



# 1 Adaptation tipping points of urban wetlands under a 2 drying climate

4 Amar V.V. Nanda<sup>1,6,\*</sup>, Leah Beesley<sup>2,6</sup>, Luca Locatelli<sup>3</sup>, Berry Gersonius<sup>4,6</sup>, Matthew  
5 R. Hipsey<sup>5,6</sup>, Anas Ghadouani<sup>1,6</sup>

6

<sup>7</sup> <sup>1</sup> School of Civil, Environmental & Mining Engineering, The University of Western Australia, 35  
<sup>8</sup> Stirling Highway, M015, Perth, Western Australia, 6009, Australia amar.nanda@research.uwa.edu.au

<sup>2</sup> Centre of Excellence in Natural Resource Management, The University of Western Australia, PO Box 5771, Albany, Western Australia, Australia

<sup>11</sup> <sup>3</sup> Department of Environmental Engineering, Technical University of Denmark

12 Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark

<sup>4</sup> UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands

<sup>5</sup> School of Earth & Environment, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia

<sup>16</sup> Cooperative Research Centre for Water Sensitive Cities (CRCWSC), Clayton, Victoria, Australia

17

\* Corresponding author: School of Civil, Environmental & Mining Engineering, The University of Western Australia, 35 Stirling Highway, M015, Perth, Western Australia, 6009, Australia (amar.nanda@research.uwa.edu.au)

21 Word count: 5,637 (text); 9,022 (text, tables, figures, and references)

22



23     **Key Points**

24     - A modified Adaptation Tipping Point framework is presented to assess the suitability of ecosystem  
25     management when rigorous ecological data are lacking.

26     - Quantitative boundaries or thresholds to define acceptable ecological change can be overcome by  
27     inclusion of pre-existing thresholds based on available information from policy, legislation, and  
28     involvement of management authorities.

29     - The extend of legislation, policies, and management authorities across different scales and levels of  
30     governance; need to be understood to adapt ecosystem management strategies.

31



32 **Abstract**

33 Urban wetlands experience considerable alteration to their hydrology, which typically contributes to a  
34 decline in their overall ecological integrity. Wetland management strategies aim to repair wetland  
35 hydrology and attenuate wetland loss associated with climate change. However, decision makers often  
36 lack the data needed to support complex social environmental systems models, making it difficult to  
37 assess the effectiveness of current or past practices. Adaptation Tipping Points (ATPs) is a method that  
38 can be useful in these situations. The method assesses thresholds exceedance of ecological objectives  
39 obtained from policy and informs about the effectiveness of the management strategy to the delivery of  
40 certain social or environmental goals. Here we trial the method on an urban wetland in a region  
41 experiencing a markedly drying climate. ATPs were defined by linking key ecological objectives  
42 identified by policy documents to threshold values for water depth. We then used long-term hydrologic  
43 data (1978-2012) to assess if and when thresholds were breached. We found that from the mid-1990s  
44 declining wetland water depth caused ATPs for the majority of the wetland objectives. We conclude  
45 that the wetland management strategy has been ineffective from the mid-1990s when the region's  
46 climate dried markedly. Empirical verification of the ATP assessment is required to validate the  
47 suitability of the method. However, in general we consider ATPs to be a useful desktop method to  
48 assess the suitability of management when rigorous ecological data are lacking.

49

50 **Key words**

51 Ecosystem management; urban wetland; adaptation tipping points; climate change; management  
52 strategy

53



54 **1. Introduction**

55 Ecological systems with high resilience are able to cope with frequent disturbance and remain  
56 relatively stable over time, whereas systems with low resilience are likely to transition to altered states,  
57 often with reduced function in the wake of disturbance (Holling 1973). Systems with low resilience  
58 can shift between alternative stable states by an incremental change of conditions that induce a  
59 catastrophic (reversible) shift or by perturbations that are large enough to move the system to a lower  
60 alternative state with reduced functions (Scheffer et al. 2001; Folke et al. 2004). Social-ecological  
61 systems (SES) have many functions that depend on feedback mechanisms between processes that take  
62 place at multiple scales (Sivapalan et al. 2012; Elshafei et al. 2014).

63 Ecosystems are managed to maintain their ecological functions that are particularly vulnerable to  
64 altered processes (e.g. climate change). Such processes can shift ecosystems to reduced ecological  
65 functions (Dudgeon et al. 2006). These complex ecosystems under the influence of drivers of  
66 ecological and social processes can change and then often display nonlinear behaviour with prolonged  
67 periods of stability alternated with sudden changes or critical transitions of the socio-ecological system  
68 (Scheffer et al. 2001; Walker and Meyers 2004). These sudden changes are often not foreseen in  
69 management practices due to its incremental approach which is defined by law enforced threshold  
70 levels along environmental gradients (Walker and Meyers 2004). Interventions to inform policy or  
71 management are therefore not timely or ineffective to maintain ecosystems in a state of prolonged  
72 stability with multiple socio-ecological functions.

73 Thresholds and tipping points are important focal points for adaptive management (Folke et al. 2005;  
74 Rijke et al. 2012; Haasnoot et al. 2013; Werners et al. 2013), but often lack data to define exact  
75 biophysical thresholds to model complicated interactions in SES models (Schlueter et al. 2012).  
76 However, several indicators (Niemi and McDonald 2004) and ‘turning point’ approaches do exist that  
77 are commonly used in flood mitigation (Lavery and Donovan 2005; Kwadijk et al. 2010; Reeder and  
78 Ranger 2011; Gersonius et al. 2012), water resources management (Brown et al. 2011; Poff et al.  
79 2015), and institutional adaptation (Lawrence et al. 2013, Füngfeld 2015) to determine when the  
80 boundaries of a system are reached and future change becomes critical for the system. The method



81 makes clear what the weak points of the current policy and management are under future stressors to  
82 the system (Hanger et al. 2013).  
83 The turning point approach is also known as ‘adaptation tipping point’ (ATP) method. ATPs are  
84 reached if the magnitude of change is such, that a current management strategy can no longer meet its  
85 objectives (Kwadijk et al. 2010). As a result, adaptive management is needed to prevent or postpone  
86 these ATPs. This method was recently applied to a species re-introduction program and assessed how  
87 long the socio-ecological baseline strategy remained effective under future climate change (Bölscher et  
88 al. 2013; Werners et al. 2013; van Slobbe et al. 2016). The timing of an ATP does not necessarily  
89 correspond to ecological or social tipping points (Werners et al. 2013). However, the ATP approach  
90 confronts the lack of quantitative and qualitative ecological data sets to infer acceptability of  
91 management (Wardekker et al. 2010; Haasnoot et al. 2012; Haasnoot et al. 2013) by stakeholder  
92 engagement to determine unknown/ill-defined thresholds and prevents a focus on only existing  
93 management strategies (Wardekker et al. 2010; Bölscher et al. 2013). To prevent confusion with  
94 definitions of tipping points in the other fields (e.g. climate sciences, ecology) we will use ‘adaptation  
95 tipping point’ in our study.  
96 A deficiency of the ATP methodology is the understanding how an ecosystem management strategy  
97 compares to ecological resilience when detailed models or sufficient data are unavailable. In other  
98 words: the management strategy needs to be informed about when the ecosystem could shift into an  
99 alternative state with low resilience when the system is exposed to stressors which are induced by  
100 climate change. Wetlands are ecosystems that are particularly vulnerable to decreased ecological  
101 resilience due to altered hydrology, invasive species, nutrient loading, fire regimes etc. that can cause  
102 wetlands to shift from a ‘clear-water’ stable state to a ‘turbid-water’ stable state or from a permanently  
103 to a seasonal hydro-regime that inadequately supports ecological processes (Scheffer et al. 2001; Folke  
104 et al. 2004).  
105 The wetland in our case study area is located in the biodiverse region in south-west Western Australia  
106 (Myers et al. 2000) and has been noticeably impacted by anthropogenic factors (Bekle 1981; Bekle and  
107 Gentilli 1993). An estimated 85% of the Swan Coastal Plain (SCP) wetlands have been lost since  
108 colonial settlement and are likely to experience increasing hydrological stress due to further decreasing



109 rainfall (Balla 1993; Davis and Froend 1999). The altered hydrology of wetlands in Perth is likely to  
110 have breached natural ecological tipping points and caused environmental degradation unless the  
111 wetlands are highly resilient. The key challenge to the catchment's wetland management is to adapt to  
112 this drier regime while climate change predictions and the ecological response is uncertain. Therefore,  
113 the catchment area is suitable to apply the ATP methodology to determine whether the current wetland  
114 management strategy is effective to prevent undesirable ecological tipping points.

115 We are interested as to when and how much hydrological variation an ecosystem can cope with before  
116 the durability of a strategy to conserve the ecosystem expires. The overall aim of this study is to  
117 provide a modified ATP framework to identify the effectiveness of ecosystem management strategies.  
118 We define effectiveness by three aspects of the ecosystem and subdivide this into three aims to  
119 identify:

- 120 1) the hydrological response and variation of the ecosystem under climate change by conducting a  
121 literature study and by interviews with experts;
- 122 2) temporal scale and ecosystem responses with the determination of ATPs in hydrologic time-series  
123 data for each socio-ecological objective from the wetland management strategy;
- 124 3) the recovery rate or alternative stable state of ecological processes that is defined by minimum and  
125 maximum water-level thresholds compared to objectives mandated by policy and management.

126

127



128 **2. Method**

129

130 **2.1. ATP method and case study area**

131 The original five-step ATP methodology include (Figure 1): (i) the determination of climate change  
132 effects on the system; (ii) followed by identifying key objectives and thresholds; (iii) the determination  
133 when standards were compromised in the past; (iv) analysing when standards were compromised in the  
134 future; and (v) to repeat step 1-4 for alternative strategies. Further details about the original  
135 methodology can be found in Kwadijk et al. (2010). We modified the original methodology to a three-  
136 step assessment as we only assess historical time series. Firstly, we assessed the observed hydrological  
137 changes followed by determining objectives and thresholds. At last, we combined step 3 and 4A of the  
138 methodology to interpreted ATPs in conjunction with understanding the ecosystem processes,  
139 feedbacks, and alternative stable states (Figure 1).

140 This study assessed one wetland, Forrestdale Lake (Figure 2), which is located in the biodiverse region  
141 of the Swan Coastal Plain in south-west Western Australia (Myers et al. 2000). The wetland supports  
142 many waterbirds and its surrounding riparian vegetation supports terrestrial birds, significant reptiles,  
143 mammals, and other vertebrate species (Balla 1993). The lakes' high biodiversity makes it an  
144 important regional conservation area (CCWA 2005). Since colonial settlement, the lake has been  
145 exposed to several stressors, such as land-use changes, urban encroachment, nutrient run-off, and  
146 decreasing surface water levels in the lake.

147 Similarly to other Mediterranean regions in the world, the south-west of Western Australia is  
148 experiencing reductions in rainfall that lead to decreasing recharge of the aquifer (Petrone et al. 2010).  
149 Approximately 80% of the annual precipitation occurs in winter between May and September, with  
150 groundwater recharge occurring from June to September (DoW 2008). The wetland experiences a  
151 Mediterranean climate with a mean annual rainfall of 852 mm in the period 1980-2014. Since the  
152 1970s this region has experienced a 10-20 % decrease in average annual rainfall that resulted in a mean  
153 annual rainfall of 775 mm in the period 2004-2014 (Charles et al. 2010; Smith and Power 2014).  
154 Despite high resilience, the wetland shows a rapid decline of its critical ecological processes as a result



155 of less surface water availability (Froend et al. 1993; Balla and Davis 1995; Sommer and Horwitz  
156 2009; Sommer and Froend 2011). These observed impacts of climate change on the hydrology make  
157 the wetland a suitable study area to apply the ATP method.

158

159 **2.2. Data collection and analyses**

160

161 **2.2.1. Step 1: Legislative framework and impacts of climate change - literature review**

162 The scope of the assessment is defined in line with the legislative basis for Forrestdale Lake. In  
163 Western Australia, the Environmental Protection Act (1986) is the legislative act that underpins the  
164 environmental protection of wetlands. According to the EP Act, the 'Ministerial water requirements for  
165 the Gnangara Mound and Jandakot wetlands' (1992) mandates ecological water requirements that  
166 consist of upper and lower thresholds to maintain ecological processes. Protection of biodiversity or  
167 conservation values such as maintaining biodiversity is included in the Conservation and Land  
168 Management Act (1984) and the Wildlife Conservation Act (1950). Large regional wetlands have also  
169 been listed as Ramsar (e.g. Forrestdale Lake) to protect waterbirds (Ramsar 1994) and to protect  
170 migratory birds under several international agreements (JAMBA 1981; CAMBA 1988; ROKAMBA  
171 2006). Protection of nationally and internationally important flora, fauna, and ecological communities  
172 is arranged by the Commonwealth of Australia under the Environment Protection and Biodiversity  
173 Conservation Act (EPBC 1999). The above mentioned Acts and Agreements provide the statutory base  
174 to formulate wetland management plans. A preceding wetland management plan from 1993 for  
175 Forrestdale Lake was updated in 2005 which includes the ecological values of the wetland; proposes  
176 management actions to control invasive species; and mentions the risks of declining water levels  
177 (CCWA 2005).

178 Climate change, via its impact on rainfall and groundwater recharge, is an important regional driver of  
179 wetland hydrology and ecological functions (Eamus and Froend 2006; Barron et al. 2013). Local-scale  
180 hydrologic changes associated with land-use change and groundwater abstraction may also impact  
181 water levels of wetlands. Although, these changes are considered minimal compared to region-wide



182 changes in rainfall and consequently recharge of the aquifer (Townley et al. 1993; McFarlane et al.  
183 2012). There is evidence that climate change is impacting the hydrology of the unconfined aquifer  
184 since the 1970s (Froend et al. 1993; Davis and Froend 1999; Froend and Sommer 2010; Ali et al.  
185 2012) which is likely to continue during the 21st century (Charles et al. 2010; Smith and Power 2014).  
186 In Figure 3 we represent the rainfall decline and population growth of Perth which resulted in growing  
187 water demand while groundwater availability is declining (ABS 2014).  
188 Changes in the hydrology were noticeable from the end of the 1980s after the rainfall reduction in the  
189 1970s. Prior to the 1950's the wetland was classified as a 'groundwater through flow lake', but is now  
190 considered as a 'permanently inundated and perched lake' depending on rainfall and groundwater  
191 (Semeniuk 1987; Hill 1996; Dawes et al. 2009). However, recently a combination of disconnection  
192 from groundwater and decreasing annual rainfall resulted in a lake that is seasonally inundated  
193 (CCWA 2005). In Figure 4 we present a timeline of the legislation framework with key social and  
194 environmental events that have occurred in Forrestdale Lake and its groundwater catchment area.  
195

196 **2.2.2. Step 2: Select objectives and quantify threshold values - literature review**  
197 In the second step, we reviewed the current wetland management strategy for policy objectives,  
198 indicators, and threshold values of the wetland ecological processes. These functions represent the  
199 critical objectives of the wetland management strategy. Certain water depths are needed within a  
200 wetland to sustain a variety of ecological processes (Froend et al. 2004; Eamus and Froend 2006;  
201 Canham 2011; Barron et al. 2013). Therefore we used water depth as a proxy to link ecological  
202 objectives to acceptable thresholds. We identified two pathways within the SES via which water depth  
203 can impact on wetland ecological objectives:

204  
205 1. Water depth may reach levels that are too low:  
206 (a) to maintain sediment processes  
207 (b) to provide habitat needed by waterbirds, frogs, freshwater turtles, and macro-invertebrates for  
208 survival and reproduction  
209 (c) that lead to increasing weed invasion to compromising habitat needed for wading birds



210 (d) that inhibit the growth of mosquitoes and midges  
211 2. Water depth may reach levels that are too low or too high, such that they lead to:  
212 (a) the death of phreatophytic and fringing vegetation.  
213 (b) compromising habitat needed for terrestrial birds and mammals  
214  
215 From the aforementioned pathways, we derived eight critical ecological objectives, see Table 1. The  
216 objectives were taken from the Forrestdale Lake wetland management strategy (CCWA 2005); the  
217 Ministerial water requirements (EPA 1992), and were discussed with two experts from different  
218 management authorities (Department of Parks and Wildlife and Department of Water). For each  
219 ecological objective, minimum water depth requirements were obtained (i.e. threshold) using the  
220 Ministerial water requirements (Table 1). In cases where water level thresholds were not informed by  
221 the Ministerial water requirements, we relied on peer-reviewed literature (See ‘Source’ in Table 1). A  
222 detailed description of necessary conditions can be obtained from previous research (Balla 1993;  
223 Storey et al. 1993; Balla and Davis 1995; Froend et al. 2004; Dale and Knight 2008; Department of  
224 Environment and Conservation 2011). In addition, two expert interviews were conducted to determine  
225 the accepted exceedance frequency and to define threshold definitions that were not informed by  
226 policy or literature. The appraisal of the ecological objectives in Table 1 reveals that 21.6 mAHD is the  
227 minimum threshold for vegetation (Townley et al. 1993), mammals, and terrestrial birds; and 22.0  
228 mAHD is the minimum threshold to maintain waterbirds, freshwater turtles, frogs, and macro-  
229 invertebrates.  
230  
231 **2.2.3. Step 3: Determine ATPs - statistical analyses**  
232 We observed time series of surface and groundwater depths (Site ID 14578 and 12781400) as provided  
233 by the Department of Water’s water information database (DoW 2015). As the lake experienced  
234 hydrological change during the 1990s, the data set was divided into two time periods 1978-1995 and  
235 1996-2012. To evaluate the ecological resilience of the wetland, we assessed when and for how long  
236 the water level in Forrestdale Lake crossed the thresholds. For the calculation of threshold exceedance  
237 we used the observed (historical) time series of water levels to estimate the frequencies of occurrence



238 of threshold exceedance by annual minimum series (Jenkinson 1955). Equation 1 describes the  
239 distribution  $G(x)$  of the magnitude of events  $x$  smaller than a threshold  $x_0$  over a (non)-consecutive  
240 period of time over a period of years  $T$ . Here  $\alpha$  and  $k$  are constants derived from the average highest  
241 and lowest in sets of  $T$  annual minima and the minimum value to be expected once in  $T$  years. To  
242 interpret the occurrence of ATPs in context with the ecological tipping points; we extended our  
243 analyses by comparing the drought frequency, duration and start month for both the pre and post 1995  
244 water-level time series. A dry period was considered when water depth was lower than 21.6m. for 3  
245 consecutive months. We compared the water levels with the available historical ecological data to  
246 make an estimation of the trajectories over time.

247

248 
$$G(x) = 1 - \left[1 - k \left(\frac{x-x_0}{\alpha}\right)\right]^{\frac{1}{k}} \text{ for } k \neq 0 \text{ (eq. 1)}$$

249 **3.0. Results**

250

251 The results are represented in three steps in accordance with our methodology, as per Figure 1. The  
252 first two steps show the results of the literature review and step 3 shows the results from time series  
253 analyses of historical surface and groundwater level data from 1978-2012. From the literature review,  
254 we revealed that protection of the regional important Forrestdale Lake wetland lake is provided by  
255 legislation and policies on different levels and scales (Figure 5). The management of the lake is  
256 therefore organised on different levels of government institutions that have their own scale of  
257 operation (e.g. local council vs. state wide department). Due to the different institutions and their  
258 operational level, the execution of the wetland management strategy is a shared responsibility of all  
259 stakeholders. However, the co-ordination of this strategy is the responsibility of a state-wide operating  
260 institution (Department of Parks and Wildlife). System controls (e.g. policy and legislation) are  
261 mandated on a larger spatial scale, whereas accumulated stressors (e.g. reduced rainfall or lowering  
262 groundwater table) have larger impacts on a lower spatial scale, such as on ecosystem scale or separate  
263 ecological processes of the ecosystem. These noticeable effects are translated by threshold exceedance  
264 of ecological processes.



265 From the extensive variety of policies and legislation in place to protect the ecological values of the  
266 wetland we were able to derive the important socio-ecological objectives for the wetland. For each  
267 objective, we determined the critical water requirement thresholds. Although for our analyses the water  
268 requirement policies did not provide maximum exceedance frequencies (return period) for each  
269 objective. Where return periods for certain objectives in the management strategy were lacking,  
270 stakeholders were able to provide expert knowledge to determine threshold definitions, such as for  
271 drought duration; water availability for birds, and exposure of acid sulphate soils.

272 We found from the expert interviews that legislation and policy aims are a good starting point to  
273 discuss with stakeholders that operate on a state wide scale. These experts represent management  
274 authorities that are responsible for execution of larger scale (top-down) policies and legislation. Data  
275 of monthly observed surface and groundwater levels in the lake were available and publicly accessible  
276 via the State's Data Portal. Groundwater level data is only available from 1997 and surface water  
277 levels from 1952. Surface water level from the start of the observations until 1978 contains many data  
278 gaps to adequately perform ATP analyses.

279 A combination of a review of peer-reviewed literature and government reports provided a complete as  
280 possible overview of ecological studies undertaken in Forrestdale Lake. Data are predominantly  
281 available in government reports rather than in peer-reviewed media. This included data on bird counts,  
282 macro-invertebrates species composition, and vegetation transects. Ecological data is often patchy and  
283 only available for certain time frames in the 1990s and 2000s for Forrestdale Lake when requested  
284 from government departments. Bird counts for the lake have been discontinued since 2009 (DoW  
285 2012) and vegetation transects are not conducted on regular basis as mandated in policy.

286 ATPs were determined by calculating the re-occurring water level depth using the values from Table 1  
287 with Equation 1. The ATP analysis employed here suggests that a drying climate has compromised  
288 four ecological objectives of Forrestdale Lake (Table 2). ATPs occurred after 1995 and threshold  
289 crossings occurred for vegetation and mammals, waterbirds, turtles, macro-invertebrates. Water levels  
290 for remaining objectives are close to exceeding thresholds such as the capacity of the lake to deliver  
291 sediment processes and limiting the risk of oxidation of acid sulphate soils in the lake bed.



292 When the drought frequency and duration are compared for both periods, before and after 1995, we see  
293 major differences (Figure 6). Prior to 1995, no dry periods of 3 consecutive months occurred, however,  
294 the lake did dry completely five times for at least one month. These five occurrences are not  
295 considered as a drought according to our definition of 3 consecutive months. In figure 5 we have  
296 included the dry periods prior to 1995 to compare the duration and start month of each drought. The  
297 drought frequency is 5x before 1995 (definition 1 month/year) and increases to 16x after 1995  
298 (definition 3 consecutive months). From Figure 6 we observe that Forrestdale Lake dried more  
299 frequent than the recommended return period of 1 in 5 years and that each dry period exceeded the  
300 maximum duration of 3 consecutive months. Drying is most frequent in summer months December,  
301 January and February which is in contrary to regulation that drying of the lake should not occur before  
302 May in order to ensure waterlogged lake bed throughout the year and limited water availability for  
303 species.

304 Although there is not enough data to conduct trend analyses we observe a large increase in the  
305 frequency of droughts and duration of each drought after 1995 compared to prior 1995. When we  
306 combine the results from our ATP analyses (Table 2) with the drought analyses (Figure 6), we observe  
307 a regime shift in the ecosystem from a permanently to a seasonally inundated wetland. The effect of  
308 this hydrological shift translates into passing the defined threshold level that is enforced in policy and  
309 leading to an ATP. In Figure 7 we graphically present the minimum thresholds for all objectives; the  
310 water levels from 1978-2012 compared to the initiation of groundwater abstraction; and the  
311 implementation of the water policy requirements.

312 Compared to the implementation date of the water requirements policy in 1992; water level  
313 exceedance for ecological objectives occur in the period after the water policy was implemented.  
314 Between the 1970s and the implementation period of the policy in 1980s no significant research was  
315 conducted on the gradual decline of water levels in the Swan Coastal Plain wetlands. With available  
316 quantitative ecological data on ecological responses we base our representation with stylised lines to  
317 explain individual ecological responses compared to declining water levels from the 1970s. This  
318 representation is a combination of historical data from previous research and information from expert  
319 interviews. The decline of the ecological processes is simultaneous with the increased duration and



320 frequency of dry periods during the 1990s. While minimum water requirements for the wetland were  
321 not updated in the state water requirements policy since its introduction in 1992; existing water  
322 requirements were used in 2005 to determine the current wetland management strategy. After the mid-  
323 1990s we observe that the management does not respond to maintain declining water levels on the  
324 mandated threshold levels.

325 **4.0. Discussion**

326 **4.1. Temporal and spatial hydrological responses in ATP analysis applied to ecosystems**

327 A major gap in the science-policy interface and socio-hydrologic systems literature is: (i) the  
328 identification of inadequate policy to inform managers or policy makers about the durability of an  
329 ecosystem management strategy; (ii) to perform assessments of hydrological variables when data is  
330 lacking. With the ATP methodology presented we have tried to further close this gap in the literature.  
331 The methodology presented, assessed whether a baseline ecosystem management strategy was  
332 sufficient to sustain the ecological resilience of the ecosystem. Our ATP framework assesses resilience  
333 of the hydrological system across spatial and temporal scales by (Zevenbergen et al. 2008): (i) the  
334 amount of reaction of the ecosystem; (ii) the temporal scale and ecosystem responses to increased  
335 perturbations; and (iii) the recovery rate or by a shift from a desirable stable state to an alternative and  
336 undesirable stable state with limited ecological processes.

337 The observed climatic shift by the end of the 1960s and early 1970s in south-west Western Australia  
338 (Verdon-Kidd et al. 2014) follows the stepwise decreasing rainfall trend in our hydrological time  
339 series. We observe a hydrological response in the 1990s with shorter periods of inundation and ATPs  
340 occurring simultaneously in the same time period. Other studies explain this hydrological shift from  
341 permanent to intermittent water availability in the lake by decreased surface water availability due to  
342 lower rainfall (Eamus and Froend 2006; Davis and Brock 2008; Dawes et al. 2009; Maher and Davis  
343 2009). Our observations of consistent reductions of water levels result in more frequent, prolonged dry  
344 periods. Studies confirmed that a significant reduction in water levels for consecutive years could  
345 threaten the regional function of wetlands to sustain multiple ecological functions (Froend et al. 2004;  
346 Davis and Brock 2008; Maher and Davis 2009).



347 The analysis points to an ineffective water requirements policy as water levels are exceeded for four of  
348 the eight ecological functions. Thresholds were crossed in the 1990s which occurred simultaneously  
349 with the observed hydrological response. The main ecological processes depend on waterlogged soils  
350 during low water availability but are at increasing risk when the lake bed dries completely over  
351 summer. Late drying of the lake does imply a lack of surface water availability for species that have a  
352 limited action radius to alternative habitats, such as macrophytes, freshwater tortoises, frogs, and  
353 macro-invertebrates. Our study did not include the investigation of ecological responses. However, the  
354 hydrological change and ATPs are followed by declining trends in the ecology that was showed in  
355 more recent studies through:  
356 - increasing weed invasion and exotics establishing in the understory and deterioration of fringing  
357 vegetation (Froend et al. 2004; Davis and Brock 2008)  
358 - a gradual declining trend in the species numbers and composition of macro-invertebrates (Balla and  
359 Davis 1995; Maher and Davis 2009; Sommer and Horwitz 2009).  
360 - decreasing numbers of birds from over 20.000 birds in the 1980s (Storey et al. 1993; Maher and  
361 Davis 2009) to just over 10.000 birds in 2009 (Bamford et al. 2010).  
362  
363 Literature describes the responses of ecosystems after perturbations and the shifts that could occur  
364 likely to shift from a desirable higher stable alternative state into a undesirable lower alternative stable  
365 state with high resilience and reduced ecological processes (Scheffer et al. 2001; Folke et al. 2004;  
366 Folke et al. 2005). Due to a lack of data to determine shifts between multiple or alternative stable states  
367 (Capon et al. 2015); our analyses combines rapid hydrological processes and slow response of  
368 ecological processes such as vegetation (Sivapalan and Blöschl 2015) under the influence of an  
369 external boundary condition (lower rainfall due to climate change). Different to regime shifts in the  
370 natural system that trigger a shift in the social system to restore environmental degradation (Elshafei et  
371 al. 2016); a gradual transition appears not to trigger management interventions to maintain the rapid  
372 processes in an ecosystem. The understanding of scale and level of policy and legislation that provide  
373 the legislative framework of management practises is critical, since this could enhance or constrain the  
374 necessary shift in the social system.



375 **4.2. Informing ecosystem management**

376 The presented framework provides in an early stage guiding principles to existing ecosystem  
377 management strategies when these are ineffective. The ineffectiveness of current policy and  
378 management were also shown in flood risk studies (Lavery and Donovan 2005; Reeder and Ranger  
379 2011), flood mitigation under climate change (Gersonius et al. 2012), for river restoration (Bölscher et  
380 al. 2013) and for the impact of the hydrological regime of a river on salmon re-introduction and  
381 shipping (van Slobbe et al. 2016). Central in these studies is to determine *when* and *how much* action is  
382 needed to determine alternative management strategies (Sivapalan and Blöschl 2015) In the interest of  
383 decision makers or managers ATPs are used as a starting point to explore adaptation measures that  
384 adequately resolve the critical adaptation tipping point (Hanger et al. 2013) when quantitative data is  
385 not readily available to support a complex model with predicted feedback mechanism in the socio-  
386 environmental system (Sivapalan et al. 2012; Di Baldassarre et al. 2013; Elshafei et al. 2014; Di  
387 Baldassarre et al. 2015). However, rather than substituting existing quantitative assessments in the  
388 socio-hydrology; the outcomes of an ATP analyses provide better understanding of the role of  
389 individual processes before making more complex models (Hipsey et al. 2015) and highlights the  
390 potential dynamics of scale of legislation, policy and interaction of management authorities in the  
391 hydrological system.

392 To adequately inform existing management practices, we first consider the whole set of clearly stated  
393 objectives in a management strategy without prioritising or aggregating these. As a result, we provide  
394 the alternative states of ecological processes within the spatial and temporal scales of processes and  
395 governance systems (Niemi and McDonald 2004). Studies showed that introducing multiple  
396 management aims overcomes a focus on separate ecological objectives that lead to a lack of  
397 quantitative boundaries or thresholds for acceptable ecological change (Hallegatte 2009; Kwadijk et al.  
398 2010; Haasnoot et al. 2012; Werners et al. 2013). Studies showed that when defined threshold levels  
399 along an environmental gradient are passed which are enforced by law (Walker and Meyers 2004); not  
400 all ecological processes would show a direct decline of species or shift in species composition. From a  
401 management perspective reversing the ecosystem to a stable state with adequate ecological processes  
402 involves measures that need to be far enough to reverse the conditions the ecosystem (Scheffer et al.



403 2001). Therefore, informing decision-makers at an early stage prevents costly measures to reverse the  
404 system.

405 Secondly, in the absence of clearly defined thresholds our framework provides active involvement of  
406 the management authorities (Haasnoot et al. 2012; Haasnoot et al. 2013) from a multi-purpose  
407 perspective (van Slootbouw et al. 2016). The ATP analyses stimulate stakeholders to look at the durability  
408 of their approach (Kwadijk et al. 2010). Continuous improvement in the processes of adaptive  
409 management is an ongoing challenge. Studies demonstrate frameworks for collaborative research in  
410 the science-policy interface across several scales (Mitchell and Hollick 1993; Davis et al. 2015).  
411 Threshold definitions for management approaches also reflect the ideas of multiple management  
412 authorities when management practices need to be updated. Without a coupled system there is still  
413 potential to provide insight into the impact of management interventions by capturing the combined  
414 measures to adapt the current strategy.

415

#### 416 **4.3. Adapting management strategies**

417 For effective governance developing a better understanding of climate and hydrological impacts is  
418 required (Davis et al. 2015). With the involvement of stakeholders in our assessment we can account  
419 for the exploration of future hydrological events and provide decision-makers time periods for when  
420 the expiry of current policies occur. The ATP assessment includes the option to identify measures and  
421 for adequate governance decisions, further exploration of adaptation measures under future climate  
422 scenarios needs to be investigated. This could include: 1) physical/engineered measures; 2) adoption of  
423 new or amended policy instruments; 3) adoption of policy strategies (combination of options 1 and 2);  
424 or 4) implementation of an adaptation strategy (Folke et al. 2005; Nelson et al. 2007; Kwadijk et al.  
425 2010). Critical to successful adaptation requires understanding the scale and level of implementation of  
426 existing policies, legislation or management strategies that are often barriers to local scale adaptation.  
427 Our ATP analysis shows that the ecosystem management strategy is not designed to cope with current  
428 hydrological variation. The application of the proposed methodology is adequate for ecosystems:  
429 without clear boundary conditions and defined thresholds; external drivers that cause regime changes  
430 over time; and a rapid assessment is required to provide overview of *when* management strategies are



431      ineffective and to *which* failing objectives interventions can be taken. However, the limitations of the  
432      study include the effects of multiple stressors on the system; a limited focus on new strategies; and  
433      including objectives or thresholds that change over time due to socio-economic changes.

434      **5. Conclusion**

435

436      The extended ATP method presented in this paper provides a combination of a qualitative and  
437      quantitative analysis of datasets of a wetland ecosystem. We applied the concept of 'adaptation tipping  
438      points', to identify when management response became inadequate to prevent decline in ecological  
439      integrity. Through a combination with conceptual and visual representation of the ecological processes  
440      we proved to be able to identify major trends and transitions in the system in the presence of strong  
441      driver of change and variable hydrological conditions.

442      This approach was useful to determine the effectiveness of an ecosystem management strategy when  
443      data availability is limited and social-ecological dynamic models to fully assess the tipping point and  
444      potential points for interventions are absent to monitor suitability of management. This study showed  
445      that a lack of data, quantitative boundaries or thresholds to define acceptable ecological change can be  
446      overcome by inclusion of pre-existing thresholds based on available information about shifts of the  
447      wetland's hydrological regime. This included information about unacceptable adverse ecological  
448      changes to the unique set of identifiers, and the input of expert knowledge to determine the critical  
449      wetland objectives and thresholds for wetland management. We showed in an early stage information  
450      to stakeholders to determine the effectiveness of existing wetland policy that can be used to adapt or  
451      accept objectives, thresholds; seen in context with ATPs and undesirable ecological changes. With the  
452      absence of SES models the ATPs of underlying ecological processes were seen in relation to  
453      undesirable ecological responses. ATPs could establish a proxy indicator for lag-responses in the  
454      ecology to timely adapt ecosystem management before ecological processes exceed unaccepted levels.

455

456      **Acknowledgements**



457 The authors thank the Department of Parks and Wildlife and the Department of Water that provided  
458 the ecological and water level data of Forrestdale Lake. The RStatistics code to compute the water  
459 level data was provided by Ms. Chrianna Bharat (The University of Western Australia). This research  
460 was conducted within program B4.2 of the Cooperative Research Centre of Water Sensitive Cities.  
461 Amar Nanda would like to acknowledge the PhD scholarship funding provided by the Scholarships for  
462 International Research Fees (SIRF) funded by The University of Western Australia.  
463



464 **References**

465 ABS. (2014). "3105.0.65.001 - Australian Historical Population Statistics, 2014." Retrieved  
466 8/11/2016, from <http://abs.gov.au/ausstats>.

467 Ali, R., D. McFarlane, S. Varma, W. Dawes, I. Emelyanova and G. Hodgson (2012). "Potential  
468 climate change impacts on the water balance of regional unconfined aquifer systems in south-western  
469 Australia." *Hydrology and Earth System Sciences* 16(12): 4581-4601.

470 Balla, S. A. (1993). *Wetlands of the Swan Coastal Plain. Volume 1, Their nature and management*.  
471 Perth, Western Australia, Water Authority of WA.

472 Balla, S. A. and J. A. Davis (1995). "Seasonal variation in the macroinvertebrate fauna of wetlands of  
473 differing water regime and nutrient status on the Swan Coastal Plain, Western Australia."  
474 *Hydrobiologia* 299: 147-161.

475 Bamford, M., W. Bancroft and J. Raines (2010). Effects of remote rainfall events on waterbird  
476 populations on the Jandakot Mound Wetlands. Perth, a report to the Department of Water, MA and JR  
477 Bamford Consulting Ecologists.

478 Barron, O., R. Froend, G. Hodgson, R. Ali, W. Dawes, P. Davies and D. McFarlane (2013). "Projected  
479 risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater  
480 abstraction in the Central Perth Basin, Western Australia." *Hydrological Processes*.

481 Bekle, H. (1981). *The wetlands lost: drainage of the Perth lake systems*. Perth, Geographical Society of  
482 W.A.

483 Bekle, H. and J. Gentilli (1993). "History of the Perth Lakes." *Royal Western Australian Historical  
484 Society* 10(5): 441-460.

485 Bölscher, T., E. van Slobbe, M. T. van Vliet and S. E. Werners (2013). "Adaptation turning points in  
486 river restoration? The Rhine salmon case." *Sustainability* 5(6): 2288-2304.

487 BoM. (2016). "Bureau of Meteorology, Monthly rainfall Midland (Perth) 1886-2015, Station number  
488 9025." Retrieved 8/11/2016, from <http://www.bom.gov.au/climate/data/index.shtml>.

489 Brown, C., W. Werick, W. Leger and D. Fay (2011). "A Decision- Analytic approach to managing  
490 climate risks: Application to the upper great Lakes1." *JAWRA Journal of the American Water  
491 Resources Association* 47(3): 524-534.



492 CAMBA (1988). "Agreement between the Government of Australia and the Government of the  
493 People's Republic of China for the Protection of Migratory Birds and their Environment." Australian  
494 Treaty Series 1988(No 2).

495 Canham, C. (2011). The response of Banksia roots to change in water table level in a Mediterranean-  
496 type environment. Doctor of Philosophy, Edith Cowan University.

497 Capon, S. J., A. J. Lynch, N. Bond, B. C. Chessman, J. Davis, N. Davidson, M. Finlayson, P. A. Gell,  
498 D. Hohnberg, C. Humphrey, R. T. Kingsford, D. Nielsen, J. R. Thomson, K. Ward and R. Mac Nally  
499 (2015). "Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical  
500 appraisal of the evidence." *Sci Total Environ* 534: 122-130.

501 CCWA (2005). Forrestdale Lake Nature Reserve Management Plan 2005; Management Plan No. 53.  
502 Conservation Commission of Western Australia; Government of Western Australia. Perth, Western  
503 Australia.

504 Charles, S., R. Silberstein, J. Teng, G. Fu, G. Hodgson, C. Gabrovsek, J. Crute, A. Yang, and W. Cai  
505 (2010). Climate analyses for south-west Western Australia; A report to the Australian Government  
506 from the CSIRO South-West Western Australia Sustainable Yields Project, CSIRO: 92-92.

507 Conservation and Land Management Act (1984). "Conservation and Land Management Act 1984."  
508 Government of Western Australia 126 of 1984.

509 Dale, P. and J. Knight (2008). "Wetlands and mosquitoes: a review." *Wetlands Ecology and*  
510 *Management* 16(4): 255-276.

511 Davis, J. and M. Brock (2008). "Detecting unacceptable change in the ecological character of Ramsar  
512 wetlands." *Ecological Management & Restoration* 9(1): 26-32.

513 Davis, J., A. P. O'Grady, A. Dale, A. H. Arthington, P. A. Gell, P. D. Driver, N. Bond, M. Casanova,  
514 M. Finlayson, R. J. Watts, S. J. Capon, I. Nagelkerken, R. Tingley, B. Fry, T. J. Page and A. Specht  
515 (2015). "When trends intersect: The challenge of protecting freshwater ecosystems under multiple land  
516 use and hydrological intensification scenarios." *Sci Total Environ* 534: 65-78.

517 Davis, J. A. and R. Froend (1999). "Loss and degradation of wetlands in southwestern Australia:  
518 Underlying causes, consequences and solutions." *Wetlands Ecology and Management* 7(1-2): 13-23.



519 Dawes, W., O. Barron, M. Donn, D. Pollock and C. Johnstone (2009). Forrestdale Lake Water  
520 Balance. CSIRO Water for a Healthy Country National Research Flagship. Perth, Western Australia.  
521 Department of Environment and Conservation (2011). Treatment and management of soils and water  
522 in acid sulfate soil landscapes. D. o. E. a. Conservation. Perth, Australia, Department of Environment  
523 and Conservation.  
524 Di Baldassarre, G., a. Viglione, G. Carr, L. Kuil, J. L. Salinas and G. Blöschl (2013). "Socio-  
525 hydrology: conceptualising human-flood interactions." *Hydrology and Earth System Sciences* 17(8):  
526 3295-3303.  
527 Di Baldassarre, G., A. Viglione, G. Carr, L. Kuil, K. Yan, L. Brandimarte and G. Blöschl (2015).  
528 "Debates-Perspectives on sociohydrology: Capturing feedbacks between physical and social  
529 processes." *Water Resources Research*: n/a-n/a.  
530 DoW (2008). Assessment of the declining groundwater levels in the Gnangara Groundwater Mound,  
531 Report HG14; Hydrogeological Record Series. Department of Water. Perth, Western Australia.  
532 DoW (2012). Environmental management of groundwater from the Jandakot Mound; Triennial  
533 compliance report to the Office of the Environmental Protection Authority. Department of Water;  
534 Government of Western Australia. Perth, Western Australia.  
535 DoW (2015). Water Information (WIN) database - time-series data. Department of Water; Water  
536 Information Section. Perth, Western Australia Retrieved 15/04/2015, from  
537 <http://wir.water.wa.gov.au/Pages/Water-Information-Reporting.aspx>.  
538 Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévéque, R. J.  
539 Naiman, A.-H. Prieur-Richard, D. Soto and M. L. Stiassny (2006). "Freshwater biodiversity:  
540 importance, threats, status and conservation challenges." *Biological reviews* 81(02): 163-182.  
541 Eamus, D. and R. Froend (2006). "Groundwater-dependent ecosystems: the where, what and why of  
542 GDEs." *Australian Journal of Botany* 54(2): 91-96.  
543 Elshafei, Y., M. Sivapalan, M. Tonts and M. R. Hipsey (2014). "A prototype framework for models of  
544 socio-hydrology: identification of key feedback loops and parameterisation approach." *Hydrology and*  
545 *Earth System Sciences* 18(6): 2141-2166.



546 Elshafei, Y., M. Tonts, M. Sivapalan and M. R. Hipsey (2016). "Sensitivity of emergent  
547 sociohydrologic dynamics to internal system properties and external sociopolitical factors:  
548 Implications for water management." *Water Resources Research* 52(6): 4944-4966.

549 EPA (1986). "Environmental Protection Act 1986." 2003(s.27).

550 EPA (1992). Jandakot mound groundwater resources, Bulletin 1155. Environmental Protection  
551 Authority. Perth, Western Australia.

552 EPBC (1999). "Environment Protection and Biodiversity Conservation Act 1999." (Act No. 91).

553 Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson and C. S. Holling (2004).  
554 "Regime shifts, resilience, and biodiversity in ecosystem management." *Annual Review of Ecology,*  
555 *Evolution, and Systematics*: 557-581.

556 Folke, C., T. Hahn, P. Olsson and J. Norberg (2005). "Adaptive Governance of Social-Ecological  
557 Systems." *Annual Review of Environment and Resources* 30(1): 441-473.

558 Froend, R., R. Loomes, P. Horwitz, M. Bertuch, M. Storey and M. Bamford (2004). Study of  
559 Ecological Water Requirements on the Gnangara and Jandakot Mounds under Section 46 of the  
560 Environmental Protection Act, Task 2: Determination of Ecological Water Requirements. Water and  
561 Rivers Commission. Perth, Australia.

562 Froend, R., R. Loomes, P. Horwitz, R. Rogan, P. Lavery, J. How, A. Storey, M. Bamford and B.  
563 Metcalf (2004). Study of Ecological Water Requirements on the Gnangara and Jandakot Mounds  
564 under Section 46 of the Environmental Protection Act Task 1: Identification and Re-evaluation of  
565 Ecological Values, Prepared for: The Water and Rivers Commission. Perth, Australia.

566 Froend, R. and B. Sommer (2010). "Phreatophytic vegetation response to climatic and abstraction-  
567 induced groundwater drawdown: Examples of long-term spatial and temporal variability in community  
568 response." *Ecological Engineering* 36(9): 1191-1200.

569 Froend, R. H., C. F. Farrelly, C. C. Wilkins and A. J. McComb (1993). *Wetlands of the Swan Coastal*  
570 *Plain. Volume 4, The effects of altered water levels on wetland plants.* Perth, Western Australia, Water  
571 Authority of WA.

572 Füngfeld, H. (2015). "Facilitating local climate change adaptation through transnational municipal  
573 networks." *Current Opinion in Environmental Sustainability* 12: 67-73.



574 Gersonius, B., R. Ashley and C. Zevenbergen (2012). "The identity approach for assessing socio-  
575 technical resilience to climate change: Example of flood risk management for the Island of Dordrecht."  
576 Natural Hazards and Earth System Science 12: 2139-2146.

577 Gersonius, B., T. Morselt, L. V. Nieuwenhuijzen, R. Ashley and C. Zevenbergen (2012). "How the  
578 Failure to Account for Flexibility in the Economic Analysis of Flood Risk and Coastal Management  
579 Strategies Can Result in Maladaptive Decisions." Journal of Waterway, Port, Coastal, and Ocean  
580 Engineering 138(October): 386-393.

581 Haasnoot, M., J. H. Kwakkel, W. E. Walker and J. ter Maat (2013). "Dynamic adaptive policy  
582 pathways: A method for crafting robust decisions for a deeply uncertain world." Global Environmental  
583 Change 23(2): 485-498.

584 Haasnoot, M., H. Middelkoop, A. Offermans, E. v. Beek and W. P. A. v. Deursen (2012). "Exploring  
585 pathways for sustainable water management in river deltas in a changing environment." Climatic  
586 Change 115(3-4): 795-819.

587 Hallegatte, S. (2009). "Strategies to adapt to an uncertain climate change." Global Environmental  
588 Change 19(2): 240-247.

589 Hanger, S., S. Pfenninger, M. Dreyfus and A. Patt (2013). "Knowledge and information needs of  
590 adaptation policy-makers: a European study." Regional Environmental Change 13(1): 91-101.

591 Hill, A. L. (1996). Wetlands of the Swan Coastal Plain: Wetland Mapping, Classification, and  
592 Evaluation, Wetland Atlas. Volume 2b. Perth, Western Australia, Water and Rivers Commission and  
593 Department of Environmental Protection.

594 Hipsey, M. R., D. P. Hamilton, P. C. Hanson, C. C. Carey, J. Z. Coletti, J. S. Read, B. W. Ibelings, F.  
595 J. Valesini and J. D. Brookes (2015). "Predicting the resilience and recovery of aquatic systems: A  
596 framework for model evolution within environmental observatories." Water Resources Research 51(9):  
597 7023-7043.

598 Holling, C. S. (1973). "Resilience and Stability of Ecological Systems." Annual Review of Ecology  
599 and Systematics 4(1): 1-23.



600 JAMBA (1981). "Agreement between the Government of Australia and the Government of Japan for  
601 the Protection of Migratory Birds in Danger of Extinction and their Environment." Government of  
602 Western Australia 1981 No. 6.

603 Jenkinson, A. F. (1955). "The frequency distribution of the annual maximum (or minimum) values of  
604 meteorological elements." *Quarterly Journal of the Royal Meteorological Society* 81(348): 158-171.

605 Kwadijk, J., M. Haasnoot, J. Mulder, M. Hoogvliet, A. Jeuken, R. van der Krog, N. van Oostrom, H.  
606 Schelfhout, E. van Velzen, H. van Waveren and M. de Wit (2010). "Using adaptation tipping points to  
607 prepare for climate change and sea level rise: a case study in the Netherlands." *Wiley Interdisciplinary*  
608 *Reviews: Climate Change* 1(5): 729-740.

609 Kwadijk, J. C. J., M. Haasnoot, J. P. M. Mulder, M. M. C. Hoogvliet, A. B. M. Jeuken, R. a. a. van der  
610 Krog, N. G. C. van Oostrom, H. a. Schelfhout, E. H. van Velzen, H. van Waveren and M. J. M. de Wit  
611 (2010). "Using adaptation tipping points to prepare for climate change and sea level rise: a case study  
612 in the Netherlands." *Wiley Interdisciplinary Reviews: Climate Change* 1(5): 729-740.

613 Lavery, S. and B. Donovan (2005). "Flood risk management in the Thames Estuary looking ahead 100  
614 years." *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and*  
615 *Engineering Sciences* 363(1831): 1455-1474.

616 Lawrence, J., F. Sullivan, A. Lash, G. Ide, C. Cameron and L. McGlinchey (2013). "Adapting to  
617 changing climate risk by local government in New Zealand: institutional practice barriers and  
618 enablers." *Local Environment* 20(3): 298-320.

619 Maher, K. and J. Davis (2009). Ecological Character Description for the Forrestdale and Thomsons  
620 Lakes Ramsar Site; A report to the Department of Environment and Conservation. Perth, Western  
621 Australia, Murdoch University.

622 McFarlane, D., R. Stone, S. Martens, J. Thomas, R. Silberstein, R. Ali and G. Hodgson (2012).  
623 "Climate change impacts on water yields and demands in south-western Australia." *Journal of*  
624 *Hydrology* 475(0): 488-498.

625 Mitchell, B. and M. Hollick (1993). "Integrated catchment management in Western Australia:  
626 transition from concept to implementation." *Environmental Management* 17(6): 735-743.



627 Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca and J. Kent (2000). "Biodiversity  
628 hotspots for conservation priorities." *Nature* 403(6772): 853-858.

629 Nelson, D. R., W. N. Adger and K. Brown (2007). "Adaptation to Environmental Change:  
630 Contributions of a Resilience Framework." *Annual Review of Environment and Resources* 32(1): 395-  
631 419.

632 Niemi, G. J. and M. E. McDonald (2004). "Application of Ecological Indicators\*." *Annual Review of  
633 Ecology, Evolution, and Systematics* 35(1): 89-111.

634 Petrone, K. C., J. D. Hughes, T. G. Van Niel and R. P. Silberstein (2010). "Streamflow decline in  
635 southwestern Australia, 1950-2008." *Geophysical Research Letters* 37(11): n/a-n/a.

636 Poff, N. L., C. M. Brown, T. E. Grantham, J. H. Matthews, M. A. Palmer, C. M. Spence, R. L. Wilby,  
637 M. Haasnoot, G. F. Mendoza, K. C. Dominique and A. Baeza (2015). "Sustainable water management  
638 under future uncertainty with eco-engineering decision scaling." *Nature Clim. Change* advance online  
639 publication.

640 Ramsar (1994). The Ramsar Convention on Wetlands , as amended in 1982 and 1987, Ramsar  
641 Convention Secretariat, Gland, Switzerland: 5-5.

642 Reeder, T. and N. Ranger (2011). "How do you adapt in an uncertain world?: lessons from the Thames  
643 Estuary 2100 project."

644 Rijke, J., R. Brown, C. Zevenbergen, R. Ashley, M. Farrelly, P. Morison and S. van Herk (2012). "Fit-  
645 for-purpose governance: A framework to make adaptive governance operational." *Environmental  
646 Science & Policy* 22: 73-84.

647 ROKAMBA (2006). "Agreement between The Government of Australia and The Government of The  
648 Republic of Korea on The Protection of Migratory Birds." *Australian Treaty Series* 2007(ATS 24).

649 Scheffer, M., S. Carpenter, J. A. Foley, C. Folke and B. Walker (2001). "Catastrophic shifts in  
650 ecosystems." *Nature* 413(6856): 591-596.

651 Schlueter, M., R. McAllister, R. Arlinghaus, N. Bunnefeld, K. Eisenack, F. Hoelker, E. MILNER-  
652 GULLAND, B. Müller, E. Nicholson and M. Quaas (2012). "New horizons for managing the  
653 environment: a review of coupled social- ecological systems modeling." *Natural Resource Modeling*  
654 25(1): 219-272.



655 Semeniuk, C. A. (1987). "Wetlands of the Darling System- a geomorphic approach to habitat  
656 classification." *Journal of the Royal Society of West Australia* 69: 95-112.

657 Sivapalan, M. and G. Blöschl (2015). "Time scale interactions and the coevolution of humans and  
658 water." *Water Resources Research* 51(9): 6988-7022.

659 Sivapalan, M., H. H. G. Savenije and G. Blöschl (2012). "Socio-hydrology: A new science of people  
660 and water." *Hydrological Processes* 26(8): 1270-1276.

661 Smith, I. and S. Power (2014). "Past and future changes to inflows into Perth (Western Australia)  
662 dams." *Journal of Hydrology: Regional Studies* 2: 84-96.

663 Sommer, B. and R. H. Froend (2011). "Resilience of Phreatophytic Vegetation to Groundwater  
664 Drawdown: Is Recovery Possible Under a Drying Climate?" *Ecohydrology* 4(1): 67-82.

665 Sommer, B. and P. Horwitz (2009). "Macroinvertebrate cycles of decline and recovery in Swan  
666 Coastal Plain (Western Australia) wetlands affected by drought-induced acidification." *Hydrobiologia*  
667 624: 191-203.

668 Storey, A. W., R. M. Vervest, G. B. Pearson and S. A. Halse (1993). *Wetlands of the Swan Coastal  
669 Plain, Volume 7, Waterbird Usage of Wetlands on the Swan Coastal Plain*. Perth, Western Australia,  
670 Water Authority of WA.

671 Townley, L., J. Turner, A. D. Barr and M. Trefry (1993). *Wetlands of the Swan Coastal Plain Volume  
672 3: Interaction Between Lakes, Wetlands and Unconfined Aquifers*, Education Department of Western  
673 Australia.

674 van Slobbe, E., S. E. Werners, M. Riquelme-Solar, T. Bölscher and M. T. H. van Vliet (2016). "The  
675 future of the Rhine: stranded ships and no more salmon?" *Regional Environmental Change* 16(1): 31-  
676 41.

677 Verdon-Kidd, D. C., A. S. Kiem and R. Moran (2014). "Links between the Big Dry in Australia and  
678 hemispheric multi-decadal climate variability – implications for water resource management."  
679 *Hydrology and Earth System Sciences* 18(6): 2235-2256.

680 Walker, B. and J. A. Meyers (2004). "Thresholds in ecological and social-ecological systems: a  
681 developing database." *Ecology and Society* 9(2): 3.



682 Wardekker, J. A., A. de Jong, J. M. Knoop and J. P. van der Sluijs (2010). "Operationalising a  
683 resilience approach to adapting an urban delta to uncertain climate changes." Technological  
684 Forecasting and Social Change 77(6): 987-998.

685 Werners, S., S. Pfenninger, E. van Slobbe, M. Haasnoot, J. Kwakkel and R. Swart (2013). "Thresholds,  
686 tipping and turning points for sustainability under climate change." Current opinion in environmental  
687 sustainability 5(3): 334-340.

688 Werners, S., R. Swart, E. van Slobbe and T. Bölscher (2013). "Turning points in climate change  
689 adaptation." Global Environmental Change 16(3): 253-267.

690 Wildlife Conservation Act (1950). "Wildlife Conservation Act 1950." Government of Western  
691 Australia 077 of 1950: (14 & 15 Geo. VI No. 77).

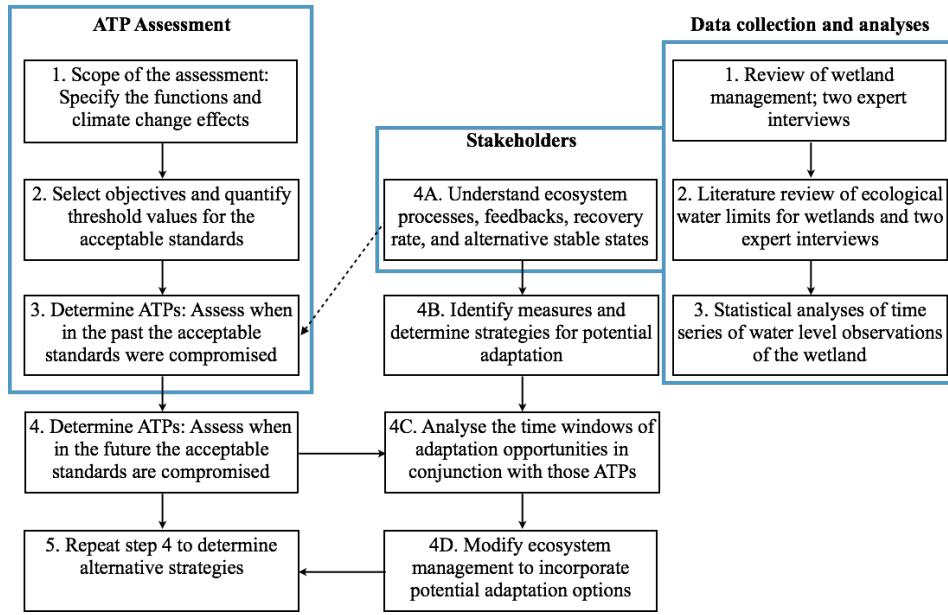
692 Zevenbergen, C., W. Veerbeek, B. Gersonius and S. Van Herk (2008). "Challenges in urban flood  
693 management: travelling across spatial and temporal scales." Journal of Flood Risk Management 1(2):  
694 81-88.

695

696

697



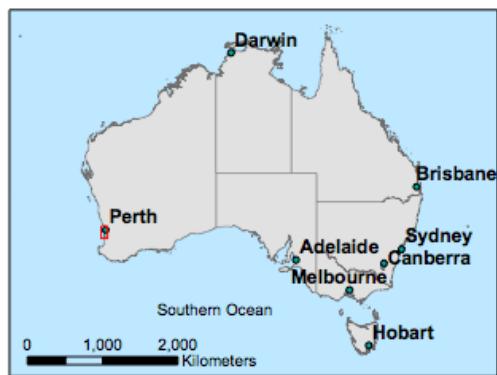
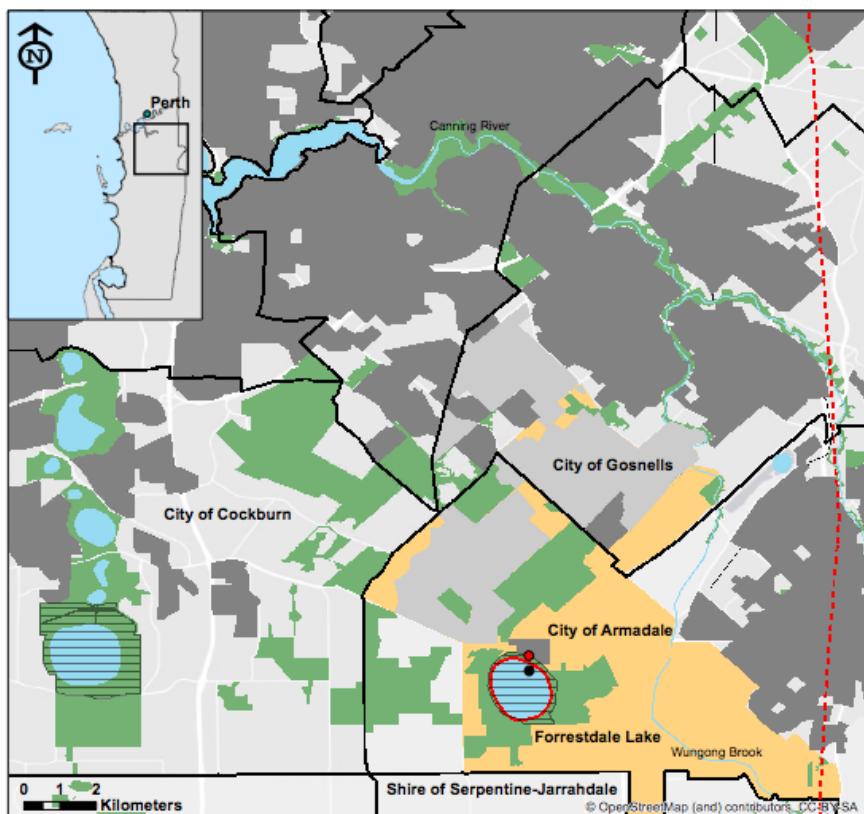

698 Figure 1 The complete Adaptation Tipping Point methodology with an overview of the steps  
699 undertaken in this study (blue boxes) and the according data collection and analyses (Adapted from:  
700 Kwadijk et al. 2010).  
701 Figure 2 Location of Forrestdale Lake (32° 09' 30" S; 115° 56' 16" E) within its groundwater  
702 catchment with the indication of increasing urbanisation in the catchment; the multiple management  
703 authorities; and protection policies (map projection GDA94).  
704 Figure 3 Growing water demand caused by population growth (ABS 2014) in Perth with decreasing  
705 water availability as a result of decreasing rainfall (BoM 2016).  
706 Figure 4 A historical representation of time and scale the traditional human-nature system and water  
707 resources system of Forrestdale Lake with indicated key events of the four subsystems: natural  
708 resources, infrastructure, socio-economics and institution.  
709 Figure 5 Ecological resilience and legislation: across spatial levels, shows large scale impacts through  
710 the catchment that accumulate and result in exceedance of thresholds for ecosystem services.  
711 Figure 6 Comparison of the onset and duration of drought from 1978-2012 at Forrestdale Lake prior  
712 and post 1995. Each bar represents a dry period which is defined as 1 month per year (post 1995) and ≤  
713 3 consecutive months (post 1995).  
714 Figure 7 Ecosystem regime shift on the onset of dry periods with declining water levels and the change  
715 of conditions of ecological processes over time. Incremental management and policy compared to non-  
716 linear ecosystem responses over time are ineffective when sudden changes occur.  
717



718 Table 1 Threshold values for the ecological objectives to determine ATPs for surface water (SW) and  
719 groundwater (GW) levels in (non)-consecutive months, represented as the mean water level in  
720 Australian Height Datum in meters (mAHD).  
721 Table 2 Adaptation tipping points (1 in 5 years exceedance water depth (m) calculated with eq. 1) for  
722 each ecological function of Forrestdale Lake with red indicating an ATP has occurred and green not  
723 occurred.  
724



725

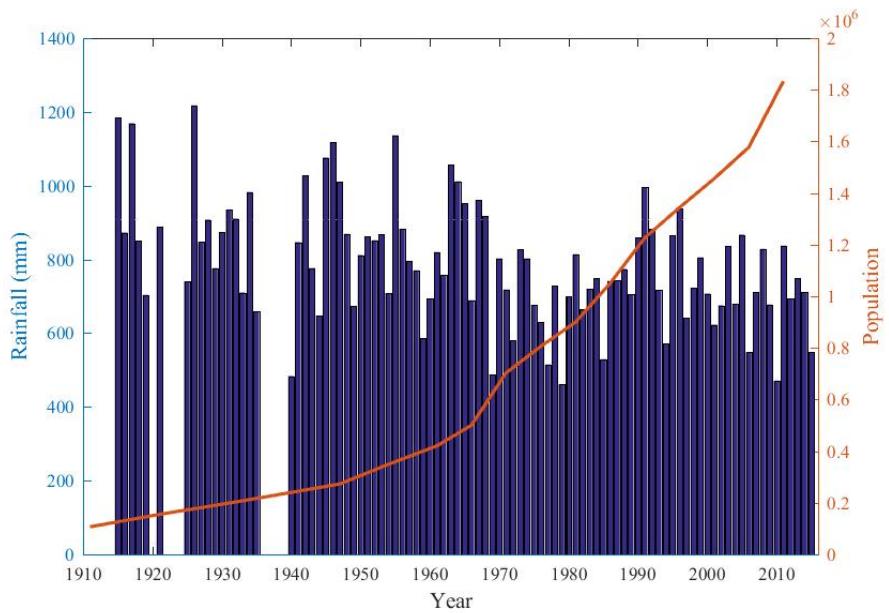

726

727

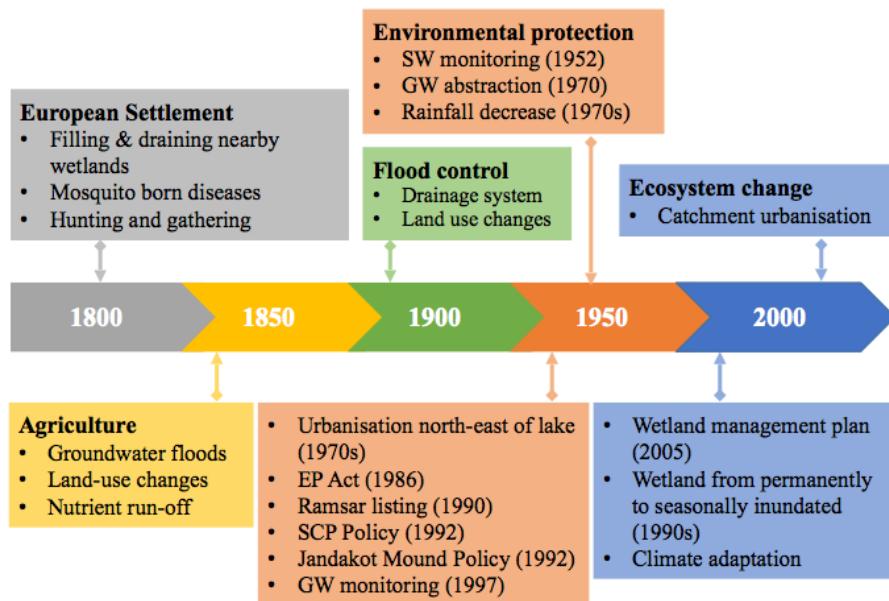


728

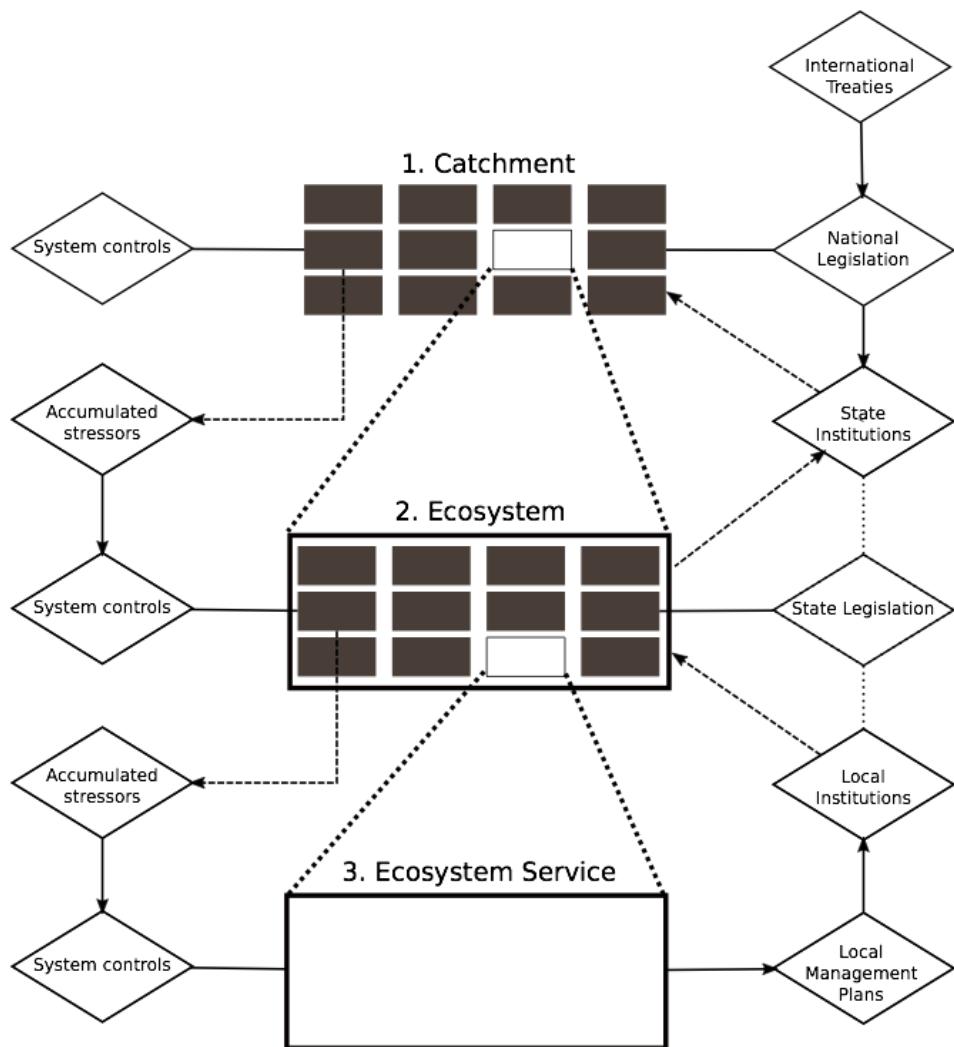



729




730

731


732



733



734  
735  
736  
737  
738



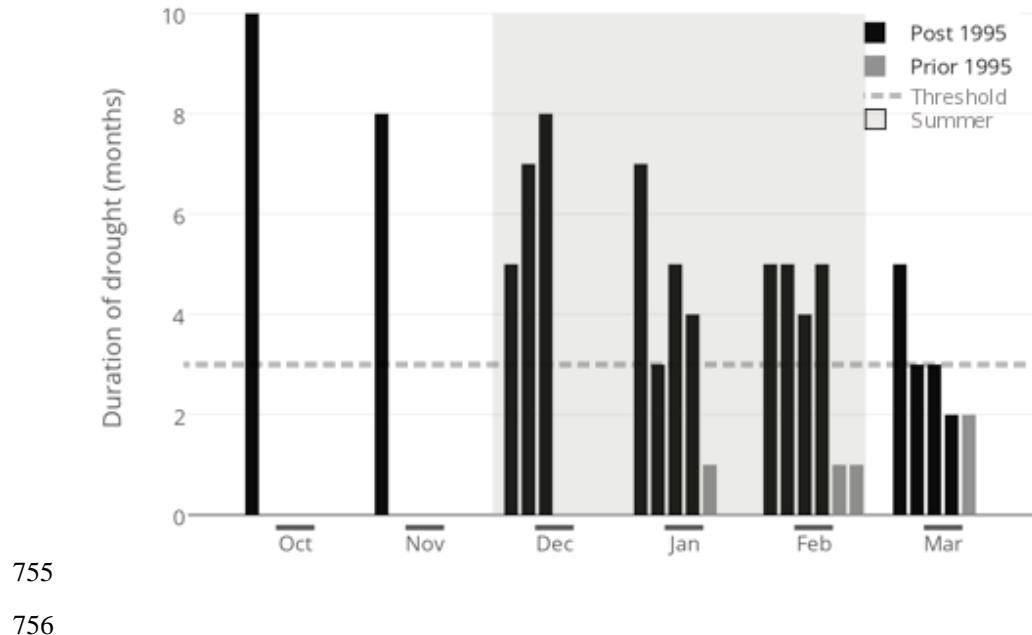
739

740

741



| Ecological objectives                                    | Water level<br>(mAHD) | Threshold definition               | Source                                        |
|----------------------------------------------------------|-----------------------|------------------------------------|-----------------------------------------------|
| 1. protect vegetation and mammals; definition of drought | SW < 21.6             | 3 consecutive months; 1 in 5 years | EPA (1992); Froend et al. (2004); CCWA (2005) |
| 2. prevent mosquitoes                                    | SW < 21.6             | 1 month per year; 1 in 1 year      | CCWA (2005)                                   |
| 3. protect waterbirds                                    | SW < 21.6             | 6 consecutive months; 1 in 5 years | EPA (1992); Storey et al. (1993); CCWA (2005) |
| 4. protect frogs                                         | SW < 21.6             | 8 months; 1 in 5 years             | Froend et al. (2004); CCWA (2005)             |
| 5. protect tortoises                                     | SW < 21.6             | 3 months; 1 in 5 years             | Froend et al. (2004); CCWA (2005)             |
| 6. protect macro-invertebrates                           | SW < 22.0             | 3 consecutive months; 1 in 5 years | Froend et al. (2004); CCWA (2005)             |
| 7. prevent exposure of Acid Sulphate Soils               | GW < 21.1             | 3 consecutive months; 1 in 5 years | Froend et al. (2004)                          |
| 8. maintain sediment processes                           | GW < 21.1             | 3 consecutive months; 1 in 5 years | Froend et al. (2004)                          |

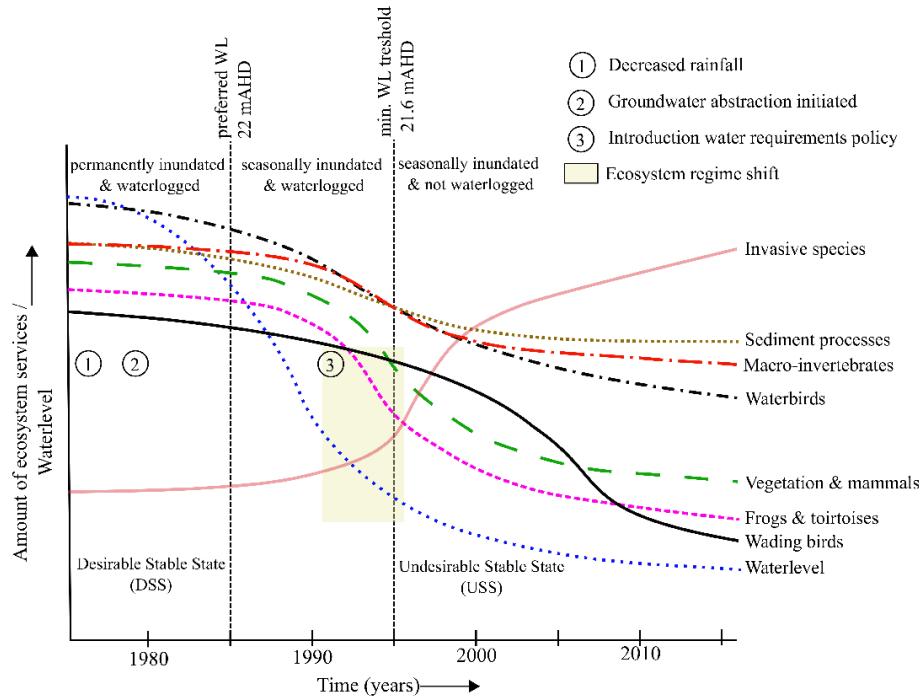

742

743



| Ecological objective                       | Water level (mAHD) |           |           |
|--------------------------------------------|--------------------|-----------|-----------|
|                                            | Threshold          | 1978-1995 | 1996-2012 |
| 1. protect vegetation and mammals          | SW < 21.6          | 21.66     | 21.39     |
| 2. prevent mosquitoes                      | SW < 21.6          | 21.33     | 21.41     |
| 3. protect waterbirds                      | SW < 21.6          | 21.84     | 21.44     |
| 4. protect frogs                           | SW < 21.6          | 22.02     | 21.61     |
| 5. protect tortoises                       | SW < 21.6          | 21.66     | 21.39     |
| 6. protect macro-invertebrates             | SW < 22.0          | 21.66     | 21.39     |
| 7. prevent exposure of Acid Sulphate Soils | GW < 21.1          | 21.66     | 21.39     |
| 8. maintain sediment processes             | GW < 21.1          | 21.66     | 21.39     |

744  
 745  
 746  
 747  
 748  
 749  
 750  
 751  
 752  
 753  
 754




755

756



757



758