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Abstract. River water-quality time series often exhibit fractal scaling, which here refers to 1 

autocorrelation that decays as a power law over some range of scales. Fractal scaling presents 2 

challenges to the identification of deterministic trends because (1) fractal scaling has the 3 

potential to lead to false inference about the statistical significance of trends and (2) the 4 

abundance of irregularly spaced data in water quality monitoring networks complicates efforts to 5 

quantify fractal scaling.to avoid false inference on the statistical significance of trends, In the 6 

latter regard, but tTraditional methods for estimating fractal scaling -- in the form of spectral 7 

slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) -- are generally 8 

inapplicable to irregularly sampled data. Here we consider two types of estimation approaches 9 

for irregularly sampled data and evaluate their performance using synthetic time series. These 10 

time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling 11 

behaviors, ranging from white noise (β = 0) to Brown noise (β = 2), and (2) their sampling gap 12 

intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-13 

interval lengths) in real water-quality data. The results suggest that none of the existing methods 14 

fully account for the effects of sampling irregularity on β estimation. First, the results illustrate 15 
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the danger of using interpolation for gap gap-filling when examining auto-correlation, as the 16 

interpolation methods consistently under-estimate or over-estimate β under a wide range of 17 

prescribed β values and gap distributions. Second, the long-establishedwidely used Lomb-18 

Scargle spectral method also consistently under-estimates β. A previously- published modified 19 

form, using only the lowest 5% of the frequencies for spectral slope estimation, has very poor 20 

precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with 21 

an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods 22 

for a wide range of prescribed β values and gap distributions. The aliasing method, however, 23 

does not itself account for sampling irregularity, and this introduces some bias in the result. 24 

Nonetheless, the wavelet method is recommended for estimating β in irregular time series until 25 

improved methods are developed. Finally, all methods’ performances depend strongly on the 26 

sampling irregularity, highlighting that the accuracy and precision of each method are data-27 

specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time 28 

series remains an unresolved challenge for the hydrologic community and for other disciplines 29 

that must grapple with irregular sampling. 30 

Key Words 31 

Fractal scaling, autocorrelation, Hurst effect, river water-quality sampling, sampling irregularity, 32 

trend analysis 33 

1. Introduction 34 

1.1. Autocorrelations in Time Series 35 

It is well known that time series from natural systems often exhibit auto-correlation, that is, 36 

observations at each time step are correlated with observations one or more time steps in the past. 37 

This property is usually characterized by the autocorrelation function (ACF), which is defined as 38 

follows for a process 𝑋𝑡 at lag k: 39 

𝛾(𝑘) = 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑘) (1) 

In practice, auto-correlation has been frequently modeled with classical techniques such as auto-40 

regressive (AR) or auto-regressive moving-average (ARMA) models (Darken et al., 2002; Yue 41 
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et al., 2002; Box et al., 2008). These models assume that the underlying process has short-term 42 

memory, i.e., the ACF decays exponentially with lag k (Box et al., 2008). 43 

Although the short-term memory assumption holds sometimes, it cannot adequately describe 44 

many time series whose ACFs decay as a power law (thus much slower than exponentially) and 45 

may not reach zero even for large lags, which implies that the ACF is non-summable. This 46 

property is commonly referred to as long-term memory or fractal scaling, as opposed to short-47 

term memory (Beran, 2010). 48 

Fractal scaling has been increasingly recognized in studies of hydrological time series, 49 

particularly for the common task of trend identification. Such hydrological series include river 50 

flows (Montanari et al., 2000; Khaliq et al., 2008; Khaliq et al., 2009; Ehsanzadeh and 51 

Adamowski, 2010), air and sea temperatures (Fatichi et al., 2009; Lennartz and Bunde, 2009; 52 

Franzke, 2012b; Franzke, 2012a), conservative tracers (Kirchner et al., 2000; Kirchner et al., 53 

2001; Godsey et al., 2010), and non-conservative chemical constituents (Kirchner and Neal, 54 

2013; Aubert et al., 2014). Because for fractal scaling processes the variance of the sample mean 55 

converges to zero much slower than the rate of n-1 (n: sample size), the fractal scaling property 56 

must be taken into account to avoid "false positives" (Type I errors) when inferring the statistical 57 

significance of trends (Cohn and Lins, 2005; Fatichi et al., 2009; Ehsanzadeh and Adamowski, 58 

2010; Franzke, 2012a). Unfortunately, as stressed by Cohn and Lins (2005), it is “surprising that 59 

nearly every assessment of trend significance in geophysical variables published during the past 60 

few decades has failed [to do so]”, and a similar tendency is evident in the decade following that 61 

statement as well.  62 

1.2. Overview of Approaches for Quantification of Fractal Scaling 63 

Several equivalent metrics can be used to quantify fractal scaling. Here we provide a review 64 

of the definitions of such processes and several typical modeling approaches, including both 65 

time-domain and frequency-domain techniques, with special attention to their reconciliation. For 66 

a more comprehensive review, readers are referred to Beran et al. (2013), Boutahar et al. (2007), 67 

and Witt and Malamud (2013). 68 

Strictly speaking, Xt is called a stationary long-memory process if the condition 69 

𝑙𝑖𝑚
𝑘→∞

𝑘𝛼𝛾(𝑘) = 𝐶1 > 0 (2) 
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where C1 is a constant, is satisfied by some 𝛼 ∈ (0,1) (Boutahar et al., 2007; Beran et al., 2013). 70 

Equivalently, Xt is a long-memory process if, in the spectral domain, the condition 71 

𝑙𝑖𝑚
𝜔→0

|𝜔|𝛽𝑓(𝜔) = 𝐶2 > 0 (3) 

is satisfied by some 𝛽 ∈ (0,1), where C2 is a constant and 𝑓(𝜔) is the spectral density function 72 

of Xt, which is related to ACF as follows (which is also known as the Wiener-Khinchin theorem): 73 

𝑓(𝜔) =
1

2𝜋
∑ 𝛾(𝑘)𝑒−𝑖𝑘𝜔
∞

𝑘=−∞

 (4) 

where 𝜔 is angular frequency (Boutahar et al., 2007). 74 

One popular model for describing long-memory processes is the so-called fractional auto-75 

regressive integrated moving-average model, or ARFIMA (p, q, d), which is an extension of 76 

ARMA models and is defined as follows: 77 

(1 − 𝐵)𝑑𝜑(𝐵)𝑋𝑡 = 𝜓(𝐵)𝜀𝑡 (5) 

where 𝜀𝑡 is a series of independent, identically distributed Gaussian random numbers ~ (0, 𝜎𝜀
2), 78 

B is the backshift operator (i.e., BXt = Xt-1), and functions 𝜑(∙) and 𝜓(∙) are polynomials of order 79 

p and q, respectively. The fractional differencing parameter d is related to the parameter α in Eq. 80 

(2) as follows: 81 

𝑑 =
1 − 𝛼

2
∈ (−0.5, 0.5) (6) 

(Beran et al., 2013; Witt and Malamud, 2013).  82 

In addition to a slowly decaying ACF, a long-memory process manifests itself in two other 83 

equivalent fashions. One is the so-called “Hurst effect”, which states that, on a log-log scale, the 84 

range of variability of a process changes linearly with the length of the time period under 85 

consideration. This power-law slope is often referred to as the “Hurst exponent” or “Hurst 86 

coefficient” H (Hurst, 1951), which is related to d as follows: 87 

𝐻 = 𝑑 + 0.5 (7) 

(Beran et al., 2013; Witt and Malamud, 2013). The second equivalent description of long-88 

memory processes, this time from a frequency-domain perspective, is “fractal scaling”, which 89 

describes a power-law decrease in spectral power with increasing frequency, yielding power 90 

spectra that are linear on log-log axes (Lomb, 1976; Scargle, 1982; Kirchner, 2005). 91 

Mathematically, this inverse proportionality can be expressed as: 92 
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𝑓(𝜔) = 𝐶3|𝜔|
−𝛽 (8) 

where 𝐶3 is a constant and the scaling exponent β is termed the “spectral slope.” In particular, for 93 

spectral slopes of zero, one, and two, the underlying processes are termed as “white”, “pink” (or 94 

“flicker”), and “Brown” (or “red”) noises, respectively (Witt and Malamud, 2013). Illustrative 95 

examples of these three noises are shown in Figure 1a-1c. 96 

In addition, it can be shown that the spectral density function for ARFIMA (p,d,q) is 97 

𝑓(𝜔) =
𝜎𝜀
2

2𝜋

|𝜓(𝑒−𝑖𝜔)|
2

|𝜑(𝑒−𝑖𝜔)|2
|1 − 𝑒−𝑖𝜔|

−2𝑑
 (9) 

for −𝜋 < 𝜔 < 𝜋 (Boutahar et al., 2007; Beran et al., 2013). For |𝜔| ≪ 1, Eq. (9) can be 98 

approximated by: 99 

𝑓(𝜔) = 𝐶4|𝜔|
−2𝑑 (10) 

with 100 

𝐶4 =
𝜎𝜀
2

2𝜋

|𝜓(1)|2

|𝜑(1)|2
 (11) 

Eq. (10) thus exhibits the asymptotic behavior required for a long-memory process given by Eq. 101 

(3). In addition, a comparison of Eq. (10) and (8) reveals that, 102 

𝛽 = 2𝑑 (12) 

Overall, these derivations indicate that these different types of scaling parameters (i.e., α, d, and 103 

H and β) can be used equivalently to describe the strength of fractal scaling. Specifically, their 104 

equivalency can be summarized as follows: 105 

𝛽 = 2𝑑 = 1 − 𝛼 = 2𝐻 − 1 (13) 

It should be noted, however, that the parameters d, α, and H are only applicable over a fixed 106 

range of fractal scaling, which is equivalent to (-1, 1) in terms of β. 107 

1.3. Motivation and Objective of this Work 108 

To account for fractal scaling in trend analysis, one must be able to first quantify the strength 109 

of fractal scaling for a given time series. Numerous estimation methods have been developed for 110 

this purpose, including Hurst rescaled range analysis, Higuchi’s method, Geweke and Porter-111 

Hudak’s method, Whittle’s maximum likelihood estimator, detrended fluctuation analysis, and 112 

others (Taqqu et al., 1995; Montanari et al., 1997; Montanari et al., 1999; Rea et al., 2009; 113 

Stroe-Kunold et al., 2009). For brevity, these methods are not elaborated here; readers are 114 

referred to Beran (2010) and Witt and Malamud (2013) for details. While these estimation 115 
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methods have been extensively adopted, they are unfortunately only applicable to regular (i.e., 116 

evenly spaced) data, e.g., daily streamflow discharge, monthly temperature, etc. In practice, 117 

many types of hydrological data, including river water-quality data, are often sampled irregularly 118 

or have missing values, and hence their strengths of fractal scaling cannot be readily estimated 119 

with the above traditional estimation methods. 120 

Thus, estimation of fractal scaling in irregularly sampled data is an important challenge for 121 

hydrologists and practitioners. Many data analysts may be tempted to interpolate the time series 122 

to make it regular and hence analyzable (Graham, 2009). Although technically convenient, 123 

interpolation can be problematic if it distorts the series’ autocorrelation structure (Kirchner and 124 

Weil, 1998). In this regard, it is important to evaluate various types of interpolation methods 125 

using carefully designed benchmark tests and to identify the scenarios under which the 126 

interpolated data can yield reliable (or, alternatively, biased) estimates of spectral slope. 127 

Moreover, quantification of fractal scaling in real-world water-quality data is subject to 128 

several common complexities. First, water-quality data are rarely normally distributed; instead, 129 

they are typically characterized by log-normal or other skewed distributions (Hirsch et al., 1991; 130 

Helsel and Hirsch, 2002), with potential consequences for β estimation. Moreover, water-quality 131 

data also tend to exhibit long-term trends, seasonality, and flow-dependence (Hirsch et al., 1991; 132 

Helsel and Hirsch, 2002), which can also affect the accuracy of β estimates. Thus, it may be 133 

more plausible to quantify β in transformed time series after accounting for the seasonal patterns 134 

and discharge-driven variations in the original time series, which is also the approach taken in 135 

this workpaper. For the trend aspect, however, it remains a puzzle whether the data set should be 136 

de-trended before conducting β estimation. Such de-trending treatment can certainly affect the 137 

estimated value of β and hence the validity of (or confidence in) any inference made regarding 138 

the statistical significance of temporal trends in the time series. This somewhat circular issue is 139 

beyond the scope of our current work -- it has been previously discussed in the context of short-140 

term memory (Zetterqvist, 1991; Darken et al., 2002; Yue et al., 2002; Noguchi et al., 2011; 141 

Clarke, 2013; Sang et al., 2014), but it is not well understood in the context of fractal scaling (or 142 

long-term memory) and hence presents an important area for future research. 143 

In the above context, the main objective of this work was to use Monte Carlo simulation to 144 

systematically evaluate and compare two broad types of approaches for estimating the strength 145 
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of fractal scaling (i.e., spectral slope β) in irregularly sampled river water-quality time series. 146 

Specific aims of this work include the following: 147 

(1) To examine the sampling irregularity of typical river water-quality monitoring data and 148 

to simulate time series that contain such irregularity; and 149 

(2) To evaluate two broad types of approaches for estimating β in simulated irregularly 150 

sampled time series. 151 

The first type of approach includes several forms of interpolation techniques for gap filling, thus 152 

making the data regular and analyzable by traditional estimation methods. The second type of 153 

approach includes the well-known Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) and 154 

a recently developed wavelet method combined with a spectral aliasing filter (Kirchner and Neal, 155 

2013). The latter two methods can be directly applied to irregularly spaced data; here we aim to 156 

compare them with the interpolation techniques. Details of these various approaches are 157 

provided in Section 3.1. 158 

This work was designed to make several specific contributions. First, it uses benchmark tests 159 

to quantify the performance of a wide range of methods for estimating fractal scaling in 160 

irregularly sampled water-quality data. Second, it proposes an innovative and general approach 161 

for modeling sampling irregularity in water-quality records. Third, while this work was not 162 

intended to compare all published estimation methods for fractal scaling, it does provide and 163 

demonstrate a generalizable framework for data simulation (with gaps) and β estimation, which 164 

can be readily applied toward the evaluation of other methods that are not covered here. Last but 165 

not least, while this work was intended to help hydrologists and practitioners understand the 166 

performance of various approaches for water-quality time series, the findings and approaches 167 

may be broadly applicable to irregularly sampled data in many other scientific disciplines. 168 

The rest of the paper is organized as follows. We propose a general approach for modeling 169 

sampling irregularity in typical river water-quality data and discuss our approach for simulating 170 

irregularly sampled data (Section 2). We then introduce the various methods for estimating 171 

fractal scaling in irregular time series and compare their estimation performance (Section 3). We 172 

close with a discussion of the results and implications (Section 4). 173 
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2. Quantification of Sampling Irregularity in River Water-Quality Data 174 

2.1. Modeling of Sampling Irregularity 175 

River water-quality data are often sampled irregularly. In some cases, samples are taken 176 

more frequently during particular periods of interest, such as high flows or drought periods; here 177 

we will address the implications of the irregularity, but not the (intentional) bias, inherent in such 178 

a sampling strategy. In other cases, the sampling is planned with a fixed sampling interval (e.g., 179 

1 day) but samples are missed (or lost, or fail quality-control checks) at some time steps during 180 

implementation. In still other cases, the sampling is intrinsically irregular because, for example, 181 

one cannot measure the chemistry of rainfall on rainless days or the chemistry of a stream that 182 

has dried up. Theoretically, any deviation from fixed-interval sampling can affect the subsequent 183 

analysis of the time series. 184 

To quantify the sampling irregularity, we propose a simple and general approach that can be 185 

applied to any time series of monitoring data. Specifically, for a given time series with N points, 186 

the time intervals between adjacent samples are calculated; these intervals themselves make up a 187 

time series of N-1 points that we call Δt. In addition, the following parameters are calculated to 188 

quantify its sampling irregularity: 189 

 L = the length of the period of record, 190 

 N = the number of samples in the record, 191 

 Δtnominal = the nominal sampling interval under regular sampling (e.g., Δtnominal = 1 day 192 

for daily samples), 193 

 Δt* = Δt /Δtnominal, the sample intervals non-dimensionalized by the nominal sampling 194 

interval, 195 

 Δtaverage = L/(N – 1) the average of all the entries in Δt. 196 

The quantification is illustrated with two simple examples. The first example contains data 197 

sampled every hour from 1:00 am to 11:00 am on one day. In this case, L = 10 hours, N = 11 198 

samples, Δt = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} hour, and Δtnominal = Δtaverage = 1 hour. The second 199 

example contains data sampled at 1:00 am, 3:00 am, 4:00 am, 8:00 am, and 11:00 am. In this 200 

case, L = 10 hours, N = 5 samples, Δt = {2, 1, 4, 3} hours, Δtnominal = 1 hour, and Δtaverage = 2.5 201 

hours. It is readily evident that the first case corresponds to fixed-interval (regular) sampling that 202 
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has the property of Δtaverage/Δtnominal = 1 (dimensionless), whereas the second case corresponds to 203 

irregular sampling for which Δtaverage/Δtnominal > 1. 204 

The dimensionless set Δt* contains essential information for determining sampling 205 

irregularity. This set is modeled as independent, identically distributed values drawn from a 206 

negative binomial (NB) distribution. This distribution has two dimensionless parameters, the 207 

shape parameter (λ) and the mean parameter (μ), which collectively represent the irregularity of 208 

the samples. The NB distribution is a flexible distribution that provides a discrete analogue of a 209 

gamma distribution. The geometric distribution, itself the discrete analogue of the exponential 210 

distribution, is a special case of the NB distribution when λ = 1. 211 

The parameters μ and λ represent different aspects of sampling irregularity, as illustrated by 212 

the examples shown in Figure 2. The mean parameter μ represents the fractional increase in the 213 

average interval between samples due to gaps: μ = mean(Δt*) – 1 = (Δtaverage – Δtnominal)/Δtnominal. 214 

Thus the special case of μ = 0 corresponds to regular sampling (i.e., Δtaverage = Δtnominal), whereas 215 

any larger value of μ corresponds to irregular sampling (i.e., Δtaverage > Δtnominal) (Figure 2c). The 216 

shape parameter λ characterizes the similarity of gaps to each other; that is, a small λ indicates 217 

that the samples contain gaps of widely varying lengths, whereas a large λ indicates that the 218 

samples contain many gaps of similar lengths (Figure 2a-2b).  219 

To visually illustrate these gap distributions, representative samples of irregular time series 220 

are presented in Figure 1 for the three special processes described above (Section 1.2), i.e., 221 

white noise, pink noise, and Brown noise. Specifically, three different gap distributions, namely, 222 

NB(λ = 1, μ = 1), NB(λ = 1, μ = 14), and NB(λ = 0.01, μ = 1), were simulated and each was 223 

applied to convert the three original (regular) time series (Figure 1a-1c) to irregular time series 224 

(Figure 1d-1l). These simulations clearly illustrate the effects of the two parameters λ and μ. In 225 

particular, compared with NB(λ = 1, μ = 1), NB(λ = 1, μ = 14) shows a similar level of sampling 226 

irregularity (same λ) but a much longer average gap interval (larger μ). Again compared with 227 

NB(λ = 1, μ = 1), NB(λ = 0.01, μ = 1) shows the same average interval (same μ) but a much more 228 

irregular (skewed) gap distribution that contains a few very large gaps (smaller λ). 229 

2.2. Examination of Sampling Irregularity in Real River Water-Quality Data 230 

The above modeling approach was applied to real water-quality data from two large river 231 

monitoring networks in the United States to examine sampling irregularity. One such network is 232 

the Chesapeake Bay River Input Monitoring program, which typically samples streams bi-233 
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monthly to monthly, accompanied with additional sampling during stormflows (Langland et al., 234 

2012; Zhang et al., 2015). These data were obtained from the U.S. Geological Survey National 235 

Water Information System (http://doi.org/10.5066/F7P55KJN). The other network is the Lake 236 

Erie and Ohio tributary monitoring program, which typically samples streams at a daily 237 

resolution (National Center for Water Quality Research, 2015). For each site, we determined the 238 

NB parameters to quantify sampling irregularity. The mean parameter μ can be estimated as 239 

described above, and the shape parameter λ can be calculated directly from the mean and 240 

variance of Δt* as follows: λ = μ2/[var(Δt*) – μ] = (mean(Δt*) – 1)2/[var(Δt*) – mean(Δt*) + 1]. 241 

Alternatively, a maximum likelihood approach can be used, which employs the “fitdist” function 242 

in the “fitdistrplus” R package (Delignette-Muller and Dutang, 2015). In general, the two 243 

approaches have produced similar results, which are summarized in Table 1, with two examples 244 

of fitted NB distributions shown in Figure 3.  245 

For the Chesapeake Bay River Input Monitoring program (9 sites), total nitrogen (TN) and 246 

total phosphorus (TP) are taken as representatives of water-quality constituents. According to the 247 

maximum likelihood approach, the shape parameter λ varies between 0.7 and 1.2 for TN and 248 

between 0.8 and 1.1 for TP (Table 1). These λ values are around 1.0, reflecting the fact that 249 

these sites have relatively even gap distributions (i.e., relatively balanced counts of large and 250 

small gaps). The mean parameter μ varies between 9.5 and 19.6 for TN and between 13.4 and 251 

24.4 for TP in the Chesapeake monitoring network, corresponding to Δtaverage of 10.5–20.6 days 252 

for TN and 14.4–25.4 days for TP, respectively. This is consistent with the fact that these sites 253 

have typically been sampled bi-monthly to monthly, along with additional sampling during 254 

stormflows (Langland et al., 2012; Zhang et al., 2015). 255 

For the Lake Erie and Ohio tributary monitoring program (6 sites), the records of nitrate-256 

plus-nitrite (NOx) and TP were examined. According to the maximum likelihood approach, the 257 

shape parameter λ is approximately 0.01 for both constituents (Table 1). These very low λ values 258 

occur because these time series contain a few very large gaps, ranging from 35 days to 1109 259 

days (~3 years). The mean parameter μ varies between 0.06 and 0.22, corresponding to Δtaverage 260 

of 1.06 and 1.22 days, respectively. This is consistent with fact that these sites have been 261 

sampled at a daily resolution with occasional missing values on some days (Zhang and Ball, 262 

2017). 263 

http://doi.org/10.5066/F7P55KJN
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2.3. Simulation of Time Series with Irregular Sampling 264 

To evaluate the various β estimation methods, our first step was to use Monte Carlo 265 

simulation to produce time series that mimic the sampling irregularity observed in real water-266 

quality monitoring data. We began by simulating regular (gap free) time series using the 267 

fractional noise simulation method of Witt and Malamud (2013), which is based on inverse 268 

Fourier filtering of white noises. Our analysis showed this method performed reasonably well 269 

compared to other simulation methods for β values between 0 and 1 (see Supporting Information 270 

S1). In addition, this method can also simulate β values beyond this range. The noises simulated 271 

by the Witt and Malamud method, however, are band-limited to the Nyquist frequency (half of 272 

the sampling frequency) of the underlying white noise time series, whereas true fractional noises 273 

would contain spectral power at all frequencies, extending well above the Nyquist frequency for 274 

any sampling. Thus these band-limited noises will be less susceptible to spectral aliasing than 275 

true fractional noises would be; see Kirchner (2005) for detailed discussions of the aliasing issue. 276 

100 replicates of regular (gap free) time series were produced for nine prescribed spectral 277 

slopes, which vary from β = 0 (white noise) to β = 2 (Brownian motion or “random walk”) with 278 

an increment of 0.25 (i.e., 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2). These regular time series 279 

each have a length (N) of 9125, which can be interpreted as 25 years of regular daily samples 280 

(that is, Δtnominal = 1 day). 281 

Each of tThe simulated regular time series was were converted to irregular time series using 282 

gap intervals that were simulated with NB distributions. To make these gap intervals mimic 283 

those in typical river water-quality time series, representative NB parameters were chosen based 284 

on results from Section 2.2. Specifically, μ was set at 1 and 14, corresponding to Δtaverage of 2 285 

days and 15 days respectively. For λ, we chose four values that span three orders of magnitude, 286 

i.e., 0.001, 0.1, 1, and 10. Note that when λ = 1 the generated time series corresponds to a 287 

Bernoulli process. With the chosen values of μ and λ, a total of eight scenarios were generated, 288 

which were implemented using the “rnbinom” function in the “stats” R package (R Development 289 

Core Team, 2014): 290 

1) μ = 1 (i.e., Δtaverage/Δtnominal = 2), λ = 0.01, 291 

2) μ = 1, λ = 0.1, 292 

3) μ = 1, λ = 1, 293 

4) μ = 1, λ = 10, 294 
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5) μ = 14 (i.e., Δtaverage /Δtnominal = 15), λ = 0.01, 295 

6) μ = 14, λ = 0.1, 296 

7) μ = 14, λ = 1, 297 

8) μ = 14, λ = 10. 298 

Examples of these simulations are shown with boxplots in Figure 2. 299 

3. Evaluation of Proposed Estimation Methods for Irregular Time Series 300 

3.1. Summary of Estimation Methods 301 

For the simulated irregular time series, β was estimated using the aforementioned two types 302 

of approaches. The first type includes 11 different interpolation methods (designated as B1-B11 303 

below) to fill the data gaps, thus making the data regular and analyzable by traditional methods:  304 

B1)   Global mean: all missing values replaced with the mean of all observations; 305 

B2)   Global median: all missing values replaced with the median of all observations; 306 

B3)   Random replacement: all missing values replaced with observations randomly drawn 307 

(with replacement) from the time series; 308 

B4)   Next observation carried backward: each missing value replaced with the next available 309 

observation; 310 

B5)   Last observation carried forward: each missing value replaced with the preceding 311 

available observation; 312 

B6)   Average of the two nearest samples: it replaces each missing value replaced with the 313 

mean of its next and preceding available observations; 314 

B7)   Lowess (locally weighted scatterplot smoothing) with a smoothing span of 1: missing 315 

values replaced using fitted values from a lowess model determined using all available 316 

observations (Cleveland, 1981);  317 

B8)   Lowess with a smoothing span of 0.75: same as B7 except that the smoothing span is 75% 318 

of the available data (similar distinction follows for B9-B11); 319 

B9)   Lowess with a smoothing span of 50%; 320 

B10) Lowess with a smoothing span of 30%; and 321 

B11) Lowess with a smoothing span of 10%. 322 

B4 and B5 were implemented using the “na.locf” function in the “zoo” R package (Zeileis and 323 

Grothendieck, 2005). B7-B11 were implemented using the “loess” function in the “stats” R 324 
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package (R Development Core Team, 2014). An illustration of these interpolation methods is 325 

provided in Figure 4. The interpolated data, along with the original regular data (designated as 326 

A1) were analyzed using the Whittle’s maximum likelihood method for β estimation, which was 327 

implemented using the “FDWhittle” function in the “fractal” R package (Constantine and 328 

Percival, 2014). 329 

The second type of approaches estimates β directly from in the irregularly sampled data 330 

directly, using several variants of the Lomb-Scargle periodogram (designated as C1a-C1c below), 331 

and a recently developed wavelet-based method (designated as C2 below). Specifically, these 332 

approaches are: 333 

C1a) Lomb-Scargle periodogram: the spectral density of the time series (with gaps) is 334 

estimated and the spectral slope is fit using all frequencies (Lomb, 1976; Scargle, 1982). 335 

This is a classic method for examining periodicity in irregularly sampled data, which is 336 

analogous to the more familiar fast Fourier transform method often used for regularly 337 

sampled data; 338 

C1b) Lomb-Scargle periodogram with 5% data: same as C1a except that the fitting of the 339 

spectral slope considers only the lowest 5% of the frequencies (Montanari et al., 1999); 340 

C1c) Lomb-Scargle periodogram with “binned” data: same as C1a except that the fitting of 341 

the spectral slope is performed on binned data in three steps: (1) The entire range of 342 

frequency is divided into 100 equal-interval bins on logarithmic scale. (2) The 343 

respective medians of frequency and power spectral density are calculated for each of 344 

the 100 bins. (3) The 100 pairs of median frequency and median spectral density are 345 

used to estimate the spectral slope on a log-log scale. 346 

C2)   Kirchner and Neal (2013)’s wavelet method: uses a modified version of Foster's 347 

weighted wavelet spectrum (Foster, 1996) to suppress spectral leakage from low 348 

frequencies and applies an aliasing filter (Kirchner, 2005) to remove spectral aliasing 349 

artifacts at high frequencies. 350 

C1a was implemented using the “spec.ls” function in the “cts” R package (Wang, 2013). C2 was 351 

run in C, using codes modified from those in Kirchner and Neal (2013).  352 

3.2. Evaluation of Methods’ Performance 353 

Each estimation method listed above was applied to the simulated data (Section 2.3) to 354 

estimate β, which were then compared with the prescribed (“true”) β to quantify the performance 355 
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of each method. Plots of method evaluation for all simulations are provided as Figures S3-S12 356 

(Supporting Information S2). Close inspections of these plots reveal some general patterns of the 357 

methods’ performance. For brevity, these patterns are presented with a subset of the plots, which 358 

correspond to the cases where true β = 1 and shape parameter λ = 0.01, 0.1, 1, and 10 (Figure 5). 359 

In general, β values estimated using the regular data (A1) are very close to 1.0, which indicates 360 

that the adopted fractional noise generation method and the Whittle’s maximum likelihood 361 

estimator have small combined simulation and estimation bias. This is perhaps unsurprising, 362 

since the estimator is based on the Fourier transform and the noise generator is based on an 363 

inverse Fourier transform; thus, one method is essentially just the inverse of the other. One 364 

should also note that when fractional noises are not arbitrarily band-limited at the Nyquist 365 

frequency (as they inherently are with the noise generator that is used here), spectral aliasing 366 

should lead to spectral slopes that are flatter than expected (Kirchner, 2005), and thus to 367 

underestimates of LRD. 368 

For the simulated irregular data, the estimation methods differ widely in their performance. 369 

Specifically, three interpolation methods (i.e., B4-B6) consistently over-estimate β, indicating 370 

that they introduce additional correlations into the time series, reducing its short-timescale 371 

variability. In contrast, the other eight interpolation methods (i.e., B1-B3 and B7-B11) generally 372 

under-estimate β, indicating that the interpolated points are less correlated than the original time 373 

series, thus introducing additional variability on short timescales. As expected, results from the 374 

lowess methods (B7-B11) depend strongly on the size of smoothing window, that is, more 375 

severe under-estimation of β is more severely under-estimatedproduced as the smoothing 376 

window becomes wider. In fact, when the smoothing window is 1.0 (i.e., method B7), lowess 377 

performs the interpolation using all data available and thus behaves similarly to interpolations 378 

based on global means (B1) or global medians (B2), except that lowess fits a polynomial curve 379 

instead of constant values. However, whenever a sampling gap is much shorter than the 380 

smoothing window, the infilled lowess value will be close to the local mean or median, and the 381 

abrupt jumps produced by these infilled values will artificially increase the variance in the time 382 

series at high frequencies, leading to an artificially reduced spectral slope β and correspondingly, 383 

an underestimate of β. This mechanism explains why lowess interpolation distorts β more when 384 

there are many small gaps (large λ), and therefore more jumps to, and away from, the infilled 385 

values, than when there are only a few large gaps (small λ). 386 
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Among the direct methods (i.e., C1a, C1b, C1c, and C2), the Lomb-Scargle method, with 387 

original data (C1a) or binned data (C1c) tends to under-estimate β, though the underestimation 388 

by C1c is generally less severe. The modified Lomb-Scargle method (C1b), using only the 389 

lowest 5% of frequencies, yields estimates that are centered around 1.0. However, C1b has the 390 

highest variability (i.e., least precision) in β estimates among all methods. Compared with all the 391 

above methods, the wavelet method (C2) has much better performance in terms of both accuracy 392 

and precision when λ is 1 or 10, a slightly better performance when λ is 0.1, but a worse 393 

performance when λ is 0.01. 394 

The shape parameter λ greatly affects the performance of the estimation methods. All the 395 

interpolation methods that under-estimate β (i.e., B1-B3 and B7-B11) perform worse as λ 396 

increases from 0.01 to 10. This effect can be interpreted as follows: when the time series 397 

contains a large number of relatively small gaps (e.g., λ = 1 or 10), there are many jumps (which, 398 

as noted above, contain mostly high-frequency variance) between the original data and the 399 

infilled values, resulting in more severe under-estimation. In contrast, when the data contain only 400 

a small number of very large gaps (e.g., λ = 0.01 or 0.1), there are fewer of these jumps, resulting 401 

in minimal under-estimation. Similar effects of λ are also observed with the interpolation 402 

methods that show over-estimation (i.e., B4-B6) – that is, over-estimation is more severe when λ 403 

is larger. Similarly, the Lomb-Scargle method (C1a and C1c) performs worse (more serious 404 

underestimation) as λ increases. Finally, method C2 seems to perform the best when λ is large (1 405 

or 10), but not well when λ is very small (0.01), as noted above. This result highlights the 406 

sensitivity of the wavelet method to the presence of a few large gaps in the time series. For such 407 

cases, a potentially more feasible approach is to break the whole time series into several 408 

segments (each without long gaps) and then apply the wavelet method (C2) to analyze each 409 

segment separately. If this can yield more accurate estimates, then further simulation 410 

experiments should be designed to systematically determine how long the gap needs to be to 411 

invoke such an approach. 412 

Next, the method evaluation is extended to all the simulated spectral slopes, that is, β = 0, 413 

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2. For ease of discussion, three quantitative criteria were 414 

proposed for evaluating performance, namely, bias (B), standard deviation (SD), and root-mean-415 

squared error (RMSE), as defined below: 416 

𝐵𝑖 = 𝛽𝑖̅ − 𝛽𝑡𝑟𝑢𝑒 (14) 
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𝑆𝐷𝑖 = √
1

99
∑(𝛽𝑖,𝑗 − 𝛽𝑖̅)2
100

𝑗=1

 (15) 

𝑅𝑀𝑆𝐸𝑖 = √𝐵𝑖
2 + 𝑆𝐷𝑖

2 (16) 

where 𝛽𝑖̅ is the mean of 100 β values estimated by method i, and βtrue is the prescribed β value 417 

for simulation of the initial regular time series. In general, B and SD can be considered as the 418 

models’ systematic error and random error, respectively, and RMSE serves as an integrated 419 

measure of both errors. For all evaluations, plots of bias and RMSE are provided in the main text. 420 

(Plots of SD are provided as Figure S7 and Figure S12 for simulations with μ = 1 and μ = 14, 421 

respectively.) 422 

For simulations with μ = 1, results of estimation bias and RMSE are summarized in Figure 6 423 

and Figure 7, respectively. (More details are provided in Figures S3-S6.) For brevity, we focus 424 

on three direct methods (C1a, C1b and C2) and three representative interpolation methods. 425 

(Specifically, B1 represents B1-B3 and B7; B6 represents B4-B6, and B8 represents B8-B11.) 426 

Overall, these six methods show mixed performances. In terms of bias (Figure 6), B1 (global 427 

mean) and B8 (lowess with a smoothing span of 0.75) tend to have negative bias, particularly for 428 

time series with (1) moderate-to-large βtrue values and (2) large λ values (i.e., less skewed gap 429 

intervals). By contrast, B1 and B8 generally have minimal bias when (1) βtrue is close to zero (i.e., 430 

when the simulated time series is close to white noise); and (2) λ is small (e.g., 0.01), since 431 

interpolating a few large gaps cannot significantly affect the overall correlation structure. In 432 

addition, lowess interpolation with a larger smoothing window tends to yield more negatively 433 

biased estimates (data not shown). The other interpolation method, B6 (mean of the two nearest 434 

neighbors) tends to over-estimate β, particularly for time series with (1) small βtrue values and (2) 435 

large λ values. At large βtrue values (e.g., 2.0), the auto-correlation is already very strong such 436 

that taking the mean of two neighbors for gap filling does not introduce much additional 437 

correlation, as opposed to the case of small βtrue values. The Lomb-Scargle methods (C1a and 438 

C1b) generally have negative bias, particularly for time series with (1) moderate-to-large βtrue 439 

values (for both methods) and (2) large λ values (for C1a), which is similar to B1 and B8. 440 

However, C1b overall shows less severe bias than C1a. Finally, the wavelet method (C2) shows 441 

generally the smallest bias among all methods. However, its performance advantage is not as 442 
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great when the time series has small λ values (i.e., very skewed gap intervals), as noted above, 443 

which may be due to the fact that the aliasing filter was designed for regular time series. In terms 444 

of SD (Figure S7), method C1b performs the worst among all methods (as noted above), method 445 

B6 and B8 perform poorly for large βtrue values, and method C2 performs poorly for βtrue = 0. In 446 

terms of RMSE (Figure 7), methods B1, B8, C1a, and C1b perform well for small βtrue values 447 

and small λ values, whereas method B6 performs well for large βtrue values and small λ values. In 448 

comparison, method C2 has the smallest RMSEs among all methods, and its RMSEs are 449 

similarly small for the wide range of βtrue and λ values. In general, the wavelet method can be 450 

considered the best among all the tested methods.  451 

For simulations with μ = 14, results of estimation bias and RMSE are summarized in 452 

Figure 8 and Figure 9, respectively. (More details are provided in Figures S8-S11.) Overall, 453 

these methods show mixed performances that are generally similar to the cases when μ = 1, as 454 

discussed above. These results highlight the generality of these methods’ performances, which 455 

applies at least to the range of μ = [1, 14]. In addition, all methods show generally larger RMSE 456 

for μ = 14 than μ = 1, indicating their dependence on the mean gap interval (Figure 9). Perhaps 457 

the most notable difference is observed with method C2, which in this case shows positive bias 458 

for small λ values (0.01 and 0.1) and negative bias for large λ values (1 and 10) (Figure 8f). It 459 

nonetheless generally shows the smallest RMSEs among all the tested methods. 460 

3.3. Quantification of Spectral Slopes in Real Water-Quality Data 461 

In this section, the proposed estimation approaches were applied to quantify β in real water-462 

quality data from the two monitoring programs presented in Section 2.2 (Table 1). As noted in 463 

Section 1.3, such real data are typically much more complex than our simulated time series, 464 

because of (1) strong deviations from normal distributions and (2) effects of flow-dependence, 465 

seasonality, and temporal trends (Hirsch et al., 1991; Helsel and Hirsch, 2002). In this regard, 466 

future research may simulate time series with these important characteristics and evaluate the 467 

performance of various estimation approaches, perhaps following the modeling framework 468 

described herein. Alternatively, one may quantify β in transformed time series after accounting 469 

for the above aspects. In this work, we have taken the latter approach for a preliminary 470 

investigation. Specifically, we have used the published Weighted Regressions on Time, 471 

Discharge, and Season (WRTDS) method (Hirsch et al., 2010) to transform the original time 472 
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series. This widely accepted method estimates daily concentrations based on discretely collected 473 

concentration samples using time, season, and discharge as explanatory variables, i.e., 474 

𝑙𝑛⁡(𝐶) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑙𝑛⁡(𝑄) + 𝛽3𝑠𝑖𝑛𝑡(2𝜋𝑡) + 𝛽4 𝑐𝑜𝑠(2𝜋𝑡) + 𝜀 (17)
 

where C is concentration, Q is daily discharge, t is time in decimal years, 𝛽𝑖 are fitted 475 

coefficients, and 𝜀 is the error term. The 2nd and 3rd terms on the right represent time and 476 

discharge effects, respectively, whereas the 4th and 5th terms collectively represent cyclical 477 

seasonal effects. For a full description of this method, see Hirsch et al. (2010). In this work, 478 

WRTDS was applied to obtain the time series of estimated daily concentrations for each 479 

constituent at each site. The difference between observed concentration (Cobs) and estimated 480 

concentration (Cest) was calculated in logarithmic space to obtain the concentration residuals,  481 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑙𝑛(𝐶𝑜𝑏𝑠) − 𝑙𝑛(𝐶𝑒𝑠𝑡) (18)
 

For our data sets, histograms of concentration residuals (expressed in natural log concentration 482 

units) are shown in Figures S13-S16 (Supporting Information S3). Compared with the original 483 

concentration data, these model residuals are much more nearly normal and homoscedastic. 484 

Moreover, the model residuals are less susceptible to the issues of temporal, seasonal, and 485 

discharge-driven variations than the original concentrations. Therefore, the model residuals are 486 

more appropriate than the original concentrations for β estimation using the simulation 487 

framework adopted in this work. 488 

The estimated β values for the concentration residuals are summarized in Figure 10. Clearly, 489 

the estimated β varies considerably with the estimation method. In addition, the estimated β 490 

varies with site and constituent (i.e., TP, TN, or NOx.) Our discussion below focuses on the 491 

wavelet method (C2), because it is established above that this method performs better than the 492 

other estimation methods under a wide range of gap conditions. We emphasize that it is beyond 493 

our current scope to precisely quantify β in these water-quality data sets, but our simulation 494 

results presented above (Section 3.2) can be used as references to qualitatively evaluate the 495 

reliability of C2 and/or other methods for these data sets. 496 

For TN and TP concentration data at the Chesapeake River Input Monitoring sites (Table 1), 497 

μ varies between 9.5 and 24.4, whereas λ is ~1.0. Thus, the simulated gap scenario of NB(μ = 14, 498 

λ = 1) can be used as a reasonable reference to assess methods’ reliability (Figure 8). Based on 499 

method C2, the estimated β ranges between β = 0.36 and β = 0.61 for TN and between β = 0.30 500 

and β = 0.58 for TP at these sites (Figure 10). For such ranges, the simulation results indicate 501 
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that method C2 tends to moderately under-estimate β under this gap scenario (Figure 8), and 502 

hence spectral slopes for TN and TP at these Chesapeake sites are likely probably slightly higher 503 

than those presented above. 504 

For NOx and TP concentration data at the Lake Erie and Ohio sites (Table 1), μ varies 505 

between 0.06 and 0.22, whereas λ is ~0.01. Thus, the simulated gap scenario of NB(μ = 1, λ = 506 

0.01) can be used as a reasonable reference to assess the methods’ reliability (Figure 6). For 507 

such small λ (i.e., a few gaps that are very dissimilar from others), C2 is not reliable for β 508 

estimation, as reflected by the generally positive bias in the simulation results. By contrast, 509 

methods B1 (interpolation with global mean) and B8 (lowess with span 0.75) both perform quite 510 

well under this gap scenario (Figure 6). These two methods provide almost identical β estimates 511 

for each site-constituent combination, ranging from β = 1.0 to β = 1.5 for NOx and from β = 1.0 512 

to β = 1.4 for TP (Figure 10). 513 

Overall, the above analysis of real water-quality data has illustrated the wide variability in β 514 

estimates, with different choices of estimation methods yielding very different results. To our 515 

knowledge, these water-quality data have not heretofore previously been analyzed in this context. 516 

As illustrated above, our simulation experiments (Section 3.2) can be used as references to 517 

coarsely evaluate the reliability of each method under specific gap scenarios, thereby 518 

considerably narrowing the likely range of the estimated spectral slopes. Nonetheless, our results 519 

demonstrate that the analyzed water-quality time series can exhibit strong fractal scaling, 520 

particularly at the Lake Erie and Ohio tributary sites. Thus, an important implication is that 521 

researchers and analysts should be cautious when applying standard statistical methods to 522 

identify temporal trends in such water-quality data sets (Kirchner and Neal, 2013). In future 523 

work, one may consider applying Bayesian statistical analysis or other approaches to more 524 

accurately quantify the spectral slope and associated uncertainty for real water-quality data 525 

analysis. In addition, the modeling framework presented herein (including both gap simulation 526 

and β estimation) may be extended to simulations of irregular time series that have prescribed 527 

spectral slopes and also superimposed temporal trends, which can then be used to evaluate the 528 

validity of various statistical methods for identifying trends and their associated statistical 529 

significance. 530 
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4. Conclusions 531 

River water-quality time series often exhibit fractal scaling behavior, which presents 532 

challenges to the identification of deterministic trends. Because traditional spectral estimation 533 

methods are generally not applicable to irregularly sampled time series, we have examined two 534 

broad types of estimation approaches and evaluated their performances against synthetic data 535 

with a wide range of prescribed β values and gap intervals that are representative of the sampling 536 

irregularity of real water-quality data.  537 

The results of this work suggest several important messages. First, the results remind us of 538 

the risks in using interpolation for gap filling when examining auto-correlation, as the 539 

interpolation methods consistently under-estimate or over-estimate β under a wide range of 540 

prescribed β values and gap distributions. Second, the long-establishedwidely used Lomb-541 

Scargle spectral method also consistently under-estimates β. Its modified form, using the 5% 542 

lowest frequencies for spectral slope estimation, has very poor precision, although the overall 543 

bias is small. Third, the wavelet method, coupled with an aliasing filter, has the smallest bias and 544 

root-mean-squared error among all methods for a wide range of prescribed β values and gap 545 

distributions, except for cases with small prescribed β values (i.e., close to white noise) or small 546 

λ values (i.e., very skewed gap distributions). Thus, the wavelet method is recommended for 547 

estimating spectral slopes in irregular time series until improved methods are developed. In this 548 

regard, future research should aim to develop an aliasing filter that is more applicable to irregular 549 

time series with very skewed gap intervals. Finally, all methods’ performances depend strongly 550 

on the sampling irregularity in terms of both the skewness and mean of gap-interval lengths, 551 

highlighting that the accuracy and precision of each method are data-specific. 552 

Overall, these results provide new contributions in terms of better understanding and 553 

quantification of the proposed methods’ performances for estimating the strength of fractal 554 

scaling in irregularly sampled water-quality data. In addition, the work has provided an 555 

innovative and general approach for modeling sampling irregularity in water-quality records. 556 

Moreover, this work has proposed and demonstrated a generalizable framework for data 557 

simulation (with gaps) and β estimation, which can be readily applied toward the evaluation of to 558 

evaluate other methods that are not covered in this work. More generally, the findings and 559 

approaches may also be broadly applicable to irregularly sampled data in other scientific 560 

disciplines. Last but not least, we note that accurate quantification of fractal scaling in irregular 561 
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water-quality time series remains an unresolved challenge for the hydrologic community and for 562 

many other disciplines that must grapple with irregular sampling. 563 
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Table 1. Quantification of sampling irregularity for selected water-quality constituents at nine sites of the Chesapeake Bay River Input Monitoring 

program and six sites of the Lake Erie and Ohio tributary monitoring program. (μ: mean parameter; λ: shape parameter estimated using maximum 

likelihood; λ': shape parameter estimated using the direct approach (see Section 2.2). Δtaverage: average gap interval; N: total number of samples.)  

I. Chesapeake Bay River Input Monitoring program 

Site ID River and station name 
Drainage 

area (mi2) 

Total nitrogen (TN) Total phosphorus (TP) 

λ λ' μ 
Δtaverage 

(days) 
N λ λ' μ 

Δtaverage 

(days) 
N 

01578310 Susquehanna River at Conowingo, MD 27,100 0.8 1.1 13.5 14.5 876 0.8 1.0 13.4 14.4 881 

01646580 
Potomac River at Chain Bridge, 

Washington D.C. 
11,600 0.9 0.6 9.5 10.5 1,385 1.1 1.0 24.4 25.4 579 

02035000 James River at Cartersville, VA 6,260 0.8 1.0 13.9 14.9 960 0.8 1.1 13.7 14.7 974 

01668000 
Rappahannock River near 

Fredericksburg, VA 
1,600 0.8 0.6 15.6 16.6 776 0.8 0.6 15.2 16.2 796 

02041650 Appomattox River at Matoaca, VA 1,340 0.8 0.8 15.1 16.1 798 0.8 0.8 14.9 15.9 810 

01673000 Pamunkey River near Hanover, VA 1,071 0.8 0.9 15.1 16.1 873 0.8 1.0 14.7 15.7 894 

01674500 Mattaponi River near Beulahville, VA 601 0.7 0.9 14.3 15.3 810 0.8 0.9 14.2 15.2 820 

01594440 Patuxent River at Bowie, MD 348 0.9 1.1 15.3 16.3 787 0.8 0.8 14.0 15.0 861 

01491000 Choptank River near Greensboro, MD 113 1.2 1.5 19.6 20.6 680 1.1 1.0 20.5 21.5 690 

II. Lake Erie and Ohio tributary monitoring program 

Site ID River and station name 
Drainage 

area (mi2) 

Nitrate-plus-nitrite (NOx) Total phosphorus (TP) 

λ λ' μ 
Δtaverage 

(days) 
N λ λ' μ 

Δtaverage 

(days) 
N 

04193500 Maumee River at Waterville, OH 6,330 0.005 0.0003 0.19 1.19 9,101 0.005 0.0003 0.19 1.19 9,101 

04198000 Sandusky River near Fremont, OH 1,253 0.01 0.003 0.22 1.22 9,641 0.01 0.003 0.22 1.22 9,655 

04208000 Cuyahoga River at Independence, OH 708 0.007 0.006 0.13 1.13 7,421 0.007 0.006 0.13 1.13 7,426 

04212100 Grand River near Painesville, OH 686 0.01 0.005 0.21 1.21 5,023 0.01 0.005 0.22 1.22 4,994 

04197100 Honey Creek at Melmore, OH 149 0.007 0.005 0.06 1.06 9,914 0.007 0.005 0.06 1.06 9,914 

04197170 Rock Creek at Tiffin, OH 34.6 0.007 0.008 0.06 1.06 8,422 0.007 0.008 0.06 1.06 8,440 
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 705 

Figure 1. Synthetic time series with 200 time steps for three representative fractal scaling 706 

processes that correspond to white noise (β = 0), pink noise (β = 1), and Brown noise (β = 2). 707 

The 1st row shows the simulated time series without any gap. The three rows below show the 708 

same time series as in the 1st row but with data gaps that were simulated using three different 709 

negative binomial (NB) distributions, that is, 2nd row: NB(λ = 1, μ = 1); 3rd row: NB(λ = 1, μ = 710 

14); 4th row: NB(λ = 0.01, μ = 1). 711 
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 712 

Figure 2. Examples of gap interval simulation using binomial distributions, NB (shape λ, mean 713 

μ). Simulation parameters: L = 9125 days, Δtnominal = 1 day. The three panels show simulation 714 

with fixed (a) μ = 1, (b) μ = 14, and (c) λ = 1. Note that Δtaverage/Δtnominal = μ + 1. 715 
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716 

  717 

Figure 3. Examples of quantified sampling irregularity with negative binomial (NB) 718 

distributions: total nitrogen in Choptank River (top) and total phosphorus in Cuyahoga River 719 

(bottom). Theoretical CDF and quantiles are based on the fitted NB distributions. See Table 1 720 

for estimated mean and shape parameters. 721 
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 722 

Figure 4. Illustration of the interpolation methods for gap filling. The gap-free data (A1) was 723 

simulated with a series length of 500, with the first 30 data shown. (x: omitted data for gap filling; 724 

+: interpolated data; NOCB: next observation carried backward; LOCF: last observation carried 725 

forward; lowess: locally weighted scatterplot smoothing.) 726 
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 727 

Figure 5. Comparison of bias in estimated spectral slope in irregular data that are simulated with 728 

prescribed β = 1 (100 replicates), series length of 9125, and gap intervals simulated with (a) NB 729 

(λ = 0.01, μ = 1), (b) NB (λ = 0.1, μ = 1), (c) NB (λ = 1, μ = 1), and (d) NB (λ = 10, μ = 1). The 730 

blue dashed lines indicate the true β value.731 
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 732 

Figure 6. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 733 

replicates), series length of 9125, and mean gap interval of 2 (i.e., μ = 1). 734 
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 735 

Figure 7. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying 736 

prescribed β values (100 replicates), series length of 9125, and mean gap interval of 2 (i.e., μ = 1). 737 
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 738 

Figure 8. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 739 

replicates), series length of 9125, and mean gap interval of 15 (i.e., μ = 14). 740 
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 741 

Figure 9. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying 742 

prescribed β values (100 replicates), series length of 9125, and mean gap interval of 15 (i.e., μ = 14).743 
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 744 

Figure 10. Quantification of spectral slope in real water-quality data from the two regional 745 

monitoring networks, as estimated using the set of examined methods. All estimations were 746 

performed on concentration residuals (in natural log concentration units) after accounting for 747 

effects of time, discharge, and season. The two dashed lines in each panel indicate white noise (β 748 

= 0) and pink (flicker) noise (β = 1), respectively. See Table 1 for site and data details. 749 
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