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Abstract 16 

This paper deals with the issue of monitoring the spatial distribution of bulk electrical 17 

conductivity σb, in the soil root zone by using Electromagnetic Induction (EMI) sensors under 18 

different water and salinity conditions. To deduce the actual distribution of depth-specific σb 19 

from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a 20 

regularized 1D inversion procedure designed to manage nonlinear multiple EMI-depth 21 

responses. The inversion technique is based on the coupling of the damped Gauss-Newton 22 

method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of 23 

the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. 24 
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This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to 25 

enhance the spatial resolution of the EMI results in presence of sharp boundaries (otherwise 26 

smeared out after the application of more standard, Occam-like regularization strategies 27 

searching for smooth solutions). Time-Domain Reflectometry (TDR) data are used as ground-28 

truth data for calibration of the inversion results. An experimental field was divided into four 29 

transects 30 m long and 2.8 m wide, cultivated with green bean and irrigated with water at two 30 

different salinity levels and using two different irrigation volumes. Clearly, this induced 31 

different salinity and water contents within the soil profiles. For each transect, 26 regularly 32 

spaced monitoring soundings (1 m apart) were selected for the collection of, respectively: (i) 33 

Geonics EM-38 and (ii) Tektronix Reflectometer data. Despite the original discrepancies in the 34 

EMI and TDR data, we found a significant correlation of the means and standard deviations of 35 

the two data series, in particular, after a low-pass spatial filtering of the TDR data. Based on 36 

these findings, the paper introduces a novel methodology to calibrate EMI-based electrical 37 

conductivities via TDR direct measurements. This calibration strategy consists in a linear 38 

mapping of the original inversion results into a new conductivity spatial distribution with the 39 

coefficients of the transformation uniquely based on the statistics of the two original 40 

measurement datasets (EMI and TDR conductivities). 41 

 42 

Introduction 43 

Soil water content and salinity vary in space both vertically and horizontally. Their distribution 44 

depends on management practices and on the complex nonlinear processes of soil water flow 45 

and solute transport, resulting in variable storages of solutes and water (Coppola et al. 2015). 46 

Monitoring the actual distribution of water and salts in the soil profile explored by roots is 47 

crucial for managing irrigation with saline water, while still maintaining an acceptable crop 48 
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yield. For water and salts monitoring  over large areas, there are now non-invasive techniques 49 

based on electromagnetic sensors which allow the bulk electrical conductivity of soils σb to be 50 

determined (Sheets and Hendrickx 1995, Corwin and Lesch 2005, Robinson et al. 2012, 51 

Doolittle and Brevik 2014, Von Hebel et al. 2014, among many others).  52 

σb depends on: (i) soil water content θ; (ii) electrical conductivity of the soil solution (salinity) 53 

σw; (iii) tortuosity of the soil-pore system τ; and (iv) other factors related to the solid phase such 54 

as bulk density, clay content and mineralogy.  55 

Electromagnetic induction (EMI) sensors provide measurements of the depth-weighted 56 

apparent electrical conductivity ECa accordingly to the specific distribution of the bulk electrical 57 

conductivity σb as well as the depth response function of the sensor used (McNeill 1980). Thus, 58 

the dependence on σb makes ECa sensitive to soil salinity and water distributions. In principle, 59 

specific procedures for estimating salinity and water content may be developed through 60 

controlled laboratory experiments where σb, σw and θ are measured simultaneously (Rhoades 61 

and Corwin 1981). That said, to monitor salinity and water content, it is crucial to correctly infer 62 

the depth-distribution of σb from profile-integrated ECa readings. To date, this issue has been 63 

tackled by applying two different strategies: The first is to use empirical calibration relations 64 

relating the depth-integrated ECa readings to the σb values measured by alternative methods - 65 

like Time-Domain Reflectometry (TDR) - within discrete depth intervals (Rhoades and Corwin, 66 

1981, ; Lesch et al., 1992, ; Triantafilis et al., , Laslett, and McBratney 2000, ; Amezketa, 2006,; 67 

Yao and Yang, 2010;, Coppola et al. 2016); The second consists in the 1D inversion of the 68 

observations from the EMI sensor to reconstruct the vertical conductivity profile (Borchers, 69 

Uram, and Hendrickxet al., 1997, ; Hendrickx et al., 2002;, Santos et al., 2010;, Lavoué et al., 70 

2010, ; Mester et al., 2011, ; Minsley et al., 2012, ; Deidda, Fenu, and Rodriguezet al., 2014;, 71 

Von Hebel et al., 2014).   72 
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With regard to ECa inversion, a forward model still commonly used is the cumulative response 73 

model or local-sensitivity model (LSM) (McNeill, 1980). McNeill’s linear approach is well suited 74 

to the cases characterized by an induction number B (defined as the ratio between the coil 75 

distance and the skin depth) much smaller than 1. However, because of the increasing 76 

computing power, improved forward modeling algorithms based on more accurate nonlinear 77 

approaches are becoming increasingly common (Hendrickx et al., 2002, ; Deidda, Fenu, and 78 

Rodriguezet al., 2014;, Deidda, Bonomi, and Manzi et al., 2003, ; Lavoué et al., 2010, ; Santos et 79 

al., 2010). For example, these more sophisticated forward modeling codes can cope with a 80 

wider range of conductivities for which the assumption B<<1 is not necessarily met. 81 

To obtain reliable vertical distributions of electrical conductivity, the ECa data used for the 82 

inversion should consist of multi-configuration data. Hence, data collection should be 83 

performed either with the simultaneous use of different sensors or with different acquisition 84 

configurations with only one sensor (different configurations may consist, e.g., in different coil 85 

orientations, varying intercoil separations and/or frequencies – see, for example Díaz de Alba 86 

and Rodriguez, 2016). Multi-configuration data can be effectively used to invert for vertical 87 

electrical conductivity profiling since the ECa measures actually investigate different, 88 

overlapping soil volumes. Devices specifically designed for the simultaneous acquisition of 89 

multi-configuration data are currently available. Some of them consist of one transmitter and 90 

several receivers with different coil separations and orientations (Santos et al., 2010). If, 91 

instead, a sensor with single intercoil distance and frequency is available, a possible alternative 92 

to having multi-configuration measurements could be to record the data at different heights 93 

above the ground. 94 

Unfortunately, like every other physical measurement, frequency-domain electromagnetic 95 

measurements are sensitive to noise that is very hard to model effectively. Moreover as 96 
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discussed, for example, in Lavoué et al. (2010), Mester et al. (2011), and Von Hebel et al. 97 

(2014), an instrumental shift in conductivity values could be observed due to system 98 

miscalibration and the influence of surrounding conditions such as temperature, solar 99 

radiation, power supply conditions, the presence of the operator, zero-leveling procedures, 100 

cables close to the system and/or the field setup (see, amongst others, Sudduth, Drummond, 101 

and Kitchenet al., 2001; Robinson et al., 2004; Abdu, Robinson, and Joneset al., 2007; Gebbers 102 

et al., 2009; Nüsch et al., 2010). Hence, the ECa data from EMI measurements would generally 103 

require a proper calibration. One option could be to use soil cores as ground-truth data. In this 104 

case, ECa measurements at the sampling locations can be compared against ECa data predicted 105 

by the theoretical forward response applied to the true electrical conductivity distribution 106 

measured directly on the soil cores (Triantafilis et al., , Laslett, and McBratney 2000, ; 107 

Moghadas et al., 2012). Clearly, this strategy is extremely time- (and resource-) consuming. To 108 

avoid drilling, Lavoué et al. (2010) introduced a calibration method, later also adopted by 109 

Mester et al. (2011) and Von Hebel et al. (2014), using the electrical conductivity distribution 110 

obtained from Electrical Resistivity Tomography (ERT) data as input for electromagnetic 111 

forward modeling. The ECa values predicted on the basis of ERT data were used to remove the 112 

observed instrumental shift and correct the measured conductivity values by linear regression.  113 

However, in general, a prerequisite for such an approach concerns the reliability of the 114 

inversion of the ERT result. This is not only due to the quality of the original data, but also the 115 

adopted inversion procedure. Indeed, ERT inversion is an ill-posed problem: its solutions are 116 

characterized by non-uniqueness and instability with respect to the input data (Yu and 117 

Dougherty 2000; Zhdanov 2002; Günther 2011). In the Tikhonov regularization framework, ill-118 

posedness is addressed by including the available prior information. Such information can be 119 

very general. For example, it can be geometrical (i.e., associated to the presence of smooth or 120 
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sharp boundaries between different lithologies). Obviously, the final result largely reflects the 121 

initial guess formalized via the chosen regularization term (Pagliara and Vignoli 2006; Günther 122 

2011; Vignoli, Deiana, and Cassiani 2012; Fiandaca et al. 2015).  123 

When relatively shallow depths have to be explored (1-2m), direct soil sampling and ERT can be 124 

effectively replaced by TDR observations. TDR devices are designed to measure the dielectric 125 

properties of soils. More precisely, they measure the apparent electrical permittivity, from 126 

which, not only the dielectric constant, but also the effective electrical conductivity can be 127 

deduced (e.g., Dalton et al., 1984; Topp et al., 1988; Weerts et al., 2001; Noborio, 2001; Jones 128 

et al., 2002; Robinson et al., 2003; Lin et al., 2007; Thomsen et al., 2007; Huisman et al., 2008; 129 

Lin et al., 2008; Koestel et al., 2008; Bechtold et al., 2010). In general, TDR measurements might 130 

be difficult to be used to recover the electrical conductivity with the desired accuracy. 131 

However, in the literature, many examples are reported in which, within the range 0.002 – 0.2 132 

S/m (compatible with the examples investigated in the present research), and by properly using 133 

the TDR device (e.g., by paying attention to  minimizeto   theminimize the effects of nonparallel 134 

device rods inserted into the ground), the TDR  conductivity can be measured with an 135 

uncertainty level lower than 5% (e.g.: Huisman et al., 2008; Bechtold et al., 2010). Besides, 136 

since the TDR measurements are commonly calibrated in saline solutions just before the field 137 

data acquisitions, they could potentially provide a reliable, absolute estimation of the actual 138 

ground conductivity (Ferré et al., 1998a). For this reason, in some cases, TDR observations have 139 

been proposed as a valid tool for ground-truthing  thetruthing the ERT and, possibly, as 140 

ancillary information source to constraint for the ERT inversions (Koestel et al., 2008).  For 141 

additional studies dealing with the use of ERT data for the validation of the EMI and TDR 142 

measurements for soil characterization we refer the reader to, for example,  Cassianiexample, 143 

Cassiani et al. (2012), and Ursino et al. (2014). 144 
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In the present research, we focus on the use of TDR data to absolute calibrate the 145 

conductivities obtained by inverting the EMI measurements. To do this, a dataset collected 146 

during an experiment carried out along four transects under different salinity and water 147 

content conditions (and monitored with both EMI and TDR sensors) is utilized. We first tackle 148 

the problem of inferring the soil electrical conductivity distribution from multi-height ECa 149 

readings via the proper inversion strategy. Then we assess the quality of these reconstructions 150 

by using TDR data as ground-truth. In this respect, in the following, we discuss how to 151 

effectively compare the σb values generated by the EMI inversion with the associated TDR 152 

values. In fact, as discussed by Coppola et al. (2016), because of their relatively smaller 153 

observation volume, TDR data provide quasi-pointlike measurements and do not integrate the 154 

small-scale variability (of soil water content, solute concentrations, etc.) induced by natural soil 155 

heterogeneity. By contrast, EMI data necessarily overrule the small-scale heterogeneities seen 156 

by TDR probes as they investigate a much larger volume. Accordingly, the paper provides a 157 

methodology to calibrate EMI results by TDR readings. This procedure lies in conditioning the 158 

original TDR data and in the statistical characteristics of the two EMI and TDR data series. On 159 

the basis of the proposed analysis, we discuss the physical reasons for the differences between 160 

EMI and TDR-based bulk electrical conductivity and identify a method to effectively migrate the 161 

reliable TDR information across the larger volume investigated by EMI.  162 

 163 

Materials and Methods 164 

The experiment was carried out at the Mediterranean Agronomic Institute of Bari (MAIB) in 165 

south-eastern Italy. The soil was pedologically classified as Colluvic Regosol, consisting of a 166 

silty-loam layer of an average depth of 0.6 m on fractured calcarenite bedrock. The 167 

experimental set-up (Fig. 1) consisted of four transects of 30 m length and 2.8 m width, 168 
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equipped with a drip irrigation system with five dripper lines placed 0.35 m apart and 169 

characterized by an inter-dripper distance of 0.2 m. The dripper discharge was 2 l/h. Green 170 

beans were grown in each transect. The irrigation volumes were calculated according to the 171 

time-dynamics of water content in the first 0.25 m measured by a TDR probe inserted vertically 172 

at the soil surface. TDR readings were taken: (i) just before and (ii) two hours after every 173 

irrigation. Based on the difference between the water content at field capacity and that 174 

measured just before irrigation, it was easy to assess the volumes needed to bring the soil 175 

water content back to the field capacity.  176 

The four transects were irrigated with water at two different salinity levels and with two 177 

different water volumes. Transect 1: 100% of the irrigation water at 1 dSm-1 (hereafter 100-178 

1dS); Transect 2: 50% of irrigation water at 1 dSm-1 (50-1dS); Transect 3: 100% of the irrigation 179 

water at 6 dSm-1 (100-6dS); Transect 4: 50% of irrigation water at 6 dSm-1 (50-6dS). Water 180 

salinity was induced by adding calcium chloride (CaCl2) to tap water. Irrigation volumes were 181 

applied every two days.  182 

EMI readings - in vertical magnetic dipoles configurations - were collected by using a Geonics 183 

EM38 device (Geonics Limited, Ontario, Canada). The EM38 operates at a frequency of 14.6 kHz 184 

with a coil spacing of 1 m, and with a nominal measurement depth of ~1.5 m (McNeill, 1980). 185 

The lateral footprint of the EM38 measurement can be considered approximately equal to the 186 

vertical one. Thus, the σb seen by the EMI, in a given depth-layer, necessarily differs from that 187 

seen by a TDR probe at the same depth-layer, due to the very different spatial resolutions.  188 

At the beginning of the measurement campaign, the EMI sensor was “nulled” according to the 189 

manufacturer’s manual. Readings were taken just after each irrigation application at 1 m step, 190 

along the central line of each transect, for an overall total of 26 soundings per transect. Multi-191 

height EM38 readings were acquired at heights of 0.0, 0.2, 0.4 and 0.6 m from the ground. 192 
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Taking measurements just after irrigation allowed relatively time-stable water contents to be 193 

assumed at each site throughout the monitoring phases.   194 

Just after the EM38 measurements, a TDR probe was inserted vertically at the soil surface  195 

insurface in 26 locations, each corresponding to the central point of an EM38 reading. A 196 

Tektronix 1502C cable tester (Tektronix Inc., Baverton, OR) was used in this study. It enables 197 

simultaneous measurement of water content θ and bulk electrical conductivity σb of the soil 198 

volume explored by the probe (Heimovaara et al., 1995; Robinson and Friedman, 2003; 199 

Coppola et al., 2011; Coppola et al., 2015). The TDR transmission line consisted of an antenna 200 

cable (RG58, 50 Ω characteristic impedance, 2 m long and with 0.2 Ω connector impedance) 201 

and three-wire probes, 0.25 m long, 0.07 m internal distance, and 0.005 m in diameter. The 202 

TDR probe was not embedded permanently at fixed depths along the soil profile to avoid any 203 

potential disturbance to the EMI acquisitions. The TDR readings were taken at three different 204 

depth intervals (0.0-0.2, 0.2-0.4, 0.4-0.6 m). After the measurements at the surface (0.0-0.2 m), 205 

a trench was dug up to 0.2 m depth. TDR probes were then inserted vertically for the additional 206 

collection of the data in the interval 0.2-0.4 m, after which the trench was deepened up to 0.4 207 

m and readings were taken at 0.4-0.6 m. The σb,TDR readings were used for the calibration of the 208 

EM38 inversion results.  209 

 210 

Data Handling 211 

Multi-height EMI readings inversion 212 

Nonlinear 1D forward modeling, which predicts multi-height EMI readings from a loop-loop 213 

device, can be obtained by suitable simplification of Maxwell's equations that takes the 214 

symmetry of the problem into account. This approach is described in detail in (Hendrickx et al. 215 

2002), and is based on a classical approach extensively described in the literature (Wait 1982; 216 
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Ward and Hohmann 1988). The predicted data are functions of the electrical conductivity and 217 

the magnetic permeability in a horizontally layered medium. 218 

When the coils of the recording device are vertically oriented with respect to the ground 219 

surface, the reading at height h can be expressed by using the integral: 220 

,)()( 00

2

0

23 λρλλλρ λ dJRe h−
∞

∫−  (1) 

where ρ  denotes the distance between the coils, )(0 λJ  is the Bessel function of the first kind 221 

of order 0, and )(0 λR  is a complex valued function which depends upon the electromagnetic 222 

properties of the ground layers. A similar expression is valid also when the coils are horizontally 223 

aligned. Hence the dependence of the measured data on the electrical conductivity σk, of the 224 

(homogeneous) j-th layer is incorporated into the function )(0 λR . We discretize the problem 225 

with n layers whose characteristic parameters σj  (j (with j = 1, . . ., n) are the unknowns we 226 

invert for. In the present research, we neglect any dependence of the electromagnetic 227 

response on magnetic permeability as we assume it is fixed and equal to the permeability of 228 

empty space. In principle, it is possible to consider two measurements for each location: one 229 

for the horizontal and one for the vertical configuration of the transmitting and receiving loops. 230 

In this case, the data used as inputs for the inversion are 2*m, where with m is representing 231 

the number of heights h1, h2, . . ., hm where the measurements are performed.  232 

A least squares data fitting approach leads to the minimization of the function: 233 

),(r
2

1
)σ(f

m2

1i

2
i σ∑

=

=  (2) 

where σ= (σ1, . . ., σn)T, and )(r
2
i σ is the misfit between the i-th measurement and the 234 

corresponding forward modeling prediction based on Eq. 1. 235 
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We solve the nonlinear minimization problem by the inversion procedure described in Deidda, 236 

Fenu, and Rodriguez et al. (2014). The algorithm is based on a damped regularized Gauss-237 

Newton method. The problem is linearized at each iteration by means of a first order Taylor 238 

expansion. The use of the exact Jacobian (whose expression is detailed in Deidda, Fenu, and 239 

Rodriguez, et al., 2014) makes the computation faster and more accurate than using a finite 240 

difference approximation. The damping parameter is determined in order to ensure both the 241 

convergence of the method and the positivity of the solution. The regularized solution to each 242 

linear subproblem is computed by the truncated generalized singular value decomposition 243 

(TGSVD - Díaz de Alba and Rodriguez, 2016) employing different regularization operators. 244 

Besides the classical regularization matrices based on the discretization of the first and second 245 

derivatives, to further improve the spatial resolution of EMI inversion results in all the cases 246 

characterized by sharp interfaces, we tested a nonlinear regularization stabilizer promoting the 247 

reconstruction of blocky features (Zhdanov, Vignoli, and Ueda 2006; Ley-Cooper et al. 2015; 248 

Vignoli et al. 2015; Vignoli et al. 2017). The advantage of this relatively new regularization is 249 

that, when appropriate prior knowledge about the medium to reconstruct is available, it can 250 

mitigate the smearing and over-smoothing effects of the more standard inversion strategies. 251 

This, in turn, can make the calibration of the EMI data against the TDR data more effective. For 252 

this reason, in the following, the EMI results used for our assessments are those inferred by 253 

means of this sharp inversion. The differences between the “standard” smooth (based on the 254 

first derivative) reconstruction and the sharp one are clearly shown in Fig.s 2 and 4. In all cases, 255 

the inversions are performed with a 100-layer homogeneous discretization, down to 8 m, with 256 

fix interfaces. We opted for such a parameterization to be able to: (i) control the inversion 257 

results by acting merely on the regularization parameters, and (ii) remove the regularization 258 

effects possibly originated by the discretization choice (e.g., the number of layers, interfaces 259 
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locations). In this way, it was possible to use an automatic strategy for the selection of the 260 

regularization parameters.  In Fig.s 2 and 4, the sharp results (upper panels) associated with the 261 

cases 100-6dS and 50-6dS are compared against the corresponding smooth inversions (middle 262 

panels). Even if the data misfit levels largely match (lower panels in Fig.s 2 and 4, but also Fig.s 263 

3 and 5), the two inversion strategies produce reconstructions that differ significantly. This is 264 

due to the inherent ill-posedness of the EMI inversion. By considering solely the geophysical 265 

observations, it is impossible to decide which model is the best. In this research, based on the 266 

fact that, just after the irrigation, the effect of the water is supposed to remain localized in the 267 

shallowest portion of the soil section, the sharp inversion was found to provide more reliable 268 

results. Moreover, to some extent, the general better agreement of the data calculated from 269 

the sharp model supports the idea that the electrical properties distributions are better 270 

inferred via the sharp regularization. In any case, since in this research we calibrate the EMI-271 

derived models (and not the data), the final calibrated result will reflect the assumptions made 272 

in the first place, when the EMI data are inverted (specifically, the regularization assumptions).  273 

A possible alternative way to still effectively use the TDR data to calibrate the EMI 274 

measurements (and not the associated conductivity model) could consist in performing the 275 

calibration in the data-space (and not in the model-space). In this the data-space 276 

casecalibration, the measured TDR conductivity could be used as input model to calculate the 277 

ECa response of the EMI device actually used. In turn, this calculated ECa response can be 278 

compared against the measured EMI data and used for their calibration. However, eventually, 279 

also this latter data-space calibration will have to deal with the inversion issues once the 280 

calibrated EMI data need to be converted into conductivities σb. In this paper, we chose the 281 

model-space calibration strategy as, in general, in the available EMI inversion codes, it is not 282 

always easy to decouple the forward modelling routines from the overall inversion algorithm. 283 



 

13 

 

Hence, the discussed approach could be more directly applicable and beneficial for 284 

practitioners. On the other hand, it is true that the data-space calibration naturally takes into 285 

account the scale-mismatch between the TDR and the EMI measurements with no need for any 286 

statistical calculation.  287 

It is worth noting that the constant magnetic permeability assumption is not always valid. 288 

Inverting for the magnetic permeability is sometimes not only necessary, but it can also provide 289 

an additional tool for soil characterization (e.g., Beard and Nyquist, 1998; Farquharson, 290 

Oldenburg, and Routh et al., 2003; Sasaki et al., 2010; Guillemoteau et al. 2016; Noh et al. 291 

2017; Deidda, Diaz De Alba, and Rodriguez et al., 2017). 292 

For the sake of clarity, hereafter, the σb values generated from the EMI data inversion will be 293 

identified explicitly as σb,EMI.  294 

 295 

TDR-based water content and bulk electrical conductivity 296 

The Tektronix 1502C can measure the total resistance Rt of the transmission line by: 297 

( )
( ) csct RR
ρ1

ρ1
ZR +=

−
+=

∞

∞  (3) 

where: Rs is the soil’s contribution to total resistance and Rc accounts for the contribution of 298 

the series resistance from the cable; the connector Zc is the characteristic impedance of the 299 

transmission line; and ρ is a reflection coefficient at a very long time, when the waveform has 300 

stabilized. 301 

The σb value at 25°C can be calculated as (Rhoades and van Schilfgaarde 1976; Wraith et al. 302 

1993): 303 

T

c

c
b f

Z

K
σ C25 =°  (4) 
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where Kc is the geometric constant of the TDR probe and fT is a temperature correction factor 304 

to be used for values recorded at temperatures other than 25°C. Both Zc and Kc can be 305 

determined by measuring Rt with the TDR probe immersed in a solution with known 306 

conductivity σb. Hereafter, these σb measurements will be identified as σb,TDR.  307 

 308 

Evaluation of Concordance between σb,TDR measurements and σb,EMI estimates 309 

The agreement between σb,TDR measurements and σb,EMI estimations in the 0.0-0.6 m range was 310 

evaluated by the Concordance Correlation Coefficient, ρL : 311 

( )2

yx
2
y

2
x

xy

L
mmzz

s2
ρ

−++
=  (5) 

where mx, my, sx, sy, sxy are means, standard deviations and covariances of the two data series 312 

(x = σb,EMI; y = σb,TDR), respectively. 313 

Scatter plots of the σb,EMI and σb,TDR data series (both original and filtered) were evaluated by 314 

the line of perfect concordance (1:1 line) and the reduced major axis of the data (RMA) 315 

(Freedman et al., 1991). The method combines measurements of both precision and accuracy 316 

to determine how close the two data series are to the line of perfect concordance σb,EMI = σb,TDR. 317 

Compared to the classical Pearson correlation coefficient, ρP: 318 

yx

xy

P
ss

s
ρ = , (6) 

ρL not only measures the strength of linear relationship (how close the data in the scatter plot 319 

are to a line), but also the level of agreement (how close that line is to the line of perfect 320 

agreement, the 1:1 line). In this sense, ρL may also be calculated as (Cox, 2006): 321 

bPL Cρρ = ,
 

(7) 
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yx s/sv = , 

and  322 

( ) yxyx ss/mmu −= , 

where Cb is the bias correction factor measuring how far the best-fit line deviates from the 1:1 323 

line. The maximum value of Cb = 1 (0<Cb<1) corresponds to no deviation from the line. The 324 

smaller Cb is, the greater the deviation from the line. In other words, Cb is a measure of 325 

accuracy (how much the average estimate differs from the average measurement value, 326 

assumed to be the true value) and refers to the systematic error, whereas ρP is a measure of 327 

precision (measures the variability of measurements around their own average) and refers to 328 

the random error. The RMA line is given by: 329 

( ) x. x mmy xy βαββ +=+−=  (8) 

This line passes through the means of the x and y values and has slope given by the sign of 330 

Pearson’s correlation coefficient, ρP, and the ratio of the standard deviations, s, of the two 331 

series (Freedman et al., 1991;, Corwin and Lesch, 2005): 332 

xy ss /=β . (9) 

ρL increases in value as (i) the RMA approaches the line of perfect concordance (a matter of 333 

accuracy) and (ii) the data approach the RMA (a matter of precision). In the ideal case of 334 

perfect concordance, the intercept of the RMA, α, should be 0 and β should be 1. Therefore, α 335 

≠ 0 or β ≠ 1 indicate addi_ve and/or multiplicative biases (location and/or scale shifts). The 336 

concordance was evaluated for the original TDR data, as well as for the filtered TDR data. For 337 

the analysis described in detail later in the paper, it is worth noting that the coefficients α and β 338 
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depend only on the statistical characteristics (mean and standard deviation) of the two series, 339 

as xy mm β−=α  and xy ss /=β . 340 

 341 

Fourier filtering 342 

Because of their relatively small observation volume (~10-3 m3), TDR sensors provide quasi-343 

pointlike measurements and are, thus, more effective in capturing small-scale variability (in 344 

water content, solute concentrations) induced by natural soil heterogeneity. Thus, the 345 

variability within a set of TDR readings is expected to originate from a combination of small and 346 

large-scale heterogeneities (high and low spatial frequency components). By contrast, the EMI 347 

measurements (because of the size and physics of the instrumentation) necessarily integrate 348 

out the small-scale variability at the TDR scale of investigation.  349 

Hence, in order to make the two datasets comparable, the original spatial TDR data series need 350 

to be filtered to remove the variation from small-scale heterogeneities (recorded only by the 351 

TDR probe). In this way, only the information at a spatial scale equal to or larger than the 352 

observation volume of both sensors is preserved. 353 

Thus, a simple filter based on the Fourier Transform (FT) is applied to the TDR series. So, a low-354 

pass frequency filtering is performed on the TDR data to remove all  componentsall 355 

components related to the small scalesmall-scale heterogeneities and make it comparable with 356 

the EMI measurements. More specifically, for each transect, we consider the σb,EMI 357 

reconstruction and, for each of its 1D models, calculate the average conductivity value within 358 

each depth interval for which the TDR data are available (namely: 0.0-0.2 m, 0.2-0.4 m, 0.4-0.6 359 

m). Hence, for each depth interval, along the entire transect, we can calculate the mean and 360 

standard deviation of the conductivity values retrieved from the EMI observations. 361 
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Subsequently, this standard deviation (associated with the EMI data) is compared with the 362 

standard deviation of the iteratively low-pass filtered TDR data for the same depth interval. In 363 

this way, an optimal cut-off frequency can be selected to make the scales of the two kinds of 364 

measurements compatible. Figure 6 shows the comparison between the standard deviations of 365 

the EMI and filtered TDR data, for the 50-6dS transect, at 0.2-0.4 m depth. In this specific case, 366 

the selected cut-off frequency to filter the TDR data is 0.313 cycles/m, corresponding to a 3.2 m 367 

range. This is not surprising at this is of the order of magnitude of the footprint of the EMI 368 

measurements.      369 

 370 

Results and Discussion 371 

Hereafter, the original and filtered data will be respectively labeled ORG and FLT. The graphs on 372 

the top panels in Fig. 7 compare σb,TDR measured by TDR against the corresponding conductivity 373 

σb,EMI retrieved by the EMI (sharp) inversion for the all the transects. From the left, the graphs 374 

refer respectively to the transects identified as 100-6dS, 50-6dS, 100-1dS and 50-1dS. All plots 375 

show the data for the entire investigated profile between 0.0 and 0.6 m, together with the line 376 

of perfect concordance (1:1, black line), and the main regression axis (MRA, red line).  377 

The general conclusion is that, in all four transects, and for all three considered depth-layers, 378 

the σb,EMI values underestimate the σb,TDR measurements, such that the MRA line generally lies 379 

above the 1:1 line. Not surprisingly, the EMI result seems quite insensitive to TDR variability. 380 

Also, a considerable scatter around the MRA line may be observed for all transects.  381 

Table 1 shows the MRA coefficients (Cb, α ,α, β), as well as the Pearson, ρP, and the 382 

concordance correlation, ρL, for the three depth-layers and for all four transects investigated. 383 

We recall that the bias correction factor Cb, the slope β, and the intercept α should be 384 

respectively close to 1, 1 and 0, for the MRA to approximate the line of perfect concordance. 385 
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For all the transects and all the depth-layers considered, the parameters confirm the relatively 386 

loose relationship between σb,EMI and σb,TDR already observed in the graphs, both in terms of 387 

accuracy (the distance of the MRA line from the 1:1) and precision (the data scatter around the 388 

MRA line).  389 

Von Hebel et al. (2014) found a similar behavior when comparing their EMI and ERT datasets. In 390 

that case, the ECa values measured by EMI systematically underestimated the ECa generated by 391 

applying EMI forward modeling to the σb distribution retrieved by ERT. To remove the bias, the 392 

authors performed a linear regression between measured and predicted ECa after applying a 393 

ten-term moving average to the original data. By using the regression coefficients, all the 394 

measured ECa values were converted to ERT-calibrated ECa values. 395 

Here, we follow a different approach to calibrate the σb,EMI values against the σb,TDR 396 

measurements based on the MRA coefficients and, so, on the statistical parameters (mean and 397 

standard deviation) of the two data series. Specifically, the present approach looks for a 398 

systematic correction of the bias based on well-defined statistical sources of the discrepancies. 399 

In short, the proposed method performs the calibration in the σb model-space, instead of the 400 

ECa data-space. Our model-space approach mostly relies on the statistical parameters of the 401 

two series. Analyzing the role of these statistics in explaining the discrepancies between EMI 402 

and TDR data observed in Fig. 7a may help to understand how they can be effectively used for 403 

making EMI results directly comparable with the TDR values. 404 

In nearly all of the graphs in the top panels in Fig.  7, the discrepancies between σb,EMI and σb,TDR 405 

values can be decomposed in the following components:  406 

1. The distance along the σb,EMI axis of the MRA line from the 1:1 line, that is the difference 407 

between the σb,EMI and the σb,TDR means.  408 
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2. The difference in the slope of the MRA and of the 1:1 lines, which stems from the different 409 

variability of σb,EMI (its standard deviation) and that of σb,TDR. We recall here that the slope of 410 

the MRA is just the ratio of the two standard deviations, xy ss /β̂ = . 411 

3. The scatter of the data around the MRA line, which may come from different sensors' noise 412 

and the influence of surrounding conditions (e.g., temperature). 413 

Below, we analyze in detail the role of all these three points with the support of the measured 414 

data.  415 

1. The distance of the MRA from the 1:1 line is mostly due to the difference in the observed 416 

means. The plot in Figure 8a compares the means for the two original series (squares-solid line 417 

for TDR, circles-dashed line for EMI). Figure 8b reports the same comparison on a 1:1 plot 418 

(triangles-solid regression line). The mean values confirm the general underestimation of TDR 419 

by the EMI data. However, the trends are evidently similar, which is reflected in the high 420 

correlation between the means of the two series, with a significantly high R2=0.81. This high 421 

correlation has very positive implications from an applicative point of view, since, after the 422 

calibration in a specific site, it allows the EMI mean to be inferred given the mean of TDR 423 

readings taken in that soil, and thus provides the possibility to migrate the more reliable TDR 424 

information across the larger area that can be practically investigated during an EMI survey. 425 

2. The different slope of the two lines has to be ascribed to the different variability of the two 426 

series. Figure 9a compares the standard deviations for the two original series (squares-solid line 427 

for TDR, circles-dashed line for EMI). Figure 9b reports the same comparison on a 1:1 plot 428 

(triangles-solid regression line). Conceptually, the different variability of the two series can be 429 

related to the different sensor observation volumes (originated from the different spatial 430 

sensitivity of the sensors - Coppola et al. 2016). For TDR probes, most of the measurement 431 
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sensitivity is close to the rods (Ferré et al. 1998b). Conversely, the spatial resolution of inverted 432 

EMI ECa values may be much lower as the resolution of the EMI result depends on the physics 433 

of the method, the specifications (and configuration) of the recording device, and the 434 

regularization strategy applied during the inversion. Thus, the EMI is generally unable to 435 

capture the small-scale variability seen by the TDR. For our calibration purposes, it is important 436 

to make the variability of EMI and TDR conductivities actually comparable. As discussed by 437 

Coppola et al., (2016), a possible method can consist in filtering out the high frequency 438 

components (at small spatial scale) of the original TDR data, while retaining the lower 439 

frequency information. This corresponds to keep the information at a spatial scale larger than 440 

the observation volume of the TDR sensor and attuned with the resolution of the σb,EMI 441 

distribution. From a practical point of view, this makes sense, as TDR readings are often “too 442 

local” to actually represent the macroscopic physical characteristics of interest for applications 443 

(water content, solute concentrations). The volume explored by a TDR probe may, or may not, 444 

include preferential channels (Mallants et al., 1994; Oberdörster et al., 2010), stones (Coppola 445 

et al., 2011; Coppola et al., 2013), small-scale changes in the texture and structure (Coppola et 446 

al., 2011), which can make the interpretation of local measurements difficult for practical 447 

applications. In this sense, EMI’s removal of these small-scale effects may be desirable from a 448 

management perspective. Consistently, the original TDR data are conditioned via a low-pass 449 

filtering, as described in the Data Handling section. The filtering results, in terms of standard 450 

deviations, are reported in Fig. 9a (crosses-dashed line) and Fig. 9b (squares-dashed regression 451 

line). As expected, the low-pass filter makes the standard deviations much closer (almost 452 

overlapping) in all transects and all considered depth-layers. The regression improved 453 

significantly from 0.25 for the original data to 0.78 after the TDR data filtering. 454 
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3. The scatter is consistently reduced by the spatial filtering (as similarly discussed in Von Hebel 455 

et al., 2014). 456 

 457 

Eventually, the calibrated 
,

rg

b EMIσ distribution (superscript rg means: EMI data after regression) 458 

can then be obtained from the original ,b EMIσ  via the linear mapping: 459 

, ,

rg

b EMI b EMIσ α βσ= + ,               (10)  460 

where the coefficients � and �	 can be easily calculated from the means and standard 461 

deviations of the EMI results and the filtered TDR data. Thus, if mEMI and mTDR(FLT), and sEMI, and 462 

sTDR(FLT) are, respectively, the means and the standard deviations of the original σb,EMI EMI data 463 

and of the filtered σb,TDR(FLT) TDR data, the MRA line coefficients can be expressed as 464 

TDR(FLT) EMIm mα β= −  and ( ) /TDR FLT EMIs sβ = . 465 

The bottom panels in Fig. 7 show the results of the application of the linear mapping. In 466 

particular, they compare the calibrated EMI data (EMI rg) with the filtered TDR (TDR FLT) 467 

measurements. The MRA parameters and the concordance coefficients in the case of filtered 468 

TDR data are reported in Table 2. Clearly, considering the (calibrated) EMI and (filtered) TDR 469 

standard deviations turns the MRA line to be practically matching the 1:1 line, with the 470 

coefficient β approaching to 1. Moreover, from Table 2, the improvement of the bias Cb and the 471 

concordance ρL  is generally significant. On the other hand, the Pearson’s correlation ρP  is not 472 

influenced by the recalibration as the proposed approach deals with the statistics of the data 473 

series rather than the single data. Thus, after the application of the low-pass filter to the TDR 474 

data, the coefficient β is close to 1, and the calibration turns out to be (almost) a simple shift of 475 

the inverted σb,EMI. The amount of this shift is equal to  the difference between the mean values 476 

mTDR(FLT) and mEMI. To summarize, the TDR filtering allows removing the outlier values generated 477 
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by the small scale variability and preserving the information content necessary to properly 478 

calculate the shift required for the absolute calibration of the EMI inversion results.  479 

Figure 10 shows, on the left, the original σb,EMI distribution to be compared against the ,

rg

b EMIσ  480 

results (on the right) obtained through the application of the linear transformation in Eq. 10. 481 

The calibrated transects preserves the spatial variability of the original EMI inversions, but are 482 

now characterized by value ranges that are more realistic (as they are obviously closer to the 483 

TDR measurements assumed to be more representative of the real soil conditions). The results 484 

in Fig. 10 obviously reflect the experimental irrigation set-up. Hence, not surprisingly, the 485 

conductivity of the 100-6dS case (irrigated with 100% of the water at 6 dSm-1) is the most 486 

effected (Fig. 10d), while the 50-1dS case (corresponding to an irrigation with 50% of the water 487 

at 1 dSm-1) is the example with the lowest conductivity range (Fig. 10g). The intermediate 488 

irrigation tests 50-6dS (Fig. 10e) and 100-1dS (Fig. 10f) show very similar maximum and 489 

minimum conductivity values over the two transects. However, there is a difference concerning 490 

the spatial distributions. In particular, in the 100-1dS case, the highest 
,

rg

b EMIσ  values 491 

characterize not only the shallower 0.0 - 0.1 m portion (Fig. 10f), but they appear to spread 492 

almost homogenously all over the section. On the contrary, in the 50-6dS test, the maximum 493 

values are limited to the first soundings at the beginning of the transect and to the 0.2 - 0.4 m 494 

depth interval. More important, if we compare the original 50-6dS (Fig. 10b) and 100-1dS (Fig. 495 

10c) conductivity distributions against the corresponding calibrated results (Fig. 10e and Fig. 496 

10f), the original σb,EMI section, which used to be the generally most conductive one (50-6dS, 497 

Fig. 10b), is now the most resistive (Fig. 10e) and vice versa. This, one more time, demonstrates 498 

that the proper calibration may lead to significantly different conclusions.   499 

 500 
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As already discussed, the high correlation of the means and the standard deviations of the two 501 

series are central for this procedure to be of practical interest. In short, the procedure can be 502 

summarized as follows: (i) An area is monitored via EMI survey and a few TDR calibration 503 

measurements are collected concurrently. (ii) The availability of the two different datasets 504 

allows performing the regression for the mean and the standard deviation of the original EMI 505 

inversion results and the filtered TDR data, like those shown in Fig.s 8b and 9b. (iv) These 506 

statistical parameters can be promptly used for the calculation of the coefficients α and β to be 507 

inserted into Eq. 10. (v) The original EMI inversion results are not always reliable when 508 

compared with the direct measurements obtained by using a TDR probe. Rather, they only 509 

contain the low-frequency information supplied by TDR (most likely, together with some shifts 510 

connected with the poor absolute calibration of the EMI system and/or the working conditions, 511 

e.g., the temperature). Thus, for quantitative analyses, it may be crucial to transform the 512 

original EMI result ,b EMIσ  into a new, calibrated section ,

rg

b EMIσ  by means of the linear mapping 513 

in Eq. 10.  514 

The proposed workflow enables us to translate the original non-calibrated σb,EMI data into the 515 

actual σb we would collect in ideal conditions, and which would perfectly match “low-516 

resolution” TRD measurements.  ,

rg

b EMIσ is our best possible estimation of the true electrical 517 

conductivity at the scale of investigation of the EMI survey: it is the original σb,EMI after the 518 

application of the appropriate rescaling and shifts deduced by the more reliable and absolutely 519 

calibrated TDR measurements. 520 

 521 

Conclusions 522 
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The objective of the paper is to infer the bulk electrical conductivity distribution in the root 523 

zone from multi-height (potentially non-calibrated) EMI readings. TDR direct measurements are 524 

used as ground-truth σb data to evaluate the correctness of the σb estimations generated by 525 

EMI inversion. For all four transects and for all three depth-layers considered in this study, the 526 

σb,EMI values underestimate the σb,TDR measurements, such that the MRA line generally lies 527 

above the 1:1 line. Also, a considerable scatter around the MRA line was observed for all 528 

transects.  529 

The proposed analysis allows discussing the physical reasons for the differences between EMI- 530 

and TDR-based electrical conductivity and developing an approach to calibrate the original  531 

σb,EMI by using the σb,TDR measurements. Our approach is based on the MRA coefficients and, 532 

hence, on the statistical parameters (mean and standard deviation) of the two series. 533 

Specifically, the approach looks for a systematic correction of the bias based on well-defined 534 

statistical sources of the discrepancies. A low-pass filtering has been carried out on the TDR 535 

data to obtain a significantly high correlation between the standard deviations of the two data 536 

series. After that, a simple linear transformation can be applied to the originally inverted EMI 537 

section σb,EMI  to get a calibrated σb result.  538 

The proposed strategy lies on the assumption that TDR direct measurements supply absolutely 539 

calibrated observations of the electrical conductivity of the soil and can be effectively used to 540 

calibrate the conductivity distributions inferred from EMI data. The availability of EMI 541 

calibrated data paves the way to reliable reconstructions of the electrical conductivity 542 

distribution over large areas (typical for EMI surveys, but not for TDR campaigns) unaffected by 543 

the usual EMI miscalibrations. This, in turn, can result in the possibility of effective time-lapse 544 

surveys and/or in consistent merging of subsequent surveys. 545 
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On the other hand, the proposed statistical workflow for making the TDR measurement 546 

comparable with the associated EMI results provides a more sophisticated approach than 547 

simple smoothing to upscale the TDR data. Thus, from the opposite perspective, the approach 548 

in question can be used to tackle the problems connected with handling the TDR data 549 

characterized by excessively high spatial resolution.  550 

 551 

 552 
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 818 

Figure 1. Schematic view of the experimental field  819 
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 820 

Figure 2. Examples of sharp and smooth inversions applied to the dataset 100-6dS. The results 821 

are shown together with their corresponding data misfit.  822 
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 823 

Figure 3. Comparison of the data fitting associated with the sharp and smooth inversions 824 

applied to the dataset 100-6dS (Fig. 2). The calculated data corresponding to the sharp and 825 

smooth results are shown together with the observations for each of the four measured 826 

channels (heights).827 
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 828 

Figure 4. Examples of sharp and smooth inversions applied to the dataset 50-6dS. The results 829 

are shown together with their corresponding data misfit.  830 
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 831 

Figure 5. Comparison of the data fitting associated with the sharp and smooth inversions 832 

applied to the dataset 50-6dS (Fig. 4). The calculated data corresponding to the sharp and 833 

smooth results are shown together with the observations for each of the four measured 834 

channels (heights).  835 
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 836 

Figure 6. Standard deviation of the EMI series (horizontal black line) for the 50-6dS transect at 837 

0.2-0.4 m depth. The squares show the corresponding standard deviations for the TDR series 838 

for different level of filtering. The intersection of the EMI line with the TDR curve allows 839 

identifying the optimal cut-off frequency range (~0.313 cycles/m) to make the two standard 840 

deviations similar.841 
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Figure 7. Comparison between σb,TDR and σb,EMI for all four transects for the depth range 0.0-0.6 

m. The graphs in the top panels (a) show the original TDR and EMI data, while those in the 

bottom panels (b) the Filtered (FLT) TDR and EMI data after the regression based on MRA 

parameters (rg).  
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Figure 8. (a) Comparison of the means for the two original series (squares-solid line for TDR, 

dcircles-dashed line for EMI); (b) The same comparison on a 1:1 plot (triangles-solid regression 

line). In the panel (a), the four cases are shown in sequence. For each case, the three values are 

for the three depth intervals 0.0-0.2, 0.2-0.4, and 0.4-0.6 m.  
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Figure 9. (a) Comparison of the standard deviations of the TDR original series (squares-solid 

line), of the EMI original series (circles-dashed line), and of the filtered (FLT) TDR series 

(crosses-dashed line); (b) The same comparison on a 1:1 plot: the original TDR and EMI data 

(triangles-solid regression line); filtered (FLT) TDR and original EMI data (squares-dashed 

regression line). In the panel (a), the four cases are shown in sequence. For each case, the three 

values are for the three depth intervals 0.0-0.2, 0.2-0.4, and 0.4-0.6 m.   
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Figure 10. Maps of bulk electrical conductivity for the: (a) 100-6dS, (b) 50-6dS, (c) 100-1dS, (d) 

50-1dS transects showing the original σb,EMI resulting from the inversion of the observed EMI 

data. Panels (d) to (g) show instead the corresponding results after the calibration via the TDR 

measurements (i.e., by applying Eq. 10).  
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Transect Cb  ρL  ρP  β  α  

100-1dS 0.10 0.02 0.33 2.04 0.25 

50-1dS 0.10 0.00 0.08 3.06 0.14 

100-6dS 0.18 0.02 0.07 2.92 -0.21 

50-6dS 0.34 0.08 0.32 1.84 0.04 

 

Table 1. Concordance parameters for the four transects for the TDR_ORG and EMI_ORG data. 

The table reports the Concordance, ρL, and the Pearson, ρP, correlation, as well as parameters α 

and β of the MRA line. The bias factor, Cb, is also shown. 

 

 

Transect Cb  ρL  ρP  β  α  

100-1dS 0.74 0.24 0.33 1.02 0.29 

50-1dS 0.62 0.05 0.08 1.02 0.27 

100-6dS 0.87 0.06 0.07 1.02 0.57 

50-6dS 0.79 0.25 0.32 1.02 0.31 

 

Table 2. Concordance parameters for the four transects for the TDR_FLT and EMI_ORG data. 

The table reports the Concordance, ρL, and the Pearson, ρP, correlation, as well as parameters α 

and β of the MRA line. The bias factor, Cb, is also shown. 
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