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Abstract. Projected hydrological variability is important to future water resources management. Such a projection is often 

driven by downscaled general circulation model variables. This study developed the multisite multivariate climate change 

scenarios through three steps: (i) spatially downscaling GCMs with a transfer function method, (ii) temporally downscaling 10 

GCMs with a single-site weather generator, and (iii) reconstructing the spatiotemporal correlations with a nonparametric 

shuffle procedure. Through these steps, multisite precipitation and temperature change scenarios for the period of 2011–2040 

were generated from five GCMs under four Representative Concentration Pathways (RCP) to project future changes in 

streamflow variability with the Soil and Water Assessment Tool (SWAT) for the Jing River catchment on China’s Loess 

Plateau. The correlation reconstruction method performed well for inter-site and -variable correlation reproduction and 15 

hydrological modeling. SWAT model was well calibrated with monthly streamflow to have a model efficiency coefficient of 

0.78. The annual mean precipitation would not change, while the mean maximum and minimum temperatures would 

significantly increase by 1.6±0.3 and 1.3±0.2 ℃; the variance ratios of 2011–2040 to 1961–2005 were 1.15±0.13 for 

precipitation, 1.15±0.14 for mean maximum temperature and 1.04±0.10 for mean minimum temperature. A warmer climate 

was detected for the flood season while winter and spring would be wetter and warmer; the intra- and inter-annual variations 20 

of climate would be greater than those of the current climate. The total annual streamflow would change insignificantly, but 

its variance ratios of 2011–2040 to 1961-2005 would increase by 1.25±0.55. The streamflow variability would be greater 

over most months at a seasonal scale due to the increase of monthly maximum streamflow and the decrease of monthly 

minimum streamflow. The increase in streamflow variability was mainly attributed to the larger positive contributions from 

increased precipitation variances than the negative contributions from increased temperature means. 25 

1 Introduction 

Hydrological variability, other than changes in mean state, can cause more disasters such as flooding or drought, and 

seriously threaten the natural and social systems. The worldwide detected changes in hydrological variability have been paid 

a great attention in recent years (Chen et al., 2014; Chevalier et al., 2014; Rudorff et al., 2014; Tarhule et al., 2015); 

especially, the potential changes in hydrological variability under future climate change have been largely evaluated to 30 
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provide information for water resources management (Zierl and Bugmann, 2005; Hirabayashi et al., 2013; Arnell and 

Gosling, 2014; Dankers et al., 2014; Prudhomme et al., 2014; Schewe et al., 2014). However, the response of hydrological 

variability to climate variability has not been conclusive due to limited surface observations (IPCC, 2013), complex 

watershed properties (Andrés-Doménech et al., 2015), hydrological modeling and development of climate change scenarios 

(Wilby and Harris, 2006). The extent to which the hydrological variability is influenced by climate variability should be 5 

more thoroughly investigated based on technique improvement. 

According to the global-scale projections, the hydrological variability will not change uniformly across the globe. For 

example, the 30-yr flood will occur more frequently over 50% of the globe (Dankers et al., 2014) and the increase in 

hydrological drought are projected for over 40% of analyzed land area (Prudhomme et al., 2014). Besides catchment 

properties, the spatial variations in hydrological variability changes are due to those in climate changes. For example, the 10 

drought increase is generally located where precipitation decreases; however, drought still increases in some areas with 

increased precipitation if stronger evaporation is driven by temperature increase (Prudhomme et al., 2014). Thus, the 

mechanism by which climate variability influences hydrological variability should be analyzed. 

The largest uncertainties in impact assessment of climate change on hydrology originate from climate change scenario 

development, including GCMs, emission scenarios, and downscaling methods (Wilby and Harris, 2006; Kingston and Taylor, 15 

2010; Chen et al., 2011). These uncertainties, to some extent, can be interpreted by introducing multiple climate models, 

emission scenarios, and downscaling methods. However, one aspect related to downscaling method, i.e. reconstructing 

spatial structure of climate, has been paid a great attention in downscaling technique, but rarely been incorporated in 

hydrological modeling. When hydrological models are applied to large-scale catchments with multisite climate not 

considering spatial structure, the high flow in one sub-basin can be offset by low flow in a neighboring sub-basin (Wilks, 20 

1998; Thyer and Kuczera, 2003; Clark et al., 2004b; Wheater et al., 2005). Therefore, failure to feed hydrological models 

with spatiotemporally correlated climate would reduce hydrological variability and potentially misrepresent climate risks. 

Numerous multisite downscaling methods have been developed, such as dynamic methods based on regional climate models 

(RCMs) (Cooley and Sain, 2010; Bárdossy and Pegram, 2012; Pegram and Bárdossy, 2013), empirical scaling methods 

(Allerup, 1996; Bürger and Chen, 2005), Generalized Linear Models (GLM) (Wheater et al., 2005; Yang et al., 2005; Lu and 25 

Qin, 2014; Asong et al., 2016), Artificial Neural Network (ANN) (Harpham and Wilby, 2005; Cannon, 2008), 

Nonhomogeneous Hidden Markov Model (NHMM) (Charles et al., 1999; Bellone et al., 2000; Fu et al., 2013), and weather 

generators (Wilks, 1999a; Qian et al., 2002; Mehrotra and Sharma, 2010; Khalili et al., 2013; Srivastav and Simonovic, 

2015). So far, their application to hydrological modeling is limited for most methods except for the stochastic weather 

generator. For example, the parametric weather generators were used to investigate the response of hydrological variability 30 

to the spatial structure of climate (Watson et al., 2005; Khalili et al., 2011; Chen et al., 2016; Li et al., 2017), and generate 

climate change scenarios to assess the changes in irrigated agriculture in Chile (Meza et al., 2012). 
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The parametric weather generators, including the Richardson-type model and circulation-based model (Katz and Parlange, 

1996), are widely used for hydrological modeling because of easy implementation. The Richardson-type model directly 

perturbs the daily weather generator parameters based on changes in the corresponding monthly statistics (Wilks, 1999b), 

and the circulation-based model specifies daily-varying parameters using regressions between local predictands and large-

scale predictors (Wilby et al., 2002). After parametric adjustment, the two models are driven with correlated random 5 

numbers to capture the spatial structure exhibited in the daily weather data. Especially, with direct parametric adjustments, 

the Richardson-type model could be used more fruitfully either for impact assessment or sensitivity analysis. Specifically, it 

can be used in the ‘top down’ framework of impact study by downscaling GCM outputs to assess the potential impacts, and 

also the ‘bottom-up’ or stress-testing adaptation options to explore the sensitivity of hydrology to changed climate conditions 

by direct adjustments of daily weather generator parameters. 10 

For the Richardson-type weather generators, the generation of correlated random numbers is computationally-intensive. 

Instead, an improvement of the Richardson-type model, through replacing the preprocessing steps of random number 

generation with a postprocessing procedure for recorrelating the generated data, has been elaborated in recent years because 

of its high efficiency and good performance. Currently, the algorithm improvement is only carried out for multisite 

simulation of precipitation without consideration of multivariate correlation (Tarpanelli et al., 2012; Li, 2014). Further 15 

extension of this method to multisite and multivariate downscaling will promote the application of weather generator for 

impact assessment of climate change. 

Considering the importance of evaluating the potential changes in hydrological variability and the difficulty in applying the 

Richardson-type weather generator to multisite and multivariate downscaling, this study is to extend an efficient multisite 

precipitation generator, i.e. two-stage weather generator (TSWG) (Li, 2014), to a multisite and multivariate GCM 20 

downscaling method, and to further assess the impacts of climate change on streamflow variability in a river basin on 

China’s Loess Plateau by combining the generated climate change scenarios with a distributed hydrological model. This 

study presents a framework for maximizing the application of the parametric weather generator to multisite and multivariate 

simulation as well as provides useful information for water resources management. 

2 Data and Methodology 25 

2.1 Data description 

To project the impact of climate change on hydrology, two datasets are essential: one for climate change scenario 

development and the other for hydrological simulation. For climate change scenario development, climate forcing data 

included historical daily precipitation (P) and maximum and minimum temperatures (Tmax and Tmin) from 18 meteorological 

stations for the period of 1961–2005, and GCM-simulated and projected monthly P, Tmax, and Tmin for the period of 1961–30 
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2005 and 2011–2040, respectively. The period 2011‒2040 was chosen for impact study because of two reasons: (i) the 

results from the near-term horizon can be directly used for adaption, and (ii) the uncertainties in climate projection are the 

least since they are increasing over time due to the uncertainties from GCMs and emission scenarios (IPCC, 2013). 

Table 1. Data used for future climate change scenario construction 

GCM Institute Resolution Emission scenarios* 

CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) 2.8°×2.8° his, rcp2.6, rcp4.5, rcp8.5 

CSIRO-

Mk3.6.0 

Commonwealth Scientific and Industrial Research 

Organization in collaboration with Queensland Climate Change 

Centre of Excellence (Australia) 

1.875°×1.875° 
his, rcp2.6, rcp4.5, rcp6.0, 

rcp8.5 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (USA) 2.5°×2.0° 
his, rcp2.6, rcp4.5, rcp6.0, 

rcp8.5 

HadGEM2-ES Met Office Hadley Centre (UK) 1.875°×1.25° 
his, rcp2.6, rcp4.5, rcp6.0, 

rcp8.5 

MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 1.875°×1.875° his, rcp2.6, rcp4.5, rcp8.5 

Five GCMs (CanESM2, CSIRO-Mk3.6.0, GFDL-CM3, HadGEM2-ES, and MPI-ESM-LR) under historical and four 

representative concentration pathways (RCP2.6, 4.5, 6.0, and 8.5) emission scenarios from Intergovernmental Panel on 5 

Climate Change – the fifth Assessment Report (IPCC AR5) were used. The GCMs provide data for almost all emission 

scenarios except for CanESM2 and MPI-ESM-LR that have no data for the RCP 6.0 (Table 1). The four RCPs are named for 

the radiative forcing values for the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m
2
, respectively). These RCPs cover most possible 

future greenhouse emission scenarios, and GCMs associated with these RCPs have projected significant temperature rises 

(IPCC, 2013). 10 

The dataset for hydrological simulation is from the Jing River catchment on China’s Loess Plateau of China (Figure 1). As 

SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998) is used to simulate the hydrological cycle, data and/or maps 

related to climate, soil, vegetation, and hydrology are essential. These datasets were collected from the Data Sharing 

Infrastructure of Loess Plateau, including daily weather data from 18 stations, soil map and properties, land use map for 

1986, monthly streamflow at the catchment outlet (the Zhangjiashan station). 15 

The Jing River catchment is selected as the study area because it is a typical catchment with high intra-annual and inter-

annual variability of climate and runoff. The variability has been threatening the water resources management and soil 

erosion. The catchment has an area of 45,421 km
2
 and is located within a transition zone between a subhumid and semiarid 

climate. Although the area-averaged annual precipitation was only 542.1 mm, 55% of the precipitation fell in the flood 

season between July and September (1961-2005). The several extreme rainfall events can generate severe soil erosion with 20 

soil loss of 5,015 tons km
-2

 a
-1

 over 1961–2000. In addition, with a dry climate and runoff ratio of 7%, the catchment is 

subject to a severe water shortage. Obviously, the water-related problems in the Jing River catchment are highly correlated 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-295, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



5 

 

with climatic and hydrological variability. Therefore, potential impacts of climate changes on hydrological variability should 

be further evaluated. 

 

Figure 1. Location of the Jing River catchment 

2.2 Multisite and multivariate downscaling 5 

The multisite and multivariate GCM downscaling was carried out through three steps. The first step spatially downscaled 

GCM outputs from a grid scale to a station scale, the second step disaggregated the spatially downscaled GCM outputs from 

a monthly scale to a daily scale, and the third step reconstructed the multisite and multivariate correlations. The schematic 

diagram of the methodology is presented in Figure2 and a brief introduction of the methods is given as follows. 

The first and second steps are for single-site GCM downscaling, and the popular technique is to combine transfer function 10 

method for spatial downscaling with weather generator for temporal downscaling. Here, we used parametric quantile 

mapping method and a Richardson-type weather generator for these two steps (Zhang and Liu, 2005; Li et al., 2011). For the 

first step, a linear and nonlinear transfer functions were respectively fitted with the rank-ordered monthly observations and 

GCM data for each calendar month over 1961–2005, and then applied to the period of 2011–2040 to calculate the monthly 

mean and variance. The nonlinear function was used to transform the GCM monthly precipitation values that were within the 15 

range in which the nonlinear function was fitted, while the linear function was used for the values outside the range. 

Temporal downscaling was then implemented by adjusting the precipitation- and temperature-related parameters of a single-

site weather generator (SSWG) calculated from the baseline period. In SSWG, the precipitation occurrence and amount were 

simulated by the first-order two-state Markov Chain and the skewed normal distribution based on our previous evaluation 
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(Li et al., 2014), while temperature was generated by the normal distribution. Thus, the precipitation-related and 

temperature-related parameters for adjustment include transitional probabilities of wet day following wet day (Pw/w) and wet 

day following dry day (Pw/d), mean and variance of daily precipitation of wet days and mean and variance of the maximum 

and minimum temperature. They were adjusted according to some relationships developed with the observation. The detailed 

procedure can be found in Zhang and Liu (2005) and Li et al. (2011). The adjusted parameters were used to drive SSWG to 5 

obtain climate change scenarios for a period of 100 years. To test the performance of our method for reconstruction of 

multisite and multivariate correlation, the temperature generation was not dependent on the dry/wet status as the regular 

routine in weather generators, and no inter-site or inter-variable correlations were taken into account during the single-site 

downscaling. 

 10 

Figure 2. Schematic diagram of the multisite and multivariate GCM downscaling and the structure of this study 
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For the third step, the method for pairing independent variables to induce the desired rank correlations (Iman and Conover, 

1982), which was successfully used in our previous study for multisite precipitation simulation by the two-stage weather 

generator (TSWG) (Li, 2014), was introduced to obtain the multisite and multivariate correlations. The theoretical basis is 

described as follows. To assign a desired correlation matrix [C] to a random row vector [X], two steps should be carried out. 

[C] is firstly decomposed to [C]=[R][R′], and then the upper triangular matrix [R′] is used to multiply [X] to result in a new 5 

matrix [X][R′] with the desired correlation matrix [C]. Specifically, for this study, the daily time series of P, Tmax, and Tmin 

generated by SSWG for all stations and for each month were put in one matrix, where the rows represented days and the 

columns represented stations and variables. Then the ranks of each column were converted to a standard normal distribution 

by calculating the van der Waerden scores, which can be calculated by 𝛷−1{𝑖/(𝑛 + 1)}, where Φ
−1

 is the inverse function of 

the standard normal distribution, and i stands for the rank of each column. The score matrix was multiplied by the 10 

decomposed correlation matrix [R′] to get a new matrix with the target correlation coefficients. The ranks in the new matrix 

were used to shuffle the raw matrix. During the above shuffle procedure, the non-positive correlation matrices and the tied 

ranks due to dry days should be adjusted. The non-positive correlation matrices were amended by a spectral decomposition 

procedure (Rebonato and Jäckel, 2000). The tied ranks can be solved by assigning small values of less than the threshold 

definition of a wet event (0.1 mm in this study) to dry days. As the data rearrangements perturb the occurrence structure, the 15 

occurrence adjustment should be carried out according to those from SSWG. Detailed procedures can be found in Li (2014). 

2.3 Hydrological simulation 

SWAT, a physically based distributed hydrological model for studying the impact of environmental changes on hydrology 

(Arnold et al., 1998), was employed to evaluate the response of streamflow to climate change. SWAT was calibrated using 

the observed data, and then it was used to simulate hydrological processes for the period of 2011–2040. The two main 20 

components in the hydrological cycle, i.e. runoff and potential evapotranspiration (ET0), were respectively simulated with 

the curve number method (USDA-SCS, 1972) and the Hargreaves method (Hargreaves et al., 1985). The Hargreaves method 

was chosen out of two other options (Penman-Monteith and Priestley-Taylor) because the climate projection in this study 

only considered changes in temperature. As the Hargreaves-based ET0 depends mostly on temperature, the changes in 

projected temperature can thus be better translated into evaporation losses. 25 

Monthly streamflow for the period of 1960–1970 in Zhangjiashan gauge station, the watershed outlet, was used to calibrate 

SWAT. The period of 1960–1970 was chosen because of the small intensity of human activities and changes in climate. The 

soil conservation measures as well as the other human activities were the smallest before 1970 and thus have the minimum 

impacts on rainfall-runoff relationships. The period before 1970 is therefore used by the Yellow River Conservancy 

Commission as the baseline to assess the effects of soil conservation measures. Therefore, 1961–1970 is a reasonable period 30 

for SWAT calibration and validation. 
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1960–1964 was used for model calibration and 1965–1970 was used for model validation where the calibrated parameters 

were used. Automated calibration/validation and uncertainty analysis were carried out by the Sequential Uncertainty Fitting 

version 2 (SUFI-2) in SWAT-CUP (Abbaspour et al., 2007). After sensitivity analysis, the parameters most responsible for 

runoff simulation were identified and calibrated with the objective function of the Nash-Sutcliffe efficiency coefficient. In 

this study, the sensitive parameters mainly include curve number (CN), base flow recession coefficient (ALPHA_BF), soil 5 

evaporation coefficient (ESCO), available water capacity (SOL_AWC), and groundwater delay time (GW_DELAY). The 

Nash-Sutcliffe efficiency coefficients for the two periods were both 0.78, indicating that SWAT can satisfactorily simulate 

the streamflow (Figure 3). 
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Figure 3. Observed and simulated runoff in Zhangjiashan station of the Jing River during 1961-2005 (CAL and VAL shows 10 

the period for model calibration and validation) 

Although significant soil and water conservation projects in our study basin since the 1990s have affected the runoff 

processes and streamflow amount, they were not taken into account in our SWAT simulations, which may cause simulation 

errors for the period of 1991–2005. To exclude the impacts of human activities, the natural runoff represented by the SWAT-

simulated runoff for the period of 1960–2005 was used hereafter as baseline to emphasize the climate-induced changes in 15 

runoff. 

During the hydrological simulation for both current and future periods, the land surface conditions are assumed to be 

invariant. According to our analysis, the land use pattern in 2010 is similar as that in 1986 though there is variability during 

1986-2010 (Li et al., 2016). Further, the current vegetation is approaching the sustainable water resource limits (Feng et al., 

2016). Thus, the vegetation cannot increase in future and probably keep invariant according to the land use planning of the 20 

local government. Accordingly, the assumption of the invariant land use pattern is reasonable. 
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2.4 Statistical analysis 

To draw reliable conclusions regarding changes in climate and hydrology, the significance of future changes from the 

baseline was examined with the student’s t-test (p=0.05). Univariate linear regression analysis was used to obtain the 

sensitivity coefficients between climate changes and streamflow response. Specifically, based on the data of 18 scenarios×12 

months, the changes in mean and variance of monthly P, Tmax, and Tmin were used to develop relationships with the changes 5 

in the mean, variance, or extremes of monthly streamflow, respectively. Then the slope of the linear equation was used as the 

sensitivity coefficient. 
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Figure 4. a-b, observed (OBS) versus generated multisite and multivariate correlations of daily precipitation (P), maximum 

(Tmax) and minimum temperature (Tmin); c-h, average and standard deviations (STD) of monthly P, Tmax and Tmin 10 

3 Results and Discussion 

3.1 Performance of correlation reconstruction method 

To validate the performance of the proposed method, the downscaled parameters related to changes in precipitation and 

temperature from RCP2.6 in CanESM2 were used to generate multisite and multivariate climate change scenarios. Since no 

correlation was considered during the single-site GCM downscaling, the inter-site and -variable correlations fluctuated 15 

around zero (Figure 4a). However, after rearranging the structure of data matrix, the multisite and multivariate correlations 

were well reproduced (Figure 4b). In addition, the average and standard deviations of monthly precipitation and monthly 

mean temperature were well reproduced since the shuffle procedure did not change them from SSWG (Figure 4c-h). The 
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slightly underestimated standard deviations of monthly precipitation were caused by the inherent weakness of weather 

generator, i.e. underestimation of low-frequency variability. The statistics of monthly mean temperature were almost the 

same as the GCM-downscaled parameters. The above results imply that the proposed method is effective in correlation 

reconstruction, and can satisfactorily reproduce the statistics including low-frequency variability. 

To carry out an impact assessment of climate change, the projected climate changes should be transferred to hydrological 5 

simulation to the greatest extent. The observed precipitation and temperature for the period of 1961–2005 were used to 

generate a 100-year climate with SSWG and TSWG to drive SWAT, and then the simulated hydrological statistics were 

compared with observations to ensure the correlation reconstruction method did not bring errors (Figure 5). Obviously, the 

three series of climate gave a similar monthly mean streamflow; SSWG underestimated the variances and maxima of the 

monthly streamflow while overestimated its minima; however, TSWG gave similar variances and extremes of the monthly 10 

streamflow except for a few months. The above results suggested that the developed multisite and multivariate climate 

change scenarios based on TSWG can be effectively used to simulate hydrological variability and extreme. 
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Figure 5. Statistics of monthly streamflow for the observed (OBS) and simulated by SSWG- and TSWG-generated climate. 

The observation is for the period 1961‒1990, the simulated runoff is from the 100-year climate generated from the statistical 15 

parameters from the observed climate. 
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3.2 Projected climate changes 

The climate over 2011–2040 compared to that over 1961–2005 appeared to be drier and warmer under most scenarios (Table 

2), and the trend was more significant under higher RCPs. Averaged over all scenarios, the annual mean precipitation 

decreased by –1.3±4.4%, while Tmax and Tmin increased by 1.6±0.3 and 1.3±0.2 ℃, respectively. Comparing the projected 

climate from all scenarios with the baseline data (p=0.05), the annual mean precipitation would not change, while 5 

temperature would significantly increase during 2011–2040. 

Table 2. Relative changes in annual mean climate between 1961-2005 and 2011-2040 

 P Change, % 
 Tmax Change, ℃ 

 

Tmin Change, ℃ 

RCP 2.6 4.5 6.0 8.5  2.6 4.5 6.0 8.5 

 

2.6 4.5 6.0 8.5 

CanESM2 +9.2 -4.2 — +5.1 
 

+1.8 +1.7 — +2.0 

 

+1.4 +1.4 — +1.6 

CSIRO_3.6.0 +0.3 +0.3 -3.3 -3.3 
 

+1.8 +1.4 +1.1 +1.6 

 

+1.5 +1.2 +0.8 +1.3 

GFDL_CM3 +0.1 -1.5 +1.3 -7.7 
 

+1.8 +1.8 +1.5 +2.1 

 

+1.4 +1.4 +1.2 +1.6 

HadGEM2-ES -6.3 -2.2 -2.9 -6.7 
 

+2.0 +1.6 +1.5 +2.0 

 

+1.5 +1.3 +1.2 +1.4 

MPI-ESM-LR +4.5 -0.7 — -4.7 
 

+1.2 +1.2 — +1.3 

 

+1.2 +1.2 — +1.3 

Mean-each RCP +1.5 -1.7 -1.6 -3.4 
 

+1.7 +1.6 +1.4 +1.8  +1.4 +1.3 +1.1 +1.4 

p-each RCP 0.29 0.05 0.19 0.10 
 

<0.01 <0.01 0.01 <0.01  <0.01 <0.01 <0.01 <0.01 

Mean-all RCPs -1.3 
 

+1.6  +1.3 

p-all RCPs 0.12 
 

<0.01  <0.01 

Mean-each/all RCP, average changes for all GCMs under one/all RCP;  

p-each/all RCP, significance of t-test for all GCMs under one/all RCP. 

The differences in monthly mean climate between 2011–2040 and 1961–2005 showed the seasonal patterns of climate 

change (Figure 6). Precipitation significantly decreased from August to October while increasing from November through 

March and in May (Figure 6a), and temperature increased significantly across all seasons (Figure 6b and c). Therefore, a 

drier climate would be expected during the flood season while a wetter climate might exist for winter and spring during 10 

2011–2040. 

The variances in precipitation and temperature during 2011–2040 relative to 1961–2005 tended to increase under most 

scenarios (Table 3). Averaged over all scenarios, the variance ratios of P, Tmax and Tmin were 1.15±0.13, 1.15±0.14 and 

1.04±0.10, respectively. The significance test (p=0.05) further confirmed the variance increase for P and Tmax, which 

suggested that future climate would be more variable than the present climate. 15 

The variance of monthly precipitation tended to increase under most scenarios and for most months (Figure 6d); however, 

the upward trends in variances were only significant for six months (1
st
, 3

rd
, 5

th
, 7

th
, 11

th
 and 12

th
 month). For temperature, 

monthly variances increased over the first half of the year and decreased in the second half of the year (Figure 6e&f), and the 
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significance test further showed that Tmax variances significantly increased in the first half of the year except for March and 

May, while Tmin variances significantly increase from March to May. Overall, the increase in climate variability is significant 

during the first half of the year. 
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Figure 6. Changes in the averages and variances of monthly climate during 2011‒2040 relative to 1961‒2005 5 

Table 3. Variance ratios of precipitation and temperature during 2011-2040 relative to 1961-2005 

 
P variance ratio  Tmax variance ratio 

 
Tmin variance ratio 

RCP 2.6 4.5 6.0 8.5  2.6 4.5 6.0 8.5 
 

2.6 4.5 6.0 8.5 

CanESM2 1.34 1.12 — 1.19  1.18 1.41 — 1.40 
 

1.00 1.27 — 1.20 

CSIRO_3.6.0 1.02 1.26 1.26 1.12  1.14 1.15 1.19 1.22 
 

0.91 1.06 0.97 1.17 

GFDL_CM3 1.38 1.31 1.24 1.15  1.21 1.14 1.03 1.04 
 

1.08 1.03 0.92 1.04 

HadGEM2-ES 1.05 1.16 1.01 1.03  1.00 1.16 1.21 1.35 
 

1.07 0.94 1.01 1.10 

MPI-ESM-LR 1.00 0.93 — 1.09  0.94 1.04 — 0.91 
 

0.94 1.01 — 0.95 

Mean-each RCP 1.16 1.16 1.17 1.12  1.09 1.18 1.14 1.18  1.00 1.07 0.97 1.09 

p-each RCP 0.06 0.040 0.08 <0.01  0.07 0.02 0.06 0.06  0.50 0.16 0.16 0.06 

Mean-all RCPs 1.15  1.15  1.04 

p-all RCPs <0.01  <0.01  0.07 

Mean-each/all RCP, average changes for all GCMs under one/all RCP; 

p-each/all RCP, significance of t-test for all GCMs under one/all RCP. 
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3.3 Hydrological response to climate changes 

The streamflow in the Jing River was simulated with SWAT using the 18 climate change scenarios as external forcing 

(Table 4). Averaged over all scenarios, the annual mean streamflow decreased insignificantly by 1.0±15%. The seasonal 

patterns of streamflow changes were similar under all the RCPs (Figure 7a). Monthly mean streamflow decreased from 

September through November and increased during the other months, and the greatest increase occurred during winter and 5 

spring. The t-test further showed that the upward trend from November through June and the downward trend in September 

and October were significant, while no significant trend was detected for July and August. 

Table 4. Changes in average and variance of annual streamflow, mean monthly extreme streamflow during the 2020s relative to 1961-2005 

 
Changes in average, % 

 
Variance ratio 

 
Changes in maxima, % 

 
Changes in minima, % 

RCP 2.6 4.5 6.0 8.5 
 

2.6 4.5 6.0 8.5 
 

2.6 4.5 6.0 8.5 
 

2.6 4.5 6.0 8.5 

CanESM2 38 -8 — 2 
 

2.85 1.23 
 

0.98 
 

75 31 — 27 
 

-10 -25 — -18 

CSIRO-3.6.0 -6 7 2 -6 
 

0.76 1.32 1.10 0.99 
 

9 64 65 15 
 

-34 -18 -45 -34 

GFDL-CM3 9 5 3 -17 
 

1.32 1.70 1.13 0.75 
 

43 43 34 25 
 

-32 -33 -39 -49 

HadGEM2-ES -16 -10 26 -6 
 

0.71 1.05 2.25 1.07 
 

-5 21 60 22 
 

-36 -40 -29 -47 

MPI-ESM-LR 16 -3 — -17 
 

1.51 1.15 
 

0.68 
 

42 21 — 9 
 

-35 -20 — -46 

Mean-each RCP 8 -2 10 -9 
 

1.43 1.29 1.49 0.89 
 

33 36 53 20 
 

-30 -27 -37 -39 

p-each RCP 0.22 0.31 0.16 0.03 
 

0.16 0.03 0.17 0.17 
 

<0.01 
 

<0.01 

Mean-all RCPs 1.0 
 

1.25 
 

33 
 

-33 

p-all RCPs 0.39 
 

0.03 
 

<0.01 
 

<0.01 

Mean-each/all RCP, average changes for all GCMs under one/all RCP;  

p-each/all RCP, significance of t-test for all GCMs under one/all RCP. 

The variances of annual streamflow during 2011–2040 relative to 1961–2005 increased under most scenarios (Table 4). 

Averaged over all scenarios, the variance ratios of annual streamflow were 1.25±0.55 (p=0.03), which implies that the inter-

annual variability of future streamflow would be more significant. The variances of monthly streamflow had similar seasonal 10 

patterns under all RCPs (Figure 7b), and significantly increased from November through August except for January and June 

while decreased in October (p=0.05), which implies that intra-annual variability would also be greater during 2011–2040. 

The maximum/minimum monthly streamflow increased/decreased significantly by 33±22% and -33±11%, respectively 

(Table 5). The monthly maxima increased for most months except October (Figure 7c, and October was excluded by the t-

test). The monthly minima decreased for most months except for an increase in January and February (Figure 7d), and the 15 

downward trend in April and from June through November and the upward trend in January, February and May were 

confirmed by t-test. The combined effects of the upward trend in the maxima and the downward trend in the minima led to 

the increase in variability. 
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Figure 7. Changes in average and variability of monthly streamflow during 2011‒2040 relative to 1961‒2005 

3.4 Links between climate change and streamflow variability 

According to the sensitivity analysis, precipitation changes during 2011–2040 had a significant positive correlation with 

streamflow changes (p<0.01) (Table 5). The precipitation changes had smaller impacts on the mean streamflow than on the 5 

streamflow variances; a 1% increase in precipitation means or variances increased mean streamflow by 0.3%–0.6%, while it 

increased streamflow variances by 1.5%–1.9%. Changes in either the means or variances of precipitation had similar impacts 

on hydrological extremes; a 1% increase in precipitation increased extreme monthly streamflow by about 1%. 

Changes in temperature means negatively correlated with streamflow means and variances, while changes in temperature 

variances positively correlated with streamflow variances and extremes (Table 5). The impacts of changes in temperature 10 

variances were much smaller than those of temperature means. A 1 ℃ increase in Tmax significantly decreased mean 

streamflow by 7.9% (p<0.01), while it decreased streamflow variance by 24.8% (p=0.04). 

Overall, the main factors controlling streamflow variations were the changes in P variances and mean Tmax (Table 5). For 

example, changes in precipitation means and variances of –1.3% and +15% altered mean streamflow by –0.8% and +9.0%, 

while changing streamflow variances by –2.5% and +30.0%, respectively. Therefore, streamflow was more sensitive to 15 
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changes in precipitation variances and temperature means, while it is less susceptible to changes in precipitation means and 

temperature variances. 

Table 5. Sensitivity of streamflow to the changes in mean and variances of precipitation and temperature 

 
P&Rm, P&Rv  

TX&Rm, TX&Rv  
TN&Rm, TN&Rv 

 
Pm&Rm Pv&Rm Pm&Rv Pv&Rv  

TXm&Rm TXv&Rm TXm&Rv TXv&Rv  
TNm&Rm TNv&Rm TNm&Rv TNv&Rv 

k +0.6 +0.3 +1.9 +1.5 
 

-7.9 +0.1 -24.8 +0.1 
 

-2.7 +0.04 -15.8 -0.03 

p <0.01 <0.01 <0.01 <0.01 
 

<0.01 0.09 0.06 0.47 
 

0.44 0.40 0.38 0.90 

 
P&Rx, P&Rn  

TX&Rx, TN&RX 
 

TX&Rn, TN&Rn 

 
Pm&Rx Pv&Rx Pm&Rn Pv&Rn  

Pm&Rx Pv&Rx Pm&Rn Pv&Rn  
Pm&Rx Pv&Rx Pm&Rn Pv&Rn 

k +1.0 +0.6 +0.9 +0.1 
 

-10.9 +0.1 -7.4 +0.1 
 

-11.5 +0.1 -5.7 +0.1 

p <0.01 <0.01 <0.01 <0.01 
 

0.10 0.18 0.41 0.57 
 

0.02 0.33 0.38 0.24 

Rm, Rv, Rx, Rn—the changes in mean (%), variance (%), maximum (%), and minimum (%) monthly streamflow;  

TXm, TXv, TNm, TNv—the changes in mean (℃) and variance (%) of Tmax and Tmin; 

k, p—the slope and significance level of linear regression. 
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Figure 8. Projected changes (Δ) in annual mean precipitation (P) and maximum temperature (Tmax) averaged over GCMs or RCPs 

3.5 Uncertainties in impact studies 5 

For climate change impacts on hydrology, uncertainties are usually from GCM, emission scenarios, downscaling and 

hydrological modeling. However, in most cases, the uncertainties from climate model structure are greater than those 

associated with hydrological model or downscaling method (Wilby and Harris, 2006; Arnell, 2011; Chen et al., 2011; 

Gosling et al., 2011). For this study, as the climatic statistics and multi-site multivariate correlations were well reproduced 
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and SWAT was calibrated fairly well, the uncertainties from them were small. However, the uncertainties from GCMs and 

RCPs were much greater. Averaged over all GCMs and RCPs, annual mean precipitation would change by -1.3±4.4% (Table 

2), and the large uncertainty in climate projection caused an even larger uncertainty in runoff change. Specifically, the annual 

mean runoff changed by 1±15%, while the monthly maximum and minimum streamflow respectively changed by 33±22% 

and -33±11% (Table 4). 5 

Averaged over all projections over a certain GCM or RCP, the uncertainty related to GCMs and RCPs was large (Figure 8). 

For example, three GCMs (in the horizontal dash-dotted red rectangle in Figure 8) projected similar changes in precipitation, 

but different changes in temperature; three GCMs (in the vertical dashed blue rectangle in Figure 8) projected similar 

temperature changes but quite different precipitation changes. 

The sensitivity of the uncertainties linked to GCMs was reduced in the hydrological response (Figure 9), where four out of 10 

five GCMs projected similar changes in the mean or variance for runoff. Figure 9 showed that CanESM2 model contributed 

greatly to the uncertainty envelope of runoff changes. Different from GCMs, the sensitivity of the uncertainties related to 

RCPs increased in impact assessment, where the changes in annual mean streamflow covered greater absolute ranges than 

those of precipitation and temperature. The projected change directions in streamflow were even different for different RCPs.  
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Figure 9. Projected changes (Δ) in precipitation (P), maximum temperature (Tmax) and streamflow (Q) averaged over GCMs or RCPs 
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4 Conclusions 

To better simulate the hydrological variability with distributed hydrological models, an efficient multisite and multivariate 

GCM downscaling method was presented to generate climate change scenarios. Compared with those needing considerable 

parameter estimation and statistical verification, this method only uses climatic statistics and spatiotemporal correlations 

without excessive iterations. The preprocessing multisite weather generator reconstructs the correlations for each variable 5 

and for each process, but this method can be applied to all variables and all processes at the same time. As a postprocessing 

method, it is applicable to the single-site climate scenarios generated by any algorithm, such as the chain-dependent process 

of the Richardson-type method (Richardson, 1981), the empirical method of LARS-WG (Semenov and Barrow, 1997), or the 

circulation-based weather generator of SDSM (Wilby et al., 2002). 

Based on the developed climate change scenarios and hydrological modeling in the Jing River Catchment on China’s Loess 10 

Plateau, both annual mean precipitation and streamflow would not change, which implies that the gross amount of water 

resources might be similar to that of the present time. Further analysis found that the precipitation variances had greater 

impacts than precipitation means on the streamflow, and the high flows tended to be sensitive to precipitation changes while 

the low flows were determined by temperature changes. According to the results of this study, the rising variance in 

streamflow suggests more floods during the summer and severe water shortage during the winter and spring, which implies 15 

that the available water resources could possibly decrease and the soil erosion could be more severe. Although human 

activities might reduce flooding to some extent, we should still pay great attention to the potential changes in extreme 

hydrological events. 

The changes in the statistical parameters of precipitation and/or temperature, such as mean and variances, played different 

role in the mean state and variability of streamflow. The changes in precipitation/temperature were respectively 20 

positively/negatively correlated with those in streamflow. Specifically, the increase in streamflow variances was mainly 

attributed to the increase in precipitation variances and temperature means, and the positive contribution from increased 

precipitation variances was larger than the negative contributions from increased temperature means. 

The method for multisite and multivariate correlation reconstruction slightly perturbed the precipitation occurrence (Li, 

2014), which is the inherent weakness of the postprocessing methods (Clark et al., 2004a; Bárdossy and Pegram, 2012). So 25 

far, it can be satisfactorily used for streamflow modeling on monthly scale in a large catchment with an area of 45,421 km
2
 

and 15 weather stations, which is good enough for sensitivity analysis or impact assessment. To further validate its 

applicability on different spatial and temporal scales, the method should be applied to daily streamflow simulation and some 

other watersheds with different areas and climate.  
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