectively. This is consistent with the fact that these sites 249 

have typically been sampled bi-monthly to monthly, along with additional sampling during 250 

stormflows (Langland et al., 2012; Zhang et al., 2015). 251 

For the Lake Erie and Ohio tributary monitoring program (6 sites), the record of nitrate-plus-252 

nitrite (NOx) and TP were examined. According to the maximum likelihood approach, the shape 253 

parameter λ is approximately 0.01 for both constituents (Table 1). These very low λ values occur 254 

because these time series contain a few very large gaps, ranging from 35 days to 1109 days (~3 255 

years). The mean parameter μ varies between 0.06 and 0.22, corresponding to Δtaverage of 1.06 256 

and 1.22 days, respectively. This is consistent with fact that these sites have been sampled at a 257 

daily resolution with occasional missing values on some days (Zhang and Ball, 2017). 258 

2.3. Simulation of Time Series with Irregular Sampling 259 

To evaluate the various β estimation methods, our first step was to use Monte Carlo 260 

simulation to produce time series that mimic the sampling irregularity observed in real water-261 

quality monitoring data. We began by simulating regular (gap free) time series using the 262 

fractional noise simulation method of Witt and Malamud (2013), which is based on inverse 263 

Fourier filtering of white noises. Our analysis showed this method performed reasonably well 264 

compared to other simulation methods for β values between 0 and 1 (see Supporting Information 265 

S1). In addition, this method can also simulate β values beyond this range. The noises simulated 266 

by the Witt and Malamud method, however, are band-limited to the Nyquist frequency (half of 267 

the sampling frequency) of the underlying white noise time series, whereas true fractional noises 268 

would contain spectral power at all frequencies, extending well above the Nyquist frequency for 269 
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any sampling. Thus these band-limited noises will be less susceptible to spectral aliasing than 270 

true fractional noises would be; see Kirchner (2005) for detailed discussions of the aliasing issue. 271 

100 replicates of regular (gap free) time series were produced for nine prescribed spectral 272 

slopes, which vary from β = 0 (white noise) to β = 2 (Brownian motion or “random walk”) with 273 

an increment of 0.25 (i.e., 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2). These regular time series 274 

each have a length (N) of 9125, which can be interpreted as 25 years of regular daily samples 275 

(that is, Δtnominal = 1 day). 276 

Each of the simulated regular time series was converted to irregular time series using gap 277 

intervals that were simulated with NB distributions. To make these gap intervals mimic those in 278 

typical river water-quality time series, representative NB parameters were chosen based on 279 

results from Section 2.2. Specifically, μ was set at 1 and 14, corresponding to Δtaverage of 2 days 280 

and 15 days respectively. For λ, we chose four values that span three orders of magnitude, i.e., 281 

0.001, 0.1, 1, and 10. Note that when λ = 1 the generated time series corresponds to a Bernoulli 282 

process. With the chosen values of μ and λ, a total of eight scenarios were generated, which were 283 

implemented using the “rnbinom” function in the “stats” R package (R Development Core Team, 284 

2014): 285 

1) μ = 1 (i.e., Δtaverage/Δtnominal = 2), λ = 0.01, 286 

2) μ = 1, λ = 0.1, 287 

3) μ = 1, λ = 1, 288 

4) μ = 1, λ = 10, 289 

5) μ = 14 (i.e., Δtaverage /Δtnominal = 15), λ = 0.01, 290 

6) μ = 14, λ = 0.1, 291 

7) μ = 14, λ = 1, 292 

8) μ = 14, λ = 10. 293 

Examples of these simulations are shown with boxplots in Figure 2. 294 

3. Evaluation of Proposed Estimation Methods for Irregular Time Series 295 

3.1. Summary of Estimation Methods 296 

For the simulated irregular time series, β was estimated using the aforementioned two types 297 

of approaches. The first type includes 11 different interpolation methods (designated as B1-B11 298 

below) to fill the data gaps, thus making the data regular and analyzable by traditional methods:  299 
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B1)   Global mean: all missing values replaced with the mean of all observations; 300 

B2)   Global median: all missing values replaced with the median of all observations; 301 

B3)   Random replacement: all missing values replaced with observations randomly drawn 302 

(with replacement) from the time series; 303 

B4)   Next observation carried backward: each missing value replaced with the next available 304 

observation; 305 

B5)   Last observation carried forward: each missing value replaced with the preceding 306 

available observation; 307 

B6)   Average of the two nearest samples: it replaces each missing value with the mean of its 308 

next and preceding available observations; 309 

B7)   Lowess (locally weighted scatterplot smoothing) with a smoothing span of 1: missing 310 

values replaced using fitted values from a lowess model determined using all available 311 

observations (Cleveland, 1981);  312 

B8)   Lowess with a smoothing span of 0.75: same as B7 except that the smoothing span is 75% 313 

of the available data (similar distinction follows for B9-B11); 314 

B9)   Lowess with a smoothing span of 50%; 315 

B10) Lowess with a smoothing span of 30%; and 316 

B11) Lowess with a smoothing span of 10%. 317 

B4 and B5 were implemented using the “na.locf” function in the “zoo” R package (Zeileis and 318 

Grothendieck, 2005). B7-B11 were implemented using the “loess” function in the “stats” R 319 

package (R Development Core Team, 2014). An illustration of these interpolation methods is 320 

provided in Figure 4. The interpolated data, along with the original regular data (designated as 321 

A1) were analyzed using the Whittle’s maximum likelihood method for β estimation, which was 322 

implemented using the “FDWhittle” function in the “fractal” R package (Constantine and 323 

Percival, 2014). 324 

The second type of approaches estimates β in the irregularly sampled data directly, using 325 

several variants of the Lomb-Scargle periodogram (designated as C1a-C1c below), and a 326 

recently developed wavelet-based method (designated as C2 below). Specifically, these 327 

approaches are: 328 

C1a) Lomb-Scargle periodogram: the spectral density of the time series (with gaps) is 329 

estimated and the spectral slope is fit using all frequencies (Lomb, 1976; Scargle, 1982). 330 
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This is a classic method for examining periodicity in irregularly sampled data, which is 331 

analogous to the more familiar fast Fourier transform method often used for regularly 332 

sampled data; 333 

C1b) Lomb-Scargle periodogram with 5% data: same as C1a except that the fitting of the 334 

spectral slope considers only the lowest 5% frequencies (Montanari et al., 1999); 335 

C1c) Lomb-Scargle periodogram with “binned” data: same as C1a except that the fitting of 336 

the spectral slope is performed on binned data in three steps: (1) The entire range of 337 

frequency is divided into 100 equal-interval bins on logarithmic scale. (2) The 338 

respective medians of frequency and power spectral density are calculated for each of 339 

the 100 bins. (3) The 100 pairs of median frequency and median spectral density are 340 

used to estimate the spectral slope on a log-log scale. 341 

C2)   Kirchner and Neal (2013)’s wavelet method: uses a modified version of Foster's 342 

weighted wavelet spectrum (Foster, 1996) to suppress spectral leakage from low 343 

frequencies and applies an aliasing filter (Kirchner, 2005) to remove spectral aliasing 344 

artifacts at high frequencies. 345 

C1a was implemented using the “spec.ls” function in the “cts” R package (Wang, 2013). C2 was 346 

run in C, using codes modified from those in Kirchner and Neal (2013).  347 

3.2. Evaluation of Methods’ Performance 348 

Each estimation method listed above was applied to the simulated data (Section 2.3) to 349 

estimate β, which were then compared with the prescribed (“true”) β to quantify the performance 350 

of each method. Plots of method evaluation for all simulations are provided as Figures S3-S12 351 

(Supporting Information S2). Close inspections of these plots reveal some general patterns of the 352 

methods’ performance. For brevity, these patterns are presented with a subset of the plots, which 353 

correspond to the cases where true β = 1 and shape parameter λ = 0.01, 0.1, 1, and 10 (Figure 5). 354 

In general, β values estimated using the regular data (A1) are very close to 1.0, which indicates 355 

that the adopted fractional noise generation method and the Whittle’s maximum likelihood 356 

estimator have small combined simulation and estimation bias. This is perhaps unsurprising, 357 

since the estimator is based on the Fourier transform and the noise generator is based on an 358 

inverse Fourier transform; thus, one method is essentially just the inverse of the other. One 359 

should also note that when fractional noises are not arbitrarily band-limited at the Nyquist 360 

frequency (as they inherently are with the noise generator that is used here), spectral aliasing 361 
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should lead to spectral slopes that are flatter than expected (Kirchner, 2005), and thus to 362 

underestimates of LRD. 363 

For the simulated irregular data, the estimation methods differ widely in their performance. 364 

Specifically, three interpolation methods (i.e., B4-B6) consistently over-estimate β, indicating 365 

that they introduce additional correlations into the time series, reducing its short-timescale 366 

variability. In contrast, the other eight interpolation methods (i.e., B1-B3 and B7-B11) generally 367 

under-estimate β, indicating that the interpolated points are less correlated than the original time 368 

series, thus introducing additional variability on short timescales. As expected, results from the 369 

lowess methods (B7-B11) depend strongly on the size of smoothing window, that is, more 370 

severe under-estimation of β is produced as the smoothing window becomes wider. In fact, when 371 

the smoothing window is 1.0 (i.e., method B7), lowess performs the interpolation using all data 372 

available and thus behaves similarly to interpolations based on global means (B1) or global 373 

medians (B2), except that lowess fits a polynomial curve instead of constant values. However, 374 

whenever a sampling gap is much shorter than the smoothing window, the infilled lowess value 375 

will be close to the local mean or median, and the abrupt jumps produced by these infilled values 376 

will artificially increase the variance in the time series at high frequencies, leading to an 377 

artificially reduced spectral slope β and correspondingly, an underestimate of β. This mechanism 378 

explains why lowess interpolation distorts β more when there are many small gaps (large λ), and 379 

therefore more jumps to, and away from, the infilled values, than when there are only a few large 380 

gaps (small λ). 381 

Among the direct methods (i.e., C1a, C1b, C1c, and C2), the Lomb-Scargle method, with 382 

original data (C1a) or binned data (C1c) tends to under-estimate β, though the underestimation 383 

by C1c is generally less severe. The modified Lomb-Scargle method (C1b), using only the 384 

lowest 5% of frequencies, yields estimates that are centered around 1.0. However, C1b has the 385 

highest variability (i.e., least precision) in β estimates among all methods. Compared with all the 386 

above methods, the wavelet method (C2) has much better performance in terms of both accuracy 387 

and precision when λ is 1 or 10, a slightly better performance when λ is 0.1, but a worse 388 

performance when λ is 0.01. 389 

The shape parameter λ greatly affects the performance of the estimation methods. All the 390 

interpolation methods that under-estimate β (i.e., B1-B3 and B7-B11) perform worse as λ 391 

increases from 0.01 to 10. This effect can be interpreted as follows: when the time series 392 
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contains a large number of relatively small gaps (e.g., λ = 1 or 10), there are many jumps (which, 393 

as noted above, contain mostly high-frequency variance) between the original data and the 394 

infilled values, resulting in more severe under-estimation. In contrast, when the data contain only 395 

a small number of very large gaps (e.g., λ = 0.01 or 0.1), there are fewer of these jumps, resulting 396 

in minimal under-estimation. Similar effects of λ are also observed with the interpolation 397 

methods that show over-estimation (i.e., B4-B6) – that is, over-estimation is more severe when λ 398 

is larger. Similarly, the Lomb-Scargle method (C1a and C1c) performs worse (more serious 399 

underestimation) as λ increases. Finally, method C2 seems to perform the best when λ is large (1 400 

or 10), but not well when λ is very small (0.01), as noted above. This result highlights the 401 

sensitivity of the wavelet method to the presence of a few large gaps in the time series. For such 402 

cases, a potentially more feasible approach is to break the whole time series into several 403 

segments (each without long gaps) and then apply the wavelet method (C2) to analyze each 404 

segment separately. If this can yield more accurate estimates, then further simulation 405 

experiments should be designed to systematically determine how long the gap needs to be to 406 

invoke such an approach. 407 

Next, the method evaluation is extended to all the simulated spectral slopes, that is, β = 0, 408 

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2. For ease of discussion, three quantitative criteria were 409 

proposed for evaluating performance, namely, bias (B), standard deviation (SD), and root-mean-410 

squared error (RMSE), as defined below: 411 

𝐵𝑖 = 𝛽�̅� − 𝛽𝑡𝑟𝑢𝑒 (14) 

𝑆𝐷𝑖 = √
1

99
∑(𝛽𝑖,𝑗 − 𝛽�̅�)2
100

𝑗=1

 (15) 

𝑅𝑀𝑆𝐸𝑖 = √𝐵𝑖
2 + 𝑆𝐷𝑖

2 (16) 

where 𝛽�̅� is the mean of 100 β values estimated by method i, and βtrue is the prescribed β value 412 

for simulation of the initial regular time series. In general, B and SD can be considered as the 413 

models’ systematic error and random error, respectively, and RMSE serves as an integrated 414 

measure of both errors. For all evaluations, plots of bias and RMSE are provided in the main text. 415 

(Plots of SD are provided as Figure S7 and Figure S12 for simulations with μ = 1 and μ = 14, 416 

respectively.) 417 
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For simulations with μ = 1, results of estimation bias and RMSE are summarized in Figure 6 418 

and Figure 7, respectively. (More details are provided in Figures S3-S6.) For brevity, we focus 419 

on three direct methods (C1a, C1b and C2) and three representative interpolation methods. 420 

(Specifically, B1 represents B1-B3 and B7; B6 represents B4-B6, and B8 represents B8-B11.) 421 

Overall, these six methods show mixed performances. In terms of bias (Figure 6), B1 (global 422 

mean) and B8 (lowess with a smoothing span of 0.75) tend to have negative bias, particularly for 423 

time series with (1) moderate-to-large βtrue values and (2) large λ values (i.e., less skewed gap 424 

intervals). By contrast, B1 and B8 generally have minimal bias when (1) βtrue is close to zero (i.e., 425 

when the simulated time series is close to white noise); and (2) λ is small (e.g., 0.01), since 426 

interpolating a few large gaps cannot significantly affect the overall correlation structure. In 427 

addition, lowess interpolation with a larger smoothing window tends to yield more negatively 428 

biased estimates (data not shown). The other interpolation method, B6 (mean of the two nearest 429 

neighbors) tends to over-estimate β, particularly for time series with (1) small βtrue values and (2) 430 

large λ values. At large βtrue values (e.g., 2.0), the auto-correlation is already very strong such 431 

that taking the mean of two neighbors for gap filling does not introduce much additional 432 

correlation, as opposed to the case of small βtrue values. The Lomb-Scargle methods (C1a and 433 

C1b) generally have negative bias, particularly for time series with (1) moderate-to-large βtrue 434 

values (for both methods) and (2) large λ values (for C1a), which is similar to B1 and B8. 435 

However, C1b overall shows less severe bias than C1a. Finally, the wavelet method (C2) shows 436 

generally the smallest bias among all methods. However, its performance advantage is not as 437 

great when the time series has small λ values (i.e., very skewed gap intervals), as noted above, 438 

which may be due to the fact that the aliasing filter was designed for regular time series. In terms 439 

of SD (Figure S7), method C1b performs the worst among all methods (as noted above), method 440 

B6 and B8 perform poorly for large βtrue values, and method C2 performs poorly for βtrue = 0. In 441 

terms of RMSE (Figure 7), methods B1, B8, C1a, and C1b perform well for small βtrue values 442 

and small λ values, whereas method B6 performs well for large βtrue values and small λ values. In 443 

comparison, method C2 has the smallest RMSEs among all methods, and its RMSEs are 444 

similarly small for the wide range of βtrue and λ values. In general, the wavelet method can be 445 

considered the best among all methods.  446 

For simulations with μ = 14, results of estimation bias and RMSE are summarized in 447 

Figure 8 and Figure 9, respectively. (More details are provided in Figures S8-S11.) Overall, 448 
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these methods show mixed performances that are generally similar to the cases when μ = 1, as 449 

discussed above. These results highlight the generality of these methods’ performances, which 450 

applies at least to the range of μ = [1, 14]. In addition, all methods show generally larger RMSE 451 

for μ = 14 than μ = 1, indicating their dependence on the mean gap interval (Figure 9). Perhaps 452 

the most notable difference is observed with method C2, which in this case shows positive bias 453 

for small λ values (0.01 and 0.1) and negative bias for large λ values (1 and 10) (Figure 8f). It 454 

nonetheless generally shows the smallest RMSEs among all the tested methods. 455 

3.3. Quantification of Spectral Slopes in Real Water-Quality Data 456 

In this section, the proposed estimation approaches were applied to quantify β in real water-457 

quality data from the two monitoring programs presented in Section 2.2 (Table 1). As noted in 458 

Section 1.3, such real data are typically much more complex than our simulated time series, 459 

because of (1) strong deviations from normal distributions and (2) effects of flow-dependence, 460 

seasonality, and temporal trend (Hirsch et al., 1991; Helsel and Hirsch, 2002). In this regard, 461 

future research may simulate time series with these important characteristics and evaluate the 462 

performance of various estimation approaches, perhaps following the modeling framework 463 

described herein. Alternatively, one may quantify β in transformed time series after accounting 464 

for the above aspects. In this work, we have taken the latter approach for a preliminary 465 

investigation. Specifically, we have used the published Weighted Regressions on Time, 466 

Discharge, and Season (WRTDS) method (Hirsch et al., 2010) to transform the original time 467 

series. This widely accepted method estimates daily concentrations based on discretely collected 468 

concentration samples using time, season, and discharge as explanatory variables, i.e., 469 

𝑙𝑛(𝐶) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑙𝑛(𝑄) + 𝛽3𝑠𝑖𝑛𝑡(2𝜋𝑡) + 𝛽4 𝑐𝑜𝑠(2𝜋𝑡) + 𝜀 (17)
 

where C is concentration, Q is daily discharge, t is time in decimal years, 𝛽𝑖 are fitted 470 

coefficients, and 𝜀 is the error term. The 2nd and 3rd terms on the right represent time and 471 

discharge effects, respectively, whereas the 4th and 5th terms collectively represent cyclical 472 

seasonal effects. For a full description of this method, see Hirsch et al. (2010). In this work, 473 

WRTDS was applied to obtain the time series of estimated daily concentration for each 474 

constituent at each site. The difference between observed concentration (Cobs) and estimated 475 

concentration (Cest) was calculated in logarithmic space to obtain the concentration residuals,  476 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑙𝑛(𝐶𝑜𝑏𝑠) − 𝑙𝑛(𝐶𝑒𝑠𝑡) (18)
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For our data sets, histograms of concentration residuals (expressed in natural log concentration 477 

units) are shown in Figures S13-S16 (Supporting Information S3). Compared with the original 478 

concentration data, these model residuals are much more nearly normal and homoscedastic. 479 

Moreover, the model residuals are less susceptible to the issues of temporal, seasonal, and 480 

discharge-drive variations than the original concentrations. Therefore, the model residuals are 481 

more appropriate than the original concentrations for β estimation using the simulation 482 

framework adopted in this work. 483 

The estimated β values for the concentration residuals are summarized in Figure 10. Clearly, 484 

the estimated β varies considerably with the estimation method. In addition, the estimated β 485 

varies with site and constituent (i.e., TP, TN, or NOx.) Our discussion below focuses on the 486 

wavelet method (C2), because it is established above that this method performs better than the 487 

other estimation methods under a wide range of gap conditions. We emphasize that it is beyond 488 

our current scope to precisely quantify β in these water-quality data sets, but our simulation 489 

results presented above (Section 3.2) can be used as references to qualitatively evaluate the 490 

reliability of C2 and/or other methods for these data sets. 491 

For TN and TP concentration data at the Chesapeake River Input Monitoring sites (Table 1), 492 

μ varies between 9.5 and 24.4, whereas λ is ~1.0. Thus, the simulated gap scenario of NB(μ = 14, 493 

λ = 1) can be used as a reasonable reference to assess methods’ reliability (Figure 8). Based on 494 

method C2, the estimated β ranges between β = 0.36 and β = 0.61 for TN and between β = 0.30 495 

and β = 0.58 for TP at these sites (Figure 10). For such ranges, the simulation results indicate 496 

that method C2 tends to moderately under-estimate β under this gap scenario (Figure 8), and 497 

hence spectral slopes for TN and TP at these Chesapeake sites are likely slightly higher than 498 

those presented above. 499 

For NOx and TP concentration data at the Lake Erie and Ohio sites (Table 1), μ varies 500 

between 0.06 and 0.22, whereas λ is ~0.01. Thus, the simulated gap scenario of NB(μ = 1, λ = 501 

0.01) can be used as a reasonable reference to assess the methods’ reliability (Figure 6). For 502 

such small λ (i.e., a few gaps that are very dissimilar from others), C2 is not reliable for β 503 

estimation, as reflected by the generally positive bias in the simulation results. By contrast, 504 

methods B1 (interpolation with global mean) and B8 (lowess with span 0.75) both perform quite 505 

well under this gap scenario (Figure 6). These two methods provide almost identical β estimates 506 
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for each site-constituent combination, ranging from β = 1.0 to β = 1.5 for NOx and from β = 1.0 507 

to β = 1.4 for TP (Figure 10). 508 

Overall, the above analysis of real water-quality data has illustrated the wide variability in β 509 

estimates, with different choices of estimation methods yielding very different results. To our 510 

knowledge, these water-quality data have not heretofore been analyzed in this context. As 511 

illustrated above, our simulation experiments (Section 3.2) can be used as references to coarsely 512 

evaluate the reliability of each method under specific gap scenarios, thereby considerably 513 

narrowing the likely range of the estimated spectral slopes. Nonetheless, our results demonstrate 514 

that the analyzed water-quality time series can exhibit strong fractal scaling, particularly at the 515 

Lake Erie and Ohio tributary sites. Thus, an important implication is that researchers and 516 

analysts should be cautious when applying standard statistical methods to identify temporal 517 

trends in such water-quality data sets (Kirchner and Neal, 2013). In future work, one may 518 

consider applying Bayesian statistical analysis or other approaches to more accurately quantify 519 

the spectral slope and associated uncertainty for real water-quality data analysis. In addition, the 520 

modeling framework presented herein (including both gap simulation and β estimation) may be 521 

extended to simulations of irregular time series that have prescribed spectral slopes and also 522 

superimposed temporal trends, which can then be used to evaluate the validity of various 523 

statistical methods for identifying trend and associated statistical significance. 524 

4. Conclusions 525 

River water-quality time series often exhibit fractal scaling behavior, which presents 526 

challenges to the identification of deterministic trends. Because traditional estimation methods 527 

are generally not applicable to irregularly sampled time series, we have examined two broad 528 

types of estimation approaches and evaluated their performances against synthetic data with a 529 

wide range of prescribed β values and gap intervals representative of the sampling irregularity of 530 

real water-quality data.  531 

The results of this work suggest several important messages. First, the results remind us of 532 

the risks in using interpolation for gap filling when examining auto-correlation, as the 533 

interpolation methods consistently under-estimate or over-estimate β under a wide range of 534 

prescribed β values and gap distributions. Second, the long-established Lomb-Scargle spectral 535 

method also consistently under-estimates β. Its modified form, using the 5% lowest frequencies 536 
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for spectral slope estimation, has very poor precision, although the overall bias is small. Third, 537 

the wavelet method, coupled with an aliasing filter, has the smallest bias and root-mean-squared 538 

error among all methods for a wide range of prescribed β values and gap distributions, except for 539 

cases with small prescribed β values (i.e., close to white noise) or small λ values (i.e., very 540 

skewed gap distributions). Thus, the wavelet method is recommended for estimating spectral 541 

slope in irregular time series until improved methods are developed. In this regard, future 542 

research should aim to develop an aliasing filter that is more applicable to irregular time series 543 

with very skewed gap intervals. Finally, all methods’ performances depend strongly on the 544 

sampling irregularity in terms of both the skewness and mean of gap-interval lengths, 545 

highlighting that the accuracy and precision of each method are data-specific. 546 

Overall, these results provide new contributions in terms of better understanding and 547 

quantification of the proposed methods’ performances for estimating the strength of fractal 548 

scaling in irregularly sampled water-quality data. In addition, the work has provided an 549 

innovative and general approach for modeling sampling irregularity in water-quality records. 550 

Moreover, this work has proposed and demonstrated a generalizable framework for data 551 

simulation (with gaps) and β estimation, which can be readily applied toward the evaluation of 552 

other methods that are not covered in this work. More generally, the findings and approaches 553 

may also be broadly applicable to irregularly sampled data in other scientific disciplines. Last but 554 

not least, we note that accurate quantification of fractal scaling in irregular water-quality time 555 

series remains an unresolved challenge for the hydrologic community and for many other 556 

disciplines that must grapple with irregular sampling. 557 
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Table 1. Quantification of sampling irregularity for selected water-quality constituents at nine sites of the Chesapeake Bay River Input Monitoring 

program and six sites of the Lake Erie and Ohio tributary monitoring program. (μ: mean parameter; λ: shape parameter estimated using maximum 

likelihood; λ': shape parameter estimated using the direct approach (see Section 2.2). Δtaverage: average gap interval; N: total number of samples.)  

I. Chesapeake Bay River Input Monitoring program 

Site ID River and station name 
Drainage 

area (mi2) 

Total nitrogen (TN) Total phosphorus (TP) 

λ λ' μ 
Δtaverage 

(days) 
N λ λ' μ 

Δtaverage 

(days) 
N 

01578310 Susquehanna River at Conowingo, MD 27,100 0.8 1.1 13.5 14.5 876 0.8 1.0 13.4 14.4 881 

01646580 
Potomac River at Chain Bridge, 

Washington D.C. 
11,600 0.9 0.6 9.5 10.5 1,385 1.1 1.0 24.4 25.4 579 

02035000 James River at Cartersville, VA 6,260 0.8 1.0 13.9 14.9 960 0.8 1.1 13.7 14.7 974 

01668000 
Rappahannock River near 

Fredericksburg, VA 
1,600 0.8 0.6 15.6 16.6 776 0.8 0.6 15.2 16.2 796 

02041650 Appomattox River at Matoaca, VA 1,340 0.8 0.8 15.1 16.1 798 0.8 0.8 14.9 15.9 810 

01673000 Pamunkey River near Hanover, VA 1,071 0.8 0.9 15.1 16.1 873 0.8 1.0 14.7 15.7 894 

01674500 Mattaponi River near Beulahville, VA 601 0.7 0.9 14.3 15.3 810 0.8 0.9 14.2 15.2 820 

01594440 Patuxent River at Bowie, MD 348 0.9 1.1 15.3 16.3 787 0.8 0.8 14.0 15.0 861 

01491000 Choptank River near Greensboro, MD 113 1.2 1.5 19.6 20.6 680 1.1 1.0 20.5 21.5 690 

II. Lake Erie and Ohio tributary monitoring program 

Site ID River and station name 
Drainage 

area (mi2) 

Nitrate-plus-nitrite (NOx) Total phosphorus (TP) 

λ λ' μ 
Δtaverage 

(days) 
N λ λ' μ 

Δtaverage 

(days) 
N 

04193500 Maumee River at Waterville, OH 6,330 0.005 0.0003 0.19 1.19 9,101 0.005 0.0003 0.19 1.19 9,101 

04198000 Sandusky River near Fremont, OH 1,253 0.01 0.003 0.22 1.22 9,641 0.01 0.003 0.22 1.22 9,655 

04208000 Cuyahoga River at Independence, OH 708 0.007 0.006 0.13 1.13 7,421 0.007 0.006 0.13 1.13 7,426 

04212100 Grand River near Painesville, OH 686 0.01 0.005 0.21 1.21 5,023 0.01 0.005 0.22 1.22 4,994 

04197100 Honey Creek at Melmore, OH 149 0.007 0.005 0.06 1.06 9,914 0.007 0.005 0.06 1.06 9,914 

04197170 Rock Creek at Tiffin, OH 34.6 0.007 0.008 0.06 1.06 8,422 0.007 0.008 0.06 1.06 8,440 
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 699 

Figure 1. Synthetic time series with 200 time steps for three representative fractal scaling 700 

processes that correspond to white noise (β = 0), pink noise (β = 1), and Brown noise (β = 2). 701 

The 1st row shows the simulated time series without any gap. The three rows below show the 702 

same time series as in the 1st row but with data gaps that were simulated using three different 703 

negative binomial (NB) distributions, that is, 2nd row: NB(λ = 1, μ = 1); 3rd row: NB(λ = 1, μ = 704 

14); 4th row: NB(λ = 0.01, μ = 1). 705 
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 706 

Figure 2. Examples of gap interval simulation using binomial distributions, NB (shape λ, mean 707 

μ). Simulation parameters: L = 9125 days, Δtnominal = 1 day. The three panels show simulation 708 

with fixed (a) μ = 1, (b) μ = 14, and (c) λ = 1. Note that Δtaverage/Δtnominal = μ + 1. 709 
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710 

  711 

Figure 3. Examples of quantified sampling irregularity with negative binomial (NB) 712 

distributions: total nitrogen in Choptank River (top) and total phosphorus in Cuyahoga River 713 

(bottom). Theoretical CDF and quantiles are based on the fitted NB distributions. See Table 1 714 

for estimated mean and shape parameters. 715 
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 716 

Figure 4. Illustration of the interpolation methods for gap filling. The gap-free data (A1) was 717 

simulated with a series length of 500, with the first 30 data shown. (x: omitted data for gap filling; 718 

+: interpolated data; NOCB: next observation carried backward; LOCF: last observation carried 719 

forward; lowess: locally weighted scatterplot smoothing.) 720 
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 721 

Figure 5. Comparison of bias in estimated spectral slope in irregular data that are simulated with 722 

prescribed β = 1 (100 replicates), series length of 9125, and gap intervals simulated with (a) NB 723 

(λ = 0.01, μ = 1), (b) NB (λ = 0.1, μ = 1), (c) NB (λ = 1, μ = 1), and (d) NB (λ = 10, μ = 1). The 724 

blue dashed lines indicate the true β value.725 
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 726 

Figure 6. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 727 

replicates), series length of 9125, and mean gap interval of 2 (i.e., μ = 1). 728 
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 729 

Figure 7. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying 730 

prescribed β values (100 replicates), series length of 9125, and mean gap interval of 2 (i.e., μ = 1). 731 
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 732 

Figure 8. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 733 

replicates), series length of 9125, and mean gap interval of 15 (i.e., μ = 14). 734 
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 735 

Figure 9. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying 736 

prescribed β values (100 replicates), series length of 9125, and mean gap interval of 15 (i.e., μ = 14).737 
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 738 

Figure 10. Quantification of spectral slope in real water-quality data from the two regional 739 

monitoring networks, as estimated using the set of examined methods. All estimations were 740 

performed on concentration residuals (in natural log concentration units) after accounting for 741 

effects of time, discharge, and season. The two dashed lines in each panel indicate white noise (β 742 

= 0) and pink (flicker) noise (β = 1), respectively. See Table 1 for site and data details. 743 


