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Abstract 16 

This paper deals with the issue of monitoring the spatial distribution of bulk electrical 17 

conductivity σb, in the soil root zone by using Electromagnetic Induction (EMI) sensors under 18 

different water and salinity conditions. To deduce the actual distribution of depth-specific σb 19 

from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a 20 

regularized 1D inversion procedure designed to manage nonlinear multiple EMI-depth 21 

responses. The inversion technique is based on the coupling of the damped Gauss-Newton 22 

method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of 23 

the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. 24 
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This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to 25 

enhance the spatial resolution of the EMI results in presence of sharp boundaries (otherwise 26 

smeared out after the application of more standard, Occam-like regularization strategies 27 

searching for smooth solutions). Time-Domain Reflectometry (TDR) data are used as ground-28 

truth data for calibration of the inversion results. An experimental field was divided into four 29 

transects 30 m long and 2.8 m wide, cultivated with green bean and irrigated with water at two 30 

different salinity levels and using two different irrigation volumes. Clearly, this induced 31 

different salinity and water contents within the soil profiles. For each transect, 26 regularly 32 

spaced monitoring soundings (1 m apart) were selected for the collection of, respectively: (i) 33 

Geonics EM-38 and (ii) Tektronix Reflectometer data. Despite the original discrepancies in the 34 

EMI and TDR data, we found a significant correlation of the means and standard deviations of 35 

the two data series, in particular, after a low-pass spatial filtering of the TDR data. Based on 36 

these findings, the paper introduces a novel methodology to calibrate EMI-based electrical 37 

conductivities via TDR direct measurements. This calibration strategy consists in a linear 38 

mapping of the original inversion results into a new conductivity spatial distribution with the 39 

coefficients of the transformation uniquely based on the statistics of the two original 40 

measurement datasets (EMI and TDR conductivities). 41 

 42 

Introduction 43 

Soil water content and salinity vary in space both vertically and horizontally. Their distribution 44 

depends on management practices and on the complex nonlinear processes of soil water flow 45 

and solute transport, resulting in variable storages of solutes and water (Coppola et al. 2015). 46 

Monitoring the actual distribution of water and salts in the soil profile explored by roots is 47 

crucial for managing irrigation with saline water, while still maintaining an acceptable crop 48 
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yield. For water and salts monitoring  over large areas, there are now non-invasive techniques 49 

based on electromagnetic sensors which allow the bulk electrical conductivity of soils σb to be 50 

determined (Sheets and Hendrickx 1995, Corwin and Lesch 2005, Robinson et al. 2012, 51 

Doolittle and Brevik 2014, Von Hebel et al. 2014, among many others).  52 

σb depends on: (i) soil water content θ; (ii) electrical conductivity of the soil solution (salinity) 53 

σw; (iii) tortuosity of the soil-pore system τ; and (iv) other factors related to the solid phase such 54 

as bulk density, clay content and mineralogy.  55 

Electromagnetic induction (EMI) sensors provide measurements of the depth-weighted 56 

apparent electrical conductivity ECa accordingly to the specific distribution of the bulk electrical 57 

conductivity σb as well as the depth response function of the sensor used (McNeill 1980). Thus, 58 

the dependence on σb makes ECa sensitive to soil salinity and water distributions. In principle, 59 

specific procedures for estimating salinity and water content may be developed through 60 

controlled laboratory experiments where σb, σw and θ are measured simultaneously (Rhoades 61 

and Corwin 1981). That said, to monitor salinity and water content, it is crucial to correctly infer 62 

the depth-distribution of σb from profile-integrated ECa readings. To date, this issue has been 63 

tackled by applying two different strategies: The first is to use empirical calibration relations 64 

relating the depth-integrated ECa readings to the σb values measured by alternative methods - 65 

like Time-Domain Reflectometry (TDR) - within discrete depth intervals (Rhoades and Corwin 66 

1981, Lesch et al. 1992, Triantafilis, Laslett, and McBratney 2000, Amezketa 2006, Yao and Yang 67 

2010, Coppola et al. 2016); The second consists in the 1D inversion of the observations from 68 

the EMI sensor to reconstruct the vertical conductivity profile (Borchers, Uram, and Hendrickx 69 

1997, Hendrickx et al. 2002, Santos et al. 2010, Lavoué et al. 2010, Mester et al. 2011, Minsley 70 

et al. 2012, Deidda, Fenu, and Rodriguez 2014, Von Hebel et al. 2014).   71 
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With regard to ECa inversion, a forward model still commonly used is the cumulative response 72 

model or local-sensitivity model (LSM) (McNeill 1980). McNeill’s linear approach is well suited 73 

to the cases characterized by an induction number B (defined as the ratio between the coil 74 

distance and the skin depth) much smaller than 1. However, because of the increasing 75 

computing power, improved forward modeling algorithms based on more accurate nonlinear 76 

approaches are becoming increasingly common (Hendrickx et al. 2002, Deidda, Fenu, and 77 

Rodriguez 2014, Deidda, Bonomi, and Manzi 2003, Lavoué et al. 2010, Santos et al. 2010). For 78 

example, these more sophisticated forward modeling codes can cope with a wider range of 79 

conductivities for which the assumption B<<1 is not necessarily met. 80 

To obtain reliable vertical distributions of electrical conductivity, the ECa data used for the 81 

inversion should consist of multi-configuration data. Hence, data collection should be 82 

performed either with the simultaneous use of different sensors or with different acquisition 83 

configurations with only one sensor (different configurations may consist, e.g., in different coil 84 

orientations, varying intercoil separations and/or frequencies – see, for example Díaz de Alba 85 

and Rodriguez, 2016). Multi-configuration data can be effectively used to invert for vertical 86 

electrical conductivity profiling since the ECa measures actually investigate different, 87 

overlapping soil volumes. Devices specifically designed for the simultaneous acquisition of 88 

multi-configuration data are currently available. Some of them consist of one transmitter and 89 

several receivers with different coil separations and orientations (Santos et al. 2010). If, 90 

instead, a sensor with single intercoil distance and frequency is available, a possible alternative 91 

to having multi-configuration measurements could be to record the data at different heights 92 

above the ground. 93 

Unfortunately, like every other physical measurement, frequency-domain electromagnetic 94 

measurements are sensitive to noise that is very hard to model effectively. Moreover as 95 
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discussed, for example, in Lavoué et al. (2010), Mester et al. (2011), and Von Hebel et al. 96 

(2014), an instrumental shift in conductivity values could be observed due to system 97 

miscalibration and the influence of surrounding conditions such as temperature, solar 98 

radiation, power supply conditions, the presence of the operator, zero-leveling procedures, 99 

cables close to the system and/or the field setup (see, amongst others, Sudduth, Drummond, 100 

and Kitchen 2001; Robinson et al. 2004; Abdu, Robinson, and Jones 2007; Gebbers et al. 2009; 101 

Nüsch et al. 2010). Hence, the ECa data from EMI measurements would generally require a 102 

proper calibration. One option could be to use soil cores as ground-truth data. In this case, ECa 103 

measurements at the sampling locations can be compared against ECa data predicted by the 104 

theoretical forward response applied to the true electrical conductivity distribution measured 105 

directly on the soil cores (Triantafilis, Laslett, and McBratney 2000, Moghadas et al. 2012). 106 

Clearly, this strategy is extremely time- (and resource-) consuming. To avoid drilling, Lavoué et 107 

al. (2010) introduced a calibration method, later also adopted by Mester et al. (2011) and Von 108 

Hebel et al. (2014), using the electrical conductivity distribution obtained from Electrical 109 

Resistivity Tomography (ERT) data as input for electromagnetic forward modeling. The ECa 110 

values predicted on the basis of ERT data were used to remove the observed instrumental shift 111 

and correct the measured conductivity values by linear regression.  However, in general, a 112 

prerequisite for such an approach concerns the reliability of the inversion of the ERT result. This 113 

is not only due to the quality of the original data, but also the adopted inversion procedure. 114 

Indeed, ERT inversion is an ill-posed problem: its solutions are characterized by non-uniqueness 115 

and instability with respect to the input data (Yu and Dougherty 2000; Zhdanov 2002; Günther 116 

2011). In the Tikhonov regularization framework, ill-posedness is addressed by including the 117 

available prior information. Such information can be very general. For example, it can be 118 

geometrical (i.e., associated to the presence of smooth or sharp boundaries between different 119 
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lithologies). Obviously, the final result largely reflects the initial guess formalized via the chosen 120 

regularization term (Pagliara and Vignoli 2006; Günther 2011; Vignoli, Deiana, and Cassiani 121 

2012; Fiandaca et al. 2015).  122 

When relatively shallow depths have to be explored (1-2m), direct soil sampling and ERT can be 123 

effectively replaced by TDR observations. TDR devices are designed to measure the dielectric 124 

properties of soils. More precisely, they measure the apparent electrical permittivity, from 125 

which, not only the dielectric constant, but also the effective electrical conductivity can be 126 

deduced (e.g., Dalton et al. 1984; Topp et al. 1988; Weerts et al. 2001; Noborio 2001; Jones et 127 

al. 2002; Robinson et al. 2003; Lin et al. 2007; Thomsen et al. 2007; Huisman et al. 2008; Lin et 128 

al. 2008; Koestel et al. 2008; Bechtold et al. 2010). In general, TDR measurements might be 129 

difficult to be used to recover the electrical conductivity with the desired accuracy. However, in 130 

the literature, many examples are reported in which, within the range 0.002 – 0.2 S/m 131 

(compatible with the examples investigated in the present research), and by properly using the 132 

TDR device (e.g., by paying attention to  minimize  the effects of nonparallel device rods 133 

inserted into the ground), the TDR  conductivity can be measured with an uncertainty level 134 

lower than 5% (e.g.: Huisman et al., 2008; Bechtold et al., 2010). Besides, since the TDR 135 

measurements are commonly calibrated in saline solutions just before the field data 136 

acquisitions, they could potentially provide a reliable, absolute estimation of the actual ground 137 

conductivity (Ferré et al., 1998a). For this reason, in some cases, TDR observations have been 138 

proposed as a valid tool for ground-truthing  the ERT and, possibly, as ancillary information 139 

source to constraint for the ERT inversions (Koestel et al. 2008).  For additional studies dealing 140 

with the use of ERT data for the validation of the EMI and TDR measurements for soil 141 

characterization we refer the reader to, for example,  Cassiani et al. 2012 and Ursino et al. 142 

2014. 143 
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In the present research, we focus on the use of TDR data to absolute calibrate the 144 

conductivities obtained by inverting the EMI measurements. To do this, a dataset collected 145 

during an experiment carried out along four transects under different salinity and water 146 

content conditions (and monitored with both EMI and TDR sensors) is utilized. We first tackle 147 

the problem of inferring the soil electrical conductivity distribution from multi-height ECa 148 

readings via the proper inversion strategy. Then we assess the quality of these reconstructions 149 

by using TDR data as ground-truth. In this respect, in the following, we discuss how to 150 

effectively compare the σb values generated by the EMI inversion with the associated TDR 151 

values. In fact, as discussed by Coppola et al. 2016, because of their relatively smaller 152 

observation volume, TDR data provide quasi-pointlike measurements and do not integrate the 153 

small-scale variability (of soil water content, solute concentrations, etc.) induced by natural soil 154 

heterogeneity. By contrast, EMI data necessarily overrule the small-scale heterogeneities seen 155 

by TDR probes as they investigate a much larger volume. Accordingly, the paper provides a 156 

methodology to calibrate EMI results by TDR readings. This procedure lies in conditioning the 157 

original TDR data and in the statistical characteristics of the two EMI and TDR data series. On 158 

the basis of the proposed analysis, we discuss the physical reasons for the differences between 159 

EMI and TDR-based bulk electrical conductivity and identify a method to effectively migrate the 160 

reliable TDR information across the larger volume investigated by EMI.  161 

 162 

Materials and Methods 163 

The experiment was carried out at the Mediterranean Agronomic Institute of Bari (MAIB) in 164 

south-eastern Italy. The soil was pedologically classified as Colluvic Regosol, consisting of a 165 

silty-loam layer of an average depth of 0.6 m on fractured calcarenite bedrock. The 166 

experimental set-up (Fig. 1) consisted of four transects of 30 m length and 2.8 m width, 167 
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equipped with a drip irrigation system with five dripper lines placed 0.35 m apart and 168 

characterized by an inter-dripper distance of 0.2 m. The dripper discharge was 2 l/h. Green 169 

beans were grown in each transect. The irrigation volumes were calculated according to the 170 

time-dynamics of water content in the first 0.25 m measured by a TDR probe inserted vertically 171 

at the soil surface. TDR readings were taken: (i) just before and (ii) two hours after every 172 

irrigation. Based on the difference between the water content at field capacity and that 173 

measured just before irrigation, it was easy to assess the volumes needed to bring the soil 174 

water content back to the field capacity.  175 

The four transects were irrigated with water at two different salinity levels and with two 176 

different water volumes. Transect 1: 100% of the irrigation water at 1 dSm-1 (hereafter 100-177 

1dS); Transect 2: 50% of irrigation water at 1 dSm-1 (50-1dS); Transect 3: 100% of the irrigation 178 

water at 6 dSm-1 (100-6dS); Transect 4: 50% of irrigation water at 6 dSm-1 (50-6dS). Water 179 

salinity was induced by adding calcium chloride (CaCl2) to tap water. Irrigation volumes were 180 

applied every two days.  181 

EMI readings - in vertical magnetic dipoles configurations - were collected by using a Geonics 182 

EM38 device (Geonics Limited, Ontario, Canada). The EM38 operates at a frequency of 14.6 kHz 183 

with a coil spacing of 1 m, and with a nominal measurement depth of ~1.5 m (McNeill, 1980). 184 

The lateral footprint of the EM38 measurement can be considered approximately equal to the 185 

vertical one. Thus, the σb seen by the EMI, in a given depth-layer, necessarily differs from that 186 

seen by a TDR probe at the same depth-layer, due to the very different spatial resolutions.  187 

At the beginning of the measurement campaign, the EMI sensor was “nulled” according to the 188 

manufacturer’s manual. Readings were taken just after each irrigation application at 1 m step, 189 

along the central line of each transect, for an overall total of 26 soundings per transect. Multi-190 

height EM38 readings were acquired at heights of 0.0, 0.2, 0.4 and 0.6 m from the ground. 191 
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Taking measurements just after irrigation allowed relatively time-stable water contents to be 192 

assumed at each site throughout the monitoring phases.   193 

Just after the EM38 measurements, a TDR probe was inserted vertically at the soil surface  in 26 194 

locations, each corresponding to the central point of an EM38 reading. A Tektronix 1502C cable 195 

tester (Tektronix Inc., Baverton, OR) was used in this study. It enables simultaneous 196 

measurement of water content θ and bulk electrical conductivity σb of the soil volume explored 197 

by the probe (Heimovaara et al. 1995; Robinson and Friedman 2003; Coppola et al. 2011; 198 

Coppola et al. 2015). The TDR transmission line consisted of an antenna cable (RG58, 50 Ω 199 

characteristic impedance, 2 m long and with 0.2 Ω connector impedance) and three-wire 200 

probes, 0.25 m long, 0.07 m internal distance, and 0.005 m in diameter. The TDR probe was not 201 

embedded permanently at fixed depths along the soil profile to avoid any potential disturbance 202 

to the EMI acquisitions. The TDR readings were taken at three different depth intervals (0.0-203 

0.2, 0.2-0.4, 0.4-0.6 m). After the measurements at the surface (0.0-0.2 m), a trench was dug up 204 

to 0.2 m depth. TDR probes were then inserted vertically for the additional collection of the 205 

data in the interval 0.2-0.4 m, after which the trench was deepened up to 0.4 m and readings 206 

were taken at 0.4-0.6 m. The σb,TDR readings were used for the calibration of the EM38 inversion 207 

results.  208 

 209 

Data Handling 210 

Multi-height EMI readings inversion 211 

Nonlinear 1D forward modeling, which predicts multi-height EMI readings from a loop-loop 212 

device, can be obtained by suitable simplification of Maxwell's equations that takes the 213 

symmetry of the problem into account. This approach is described in detail in (Hendrickx et al. 214 

2002), and is based on a classical approach extensively described in the literature (Wait 1982; 215 



10 
 

Ward and Hohmann 1988). The predicted data are functions of the electrical conductivity and 216 

the magnetic permeability in a horizontally layered medium. 217 

When the coils of the recording device are vertically oriented with respect to the ground 218 

surface, the reading at height h can be expressed by using the integral: 219 

,)()( 00
2

0

23 λρλλλρ λ dJRe h−
∞

∫−  (1) 

where ρ  denotes the distance between the coils, )(0 λJ  is the Bessel function of the first kind 220 

of order 0, and )(0 λR  is a complex valued function which depends upon the electromagnetic 221 

properties of the ground layers. A similar expression is valid also when the coils are horizontally 222 

aligned. Hence the dependence of the measured data on the electrical conductivity σk, of the 223 

(homogeneous) j-th layer is incorporated into the function )(0 λR . We discretize the problem 224 

with n layers whose characteristic parameters σj  (with j = 1, . . ., n) are the unknowns we invert 225 

for. In the present research, we neglect any dependence of the electromagnetic response on 226 

magnetic permeability as we assume it is fixed and equal to the permeability of empty space. In 227 

principle, it is possible to consider two measurements for each location: one for the horizontal 228 

and one for the vertical configuration of the transmitting and receiving loops. In this case, the 229 

data used as inputs for the inversion are 2*m, where m is the number of heights h1, h2, . . ., hm 230 

where the measurements are performed.  231 

A least squares data fitting approach leads to the minimization of the function: 232 

),(r
2
1)σ(f

m2

1i

2
i σ∑

=
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where σ= (σ1, . . ., σn)T, and )(r2
i σ is the misfit between the i-th measurement and the 233 

corresponding forward modeling prediction based on Eq. 1. 234 
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We solve the nonlinear minimization problem by the inversion procedure described in Deidda, 235 

Fenu, and Rodriguez (2014). The algorithm is based on a damped regularized Gauss-Newton 236 

method. The problem is linearized at each iteration by means of a first order Taylor expansion. 237 

The use of the exact Jacobian (whose expression is detailed in Deidda, Fenu, and Rodriguez, 238 

2014) makes the computation faster and more accurate than using a finite difference 239 

approximation. The damping parameter is determined in order to ensure both the convergence 240 

of the method and the positivity of the solution. The regularized solution to each linear 241 

subproblem is computed by the truncated generalized singular value decomposition (TGSVD - 242 

Díaz de Alba and Rodriguez, 2016) employing different regularization operators. Besides the 243 

classical regularization matrices based on the discretization of the first and second derivatives, 244 

to further improve the spatial resolution of EMI inversion results in all the cases characterized 245 

by sharp interfaces, we tested a nonlinear regularization stabilizer promoting the 246 

reconstruction of blocky features (Zhdanov, Vignoli, and Ueda 2006; Ley-Cooper et al. 2015; 247 

Vignoli et al. 2015; Vignoli et al. 2017). The advantage of this relatively new regularization is 248 

that, when appropriate prior knowledge about the medium to reconstruct is available, it can 249 

mitigate the smearing and over-smoothing effects of the more standard inversion strategies. 250 

This, in turn, can make the calibration of the EMI data against the TDR data more effective. For 251 

this reason, in the following, the EMI results used for our assessments are those inferred by 252 

means of this sharp inversion. The differences between the “standard” smooth (based on the 253 

first derivative) reconstruction and the sharp one are clearly shown in Fig.s 2 and 4. In all cases, 254 

the inversions are performed with a 100-layer homogeneous discretization, down to 8 m, with 255 

fix interfaces. We opted for such a parameterization to be able to: (i) control the inversion 256 

results by acting merely on the regularization parameters, and (ii) remove the regularization 257 

effects possibly originated by the discretization choice (e.g., the number of layers, interfaces 258 
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locations). In this way, it was possible to use an automatic strategy for the selection of the 259 

regularization parameters.  In Fig.s 2 and 4, the sharp results (upper panels) associated with the 260 

cases 100-6dS and 50-6dS are compared against the corresponding smooth inversions (middle 261 

panels). Even if the data misfit levels largely match (lower panels in Fig.s 2 and 4, but also Fig.s 262 

3 and 5), the two inversion strategies produce reconstructions that differ significantly. This is 263 

due to the inherent ill-posedness of the EMI inversion. By considering solely the geophysical 264 

observations, it is impossible to decide which model is the best. In this research, based on the 265 

fact that, just after the irrigation, the effect of the water is supposed to remain localized in the 266 

shallowest portion of the soil section, the sharp inversion was found to provide more reliable 267 

results. Moreover, to some extent, the general better agreement of the data calculated from 268 

the sharp model supports the idea that the electrical properties distributions are better 269 

inferred via the sharp regularization. In any case, since in this research we calibrate the EMI-270 

derived models (and not the data), the final calibrated result will reflect the assumptions made 271 

in the first place when the EMI data are inverted (specifically, the regularization assumptions).  272 

A possible alternative way to still effectively use the TDR data to calibrate the EMI 273 

measurements (and not the associated conductivity model) could consist in performing the 274 

calibration in the data-space (and not in the model-space). In this case, the measured TDR 275 

conductivity could be used as input model to calculate the ECa response of the EMI device 276 

actually used. In turn, this calculated ECa response can be compared against the measured EMI 277 

data and used for their calibration. However, eventually, also this latter data-space calibration 278 

will have to deal with the inversion issues once the calibrated EMI data need to be converted 279 

into conductivities σb. In this paper, we chose the model-space calibration strategy as, in 280 

general, in the available EMI inversion codes, it is not always easy to decouple the forward 281 

modelling routines from the overall inversion algorithm. Hence, the discussed approach could 282 
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be more directly applicable and beneficial for practitioners. On the other hand, it is true that 283 

the data-space calibration naturally takes into account the scale-mismatch between the TDR 284 

and the EMI measurements with no need for any statistical calculation.  285 

It is worth noting that the constant magnetic permeability assumption is not always valid. 286 

Inverting for the magnetic permeability is sometimes not only necessary, but it can also provide 287 

an additional tool for soil characterization (e.g., Beard and Nyquist, 1998; Farquharson, 288 

Oldenburg, and Routh, 2003; Deidda, Diaz De Alba, and Rodriguez 2017). 289 

For the sake of clarity, hereafter, the σb values generated from the EMI data inversion will be 290 

identified explicitly as σb,EMI.  291 

 292 

TDR-based water content and bulk electrical conductivity 293 

The Tektronix 1502C can measure the total resistance Rt of the transmission line by: 294 

( )
( ) csct RR

ρ1
ρ1ZR +=

−
+

=
∞

∞  (3) 

where: Rs is the soil’s contribution to total resistance and Rc accounts for the contribution of 295 

the series resistance from the cable; the connector Zc is the characteristic impedance of the 296 

transmission line; and ρ is a reflection coefficient at a very long time, when the waveform has 297 

stabilized. 298 

The σb value at 25°C can be calculated as (Rhoades and van Schilfgaarde 1976; Wraith et al. 299 

1993): 300 

T
c

c
b f

Z
Kσ C25 =°  (4) 

where Kc is the geometric constant of the TDR probe and fT is a temperature correction factor 301 

to be used for values recorded at temperatures other than 25°C. Both Zc and Kc can be 302 
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determined by measuring Rt with the TDR probe immersed in a solution with known 303 

conductivity σb. Hereafter, these σb measurements will be identified as σb,TDR.  304 

 305 

Evaluation of Concordance between σb,TDR measurements and σb,EMI estimates 306 

The agreement between σb,TDR measurements and σb,EMI estimations in the 0.0-0.6 m range was 307 

evaluated by the Concordance Correlation Coefficient, ρL : 308 

( )2yx
2
y

2
x

xy
L mmzz

s2
ρ

−++
=  (5) 

where mx, my, sx, sy, sxy are means, standard deviations and covariances of the two data series 309 

(x = σb,EMI; y = σb,TDR), respectively. 310 

Scatter plots of the σb,EMI and σb,TDR data series (both original and filtered) were evaluated by 311 

the line of perfect concordance (1:1 line) and the reduced major axis of the data (RMA) 312 

(Freedman et al. 1991). The method combines measurements of both precision and accuracy to 313 

determine how close the two data series are to the line of perfect concordance σb,EMI = σb,TDR. 314 

Compared to the classical Pearson correlation coefficient, ρP: 315 

yx

xy
P ss

s
ρ = , (6) 

ρL not only measures the strength of linear relationship (how close the data in the scatter plot 316 

are to a line), but also the level of agreement (how close that line is to the line of perfect 317 

agreement, the 1:1 line). In this sense, ρL may also be calculated as (Cox 2006): 318 

bPL Cρρ = , 

( )2b u/v1v
2C
++

= ,
 

yx s/sv = , 

(7) 
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and  319 

( ) yxyx ss/mmu −= , 

where Cb is the bias correction factor measuring how far the best-fit line deviates from the 1:1 320 

line. The maximum value of Cb = 1 (0<Cb<1) corresponds to no deviation from the line. The 321 

smaller Cb is, the greater the deviation from the line. In other words, Cb is a measure of 322 

accuracy (how much the average estimate differs from the average measurement value, 323 

assumed to be the true value) and refers to the systematic error, whereas ρP is a measure of 324 

precision (measures the variability of measurements around their own average) and refers to 325 

the random error. The RMA line is given by: 326 

( ) x. x mmy xy βαββ +=+−=  (8) 

This line passes through the means of the x and y values and has slope given by the sign of 327 

Pearson’s correlation coefficient, ρP, and the ratio of the standard deviations, s, of the two 328 

series (Freedman et al. 1991, Corwin and Lesch 2005): 329 

xy ss /=β . (9) 

ρL increases in value as (i) the RMA approaches the line of perfect concordance (a matter of 330 

accuracy) and (ii) the data approach the RMA (a matter of precision). In the ideal case of 331 

perfect concordance, the intercept of the RMA, α, should be 0 and β should be 1. Therefore, α 332 

≠ 0 or β ≠ 1 indicate additive and/or multiplicative biases (location and/or scale shifts). The 333 

concordance was evaluated for the original TDR data, as well as for the filtered TDR data. For 334 

the analysis described in detail later in the paper, it is worth noting that the coefficients α and β 335 

depend only on the statistical characteristics (mean and standard deviation) of the two series, 336 

as xy mm β−=α  and xy ss /=β . 337 

 338 
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Fourier filtering 339 

Because of their relatively small observation volume (~10-3 m3), TDR sensors provide quasi-340 

pointlike measurements and are, thus, more effective in capturing small-scale variability (in 341 

water content, solute concentrations) induced by natural soil heterogeneity. Thus, the 342 

variability within a set of TDR readings is expected to originate from a combination of small and 343 

large-scale heterogeneities (high and low spatial frequency components). By contrast, the EMI 344 

measurements (because of the size and physics of the instrumentation) necessarily integrate 345 

out the small-scale variability at the TDR scale of investigation.  346 

Hence, in order to make the two datasets comparable, the original spatial TDR data series need 347 

to be filtered to remove the variation from small-scale heterogeneities (recorded only by the 348 

TDR probe). In this way, only the information at a spatial scale equal to or larger than the 349 

observation volume of both sensors is preserved. 350 

Thus, a simple filter based on the Fourier Transform (FT) is applied to the TDR series. 351 

So, a low-pass frequency filtering is performed on the TDR data to remove all  components 359 

related to the small scale heterogeneities and make it comparable with the EMI measurements. 360 

More specifically, for each transect, we consider the σb,EMI reconstruction and, for each of its 1D 361 

models, calculate the average conductivity value within each depth interval for which the TDR 362 

data are available (namely: 0.0-0.2 m, 0.2-0.4 m, 0.4-0.6 m). Hence, for each depth interval, 363 

along the entire transect, we can calculate the mean and standard deviation of the conductivity 364 

values retrieved from the EMI observations. Subsequently, this standard deviation (associated 365 

with the EMI data) is compared with the standard deviation of the iteratively low-pass filtered 366 

TDR data for the same depth interval. In this way, an optimal cut-off frequency can be selected 367 

to make the scales of the two kinds of measurements compatible. Figure 6 shows the 368 

comparison between the standard deviations of the EMI and filtered TDR data, for the 50-6dS 369 
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transect, at 0.2-0.4 m depth. In this specific case, the selected cut-off frequency to filter the 370 

TDR data is 0.313 cycles/m, corresponding to a 3.2 m range. This is not surprising at this is of 371 

the order of magnitude of the footprint of the EMI measurements.      372 

 373 

Results and Discussion 374 

Hereafter, the original and filtered data will be respectively labeled ORG and FLT. The graphs on 375 

the top panels in Fig. 7 compare σb,TDR measured by TDR against the corresponding conductivity 376 

σb,EMI retrieved by the EMI (sharp) inversion for the all the transects. From the left, the graphs 377 

refer respectively to the transects identified as 100-6dS, 50-6dS, 100-1dS and 50-1dS. All plots 378 

show the data for the entire investigated profile between 0.0 and 0.6 m, together with the line 379 

of perfect concordance (1:1, black line), and the main regression axis (MRA, red line).  380 

The general conclusion is that, in all four transects, and for all three considered depth-layers, 381 

the σb,EMI values underestimate the σb,TDR measurements, such that the MRA line generally lies 382 

above the 1:1 line. Not surprisingly, the EMI result seems quite insensitive to TDR variability. 383 

Also, a considerable scatter around the MRA line may be observed for all transects.  384 

Table 1 shows the MRA coefficients (Cb, α , β), as well as the Pearson, ρP, and the concordance 385 

correlation, ρL, for the three depth-layers and for all four transects investigated. We recall that 386 

the bias correction factor Cb, the slope β, and the intercept α should be respectively close to 1, 387 

1 and 0, for the MRA to approximate the line of perfect concordance. For all the transects and 388 

all the depth-layers considered, the parameters confirm the relatively loose relationship 389 

between σb,EMI and σb,TDR already observed in the graphs, both in terms of accuracy (the distance 390 

of the MRA line from the 1:1) and precision (the data scatter around the MRA line).  391 

Von Hebel et al. (2014) found a similar behavior when comparing their EMI and ERT datasets. In 392 

that case, the ECa values measured by EMI systematically underestimated the ECa generated by 393 
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applying EMI forward modeling to the σb distribution retrieved by ERT. To remove the bias, the 394 

authors performed a linear regression between measured and predicted ECa after applying a 395 

ten-term moving average to the original data. By using the regression coefficients, all the 396 

measured ECa values were converted to ERT-calibrated ECa values. 397 

Here, we follow a different approach to calibrate the σb,EMI values against the σb,TDR 398 

measurements based on the MRA coefficients and, so, on the statistical parameters (mean and 399 

standard deviation) of the two data series. Specifically, the present approach looks for a 400 

systematic correction of the bias based on well-defined statistical sources of the discrepancies. 401 

In short, the proposed method performs the calibration in the σb model-space, instead of the 402 

ECa data-space. Our model-space approach mostly relies on the statistical parameters of the 403 

two series. Analyzing the role of these statistics in explaining the discrepancies between EMI 404 

and TDR data observed in Fig. 7a may help to understand how they can be effectively used for 405 

making EMI results directly comparable with the TDR values. 406 

In nearly all of the graphs in the top panels in Fig.  7, the discrepancies between σb,EMI and σb,TDR 407 

values can be decomposed in the following components:  408 

1. The distance along the σb,EMI axis of the MRA line from the 1:1 line, that is the difference 409 

between the σb,EMI and the σb,TDR means.  410 

2. The difference in the slope of the MRA and of the 1:1 lines, which stems from the different 411 

variability of σb,EMI (its standard deviation) and that of σb,TDR. We recall here that the slope of 412 

the MRA is just the ratio of the two standard deviations, xy ss /β̂ = . 413 

3. The scatter of the data around the MRA line, which may come from different sensors' noise 414 

and the influence of surrounding conditions (e.g., temperature). 415 
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Below, we analyze in detail the role of all these three points with the support of the measured 416 

data.  417 

1. The distance of the MRA from the 1:1 line is mostly due to the difference in the observed 418 

means. The plot in Figure 8a compares the means for the two original series (squares-solid line 419 

for TDR, circles-dashed line for EMI). Figure 8b reports the same comparison on a 1:1 plot 420 

(triangles-solid regression line). The mean values confirm the general underestimation of TDR 421 

by the EMI data. However, the trends are evidently similar, which is reflected in the high 422 

correlation between the means of the two series, with a significantly high R2=0.81. This high 423 

correlation has very positive implications from an applicative point of view, since, after the 424 

calibration in a specific site, it allows the EMI mean to be inferred given the mean of TDR 425 

readings taken in that soil, and thus provides the possibility to migrate the more reliable TDR 426 

information across the larger area that can be practically investigated during an EMI survey. 427 

2. The different slope of the two lines has to be ascribed to the different variability of the two 428 

series. Figure 9a compares the standard deviations for the two original series (squares-solid line 429 

for TDR, circles-dashed line for EMI). Figure 9b reports the same comparison on a 1:1 plot 430 

(triangles-solid regression line). Conceptually, the different variability of the two series can be 431 

related to the different sensor observation volumes (originated from the different spatial 432 

sensitivity of the sensors - Coppola et al. 2016). For TDR probes, most of the measurement 433 

sensitivity is close to the rods (Ferré et al. 1998b). Conversely, the spatial resolution of inverted 434 

EMI ECa values may be much lower as the resolution of the EMI result depends on the physics 435 

of the method, the specifications (and configuration) of the recording device, and the 436 

regularization strategy applied during the inversion. Thus, the EMI is generally unable to 437 

capture the small-scale variability seen by the TDR. For our calibration purposes, it is important 438 

to make the variability of EMI and TDR conductivities actually comparable. As discussed by 439 
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Coppola et al., 2016, a possible method can consist in filtering out the high frequency 440 

components (at small spatial scale) of the original TDR data, while retaining the lower 441 

frequency information. This corresponds to keep the information at a spatial scale larger than 442 

the observation volume of the TDR sensor and attuned with the resolution of the σb,EMI 443 

distribution. From a practical point of view, this makes sense, as TDR readings are often “too 444 

local” to actually represent the macroscopic physical characteristics of interest for applications 445 

(water content, solute concentrations). The volume explored by a TDR probe may, or may not, 446 

include preferential channels (Mallants et al. 1994; Oberdörster et al. 2010), stones (Coppola et 447 

al. 2011; Coppola et al. 2013), small-scale changes in the texture and structure (Coppola et al. 448 

2011), which can make the interpretation of local measurements difficult for practical 449 

applications. In this sense, EMI’s removal of these small-scale effects may be desirable from a 450 

management perspective. Consistently, the original TDR data are conditioned via a low-pass 451 

filtering, as described in the Data Handling section. The filtering results, in terms of standard 452 

deviations, are reported in Fig. 9a (crosses-dashed line) and Fig. 9b (squares-dashed regression 453 

line). As expected, the low-pass filter makes the standard deviations much closer (almost 454 

overlapping) in all transects and all considered depth-layers. The regression improved 455 

significantly from 0.25 for the original data to 0.78 after the TDR data filtering. 456 

3. The scatter is consistently reduced by the spatial filtering (as similarly discussed in Von Hebel 457 

et al., 2014). 458 

 459 

Eventually, the calibrated ,
rg
b EMIσ distribution (superscript rg means: EMI data after regression) 460 

can then be obtained from the original ,b EMIσ  via the linear mapping: 461 

, ,
rg
b EMI b EMIσ α bσ= + ,               (10)  462 
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where the coefficients 𝛼 and 𝛽  can be easily calculated from the means and standard 463 

deviations of the EMI results and the filtered TDR data. Thus, if mEMI and mTDR(FLT), and sEMI, and 464 

sTDR(FLT) are, respectively, the means and the standard deviations of the original σb,EMI EMI data 465 

and of the filtered σb,TDR(FLT) TDR data, the MRA line coefficients can be expressed as 466 

TDR(FLT) EMIm mα β= −  and ( ) /TDR FLT EMIs sβ = . 467 

The bottom panels in Fig. 7 show the results of the application of the linear mapping. In 469 

particular, they compare the calibrated EMI data (EMI rg) with the filtered TDR (TDR FLT) 470 

measurements. The MRA parameters and the concordance coefficients in the case of filtered 471 

TDR data are reported in Table 2. Clearly, considering the (calibrated) EMI and (filtered) TDR 472 

standard deviations turns the MRA line to be practically matching the 1:1 line, with the 473 

coefficient β approaching to 1. Moreover, from Table 2, the improvement of the bias Cb and the 474 

concordance ρL  is generally significant. On the other hand, the Pearson’s correlation ρP  is not 475 

influenced by the recalibration as the proposed approach deals with the statistics of the data 476 

series rather than the single data. Thus, after the application of the low-pass filter to the TDR 477 

data, the coefficient β is close to 1, and the calibration turns out to be (almost) a simple shift of 478 

the inverted σb,EMI. The amount of this shift is equal to  the difference between the mean values 479 

mTDR(FLT) and mEMI. To summarize, the TDR filtering allows removing the outlier values generated 480 

by the small scale variability and preserving the information content necessary to properly 481 

calculate the shift required for the absolute calibration of the EMI inversion results.  482 

Figure 10 shows, on the left, the original σb,EMI distribution to be compared against the ,
rg
b EMIσ  483 

results (on the right) obtained through the application of the linear transformation in Eq. 10. 484 

The calibrated transects preserves the spatial variability of the original EMI inversions, but are 485 
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now characterized by value ranges that are more realistic (as they are obviously closer to the 486 

TDR measurements assumed to be more representative of the real soil conditions). 487 

As already discussed, the high correlation of the means and the standard deviations of the two 488 

series are central for this procedure to be of practical interest. In short, the procedure can be 489 

summarized as follows: (i) An area is monitored via EMI survey and a few TDR calibration 490 

measurements are collected concurrently. (ii) The availability of the two different datasets 491 

allows performing the regression for the mean and the standard deviation of the original EMI 492 

inversion results and the filtered TDR data, like those shown in Fig.s 8b and 9b. (iv) These 493 

statistical parameters can be promptly used for the calculation of the coefficients α and β to be 494 

inserted into Eq. 10. (v) The original EMI inversion results are not always reliable when 495 

compared with the direct measurements obtained by using a TDR probe. Rather, they only 496 

contain the low-frequency information supplied by TDR (most likely, together with some shifts 497 

connected with the poor absolute calibration of the EMI system and/or the working conditions, 498 

e.g., the temperature). Thus, for quantitative analyses, it may be crucial to transform the 499 

original EMI result ,b EMIσ  into a new, calibrated section ,
rg
b EMIσ  by means of the linear mapping 500 

in Eq. 10.  501 

The proposed workflow enables us to translate the original non-calibrated σb,EMI data into the 502 

actual σb we would collect in ideal conditions, and which would perfectly match “low-503 

resolution” TRD measurements.  ,
rg
b EMIσ is our best possible estimation of the true electrical 504 

conductivity at the scale of investigation of the EMI survey: it is the original σb,EMI after the 505 

application of the appropriate rescaling and shifts deduced by the more reliable and absolutely 506 

calibrated TDR measurements. 507 

 508 
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Conclusions 509 

The objective of the paper is to infer the bulk electrical conductivity distribution in the root 510 

zone from multi-height (potentially non-calibrated) EMI readings. TDR direct measurements are 511 

used as ground-truth σb data to evaluate the correctness of the σb estimations generated by 512 

EMI inversion. For all four transects and for all three depth-layers considered in this study, the 513 

σb,EMI values underestimate the σb,TDR measurements, such that the MRA line generally lies 514 

above the 1:1 line. Also, a considerable scatter around the MRA line was observed for all 515 

transects.  516 

The proposed analysis allows discussing the physical reasons for the differences between EMI- 517 

and TDR-based electrical conductivity and developing an approach to calibrate the original  518 

σb,EMI by using the σb,TDR measurements. Our approach is based on the MRA coefficients and, 519 

hence, on the statistical parameters (mean and standard deviation) of the two series. 520 

Specifically, the approach looks for a systematic correction of the bias based on well-defined 521 

statistical sources of the discrepancies. A low-pass filtering has been carried out on the TDR 522 

data to obtain a significantly high correlation between the standard deviations of the two data 523 

series. After that, a simple linear transformation can be applied to the originally inverted EMI 524 

section σb,EMI  to get a calibrated σb result.  525 

The proposed strategy lies on the assumption that TDR direct measurements supply absolutely 526 

calibrated observations of the electrical conductivity of the soil and can be effectively used to 527 

calibrate the conductivity distributions inferred from EMI data. The availability of EMI 528 

calibrated data paves the way to reliable reconstructions of the electrical conductivity 529 

distribution over large areas (typical for EMI surveys, but not for TDR campaigns) unaffected by 530 

the usual EMI miscalibrations. This, in turn, can result in the possibility of effective time-lapse 531 

surveys and/or in consistent merging of subsequent surveys. 532 
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On the other hand, the proposed statistical workflow for making the TDR measurement 533 

comparable with the associated EMI results provides a more sophisticated approach than 534 

simple smoothing to upscale the TDR data. Thus, from the opposite perspective, the approach 535 

in question can be used to tackle the problems connected with handling the TDR data 536 

characterized by excessively high spatial resolution.  537 

 538 
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 793 

Figure 1. Schematic view of the experimental field  794 
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 795 

Figure 2. Examples of sharp and smooth inversions applied to the dataset 100-6dS. The results 796 

are shown together with their corresponding data misfit.  797 
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 798 

Figure 3. Comparison of the data fitting associated with the sharp and smooth inversions 799 

applied to the dataset 100-6dS (Fig. 2). The calculated data corresponding to the sharp and 800 

smooth results are shown together with the observations for each of the four measured 801 

channels (heights).802 
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 803 

Figure 4. Examples of sharp and smooth inversions applied to the dataset 50-6dS. The results 804 

are shown together with their corresponding data misfit.  805 
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 806 

Figure 5. Comparison of the data fitting associated with the sharp and smooth inversions 807 

applied to the dataset 50-6dS (Fig. 4). The calculated data corresponding to the sharp and 808 

smooth results are shown together with the observations for each of the four measured 809 

channels (heights).  810 



41 
 

 811 

Figure 6. Standard deviation of the EMI series (horizontal black line) for the 50-6dS transect at 812 

0.2-0.4 m depth. The squares show the corresponding standard deviations for the TDR series 813 

for different level of filtering. The intersection of the EMI line with the TDR curve allows 814 

identifying the optimal cut-off frequency range (~0.313 cycles/m) to make the two standard 815 

deviations similar.816 
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Figure 7. Comparison between σb,TDR and σb,EMI for all four transects for the depth range 0.0-0.6 

m. The graphs in the top panels (a) show the original TDR and EMI data, while those in the 

bottom panels (b) the Filtered (FLT) TDR and EMI data after the regression based on MRA 

parameters (rg).  
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Figure 8. (a) Comparison of the means for the two original series (squares-solid line for TDR, 

dcircles-dashed line for EMI); (b) The same comparison on a 1:1 plot (triangles-solid regression 

line). In the panel (a), the four cases are shown in sequence. For each case, the three values are 

for the three depth intervals 0.0-0.2, 0.2-0.4, and 0.4-0.6 m.  
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Figure 9. (a) Comparison of the standard deviations of the TDR original series (squares-solid 

line), of the EMI original series (circles-dashed line), and of the filtered (FLT) TDR series 

(crosses-dashed line); (b) The same comparison on a 1:1 plot: the original TDR and EMI data 

(triangles-solid regression line); filtered (FLT) TDR and original EMI data (squares-dashed 

regression line). In the panel (a), the four cases are shown in sequence. For each case, the three 

values are for the three depth intervals 0.0-0.2, 0.2-0.4, and 0.4-0.6 m.   
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Figure 10. Maps of bulk electrical conductivity for the: (a) 100-6dS, (b) 50-6dS, (c) 100-1dS, (d) 

50-1dS transects showing the original σb,EMI resulting from the inversion of the observed EMI 

data. Panels (d) to (g) show instead the corresponding results after the calibration via the TDR 

measurements (i.e., by applying Eq. 10).  
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Transect Cb  ρL  ρP  β  α  

100-1dS 0.10 0.02 0.33 2.04 0.25 

50-1dS 0.10 0.00 0.08 3.06 0.14 

100-6dS 0.18 0.02 0.07 2.92 -0.21 

50-6dS 0.34 0.08 0.32 1.84 0.04 

 

Table 1. Concordance parameters for the four transects for the TDR_ORG and EMI_ORG data. 

The table reports the Concordance, ρL, and the Pearson, ρP, correlation, as well as parameters 

α and β of the MRA line. The bias factor, Cb, is also shown. 

 

 

Transect Cb  ρL  ρP  β  α  

100-1dS 0.74 0.24 0.33 1.02 0.29 

50-1dS 0.62 0.05 0.08 1.02 0.27 

100-6dS 0.87 0.06 0.07 1.02 0.57 

50-6dS 0.79 0.25 0.32 1.02 0.31 

 

Table 2. Concordance parameters for the four transects for the TDR_FLT and EMI_ORG data. 

The table reports the Concordance, ρL, and the Pearson, ρP, correlation, as well as parameters 

α and β of the MRA line. The bias factor, Cb, is also shown. 
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