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Abstract. The present paper proposes a dimensionless analytical framework to predict the hydrologic response of a given 

catchment thus assessing the impact of the rainfall event structure on the runoff peak. The dimensionless form of the rainfall 

depth is described as a simple power function of the dimensionless duration. Soil abstractions are modelled using the Soil 

Conservation Service method and the Instantaneous Unit Hydrograph theory is undertaken to determine the dimensionless 

form of the hydrograph; the two-parameter gamma-distribution is selected to test the proposed methodology. A set of 10 

analytical expressions are derived in case of constant-intensity hyetograph to assess the highest runoff peak with respect to a 

given rainfall event structure irrespective of the specific catchment. Looking at the results, the curve of the highest values of 

the runoff peak reveals a local minimum point in the neighbourhood of �∗ and n values equal to 1 and 0.3, respectively. As 

an example, the proposed approach has been applied to analyse the hydrologic response of a small Mediterranean catchment 

to three observed rainfall events characterized by different rainfall internal structures.  15 

1 Introduction 

The ability to predict the hydrologic response of a river basin is a central feature in hydrology. For a given rainfall event, 

estimating rainfall excess and transforming it to runoff hydrograph is an important task for planning, design and operation of 

water resources systems. For these purposes, design storm based on the statistical analysis of the annual maximum series of 

rainfall depth are used in practice as input data to evaluate the corresponding hydrograph for a given catchment. Several 20 

models are documented in the literature to describe the hydrologic response (e.g. Chow et al., 1988, Beven, 2012): the 

simplest and most successful is the unit hydrograph concept proposed firstly by Sherman (1932). Due to a limited 

availability of observed streamflow data mainly in small catchment, the attempts in improving the peak flow predictions are 

documented in the literature since the last century (e.g. Henderson, 1963; Meynink and Cordery, 1976) to date. Recently, 

Rigon et al. (2011) investigated the dependence of peak flows on the geomorphic properties of river basins. In the 25 

framework of flood frequency analysis, Robinson and Sivapalan (1997) presented an analytical description of the peak 

discharge irrespective of the functional form assumed to describe the hydrologic response. Goel et al. (2000) combine a 

stochastic rainfall model with a deterministic rainfall-runoff model to obtain a physically based probability distribution of 

flood discharges; results demonstrate that the positive correlation between rainfall intensity and duration impacts the flood 
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flow quantiles. Vogel et al. (2011) developed a simple statistical model in order to simulate observed flood trends as well as 

the frequency of floods in a nonstationary word including changes in land use, climate and water uses. Iacobellis and 

Fiorentino (2000) proposed a derived distribution of flood frequency identifying the combined role played by climatic and 

physical factors at the catchment scale. Bocchiola and Rosso (2009) developed a derived distribution approach for flood 

prediction in poorly gauged catchments to shift the statistical variability of rainfall process into its counterpart in terms of 5 

statistical flood distribution.   

In this framework, the present research study takes a different approach by exploring peak flow rate values, which are 

subject to a very broad range of climatic, physical, geomorphic and anthropogenic factors, limited to the rainfall input 

neglecting the expected rainfall event features condensed in the Depth-Duration-Frequency (DDF) curves. The main focus of 

this paper is to assess the impact of the rainfall event structure on the peak flow rate based on a deterministic event-based 10 

analysis. With this aim, rainfall-runoff processes are modelled using the Soil Conservation Service (SCS) method for soil 

abstractions and the Instantaneous Unit Hydrograph (IUH) theory to provide a dimensionless analytical expression for peak 

flow. 

The first specific objective is to define a structure relationship of the rainfall event in terms of a simple power function. The 

second specific objective is to analytically derive the highest peak flow rate caused by a rainfall event with given internal 15 

structure irrespectively of the specific features of the catchment. Finally, as an example, the proposed approach has been 

applied to analyse the hydrologic response of a small Mediterranean catchment to three observed rainfall events 

characterized by different rainfall internal structures. 

2 Methodology  

A dimensionless approach is proposed in order to define an analytical framework that can be applied to any study case (i.e. 20 

natural catchment). It follows that both the rainfall depth and the rainfall-runoff relationship that are strongly related to the 

climatic and morphologic characteristics of the catchment, are expressed through dimensionless forms. 

2.1 The dimensionless form of the rainfall structure relation 

Rainfall DDF curves are commonly used to describe the maximum rainfall depth as a function of duration for given return 

periods. In particular for short durations, rainfall intensity has often been considered rather than rainfall depth, leading to 25 

intensity-duration-frequency (IDF) curves (Borga et al., 2005). Power laws are commonly used to describe DDF curves in 

Italy (e.g. Burlando and Rosso, 1996) and elsewhere (e.g. Koutsoyiannis et al., 1998).  

In the proposed approach, each rainfall event is described in terms of a simple power function similarly to the DDF curves, 

therefore assuming that the internal structure relationship of a rainfall event can be described as follow: 

ℎ(�) = ���	            (1) 30 
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where h [L] is the maximum rainfall depth, �� [LT-n] and n [-] are respectively the coefficient and the structure exponent of 

the power function for a given duration, d [T].  

As an example, Fig. 1 describes the internal structure of a rainfall event according to the above illustrated power function. In 

Fig. 1, the observed rainfall depth (at the top), the observed and evaluated maximum rainfall depths (at the centre), and the 

corresponding rainfall structure exponent (at the bottom) are reported. 5 

For a given catchment, by assuming a specific return period Tr [T], the reference value of the maximum rainfall depth, hr 

[L], is defined according to the corresponding DDF curves, as follows: 

ℎ
(�
 , 

) = �(�
)

�           (2) 

where �(�) [LT-b] and b [-] are respectively the coefficient and the scaling exponent of the DDF curve while tr [T] is the 

reference time of the hydrologic response. 10 

Referring to a rainfall duration corresponding to tr, the rainfall depth is assumed equal to the reference value of the 

maximum rainfall depth. Based on this assumption a relationship between the parameters of the DDF curve and the rainfall 

structure function can be derived as follows: 

ℎ(

) = ℎ
(�
 , 

) 	→ ��

	 = 	�(�
)

� 	→ 	 ��

�(��)
= ���

���       (3) 

The dimensionless form of the rainfall depth, ℎ∗, is defined by the ratio of the rainfall depth to the reference value of the 15 

maximum rainfall depth;  similarly the dimensionless duration, �∗, is expressed by the ratio of the duration to the reference 

time. Therefore, the dimensionless form of the rainfall structure relationship may be expressed utilizing Eqs. (1), (2) and (3):  

ℎ∗(�∗) = �
��

= ����

�(��)��� = ��

��� = �∗
	          (4) 

2.2 The dimensionless form of the Unit Hydrograph 

The hydrologic response of a river basin is here predicted through a deterministic lumped model: the interaction between 20 

rainfall and runoff is analysed by viewing the catchment as a lumped linear system (Bras, 1990). The response of a linear 

system is uniquely characterized by its impulse response function, called the Instantaneous Unit Hydrograph (IUH). For the 

IUH, the excess rainfall of unit amount is applied to the drainage area in zero time (Chow et al., 1988). To determine the 

dimensionless form of the unit hydrograph a functional form for the IUH and thus the S-hydrograph has to be assumed. In 

this paper the IUH shape is described with the two-parameter gamma distribution (Nash, 1957): 25 

f(t) = �
�Γ(�) �

 
�!

�"�
e"�$

%!	 	          (5) 

where &(
) [T-1] is the IUH, Γ [-] is the gamma function, α [-] is the shape parameter while k	 [T]	 is the scale parameter. In 

the well-known two-parameter Nash model, the parameters α and k represent the number of linear reservoirs added in series 
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and the time constant of each reservoir, respectively. The product αk is the first order moment thus corresponding to the 

mean lag time of the IUH. Note that the IUH parameters can be related to watershed geomorphology; in these terms the 

Geomorphologic Unit Hydrograph (GUH) theory attempts to relate the IUH of a catchment to the geometry of the stream 

network (e.g. Rodriguez-Iturbe and Valdes, 1979; Rosso, 1984). 

The dimensionless form of the IUH is obtained by using the dimensionless time, 
∗, defined as follows: 5 

t∗ =  
��             (6) 

The proposed dimensionless approach is based on the use of the IUH scale parameter as the reference time of the hydrologic 

response (i.e. 

 = α,). Using the first order moment in the dimensionless procedure, the approach can be applied to any 

IUH form. By applying the change of variable t = αk 
∗, the IUH may be expressed as follows: 

f�t� = �
�Γ��� ���  ∗

� !�"� e"�-% $∗
% !          (7) 10 

The dimensionless form of the IUH, &�
∗�, is defined and derived from Eq. (7) as follows: 

 &�
∗� =  &�
� ∙ /, = 0
Γ�0� �/
∗�0"�1"�0�∗�         (8) 

Note that for the dimensionless IUH the first order moment is equal to one and the time-to-peak can be expressed as follows: 

�2��∗�
��∗

= 0  →    
4∗ = 0"�
0             (9) 

The dimensionless Unit Hydrograph (UH) is derived by integrating the dimensionless IUH: 15 

5�
∗� = 6 &�7∗
�∗

8 ��7∗           (10) 

where 5�
∗� is the dimensionless S-curve (e.g. Henderson, 1963). 

For a unit dimensionless rainfall of a given dimensionless duration, �∗, the dimensionless UH is obtained by subtracting the 

two consecutive S curves that are lagged �∗: 

9�
∗� = :5�
∗�                               &;< 
∗ < �∗
5�
∗� − 5�
∗ − �∗�     &;< 
∗ ≥ �∗

          (11) 20 

where 9�
∗� is the dimensionless UH.  The time-to-peak of the dimensionless UH, 
4∗,  is derived by solving �9�
∗�/�
∗ =
0 . Using (8) and (11) and recognizing that 
4∗ ≥  �∗ gives the following equation for 
4∗: 

&A
4∗B = &A
4∗ − �∗B  →  
4∗ = �∗
C

DE∗DFG

C
DE∗DFG"�

           (12) 

Similar expressions for the time-to-peak are available in the literature (e.g. Rigon et al., 2011; Robinson and Sivapalan, 

1997). Consequently the peak value of the dimensionless UH may be expressed as a function of �∗ by: 25 
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9H�I��∗� = 	5A
4∗B − 5A
4∗ − �∗B          (13) 

2.3 The dimensionless runoff peak analysis 

Based on the unit hydrograph theory and assuming a rectangular hyetograph of duration	�∗, the dimensionless convolution 

equation for a given catchment becomes: 

J(
∗) = 	 KC(�∗)9(
∗)            (14) 5 

where J(
∗) is the dimensionless hydrograph and KC(�∗) is the dimensionless excess rainfall intensity.  

In the following sections the dimensionless hydrograph and the corresponding peak are examined in case of constant and 

variable runoff coefficients. 

2.3.1 The analysis in case of constant runoff coefficient 

By considering a constant runoff coefficient, L8, similarly to the dimensionless rainfall depth ℎ∗ the dimensionless excess 10 

rainfall depth ℎC∗ is defined by: 

ℎC∗ = MN�
MN��

= �∗
	            (15) 

The corresponding dimensionless excess rainfall intensity becomes: 

KC∗ = �∗
	"�            (16) 

From Eqs. (13), (14) and (16), the dimensionless hydrograph and the corresponding peak may be expressed by: 15 

J(
∗) = 	�∗
	"�9(
∗)             (17) 

JH�I(�∗) = 	�∗
	"�9H�I(�∗) = �∗

	"�O5A
4∗B − 5A
4∗ − �∗BP        (18) 

In order to investigate the critical condition for a given catchment which maximizes the runoff peak, the partial derivative of 

the Eq. (18) with respect to the variable �∗ is calculated. 

QRSTU(�∗)
Q�∗

= 0		 → 		 2A�V∗B�∗
�"	 = 5A
4∗B − 5A
4∗ − �∗B = 9H�I(�∗)      (19) 20 

The analytical expression for estimating the critical duration of rainfall that maximizes the peak flow was firstly derived by 

Meynink and Cordery (1976). 

From Eq. (19) it is possible to derive the n structure value that maximizes the dimensionless runoff peak for a specific 

duration	�∗ referring to a given catchment: 

W = 1 −	 2A�V∗B�∗
YSTU(�∗)

            (20) 25 
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2.3.2 The analysis in case of variable runoff coefficient 

In order to take into account the variability of the infiltration process during the rainfall event, a variable runoff coefficient, 

φ, is introduced. The variable runoff coefficient is estimated based on the SCS method for computing soil abstractions (SCS, 

1985). Since the analysis deals with high rainfall intensity events it would be reasonable to force the SCS-method in order to 

always produce runoff (Boni et al., 2007). The assumption that the rainfall depth always exceeds the initial abstraction is 5 

implemented in the model by supposing that a previous rainfall depth at least equal to the initial abstraction occurred; 

therefore, the excess rainfall depth ℎC is evaluated as follows: 

ℎC = Lℎ = �[
�\] 	→ 	L = �

�\]          (21) 

where 5 is the soil abstraction [L]. The variable runoff coefficient is therefore described as a monotonic increasing function 

of the rainfall depth. It follows that the runoff component is affected by the variability of the infiltration process: the runoff is 10 

reduced in case of small rainfall events and is enhanced in case of heavy events.  

The dimensionless excess rainfall depth, ℎC∗, is defined by: 

ℎC∗ = �^
�^�

= M�
M���

= M
M�

ℎ∗ = M
M�

�∗
	          (22) 

The corresponding dimensionless excess rainfall intensity becomes: 

KC∗ = M
M�

�∗
	"�            (23) 15 

From Eq. (21) the ratio 
M
M�

 may be determined in terms of ℎ∗:  

M
M�

=
� (�\])_

�� (��\])_
= ℎ∗ ���\]

�\] ! = ℎ∗ � �\]∗
�∗\]∗

!         (24) 

where 5∗ is the dimensionless soil abstraction defined by the ratio of 5 to hr.  The ratio 
M
M�

 is lower than one when the 

dimensionless rainfall depth is lower than one and vice versa. In the domain of ℎ∗ < 1 (i.e. �∗ < 1), the variable runoff 

coefficient implies that the runoff component is reduced with respect to the reference case and vice versa. The impact of the 20 

ratio 
M
M�

 on the runoff production is enhanced if 5∗ increases thus causing a wider range of runoff coefficients. 

From Eqs. (13), (14) and (23), the dimensionless hydrograph and the corresponding peak may be expressed by: 

J(
∗) = 	 M
M�

�∗
	"�9(
∗)             (25) 

JH�I(�∗) = 	 M
M�

�∗
	"�9H�I(�∗) = M

M�
�∗

	"�O5A
4∗B − 5A
4∗ − �∗BP      (26) 
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Similarly to the runoff peak analysis carried out in case of the constant runoff coefficient, the partial derivative of the Eq. 

(26) with respect to the variable �∗ is calculated: 

QRSTU��∗�
Q�∗

= 0		 → 	&A
4∗B�∗ 	= O5A
4∗B − 5A
4∗ − �∗BP `1 − 2W + 	�∗�

�∗�\]∗
c     (27) 

From Eq. (27) it is possible to implicitly derive the n structure value that maximizes the dimensionless runoff peak for a 

specific duration	�∗ referring to a given catchment. 5 

3 Results and discussion  

The proposed dimensionless approach is tested using the two-parameter gamma distribution for the shape parameter equal to 

3. Such assumption is derived by using the Nash model relation proposed by Rosso (1984) to estimate the shape parameter 

based on Horton order ratios according to which the α parameter is generally in the neighbourhood of 3 (La Barbera and 

Rosso, 1989; Rosso et al., 1991). In Fig. 2, the dimensionless rainfall duration is plotted vs. the dimensionless time-to-peak 10 

together with the dimensionless IUH and the corresponding dimensionless UH for �∗=1.0. Note that the dotted grey lines 

indicates the UH peak while the dashed grey lines show 
4∗, &A
4∗B and &A
4∗ − �∗B, respectively. 

The dimensionless UH is evaluated varying the dimensionless rainfall duration; then the runoff peak analysis is carried out in 

case of constant and variable runoff coefficients. Finally a numerical example of the application to a small Mediterranean 

catchment is presented. 15 

In the following sections the achieved results are presented with respect to the dimensionless durations in the range between 

0.5 and 2 that is wide enough to include the duration of the rainfall able to generate the maximum peak flow for a given 

catchment (Robinson and Sivapalan, 1997). 

3.1 Highest dimensionless runoff peak with constant runoff coefficient 

The dimensionless form of the hydrograph is shown in Fig. 3 with varying the rainfall structure exponents, n, for the selected 20 

dimensionless rainfall duration. The hydrographs are obtained for excess rainfall intensities characterized by constant runoff 

coefficient and rainfall structure exponents of 0.2, 0.3, 0.5 and 0.8. 

The impact of the rainfall structure exponents on the hydrograph form depends on the rainfall duration: for �∗lower than one, 

the higher n the lower is the peak flow rate and vice versa. 

Figure 4 illustrates the contour plot of the dimensionless runoff peak as a function of the rainfall structure exponent and the 25 

dimensionless rainfall duration. In the contour plot, it is possible to observe a saddle point located in the neighbourhood of 

�∗ and n values equal to 1 and 0.3, respectively. Note that the intersection line (reported as bold line in Fig. 4) between the 

saddle surface and the plane of the principal curvatures where the saddle point is a minimum indicates the highest values of 

the runoff peak for a given n structure exponent.  
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In Fig. 5, the highest dimensionless runoff peak and the corresponding rainfall structure exponent are plotted vs. the 

dimensionless time-to-peak. Further, the dimensionless IUH and the corresponding dimensionless UH for �∗ =1.0 are 

reported as an example. The reference line (short-short-short dashed grey line) indicates the lower control line corresponding 

to the rainfall duration infinitesimally small. Note that the rainfall structure exponent that maximizes the runoff peak for a 

given duration can be simply derived as a function of the dimensionless time-to-peak (see Eq. 20). The highest 5 

dimensionless runoff peak tends to one for long dimensionless rainfall duration (�∗ > 4) when consequently the n structure 

exponent tends to one (see Eq. 18). Results confirm that the highest runoff peak curve reveals the local minimum point at 
4∗ 

of 1.29 corresponding to n of 0.31 and �∗of 1. In light of such trend, it emerges that the less critical runoff peak occurs at n 

structure exponent values corresponding to the ones typically derived by the statistical analysis of the annual maximum 

rainfall depth series in Mediterranean climate. In other words, referring to the Chicago hyetograph commonly used in the 10 

engineering practice as design storm (Kiefer and Chu, 1957), results illustrated in Fig. 5 reveal that although Chicago 

hyetograph shows the maximum intensity over each duration, such rainfall condition may not be representative of the most 

critical condition in terms of runoff peak for a given catchment at assigned return period. At the same time, looking at the 

highest runoff peak curve there are different rainfall event conditions (rainfall structure exponent n and duration d) in the 

neighborhood of the minimum point that determine comparable effects in term of the runoff peak value. Note that these 15 

comparable effects are related to rainfall depths with different return periods for given durations. 

3.2 Highest dimensionless runoff peak with variable runoff coefficient 

The excess rainfall depth, in the case of variable runoff coefficient, is evaluated by assigning a value to the reference runoff 

coefficient. In particular, the reference runoff coefficient is defined as follows utilizing Eq. (21): 

L
 = ��
��\] → 	 L
 = �

�\]∗
           (28)  20 

In order to provide an example of the proposed approach, the presented results are obtained assuming a dimensionless soil 

abstraction 5∗ of 0.25. It follows that the reference runoff coefficient L
 is equal to 0.8.  

Similarly to the results presented for the case of constant runoff coefficient, Fig. 6 illustrates the dimensionless hydrographs 

obtained for excess rainfall intensities characterized by variable runoff coefficient and n structure exponents of 0.2, 0.3, 0.5 

and 0.8. at assigned dimensionless rainfall duration (�∗=0.5, 1.0, 1.5, and 2.0). The dimensionless hydrographs, obtained for 25 

the variable runoff coefficient, show the same behaviours of the ones derived for the constant runoff coefficient (see Figs. 3 

and 6), even if they differ in magnitude, thus confirming the role of the variable runoff coefficient on the runoff peak. In 

particular, due to the variability of the infiltration process, the runoff peaks slightly decrease for rainfall duration lower than 

one (i.e. �∗=0.5) when compared with the ones observed in case of constant runoff coefficient while they rise up for duration 

larger than one (i.e. �∗=1.5 and 2).  30 
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Figure 7 shows the contour plot of the dimensionless runoff peak as a function of the rainfall structure exponent and the 

dimensionless rainfall duration in case of variable runoff coefficient. By comparing Figs. 7 and 4, it emerges that the contour 

lines observed in case of variable runoff coefficient reveal a steeper trend with respect to constant runoff coefficient ones 

indeed the impact of the n structure exponent on the runoff peak is enhanced when the runoff coefficient is assumed variable. 

The saddle point is again located in the neighbourhood of �∗ and n values equal to 1 and 0.3, respectively while the curve of 5 

the highest values of the runoff peak (reported as bold line in Fig. 7) is moved on the left. 

In Fig. 8, the highest dimensionless runoff peak and the corresponding rainfall structure exponent are plotted vs. the 

dimensionless time-to-peak in case of variable runoff coefficient. Results plotted in Fig. 8 confirm that the highest runoff 

peak curve reveals the local minimum point at 
4∗ of 1.29 corresponding to n of 0.26 and �∗of 1. Referring to 5∗ of 0.25, the 

highest dimensionless runoff peak tends to 1.25 for long dimensionless rainfall duration (�∗ > 4) when consequently the n 10 

structure exponent tends to one (see Eqs. 24 and 26).  

Figure 9 illustrates the highest dimensionless runoff peak and the corresponding rainfall structure exponent vs. the 

dimensionless time-to-peak in case of variable runoff coefficient (for 5∗  values of 0.25 and 0.67) together with the 

comparison to the case of constant runoff coefficient. The highest dimensionless runoff peak are similar for short rainfall 

duration (i.e. 
4∗ lower than 1.5) when the variable runoff coefficient reduces the runoff component with respect to the 15 

reference runoff case (that is also the constant runoff case i.e. 5∗=0). On the contrary, the highest dimensionless runoff peak 

increases with increasing the dimensionless soil abstraction for long rainfall duration. Indeed, in these cases, the variable 

runoff coefficient enhances significantly the runoff component with respect to the constant runoff case (i.e. 5∗= 0). The rate 

of change in the runoff production ascribable to the variable runoff coefficient is predominant with respect to the one due to 

the rainfall duration increase, therefore the n structure exponent that maximizes the runoff peak, decreases for increasing the 20 

dimensionless soil abstractions. 

3.3 Catchment application 

In order to provide a numerical application of the proposed methodology, this approach has been implemented for the 

Bisagno catchment at La Presa station, located at the centre of Liguria Region, (Genoa, Italy). 

The Bisagno – La Presa catchment has a drainage area of 34 km2 with an index flood of about 95 m3/s. The upstream river 25 

network is characterized by main channel length of 8.36 km and mean streamflow velocity of 2.4 m/s. Regarding the 

geomorphology of the catchment, the area (RA), bifurcation (RB) and length (RL) ratios that are evaluated according to the 

Horton-Strahler ordering scheme, are respectively equal to 5.9, 5.6 and 2.5. By considering the altimetry, vegetation and 

limited anthropogenic exploitation of the territory, the Bisagno – La Presa is a mountain catchment characterized by an 

average slope of 33%. The soil abstraction, SII is assumed equal to 41 mm; its evaluation is based on the land use analysis 30 

provided in the framework of the EU Project CORINE (EEA, 2009). The mean value of the annual maximum rainfall depth 

for unit duration (hourly) and the scaling exponent of the DDF curves are respectively equal to 41.31 mm/h and 0.39. 
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Detailed hydrologic characterization of the Bisagno catchment can be found elsewhere (Bocchiola and Rosso, 2009; Rulli 

and Rosso, 2002; Rosso and Rulli, 2002). Focusing on the rainfall-runoff process the two parameters of the gamma 

distribution are evaluated based on the Horton order ratio relationship (Rosso, 1984). The shape and scale parameters are 

estimated equal to 3.4 and 0.25 h respectively, thus corresponding to the lag time of 0.85 h. 

In this application three rainfall events observed in the catchment area have been selected in order to analyse the different 5 

runoff peaks occurred for the three rainfall internal structures. The selected events are characterized by analogous magnitude 

of the maximum rainfall depth observed for the duration equal the reference time (i.e. hr = 80 mm, tr =0.85 h). 

Figure 10 illustrates the internal structure of the three selected rainfall events. The graphs at the top report the observed 

rainfall depths while the central graphs show the estimated rainfall structure exponents. At the bottom of Fig. 10, by 

considering the three structure exponents corresponding to the Bisagno – La Presa reference time (i.e. n = 0.55, 0.62, 0.71), 10 

the rainfall structure curves are derived for a rainfall durations ranging between 0.5·tr and 2·tr; for comparison purpose, the 

DDF curve is also reported.  Based on each rainfall structure curve, four rectangular hyetographs with duration of 0.425, 

0.85, 1.275, and 1.7 h are derived to evaluate the impact on the hydrologic response of the Bisagno – La Presa catchment. 

Note that the analysis is performed in case of variable runoff coefficient whose reference value is equal to 0.66 (i.e. 5∗ = 0.5). 

In Fig. 11, the net hyetographs, the corresponding hydrographs and the reference value of the runoff peak flow are plotted 15 

for the three investigated rainfall structure exponents. The reference value of the runoff peak flow (dash-dot line) is 

evaluated by assuming a constant-intensity hyetograph of infinite duration and having excess rainfall intensity equal to the 

one estimated for the reference time. The role of the rainfall structure exponent emerges in the different decreasing rate of 

the excess rainfall intensity with the duration, thus resulting in the corresponding increasing rate of the peak flow values. 

Figure 12 shows the contour plot of the dimensionless runoff peak in case of variable runoff coefficient (5∗ = 0.5). The 20 

highest runoff peak curve is also reported (bold line) together with the dimensionless hydrograph peaks (grey-filled stars) for 

the selected rainfall structure exponents (n = 0.55, 0.62, 0.71) and durations (�∗ = 0.5, 1.0, 1.5, and 2.0). Similarly to Fig. 7, 

the Bisagno – La Presa catchment application shows a curve of the highest values of the runoff peak characterized by a local 

minimum (saddle point) in the neighbourhood of �∗ and n values equal to 1 and 0.3, respectively. 

4 Conclusions  25 

The proposed analytical dimensionless approach allows predicting the hydrologic response of a given catchment; particular 

attention has been posed on the assessment of the runoff peak commonly required for design purposes.  

Both the rainfall depth and the rainfall-runoff relationships are expressed through dimensionless forms: the first one is 

described in terms of a simple power function while the SCS method and the IUH theory are undertaken to model the 

rainfall-runoff process. The proposed approach is therefore valid within a framework that assumes that the watershed is a 30 

linear causative and time invariant system, where only the rainfall excess produces runoff. In the present paper the two-

parameter gamma distribution is adopted as IUH form; however the analysis can be repeated using other IUH forms 
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obtaining similar results. Indeed, as previously addressed by Robinson and Sivapalan (1997) the actual IUH shape is of 

secondary importance if the main objective is estimating the peak discharge.  

A set of analytical expressions has been derived to provide the estimation of the highest peak with respect to a given n 

structure exponent. Results reveal the impact of the rainfall event structure on the runoff peak thus pointing out the following 

features: 5 

• the curve of the highest values of the runoff peak reveals a local minimum point (saddle point); 

• different combinations of n structure exponent and rainfall duration may determine similar conditions in terms of 

runoff peak. 

Referring to the Bisagno – La Presa catchment application, the saddle point of the the runoff peaks is located in the 

neighbourhood of n value equal to 0.3 and rainfall duration corresponding to the reference time (d∗ =1). Further, it emerge 10 

that the highest runoff peak value corresponding to the scaling exponent of the DDF curve is comparable to the less critical 

one (saddle point).  

Findings of the present research suggest reviewing the derived flood distribution approaches that coupled the information on 

precipitation via DDF curves and on the catchment response based on the iso-frequency hypothesis. Future research with 

regard to the structure of the extreme rainfall event is needed; in particular the analysis of several rainfall data series 15 

belonging to a homogeneous climatic region is required in order to investigate the frequency distribution of specific rainfall 

structures.  

The developed approach, besides suggesting remarkable issues for further researches and unlike the merely analytical 

exercise succeeds in highlighting once more the complexity in the assessment of the maximum runoff peak. 
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Figure 1: Internal structure of a rainfall event according to a power law. The observed rainfall depth (at the top), the observed and 
evaluated maximum rainfall depths (at the centre), and the corresponding rainfall structure exponent (at the bottom) are 
reported. 
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Figure 2: Dimensionless rainfall duration vs. dimensionless time-to-peak; Dimensionless Instantaneous Unit Hydrograph and the 
corresponding dimensionless Unit Hydrographs for g∗=1.0. Note that the shape parameter h	is equal to 3. 
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Figure 3: Dimensionless Hydrographs obtained for excess rainfall intensities characterized by constant runoff coefficient and 
different rainfall structure exponents, n (n = 0.2, 0.3, 0.4 and 0.5) at assigned dimensionless rainfall duration, 	g∗	(g∗=0.5, 1.0, 1.5, 
and 2.0). Note that the shape parameter h is equal to 3. 
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Figure 4: Contour plot of the dimensionless runoff peak as a function of the rainfall structure exponent and the dimensionless 
rainfall duration in case of constant runoff coefficient. The maximum dimensionless runoff peak curve is also reported (bold line). 
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Figure 5: Maximum dimensionless runoff peak and the corresponding rainfall structure exponent vs. dimensionless time-to-peak 
in case of constant runoff coefficient; Dimensionless Instantaneous Unit Hydrograph and the corresponding dimensionless Unit 
Hydrographs for g∗=1.0. Note that the shape parameter h is equal to 3. 
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Figure 6: Dimensionless Hydrographs obtained for excess rainfall intensities characterized by variable runoff coefficient and 
different rainfall structure exponent, n (n = 0.2, 0.3, 0.4 and 0.5) at assigned dimensionless rainfall duration, 	g∗	(g∗=0.5, 1.0, 1.5, 
and 2.0). Note that the shape parameter h is equal to 3. 
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Figure 7: Contour plot of the dimensionless runoff peak as a function of the rainfall structure exponent and the dimensionless 
rainfall duration in case of variable runoff coefficient. The maximum dimensionless runoff peak curve is also reported (bold line). 
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Figure 8: Maximum dimensionless runoff peak and the corresponding rainfall structure exponent vs. dimensionless time-to-peak 
in case of variable runoff coefficient; Dimensionless Instantaneous Unit Hydrograph and the corresponding dimensionless Unit 
Hydrographs for g∗=1.0. Note that the shape parameter h is equal to 3. 
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Figure 9: Maximum dimensionless runoff peak and the corresponding rainfall structure exponent vs. dimensionless time-to-peak 
in case of variable runoff coefficients with respect to dimensionless maximum retention 	i∗	of 0.25 and 0.67. The comparison to the 
case of constant runoff coefficient is also reported. 
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Figure 10: Internal structure of three rainfall events observed in Genoa (IT): the observed rainfall depths (at the top) and the 
estimated rainfall structure exponents (at the centre) are reported. At the bottom, the rainfall structure curves evaluated for the 
reference time of the Bisagno – La Presa catchment and the corresponding Depth-Duration-Frequency curves are reported. 
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Figure 11: The excess rainfall hyetographs, the corresponding hydrographs and the reference value of the runoff peak flow for the 
Bisagno – La Presa catchment evaluated for three rainfall structure exponents. Note that each graph includes four rainfall 
durations (i.e. 0.5, 1.0, 1.5, and 2.0 times the reference time).  
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Figure 12: Contour plot of the dimensionless runoff peak evaluated for the Bisagno – La Presa catchment in case of variable 
runoff coefficient ( 	i∗  =0.5). The maximum dimensionless runoff peak curve is also reported (bold line) together with the 
dimensionless hydrograph peaks (grey-filled stars) for the selected rainfall structure exponents (n = 0.55, 0.62, 0.71) and durations 
(g∗= 0.5, 1.0, 1.5, and 2.0).   5 
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