Interactive comment on “Evaluation of statistical methods for quantifying fractal scaling in water quality time series with irregular sampling” by Qian Zhang et al.

Anonymous Referee #1

Received and published: 26 September 2017

Thank you for your time and diligence in preparing your responses. Albeit the well articulated arguments, which deserved my full consideration, unfortunately they do not yet solve some of the fundamental scientific concerns that the paper raises.

Before discussing such concerns in detail, I would like to note that I have great consideration for the technical merits of the work undergone in the manuscript, and for the problems tackled by the authors in the present quest. Fractal scaling in irregular time series is a worthy venture with important relevance in many technical fields, and it has well-proven scientific merits in various disciplines as the reference list in point 5 of this report documents.

This work shall also become more relevant on a scientific standpoint once it is complemented by a sound scientific basis advancing the understanding of hydrologic functioning, namely on the fundamental principles that explain the fundamental nature of the detected signatures and the implemented approaches beyond the already presented statistical and geometric considerations.

In detail, this report discusses the following key concerns:

1) On the hydrological insights or lack thereof:

With all due respect, and albeit the arguments put forward by the authors, the paper is still fundamentally devoid of any hydrological insights. The well-known fractal scaling approaches discussed in the manuscript have purely descriptive merits and are inherently grounded on statistical geometry. The underlying physical understanding is thus entirely missing.

The ability of fractal scaling to elicit trends is again a purely descriptive merit, adding nothing to the fundamental understanding of hydrological functioning. To reach that understanding, one must fundamentally address the questions: Why? What are the process reasons behind an observed statistical and/or geometric signature? What is the physical meaning of a fractional scaling exponent? Of a fractional law? And what do these inform about the “hows” and “whys” in hydrology?

2) On the long history of fractal theories and scaling - centuries before hydrology:

The science underlying fractal analysis, geometry and scaling has a long scientific history before the empirical work of Hurst. While he contributed to the field from its empirical side, the fundamental contributions date back to the 17th century calculus. You may have learnt at the university about the many contributions of Leibniz: among many contributions, he introduced the first solid concepts of fractional exponents and laid the foundations of fractional calculus (aside from making fundamental contributions to mainstream calculus as well). We owe Leibniz - not Hurst - the fundamentals on
fractal scaling.

Soon these 17th century concepts were linked to physical laws and a new branch of analytical and statistical mechanics was born. Among the many illustrious users of fractional mechanics was Einstein, which provided systematic rigorous physical grounds to what predecessors had only described with geometry and statistics (the physics behind the random walks in Brownian motion). This is actually what landed him the Nobel prize in Physics (instead of his more famous contributions on relativity and quantum mechanics).

3) On the descriptive nature of the hydrological work - science still elusive

In its current state, hydrology is still an applied discipline, and there is nothing wrong about that in principle. The service that the discipline plays to society is undeniable and is ultimately why all of us gather here in this forum to advance the field for the benefit of all. While some important laws have been formulated, the discipline still lacks a consistent fundamental theory, and all theoretical formulations are imported from elsewhere (e.g. Darcy's law is just an import of the Ohm's law to hydrology).

Living off empiricisms and imports without any fundamental theoretical explanation may be good in statistical and engineering hydrology but will not lead us anywhere in real science. In fact, the inherent empiricism of many hydrological literature is understandable in an engineering setting where all that matters is to get some number that ensures portability of measured features from one scale to another for design and decision support. However, that brings no understanding about the real functioning of the hydrologic system.

The work presented in this manuscript has a good place in an applied statistics or engineering setting, for use by practitioners in engineering hydrology that have no time or scientific background to study, understand or build on the real scientific literature. However, as a candidate for scientific paper, there is, at this point, no science to be learnt in the present study. Venturing into approaches without complementing them with the supporting physical principles brings little benefit to hydrological understanding, since their descriptive aptitude is not accompanied by any physically related insight.

4) On the (ir)relevance of comparing various methods that in essence are more of the same

The different approaches compared in the study belong to the same class of methodological equivalence of naïve statistical geometry, and do not necessarily represent the best in the field. Therefore, comparing the analysed approaches is of little methodological relevance since it is not taking a comprehensive and useful up-to-date selection.

In other words, there little relevance in performing a comparison among different methods that are no longer up to date, and even less so when they belong to the same methodological class of equivalence. An illustrative view to get the idea: publishing a study comparing the various models of chariot transport will add nothing relevant in the age of the automobile, unless we are interested in the history of science and technology. At best, we should compare methods that are fundamentally different from each other rather than variants of the very same concept.

5) On the “onus of proof”

It is the duty of the authors to unequivocally demonstrate a significant degree of scientific innovation and novel hydrological insights. So far, from the manuscript and responses, that unequivocal proof is still missing.

While it is not the referee's duty to demonstrate the vacuity of the study - but rather the authors' duty to demonstrate its substance - I will gladly provide elements to help the authors find a wealth of literature on studies that cover the same problems and solutions discussed in the present study.

A careful and thorough literature review can aptly demonstrated that existing studies
actually perform in due terms what the present article claims was missing in the literature, thus effectively deflating the innovation claims.

For instance, the quantification of fractal scaling in irregularly sampled time series is a well studied problem and the experts are well aware about which methods perform better under which circumstances, therefore there is no gap in that area that would support any claim of innovation and relevance.

The references are found at the end of this report, at point 5.

4) On the ways forward to improve the manuscript:

The application of more comprehensive and effective fractal scaling techniques to your particular hydrological problems must be accompanied with real insights on hydrological functioning, rather than simply statistical description of results (e.g. a “trend” is hardly an insight, for it has descriptive but no explanatory power as noted above. Moreover, there is far more to fractal scaling than what is argued in the paper - again, the physics that would help elicit the “whys” in hydrologic functioning are missing).

In sum, my recommendation is to: a) bring real hydrological understanding rather than vague generic considerations and descriptive statements without quantitative physical reasoning to substantiate any explanatory claim; b) interpret the fractal metrics from a physical point of view that will shed light on the science behind the metric; c) provide if and how hydrologic series differ from others where fractal scaling over irregular series has already been extensively applied to justify separate publication.

At this stage, I leave the authors with some of the relevant literature references (apologies for non-uniform formatting):

5) REFERENCES:

A) Fractal approaches in irregular time series analysis:


P. Paramanathan, R. Uthayakumar (2007): ICCIMA ’07 Proc. Intl. Conf. on Computational Intelligence and Multimedia Applications (ICCIMA 2007), 02, 323-327


B1) Analysis of irregularly sampled time series:


Piet M.T.Broersen (2005): Time series analysis for irregu-
larly sampled data. IFAC Proc. Vol., 38, 1, 2005, 154-159
(http://www.sciencedirect.com/science/article/pii/S1474667016360384)

J. Durbin, S. J. Koopman (2012): Time Series Analysis by State Space Methods, 2nd edition, 2012. [See e.g. sec. 4.10, on statistical modeling under missing observations]


B2) Analysis of unequally spaced data


Doan TK, Haslett J, Parnell AC (2015): Joint inference of misaligned irregular time series with application to Greenland ice core data

Nieto-Barajas LE, Sinha T (2014): Bayesian interpolation of unequally spaced time series


R. H. Jones, "Fitting multivariate models to unequally spaced data" in Time Series


P. M. T. Broersen; R. Bos (2006): Time-series analysis if data are randomly missing. IEEE Transactions on Instrumentation and Measurement, 55, 1, 79-84.

C9

P. M. T. Broersen; S. de Waele; R. Bos (2003): Estimation of autoregressive spectra with randomly missing data Proc. 20th IEEE Instrumentation Technology Conf. (Cat. No.03CH37412), 2, 1154-1159.


C) Robust analysis of sparsely distributed data


Peter Melchior, Andy D. Goulding (2016): Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete samples. arXiv:1611.05806v1

Testa T., et al. (2016): Sparse representation of signals: from astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV. Plasma Physics and Controlled Fusion, Volume 58, Number 12. [review paper]

D) Astrophysical studies


E) Geo/environmental studies


Björg Ólafsdóttir, Kristín; Schulz, Michael; Mudelsee, Manfred (2016): REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series Computers and Geosciences, Volume 91, p. 11-18. 10.1016/j.cageo.2016.03.001


I hope this helps.

Best wishes.