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Abstract. This study investigates the use of a nonparametric, tree-based model, Quantile Regression Forests (QRF), for 5 

combining multiple global precipitation datasets and characterizing the uncertainty of the combined product. We used the 

Iberian Peninsula as the study area, with a study period spanning eleven years (2000–2010). Inputs to the QRF model included 

three satellite precipitation products, CMORPH, PERSIANN, and 3B42 (V7); an atmospheric reanalysis precipitation and air 

temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset. We calibrated the 

QRF model for two seasons and two terrain elevation categories and used it to generate ensemble for these conditions. 10 

Evaluation of the combined product was based on a high-resolution, ground-reference precipitation dataset (SAFRAN) 

available at 5km/1h resolution. Furthermore, to evaluate relative improvements and the overall impact of the combined product 

in hydrological response, we used the generated ensemble to force a distributed hydrological model (the SURFEX land-surface 

model and the RAPID river routing scheme) and compared its streamflow simulation results with the corresponding 

simulations from the individual global precipitation and reference datasets. We concluded that the proposed technique could 15 

generate realizations that successfully encapsulate the reference precipitation and provide significant improvement in 

streamflow simulations, with reduction in systematic and random error on the order of 20%–99% and 44%–88%, respectively, 

when considering the ensemble mean. 

Keywords: satellite, precipitation, reanalysis, error modeling.  
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1. Introduction 

Accurate estimates of precipitation at the global scale, which are essential to hydrometeorological applications (Stephens and 

Kummerow, 2007), rely primarily on satellite-based observations and atmospheric reanalysis simulations. Although 

advancement in both satellite retrievals and reanalysis-based precipitation datasets has been continuous (Seyyedi et. al., 2014; 

Dee et al., 2011; Huffman et al., 2007; Mo et al., 2012), they are still associated with several sources of error (Derin et al., 5 

2016; Mei et al., 2014; Seyyedi et. al., 2014; Gottschalck et al., 2005; Peña-Arancibia et al., 2013) that limit their use in water 

resource applications. Quantifying and correcting the sources of the error and characterizing its propagation are important to 

improving and promoting the use of satellite and reanalysis precipitation estimates in hydrological applications at global scale. 

During the past two decades, research investigations have focused on characterizing the error in satellite precipitation products 

and its propagation in streamflow simulations (Hossain and Anagnostou, 2004; Li et al., 2009; Bitew and Gebremichael, 2011; 10 

Nikolopoulos et al., 2013; Mei et al., 2016). These studies have highlighted the dependence of the error on a multitude of 

factors, including seasonality, topography, soil wetness, and vegetation cover (Derin et al., 2016; Mei et al., 2014; Seyyedi et 

al., 2014; Hou et al., 2014). Other studies have used stochastic satellite-rainfall error models to investigate uncertainty 

characteristics and their dependencies (Hossain and Anagnostou, 2006; Teo and Grimes, 2007; Maggioni et al., 2014; Adler 

et al., 2001; AghaKouchak et al., 2009) and have used stochastically generated ensemble rainfall fields as input to hydrological 15 

models to study the satellite precipitation uncertainty propagation in the simulation of various hydrological variables. The two-

dimensional satellite rainfall error model, SREM2D (Hossain et al., 2006), has been used to evaluate the significance of surface 

soil moisture (Seyyedi et al., 2014) and seasonality (Maggioni et al., 2017) in modeling the error structure of satellite rainfall 

products. 

Given the multidimensionality of error dependence and the lack of a clear winner among the various precipitation datasets 20 

established by these studies, we argue that, to mitigate the errors and uncertainties, one should combine the different 

precipitation datasets, taking into account the different climatological and land surface factors. A promising approach to 

modeling appears to be the application of statistical nonparametric techniques, which efficiently combine information on 

several factors (Ciach et al., 2007; Gebremichael et al., 2011). In fact, although nonparametric statistical techniques are not 

widely used in rainfall estimation, some notable examples exist in the literature, with encouraging results. Ciach et al. (2007) 25 

established a nonparametric estimation technique based on weather radar data to characterize the uncertainties in radar 

precipitation estimates as a function of range, temporal scale, and season.  Lakhankar et al. (2009) introduced a nonparametric 

technique to retrieve soil moisture from satellite remote sensing products in reliable ways with sufficient accuracy. Moreover, 

Gebremichael et al. (2011) developed a nonparametric technique for the satellite rainfall error modeling using rain gauge–

adjusted, ground-based radar rainfall and reported improved satellite precipitation performance with relatively large variations 30 

at low and high rainfall rates.  

The use of nonparametric statistical techniques in error modeling has also gained popularity in weather forecasting, climate 

change prediction, and the modeling of hydrological processes (Croley et al., 2012; Brown et al., 2010; Mujumdar et al., 2008; 
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Yenigun et al., 2013). Recently, a wide variety of nonparametric techniques have been developed for error analytics (Taillardat 

et al., 2016; He et al., 2015). Nonparametric statistical techniques require fewer assumptions for the form of the relationship 

and data. The advantages over parametric techniques for prediction are explained in detail in Guikema et al. (2010). 

Specifically, the authors exhibited better results (lower prediction error) with nonparametric techniques than with parametric 

analysis models. The techniques they used were Classification and Regression Trees (CART) and Bayesian Additive 5 

Regression Trees (BART) (Chipman et al., 2010). Another nonparametric technique, Random Forest (RF) regression, which 

provides information about the full conditional distribution of the response variable was used by Breiman, (2001) and found 

to yield more robust predictions by stretching the use of the training data partition.  

This paper investigates the use of a nonparametric statistical technique for optimally combining globally available precipitation 

sources from satellite and reanalysis products. Specifically, we use the quantile regression forests (QRF) tree-based regression 10 

model (Meinshausen, 2006) to combine dynamic (for example, temperature and soil moisture) and static (for example, 

elevation) land surface variables with multiple global precipitation sources to stochastically generate improved precipitation 

ensemble. The proposed framework provides a consistent formalism for optimally combining several rainfall products by using 

information from these datasets. It is, furthermore, able to characterize uncertainty through the ensemble representation of the 

combined precipitation product. We present the development of the proposed framework and evaluate relative improvements 15 

in the combined rainfall product in detail. We also evaluate the new combined product in terms of hydrological simulations to 

assess the importance of precipitation improvement for streamflow simulations, thus highlighting the usefulness of this 

approach for global hydrological applications.  

The paper is structured as follows: Section 2 briefly explains the study area and the datasets used. Section 3 describes the QRF 

model, the rainfall error analysis, and the hydrological model setup. Performance evaluation of the combined product in 20 

precipitation and corresponding hydrological simulations is presented in section 4. Conclusions and recommendations are 

discussed in section 5. 

2. Study Area and Data 

The study area we selected for this investigation is the Iberian Peninsula, which has three main climatic zones: Mediterranean, 

oceanic, and semiarid. The peninsula’s climate is primarily Mediterranean, except in its northern and southern parts, which are 25 

characterized mostly as oceanic and semiarid, respectively. The topography varies from almost zero elevation to altitudes of 

3,500 meters in the Pyrenees. For the hydrological analysis, we focused the study over the Ebro River basin and, specifically, 

on five subbasins of different spatial scale: (1) the Ebro River at Tortosa (84,230 km2); (2) the Ebro River at Zaragoza (40,434 

km2); (3) the Cinca River at Fraga (9,612 km2); (4) the Segre River at Lleida (11,369 km2); and (5) the Jalon River at Grisen 

(9,694 km2) (Figure 1). The datasets we used are described below. 30 
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2.1. Reference precipitation (SAFRAN) 

The default reference dataset was recently created by Quintana-Seguí et al. (2016, 2017) using the SAFRAN meteorological 

analysis system (Durand et al., 1993), which is the same to the one used in earlier studies over France (Quintana-Seguí et al., 

2008; Vidal et al., 2010). SAFRAN uses optimal interpolation to combine the outputs of a meteorological model and all 

available observations, which in this case were provided by the Spanish State Meteorological Agency (AEMET). The variables 5 

analyzed were precipitation, temperature, relative humidity, wind speed, and cloudiness. In the case of precipitation, the first 

guess was deduced from the observations themselves instead of coming from a numerical model, like the other variables. The 

observations were analyzed daily (as opposed to every six hours for the other variables), but the resulting product had a time 

resolution of one hour. This was achieved by an interpolation method that used relative humidity to distribute precipitation 

throughout the day. Spatially, the outputs are presented on a regular grid of 5 km of resolution. The dataset (Quintana-Seguí 10 

et al, 2016), which spans 35 years, covers mainland Spain and the Balearic islands. 

2.2. Satellite-based precipitation 

We used three gauge-adjusted quasi-global satellite precipitation products—CMORPH, PERSIANN, and 3B42 (V7)—in this 

study. CMORPH (Climate Prediction Center Morphing technique of the National Oceanic and Atmospheric Administration, 

or NOAA) is a global precipitation product based on passive microwave (PMW) satellite precipitation fields spatially 15 

propagated by motion vectors calculated from infrared (IR) data (Joyce et al., 2004). PERSIANN (Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks) is IR based, and uses a neutral network technique to 

connect IR observations to PMW rainfall estimates (Sorooshian et al., 2000). TMPA (Tropical Rainfall Measuring Mission 

Multisatellite Precipitation Analysis), or 3B42 (V7), is a merged IR and passive microwave precipitation product from NASA 

that is gauge-adjusted and available in both near-real time and post–real time (Huffman et al., 2010). Spatial and temporal 20 

resolutions of the satellite precipitation products are 0.250 and three-hourly time intervals, respectively. 

2.3. Atmospheric reanalysis 

For meteorological forcing, we selected the WATCH1 (Water and Global Change FP7 project) Forcing Dataset ERA-Interim 

(hereafter WFDEI) (Weedon et al., 2014), a contemporary state-of-the-art database. WFDEI, a dataset that follows up on the 

European Union’s WATCH project (Harding et al., 2011), is built on the ECMWF ERA–Interim reanalysis (Dee et al., 2011) 25 

with a geographical resolution of 0.5°× 0.5° and a sequential frequency of three hours for the time span 1979–2012, with 

particular bias corrections using gridded monitoring. Finally, we chose two atmospheric products (atmospheric precipitation 

and air temperature) among WFDEI variables as predictors for the nonparametric statistical technique.  



5 

 

2.4. Soil moisture 

The soil moisture information used in this study was obtained from the satellite-based soil moisture estimates produced by the 

European Space Agency (ESA) Climate Change Initiative (CCI) project under the ESA Programme on Global Monitoring of 

Essential Climate Variables (ECV) (Liu et al., 2011; Owe et al., 2008; De Jeu, 2003; http://www.esa-soilmoisture-

cci.org/node/145). The ESA CCI (version, v02.0) soil moisture product is derived from passive and active microwave satellite-5 

based sensors (Liu et al., 2011; Liu et al., 2012; Wagner et al., 2012) and provides information on daily surface soil moisture 

at 0.25o spatial resolution and quasi-global scale. 

2.5. Terrain elevation 

The Shuttle Radar Topography Mission (SRTM) dataset included in this study has, in recent years, been one of the most 

extensively used publicly accessible terrain elevation datasets. Available at ~90 m spatial resolution, it was obtained using 1-10 

degree digital elevation model (DEM) tiles from the U.S. Geological Survey and interpolated to the 0.25° grid resolution to 

match the resolution of precipitation and soil moisture products. 

3. Methodology 

3.1 Blending technique 

In this study, we applied a nonparametric, tree-based regression model, the quantile regression forests (QRF) (Meinshausen, 15 

2006), to produce rainfall ensemble with respect to the reference precipitation. The model input includes the three global 

satellite precipitation datasets (CMORPH, PERSIANN, and 3B42-V7), the global reanalysis rainfall and air temperature 

datasets, and the satellite near-surface soil moisture and terrain elevation datasets, described in the previous section. The 

atmospheric products were interpolated in space using the nearest neighbour interpolation technique to match the resolution 

of precipitation satellite precipitation datasets. The spatial and temporal resolutions of the atmospheric products are 0.250 and 20 

three-hourly time intervals, correspondingly. The high-resolution SAFRAN were matched to the satellite precipitation datasets 

on a pixel-by-pixel basis by averaging all high-resolution pixels within a 0.25° pixel. Finally, all three-hourly data were mapped 

to the grid resolution of 0.25° chosen to be the final spatial resolution for the combined product. 

QRF is derived from random forest (Meinshausen, 2006), which is capable of handling data from large samples; it has desirable 

built-in features, such as variable selection, interaction detection, incorporation of missing data, and the ability to save the 25 

trained model for future prediction (Nateghi et al., 2014). QRF uses bagged version (bootstrapped aggregating) of decision 

trees by randomly sampling from bootstrapped sample, which reduces variance and helps to avoid overfitting that improves 

the stability and accuracy of the algorithm (Meinshausen, 2006).QRF provides a nonparametric way to evaluate conditional 

quantiles for high-dimensional predictors of variables. The conditional distribution function of Y is defined by 

�̂�(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦⎹𝑋 = 𝑥) = 𝐸(1{𝑌≤𝑦}⎹𝑋 = 𝑥)    (1) 30 
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where Y is observations of the response variable, X is a covariate or predictor variable, and E is the conditional 

mean.  𝐸(1{𝑌≤𝑦}⎹𝑋 = 𝑥)  , which is approximated by the weighted mean over the observation of 1{𝑌≤𝑦} (Meinshausen, 

2006).Then equation (1) can be expressed as 

𝐹(𝑦|𝑋 = 𝑥) = ∑ 𝜔𝑖

𝑛

𝑖=1

(𝑥)1{𝑌𝑖≤𝑦}        (2) 

where weight vector 𝜔𝑖(𝑥) = 𝑘−1  ∑ 𝜔𝑖
𝑘
𝑖=1 (𝑥, 𝜃𝑡) using random forests; k indicates number of single trees (t = 1,…,k); each 

tree built with an i.i.d. (independent and identically distributed) vector 𝜃𝑡 (Meinshausen, 2006). 5 

This nonparametric technique utilizes the weighted average of all trees to compute the empirical distribution function. It keeps 

not only the mean but also all observation values in nodes and, building on this information, it calculates the conditional 

distribution. In this method, consistency of the empirical quantities is induced based on a large number of instances in terminal 

nodes. The overall framework of the QRF scheme is shown in Figure 2. Higher number of trees reduces the variance of the 

model. So, increasing the number of trees in the ensemble will not have any impact on the bias of the model. Furthermore, a 10 

higher variance reduction can be achieved by decreasing the correlation between trees in the ensemble. Therefore, QRF utilizes 

the optimal number ‘mtry’ (size of the random subset of predictors) for split point selection at each node. This approach 

introduces randomness in the ensemble to reduce the correlation between trees, which helps to avoid overfitting (Meinshausen, 

2006). In this study we used the default value (k = 1000) (Meinshausen, 2006) throughout all simulations to create the empirical 

distribution at each grid cell and used the cross-validation experiments (see next section) to demonstrate stability of the method.  15 

Specifically, we initialized a random forest of 1000 trees for each terminal node of each of the classified dataset, and calculated 

the 95% prediction intervals at each grid cell. QRF utilizes the same weights to calculate the empirical distribution function, 

and a weighted average of all trees for the predicted expected response values to calculate the empirical distribution. To conduct 

the hydrological simulations in this study, we resampled from the empirical distribution function 20 times per grid cell to 

obtain “reference”-like rainfall ensemble members.  20 

  

To build the rainfall error model, we grouped available rainfall estimates from all input datasets (three satellite and reanalysis) 

into three subsets: (1) all rainfall products that report rainfall greater than zero; (2) all rainfall products that report zero rainfall; 

and (3) at least one product that reports nonzero rainfall. We categorized each case into two seasons: the “warm season,” which 

included data from May through October, and the “cold season,” which included data from November through April. We then 25 

classified each season category into two levels based on two terrain elevation ranges: above (high) and below (low) 1,000 

m.a.s.l. Finally, for each subset, we prepared four groups (warm-high, warm-low, cold-high, cold-low) for the error model. 

For each group, leave-one-pixel-out cross-validation is applied where each point in the statistics is not included in the 

calibration of the technique. In general, prominent ‘mtry’ is obtained by this method in extending the sample size and prevent 

overfitting. Applying this validation method, the model exhibits great skill on both the training dataset and the unseen test 30 

data. Similarly, to strengthen the validation results, we also performed a test using leave-one-year-out cross-validation. 
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Namely, for each year of the database hold out for validation, we calibrated on the rest of the years (ten years) and repeated 

the experiment for all 11 years of the study period. The model validation results based on leave-one-pixel-out and leave-one-

year-out are described in section 4.2.  

3.2. Hydrological modeling 

To perform the streamflow simulations, we used the SASER (SAfran-Surfex-Eaudyssée-Rapid) hydrological modeling suite. 5 

SASER is a physically based and distributed hydrological model for Spain based on SURFEX (Surface Externalisée), a land-

surface modeling platform developed by Météo-France (Masson et al., 2013) that integrates several schemes for different kinds 

of surfaces (natural, urban, lakes, and so on). The scheme for natural surfaces, ISBA (Noilhan and Planton, 1989; Noilhan and 

Mahfouf, 1996), has different versions, with differing degrees of complexity. Within SASER we used the explicit multilayer 

version (Boone, 2000; Decharme et al., 2011) with prescribed vegetation. The physiography was provided by the 10 

ECOCLIMAP dataset (Champeaux et al., 2005). 

Since SURFEX has no river routing scheme, we chose the RAPID river routing scheme (David et al., 2011a, 2011b) within 

the Eau-dyssée framework (http://www.geosciences.mines-paristech.fr/fr/equipes/systemes-hydrologiques-et-

reservoirs/projets/eau-dyssee). Eau-dyssée transfers SURFEX runoff (surface and subsurface or drainage) from the SURFEX 

grid cells to the river cells using its own isochrony algorithm. Then, RAPID uses a matrix-based version of the Muskingum 15 

method to calculate flow and volume of water for each reach of a river network. The current application of SASER uses 

HYDROSHEDS (Lehner et al., 2008) to describe the river network. As the current setup cannot simulate dams, canals, or 

irrigation, the resulting riverflows are estimations of the natural system (that is, the system without direct human intervention 

in the form of irrigation or hydraulic infrastructure, such as dams or canals). 

It is important to note that, since the current version of SASER uses the default parameters for its different schemes, it has not 20 

been specifically calibrated for the target basin. This has some implications. The benefit is that the model is not over fitted, 

which makes it directly comparable to global applications of SURFEX, which are not calibrated, either. The downside is that 

the model might not perform optimally. In the future, we plan to improve the options used in the LSM to adapt its structure 

better to the necessary physical processes that take place in the basin, while limiting the need for parameter calibration. For 

the purpose of this study, which involved the relative comparison of multiple rainfall forcing–based simulations, the current 25 

model setup was considered adequate. 

3.2. Metrics of model performance evaluation 

We based quantification of the systematic and random error of model-generated ensemble on different error metrics. We 

evaluated the random error component based on the normalized centered root mean square error (NCRMSE), which is defined 

as 30 
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𝑁𝐶𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ [𝑦𝑖 − 𝑦𝑖 −

1
𝑛

∑ (𝑦𝑖 − 𝑦𝑖)
𝑛
𝑖=1 ]

2
𝑛
𝑖=1

1
𝑛

∑ 𝑦𝑖
𝑛
𝑖=1

                       (3) 

Note that 𝑦𝑖 is reference rainfall, 𝑦𝑖 is estimated rainfall for times i from the blended technique, and n is the total number of 

data points used in the calculations. A NCRMSE value of 0 indicates no random error, while 1 indicates random error is equal 

to 100% of the mean reference rainfall.  

To measure the systematic error, we used the bias ratio (BR) metric, which indicates the mean of the ratio of estimated rainfall 

to reference rainfall and is defined as 5 

  𝐵𝑅 =
1

𝑛
∑ (

𝑦𝑖

𝑦𝑖
)

𝑛

𝑖=1

 (4) 

 

For an unbiased model, the BR would be 1. 

To assess the ability of QRF-generated ensemble to encapsulate the reference rainfall, we used the exceedance probability 

(EP) metric, which indicates the probability that the reference value will exceed the prediction interval: 

 𝐸𝑃 = 1 −
1

𝑛
∑ 1

{𝑄𝑙𝑜𝑤𝑒𝑟𝑖
<𝑦𝑖<𝑄𝑢𝑝𝑝𝑒𝑟𝑖

}

𝑛

𝑖=1

 (5) 

Here, Qlower and Qupper denote lower and upper boundaries of prediction interval, respectively. The EP would be 0 for an ideal 10 

model; that means a perfect encapsulation of the reference within the prediction interval. 

To evaluate the accuracy of the QRF-generated ensemble, we used the uncertainty ratio (UR), which measures uncertainty 

from the prediction interval (Qlower, Qupper), as used in (3): 

 𝑈𝑅 =
∑ (𝑄𝑢𝑝𝑝𝑒𝑟 − 𝑄𝑙𝑜𝑤𝑒𝑟)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 (6) 

To achieve accurate and successful prediction, comparatively small prediction intervals are expected. The UR value 1 means 

best estimate of the actual uncertainty which indicates the maximum possible uncertainty of the prediction interval. Uncertainty 15 

Ratio (UR) quantifies the prediction interval width relative to the magnitude of observations. UR value close to 1, indicates 

confidence intervals being in the order of magnitude of the predicted values. 

For the evaluation of the accuracy of the ensemble, we also calculated rank histogram, which is computed by counting the rank 

of observations, comparing with values from a compiled ensemble, in ascending order. Rank of actual value is denoted by 𝑟𝑗 

(r1, r2, . . ., rm+1) and rj is expressed as follows: 20 

 𝑟𝑗 = �̂�{𝑦𝑖,𝑗−1 < 𝑦𝑖 < 𝑦𝑖,𝑗} (7) 

A flat rank histogram diagram means precise prediction of error distribution (Hamil, 2001; Hamil and Colucci, 1997). A U-

shape rank histogram (convex) represents conditional biases, and a concave shape means over-spread. Skewed to the right 

denotes negative bias and vice versa. 
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Nash-Sutcliffe Efficiency (NSE) is widely used in hydrology to assess model performance (Nash and Sutcliffe, 1970) and is 

defined as  

 𝑁𝑆𝐸 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (8) 

NSE bounds from negative infinity to positive 1, where positive 1 means ideal consistency. A negative value of NSE denotes 

worse performance of the estimator than the mean of reference.  

4. Results and discussion 5 

4.1 Sensitivity analysis 

In this paper we present a blending technique that leads to an improved characterization of precipitation estimation uncertainty 

through an optimal combination of precipitation and other datasets. The technique is designed to evaluate the sensitivity of the 

blending technique to the different forcing variables. The selection of variables was based upon recent research works (Seyyedi 

et. al., 2014; Bhuiyan et. al., 2017, Mei et al., 2016) that have examined the factors related to precipitation error characteristics, 10 

and have showed that soil moisture, temperature, precipitation products and elevation are important predictors in the error 

modeling of rainfall estimates. Bhuiyan et al. (2017) has recently used a nonparametric statistical technique (QRF) to evaluate 

the significance of surface soil moisture in modeling the error structure of satellite product and successfully assessed the impact 

of surface soil moisture information on the model’s performance. Therefore, soil moisture is identified as a potential factor for 

the proposed blending technique instead of vegetation indicator. In addition, we have daily quality controlled surface soil 15 

moisture data with a global coverage and 0.25° spatial resolution while the available vegetation indices are provided at much 

coarser (multi-day) temporal scales. Also the precipitation products, despite using similar observations to some extent, exhibit 

different error characteristic, and could provide complementary information. Therefore, dynamic (temperature and soil 

moisture) and static (elevation) land surface variables were used as input along with the multiple global precipitation sources 

(CMORPH, PERSIANN, and 3B42 (V7); and atmospheric reanalysis precipitation).  20 

After choosing those predictor variables, for any nonparametric statistical technique, it is essential to know the sensitivity of 

the result to the different input predictor variables and to quantify the impact of change from one variable to another. The 

variable importance methodology (Breiman, 2001) is a measure of sensitivity in that case, which helps to recognize crucial 

input variables that demonstrate the relative contribution of each variable. The importance of the predictor variables depends 

on the magnitude of the percentage increase in mean square error (%IncMSE) of the model (Breiman, 2001). Higher values of 25 

%IncMSE indicate higher importance of the predictor variables. Briefly, the mean squared error (MSE) computed from the 

original model (i.e. considering all variables) is compared against MSE from a new model that holds all variables the same as 

the original model except one, the one we want to determine its relative importance.  
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Results from the variable importance test show that all variables used in this technique contribute valuable information in the 

modelling process. Results from the variable importance test for two groups included in our methodology (for warm and cold 

period, high elevation and rainfall greater than zero for all products) are presented in Figure 3, which shows the variable 

importance of the seven predictor variables. According to these results all variables are important but the level of significance 

varies considerably among the different variables. Soil moisture, reanalysis and the three satellite precipitation datasets were 5 

ranked as most important predictor variables (Figure 3), showing their strong impact in model prediction. Similar results (not 

shown) were obtained from examination of the other scenarios (e.g. for low elevation cases, etc.). From the variable importance 

test, it is argued that all variables selected have a significant impact on the model prediction, justifying our choice for including. 

4.2 Evaluation of the blending technique 

We first evaluated the method by applying a leave-one-pixel-out cross validation, where each pixel was treated as an 10 

independent dataset and was predicted based on QRF parameters determined based on the remaining pixels in the database. 

The time series of 20 ensemble members cumulative rainfall simulated by QRF for high and low elevations in warm and cold 

seasons are shown in Figure 4. The ensemble envelope encapsulates the actual rainfall time series, with better convergence of 

QRF ensemble members for the warm season but with overall satisfying results for the cold season as well. As is shown, the 

model was capable of generating stochastic realizations that successfully encapsulated the reference precipitation dynamics. 15 

Apart from the ensemble performance, one can note from the results in Figure 4 the variability in the performance of different 

precipitation products and their inconsistencies relative to the reference precipitation. For example, PERSIANN overestimated 

for high elevation in the warm season, while CMORPH, 3B42 (V7) and atmospheric reanalysis precipitation underestimated. 

Overall, CMORPH underestimated the most for both seasons, which indicated poor performance for the QRF ensemble.  

Figure 5 compares the combined rainfall product precipitation accumulation maps to the corresponding reference rainfall 20 

accumulation maps for the warm and cold seasons. In general, the spatial distribution of rainfall was consistent for both 

seasons, with the northwestern part of the study area, which is near to the ocean, associated with more precipitation. In the 

cold season, the combined product gave higher precipitation in the southwestern and northwestern parts of the Iberian 

Peninsula than in the warm season. These patterns were consistent with those presented in the reference dataset. 

We calculated NCRMSE for the various precipitation products (Figure 6) for five reference precipitation categories, with 25 

values in the percentile ranges of <25th, 25th–50th, 50th–75th, 75th–95th, and >95th. The results showed the QRF-based 

combined product could reduce the random error for all rainfall rate categories in both seasons. It is also shown that the random 

error reduced consistently in all products as the rainfall rate increased.  

To quantify the performance of the combined product in contrast to the individual precipitation datasets, we calculated the 

relative reduction of the NCRMSE for the different precipitation ranges; Figure 6 presents these performance metric statistics. 30 

The relative reduction of the values was defined as the difference between the average of the different datasets and the 

combined product over the average NCRMSE of the datasets. We noted that relative NCRMSE reduction was greater during 

the cold season, particularly in regions of low elevation (75% to 99%).  During the warm season, the relative reduction varied 
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between 53% and 81% for both high and low elevations. Overall, results from all metrics examined showed that the random 

error of the combined product was significantly lower than those of the individual global precipitation datasets used in the 

technique. 

The combined product’s accuracy was further assessed using BR for both seasons (Figure 7). The results indicated QRF 

improved accuracy for rain rates beyond the 50th-percentile threshold, exhibiting lower BR values. For moderate to high 5 

rainfall in both seasons, all individual rainfall datasets exhibited underestimation, which was reduced in the combined product. 

For the low rainfall, the systematic error reduction for the combined product was not prominent resulting comparatively higher 

BR value. Generally, the QRF model is expected not to capture well very low and extremely high values due to the weakness 

of the empirical distribution function to model probabilities close to 0 or 1. The sample size plays an important role in empirical 

distribution function. Therefore, very large sample sizes required for low values to quantify the rate of convergence to the 10 

underlying cumulative distribution function.  Moreover, studies have shown that QRF can perform better in generating one-

sided prediction intervals, which is the cases in Juban et al. (2007), Francke et al. (2008) and Zimmermann et al. (2012).In 

terms of elevation, the magnitude of BR was considerably less for the high elevations in the warm season. The model used 

elevation as a control parameter, which reflected its ability to reduce noticeably the systematic error at high elevations. For the 

higher rain rate category (>95th percentile), the BR value in the warm season ranged between 0.5 and 0.6, which was close to 15 

estimations for the cold season over the study area. The relative reduction was high for the combined product, varied from 

17%–76% for both seasons. Overall, the combined product exhibited BR values closer to 1 than did the individual precipitation 

datasets, demonstrating superior performance. 

Results for exceedance probability (EP) values (Figure 8), which are used to assess the ability of the QRF-generated ensemble 

to encapsulate the reference data suggest that reference precipitation is well captured within the ensemble envelope. 20 

Specifically, considerably reduced exceedance probability values (<0.26) were reported for rain rates below the 95th-percentile 

threshold for both seasons. A season-based comparison revealed that cold-season EP values were smaller than the 

corresponding values for the warm season across all rain rate thresholds. Even for the high rain rates (>95th percentile), EP 

values were found to be acceptable (~0.5).  

Analysis of UR showed the QRF-ensemble envelope was associated with slightly wider prediction intervals in the warm season 25 

than in the cold, indicating varying degrees of uncertainty throughout the year (Figure 8). A UR closer to 1 was exhibited for 

higher rain rates, demonstrating that the ensemble envelope represented well the uncertainty for the moderate to high rain rates, 

while the variability of the ensemble envelope for rain rates below the 50th-percentile threshold overestimated the product 

uncertainty. 

Finally, to evaluate the accuracy of the QRF ensemble, we calculated the rank histogram for the cold and warm seasons. Figure 30 

9 shows the rank histogram of reference values in the posterior sample of QRF ensemble prediction for both seasons. QRF 

produced a nearly uniformly distributed rank histogram for low to moderate rain rates, which means the rank test was more 

promising for QRF ensemble predictions for those rain rates. However, the rank histogram exhibited larger values on the right 

hand side, indicating underestimation of high rain rates in the ensemble prediction, which is potentially attributed to the 
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inclusion in the training dataset of the entire spectrum of values (i.e. large sample of zeroes and low values) that although allow 

for reproducing certain important features of precipitation (e.g. intermittency) impact the simulation of high rainfall regime. 

As an additional evaluation step, we applied a leave-one-year-out cross-validation, where we kept a whole year as an 

independent dataset and model was trained on the remaining years of the study period. Results for NCRMSE are shown in 

Figure 10, which are consistent to the leave-one-pixel-out cross-validation analysis in terms of the reduction of the random 5 

error for both seasons (warm and cold) and precipitation percentile ranges. The random error decreases with increasing scale 

and for all cases, results from combined product are associated with an error reduction (relative to other products) at the order 

of 52%-98%. Overall, results indicate that the random error of the combined product was significantly lower than those of the 

individual precipitation products used in this study. 

The performance of the estimates for the model was also evaluated in terms of systematic error, as shown in Figures 11. Results 10 

show that the magnitude of systematic error for the combined product is substantially lower than for the individual precipitation 

products. Overall, BR values are closer to 1 for moderate to high rain rates in both seasons for the combined product, which 

indicates that QRF is able to reduce the systematic error in moderate to high rain rates.  

In summary, both validation approaches demonstrated that QRF model is able to reduce significantly the systematic and 

random error of precipitation estimates exhibited by individual precipitation products, which indicates that QRF was 15 

appropriately trained and does not exhibit limitations due to overfitting. To conduct the hydrological simulations in this study 

the validations results based on leave-one-pixel-out method is provided in section 4.3.  

4.3 Evaluation of ensemble hydrological simulations 

This section summarizes the results of the streamflow simulations associated with the different precipitation forcing data 

(satellite, reanalysis, and combined product). We carried out the evaluation using the SAFRAN-based simulations for 20 

reference. Comparisons allowed us to understand the performance of each individual precipitation product in terms of 

streamflow simulations and to evaluate the impact of QRF-based blending technique in terms of hydrological simulations. The 

NCRMSE and BR quantitative statistics are used here to assess the performance of basin-scale precipitation forcing data and 

corresponding generated streamflows. 

Since SASER does not simulate dams or canals or irrigation, the simulated streamflow reflects how the flow would be if the 25 

water resources of the basin were not managed (that is, naturalized streamflow). The Ebro basin is heavily managed, with 

hundreds of dams and an important canal network. This raised the problem that model flows could not be compared to the 

observed flows on those subbasins that are influenced by water management, which is most of them. The Spanish Ministry of 

Agriculture, Fisheries, Food, and the Environment (MAPAMA) had, however, produced monthly naturalized riverflows using 

the SIMPA rain-runoff model (Ruiz et al., 1998, Álvarez et al., 2004). These are the reference values used by the managers, 30 

and they currently offer the only means of reference for validating SASER results.  

Table 1 compares the bias and NSE of SASER to those of SIMPA. In terms of monthly accumulation of precipitation, the 

precipitation data used by SIMPA were similar to SAFRAN’s; thus, the difference may have resided in evapotranspiration, 
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which is calculated differently in both models, in terms both of formulation and land-use maps. In terms of NSE, the scores 

are acceptable at the outlet (between 0.4 and 0.6) and better at most Pyrenean basins (between 0.4 and 0.8), with some 

exceptions.   

Although SASER had room for improvement, mainly with regard to bias, the model was generally able to simulate the main 

dynamics of the basin. In fact, given that it is essentially evaluated against another model (SIMPA) the reported bias cannot 5 

be attributed with certainty to a deficiency of SASER model and therefore this evaluation exercise mostly represents that the 

model we used can represents flows consistently (to a certain degree) with another model that is widely used in the region. As 

this study aimed to evaluate streamflow simulations in a relative sense (that is, with respect to SAFRAN-based simulations) 

and not to reproduce the observed riverflows with precision, the current version of the SASER model was considered adequate 

for this purpose. Being physically based, it simulated realistically the interplay among different physical processes, and, thus, 10 

it could be used to assess their impact on uncertainty.  

To provide an overview of the differences in error magnitude between forcing and response variables, we present our analysis 

of error metrics for simulated streamflow along with corresponding error metrics in basin-average precipitation. Results for 

NCRMSE are shown in Figure 12, which notes that for the two larger basins, Ebro at Tortosa (84,230 km2) and Ebro at 

Zaragoza (40,434 km2), the NCRMSE (0.1–0.3) of the combined product was significantly lower than those of the other 15 

subbasins for all intervals of streamflow values; this was related to the significant smoothing effect on random error associated 

with larger basin scales.  

Consistent with streamflow, these two basins also exhibited considerably lower NCRMSE values (0.2–0.5) for the combined 

product in terms of basin-average precipitation. The random component of error was generally slightly higher for low 

precipitation rates than for the moderate and higher rates for the five subbasins. Similar findings in NCRMSE values for the 20 

low streamflow rates were observed. For the basin-average precipitation, the relative NCRMSE reduction was high for the 

combined product, ranging from 84% to 88% (below the 25th-percentile group). A product-wise comparison showed the 

combined product had more significant error-dampening effects than reanalysis and satellite precipitation products in 

streamflow simulation for all the subbasins. Specifically, the combined product (above the 50th percentile) was characterized 

by noticeably relative reduction error (44% to 78%) for streamflow. Moreover, we also observed that relative error reduction 25 

for the combined product decreased remarkably (56% to 88%), for low streamflow. These results indicated random error was 

reduced through the rainfall–streamflow transformation in all subbasins. Overall, results show combining information from 

reanalysis and satellite precipitation datasets could decrease random error in streamflow simulations. 

Bias ratio (BR) for basin-average precipitation ranges from overestimation to underestimation as a function of precipitation 

magnitude, with precipitation rates above the 50th percentile strongly underestimated (BR in the range of 0.07–0.25) (Figure 30 

13). The magnitude of BR for precipitation indicated lower systematic errors in estimates of low to high basin-average 

precipitation for all subbasins. The corresponding BR values for the simulated streamflows provided a general appreciation of 

how the magnitude of systematic error in basin-average precipitation translates to systematic error in streamflow simulations. 

While a one-to-one correspondence between rainfall and streamflow classes was not possible (note that an event from the 
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highest rainfall class might have resulted in moderate flow values depending on antecedent conditions and so on), we could, 

however, compare the overall range of BR values between basin-average precipitation and streamflow. As Figure10 indicates 

for the combined product, BR values were closer to 1 for the different streamflow classes, indicating streamflow was relatively 

stable. For the large two basins, Ebro at Tortosa and Ebro at Zaragoza, the combined product underestimated actual values 

slightly. Overall, the relative systematic error reduction for stream flow ranged from 20% to 99%. These results highlight the 5 

usefulness of optimally combining satellite and reanalysis precipitation datasets. Overall, after reducing systematic error, the 

QRF-generated ensemble corrections brought rainfall products closer to the reference rainfall and simulated runoff. 

5. Conclusions 

A new framework was presented in this study that uses a nonparametric technique (QRF) to combine multiple globally 

available data sources, including reanalysis and gauge-adjusted satellite precipitation datasets, for generating an improved 10 

ensemble precipitation product. The study investigated the accuracy of the combined product using a high-resolution reference 

rainfall dataset (SAFRAN) over the Iberian Peninsula. The QRF-generated ensemble members are evaluated in terms of 

precipitation for both warm- and cold-season weather patterns representing a wide variety of precipitation events. Furthermore, 

the QRF-based streamflow simulations from a distributed hydrological model are evaluated against the SAFRAN-based 

simulations for a range of basin scales of the Ebro river basin.  15 

Results from the analysis carried out demonstrate clearly that the proposed blending technique has the potential to generate 

realistic precipitation ensemble that are statistically consistent with the reference precipitation and are associated with 

considerably reduced errors. In terms of seasonality effects, the random error significantly decreased for the combined product 

with increasing rainfall magnitude and this reduction was greater during the cold season. The systematic error of the combined 

product varied from over- to underestimation as rain rate increased during both seasons. In terms of elevation, among all 20 

individual products, the magnitude of systematic error for the combined product was noticeably decreased for the higher 

elevations, which is a strong indication for using the proposed scheme in retrieving global precipitation in high-elevation 

regions.  Overall, the reduction of the combined product (relative to other products) for the systematic and random error ranged 

between 17%–76% and 53%–99%, respectively. 

Evaluation of the impact on streamflow simulations showed that the magnitude of systematic and random error for simulations 25 

corresponding to the combined product was significantly lower than for the individual precipitation products. In addition, for 

the combined product, the large-scale basins exhibited considerably lower systematic and random error values than the small-

size basins, which shows the dependency on basin scale. Specifically, the relative reduction for the combined product in 

systematic and random error ranged between 20%–99% and 44%–88%, respectively, which highlights the potential of the 

proposed technique in advancing hydrologic simulations.  30 

Our overall conclusion is that the proposed framework offers a robust way of blending globally available precipitation datasets 

providing at the same time an improved precipitation product and characterization of its uncertainty. This can have important 

applications in studies dealing with water resources reanalysis and quantification of uncertainty in hydrologic simulations. 



15 

 

Future work will include evaluation of the proposed framework in different hydroclimatic regions considering also sensitivity 

of its performance to availability (e.g. record length and spatial coverage) of in situ reference precipitation.  
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Figure 1. Map of Iberian Peninsula case study area.  

 

 

 

Figure 2: A schematic representation of the Quantile Regression Forests (QRF) framework used.  5 
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Figure 3: Variable importance plot, where %IncMSE is the percentage increase in mean square error. 

(Top) Warm period-high elevation. (Bottom) Cold period-high elevation. 



24 

 

 

 

 

 

 5 

Figure 4: Time series of cumulative rainfall of CMORPH, PERSIANN, 3B42 (V7), re-analysis rainfall, and QRF ensemble 

(blue envelop) for warm and cold season. 
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Figure 5: QRF-generated mean ensemble and reference rainfall maps for warm and cold season. 
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Figure 6: Normalized Centered Root Mean Square error for warm and cold season. The relative error reductions for the 

combined product (relative to other products) are shown above the bars. 
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Figure 7: Bias ratio for warm and cold season. 
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Figure 8: Exceedance probability and Uncertainty ratio for warm and cold season 
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Figure 9: Rank histogram for warm and cold season 
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Figure 10: Normalized Centered Root Mean Square error for warm and cold season.The relative error reductions for the 

combined product (relative to other products) are shown above the bars. 
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Figure 11: Bias ratio for warm and cold season. 
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Figure 12: Normalized Centered Root Mean Square error for basin-average rainfall and streamflow. The relative error 

reductions for the combined product (relative to other products) are shown above the bars. 
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Figure 13: Bias ratio of precipitation and streamflow. 
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Table1: The bias and NSE of high resolution SAFRAN-SURFEX simulation 

River Station Area(km2) NSE Bias 

Ega Andosilla 1445 0.735 -13.52 

Arga Funes 2759 0.651 -38.068 

Aragón Caparroso 5462 0.733 -25.655 

Jiloca Daroca 2202 0.069 -23.28 

Ebro Zaragoza 40434 0.716 -29.324 

Gállego Ardisa 2040 0.477 -26.613 

Ésera Graus 893 0.37 -28.177 

Cinca El Grado 2127 0.629 -21.223 

Segre Lleida 11369 0.256 -35.016 

Ebro Tortosa 84230 0.576 -27.2 

Najerilla Mansilla 242 0.114 -62.214 

Albercos Ortigosa 45 0.193 -45.826 

Cidacos Yanguas 223 0.392 -42.551 

Salazar Aspurz 396 0.731 -27.012 

Irati Liedena 1546 0.721 -30.451 

Arga Echauri 1756 0.508 -46.398 

Ega Estella 943 0.622 -36.172 

Aragón Yesa 2191 0.716 -22.334 

Noguera 

Pallaresa Collegats 1518 -0.768 2.102 

Huerva Mezcalocha 620 0.427 -24.375 

Ebro Mendavia 12010 0.592 -36.507 

Ebro Flix 82416 0.59 -27.564 

Ésera Barasona 1511 0.446 -32.846 

Ebro Ribarroja 81060 0.595 -27.604 

Jalón Calatayud 6841 0.222 -22.072 
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