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Abstract. The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event 

structure on the hydrograph peak. At this aim a methodology to describe the rainfall event structure is proposed based on the 

similarity with the Depth-Duration-Frequency (DDF) curves. The rainfall input consists in a constant hyetograph where all 

the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using 

the Soil Conservation Service method and the Instantaneous Unit Hydrograph theory is undertaken to determine the 10 

dimensionless form of the hydrograph; the two-parameter gamma-distribution is selected to test the proposed methodology. 

The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural 

catchment) for which the model assumptions are valid (i.e. linear causative and time invariant system). A set of analytical 

expressions are derived in case of constant-intensity hyetograph to assess the maximum runoff peak with respect to a given 

rainfall event structure irrespective of the specific catchment(such as the return period associated to the reference rainfall 15 

event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point 

corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is 

discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the 

rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.  

1 Introduction 20 

The ability to predict the hydrologic response of a river basin is a central feature in hydrology. For a given rainfall event, 

estimating rainfall excess and transforming it to runoff hydrograph is an important task for planning, design and operation of 

water resources systems. For these purposes, design storm based on the statistical analysis of the annual maximum series of 

rainfall depth are used in practice as input data to evaluate the corresponding hydrograph for a given catchment. Several 

models are documented in the literature to describe the hydrologic response (e.g. Chow et al., 1988, Beven, 2012): the 25 

simplest and most successful is the unit hydrograph concept proposed firstly by Sherman (1932). Due to a limited 

availability of observed streamflow data mainly in small catchment, the attempts in improving the peak flow predictions are 

documented in the literature since the last century (e.g. Henderson, 1963; Meynink and Cordery, 1976) to date. Recently, 

Rigon et al. (2011) investigated the dependence of peak flows on the geomorphic properties of river basins. In the 
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framework of flood frequency analysis, Robinson and Sivapalan (1997) presented an analytical description of the peak 

discharge irrespective of the functional form assumed to describe the hydrologic response. Goel et al. (2000) combine a 

stochastic rainfall model with a deterministic rainfall-runoff model to obtain a physically based probability distribution of 

flood discharges; results demonstrate that the positive correlation between rainfall intensity and duration impacts the flood 

flow quantiles. Vogel et al. (2011) developed a simple statistical model in order to simulate observed flood trends as well as 5 

the frequency of floods in a nonstationary word including changes in land use, climate and water uses. Iacobellis and 

Fiorentino (2000) proposed a derived distribution of flood frequency identifying the combined role played by climatic and 

physical factors at the catchment scale. Bocchiola and Rosso (2009) developed a derived distribution approach for flood 

prediction in poorly gauged catchments to shift the statistical variability of rainfall process into its counterpart in terms of 

statistical flood distribution. Baiamonte et al. (2017) investigated the role of the antecedent soil moisture condition in the 10 

probability distribution of peak discharge and proposed a modification of the rational method in terms of a-priori 

modification of the rational runoff coefficients.  

In this framework, the present research study takes a different approach by exploring the role of the rainfall event features on 

the peak flow rate values. Therefore the main objective is to implement a dimensionless analytical framework that can be 

applied to any study case (i.e. natural catchment) in order to investigate the impact of the rainfall event structure on 15 

hydrograph peak. Since the catchment hydrologic response and in particular the hydrograph peak is subjected to a very broad 

range of climatic, physical, geomorphic and anthropogenic factors, the focus is posed on catchments where lumped rainfall-

runoff model are suitable for deterministic event-based analysis. In the proposed approach, the rainfall event structure is 

described by investigating the maximum rainfall depths for a given duration 𝑑 in the range of durations [𝑑 2⁄ ; 2𝑑] within 

that specific rainfall event, differently from the statistical analysis of the extreme rainfall events. Other authors (e.g. Alfieri et 20 

al., 2008) have previously discussed the accuracy of literature design hyetographs (such as the Chicago hyetograph) for the 

evaluation of peak discharges during flood event on the contrary the proposed methodology allows to investigate the impact 

of the above mentioned rainfall event structure on the magnification of the runoff peak neglecting the expected rainfall event 

features condensed in the Depth-Duration-Frequency (DDF) curves. 

The first specific objective is to define a structure relationship of the rainfall event able to describe the sample space of the 25 

rainfall event structures by means of a simple power function. The second specific objective is to implement a dimensionless 

approach that allows to generalize the assessment of the hydrograph peak irrespective of the specific catchment characteristic 

(such as the hydrologic response time, the variability of the infiltration process, etc.) thus focusing on the impact of the 

rainfall event structure.  

Finally a specific catchment application is discussed in order to point out the dimensionless procedure implications and to 30 

provide some numerical examples of the rainfall structures with respect to observed rainfall events; furthermore their effects 

on the hydrograph peak are examined. 
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2 Methodology  

A dimensionless approach is proposed in order to define an analytical framework that can be applied to any study case (i.e. 

natural catchment). It follows that both the rainfall depth and the rainfall-runoff relationship that are strongly related to the 

climatic and morphologic characteristics of the catchment, are expressed through dimensionless forms. 

The rainfall event is then described as simple hyetographs of a given durations; this simplification is consistent with the use 5 

of deterministic lumped models based on the linear system theory (e.g. Bras, 1990). The proposed approach is therefore valid 

within a framework that assumes that the watershed is a linear causative and time invariant system, where only the rainfall 

excess produces runoff. In detail, the rainfall-runoff processes are modelled using the Soil Conservation Service (SCS) 

method for soil abstractions and the Instantaneous Unit Hydrograph (IUH) theory. Consistently with the assumptions of the 

UH theory, the proposed approach is strictly valid when the following conditions are maintained: the known excess rainfall 10 

and the uniform distribution of the rainfall over the whole catchment area. 

2.1 The dimensionless form of the rainfall event structure function 

Rainfall DDF curves are commonly used to describe the maximum rainfall depth as a function of duration for given return 

periods. In particular for short durations, rainfall intensity has often been considered rather than rainfall depth, leading to 

intensity-duration-frequency (IDF) curves (Borga et al., 2005). Power laws are commonly used to describe DDF curves in 15 

Italy (e.g. Burlando and Rosso, 1996) and elsewhere (e.g. Koutsoyiannis et al., 1998). The proposed approach describes the 

internal structure of rainfall events based on the similarity with the DDF curves.  Referring to a rainfall event, the maximum 

rainfall depth observed for a given duration is described in terms of a power function similarly to the DDF curve, as follows: 

ℎ(𝑑) = 𝑎′𝑑𝑛            (1) 

where h [L] is the maximum rainfall depth, 𝑎′ [LT
-n

] and n [-] are respectively the coefficient and the structure exponent of 20 

the power function for a given duration, d [T]. For each duration 𝑑𝑖 , the corresponding power function exponent, n, is 

estimated based on the maximum rainfall depth values observed in the range of duration [𝑑𝑖 2⁄ ; 2𝑑𝑖]  by means of a simple 

linear regression analysis. Based on such assumptions, the structure exponent n allows describing the rainfall event based on 

a simple rectangular hyetograph thus representing the rainfall event structure at a given duration. In other words, a rainfall 

event that is characterized by a specific n structure exponent at a given duration is only one of the possible outcomes in the 25 

sample space of the rainfall structures. The n structure exponent mathematically ranges between 0 and 1: the two extreme 

values represent un-realistic events characterized by opposite internal structure; when the structure exponent n tends to zero 

the internal structure of the rainfall event is comparable to a Dirac impulse while it is comparable to a constant intensity 

rainfall for n close to one. As an example, Figure 1 describes the rainfall event structure according to the above illustrated 

approach. In Fig. 1, the observed rainfall depth (at the top), the observed maximum rainfall depths (at the centre), and the 30 

corresponding rainfall structure exponent (at the bottom) are reported on hourly basis. 



4 

 

In order to correlate the rainfall event structure function to the DDF curve, a reference rainfall event has to be defined in 

terms of the maximum rainfall depth, ℎ𝑟 , occurred for the reference duration, 𝑡𝑟 . Focusing onr a given catchment, the 

reference duration, 𝑡𝑟 is assumed equal to the hydrologic response time of the catchment; thus, assuming a specific return 

period Tr [T], the reference value of the maximum rainfall depth, ℎ𝑟 [L], is defined according to the corresponding DDF 

curves, as follows: 5 

ℎ𝑟(𝑇𝑟 , 𝑡𝑟) = 𝑎(𝑇𝑟)𝑡𝑟
𝑏
           (2) 

where 𝑎(𝑇) [LT
-b

] and b [-] are respectively the coefficient and the scaling exponent of the DDF curve. 

Referring to a rainfall duration corresponding to 𝑡𝑟  the rainfall depth is assumed equal to the reference value of the 

maximum rainfall depth. Based on this assumption a relationship between the parameters of the DDF curve and the rainfall 

event structure function can be derived as follows: 10 

ℎ(𝑡𝑟) = ℎ𝑟(𝑇𝑟 , 𝑡𝑟)  → 𝑎′𝑡𝑟
𝑛 =  𝑎(𝑇𝑟)𝑡𝑟

𝑏
 →  

𝑎′

𝑎(𝑇𝑟)
=

𝑡𝑟
𝑏

𝑡𝑟
𝑛       (3) 

From Eq. (3) it is possible to derive the coefficient of the rainfall event structure function, 𝑎′ for a given reference duration, 

𝑡𝑟. Note that the 𝑎′ coefficient is assumed valid in the range [𝑡𝑟 2⁄ ; 2𝑡𝑟] similarly to the n structure exponent. 

The dimensionless approach is then introduced since it allows defining an analytical framework that can be applied to any 

study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time invariant 15 

system). The reference values ℎ𝑟 and 𝑡𝑟 are directly linked to the climatic and morphologic characteristics of the specific 

catchment, therefore the dimensionless approach based on the ℎ𝑟 and 𝑡𝑟 values allows to generalize the results irrespective of 

the specific catchment characteristic (such as the return period associated to the reference rainfall event).  

Based on the proposed approach, the dimensionless form of the rainfall depth, ℎ∗, is defined by the ratio of the rainfall depth, 

ℎ, to the reference value of the maximum rainfall depth, ℎ𝑟;  similarly the dimensionless duration, 𝑑∗, is expressed by the 20 

ratio of the duration, 𝑑 , to the reference time, 𝑡𝑟. Therefore, the dimensionless form of the rainfall structure relationship may 

be expressed utilizing Eqs. (1), (2) and (3):  

ℎ∗(𝑑∗) =
ℎ

ℎ𝑟
=

𝑎′𝑑𝑛

𝑎(𝑇𝑟)𝑡𝑟
𝑏 =

𝑑𝑛

𝑡𝑟
𝑛 = 𝑑∗

𝑛
          (4) 

2.2 The dimensionless form of the Unit Hydrograph 

The hydrologic response of a river basin is here predicted through a deterministic lumped model: the interaction between 25 

rainfall and runoff is analysed by viewing the catchment as a lumped linear system (Bras, 1990). The response of a linear 

system is uniquely characterized by its impulse response function, called the Instantaneous Unit Hydrograph (IUH). For the 

IUH, the excess rainfall of unit amount is applied to the drainage area in zero time (Chow et al., 1988).  

To determine the dimensionless form of the unit hydrograph a functional form for the IUH and thus the S-hydrograph has to 

be assumed. In this paper the IUH shape is described with the two-parameter gamma distribution (Nash, 1957): 30 
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𝑓(𝑡) =
1

𝑘(𝛼)
(

𝑡

𝑘
)

𝛼−1

𝑒−(
𝑡

𝑘
)
           (5) 

where 𝑓(𝑡) [T
-1

] is the IUH,  [-] is the gamma function, α [-] is the shape parameter while k [T] is the scale parameter. In 

the well-known two-parameter Nash model, the parameters and k represent the number of linear reservoirs added in series 

and the time constant of each reservoir, respectively. The product k is the first order moment thus corresponding to the 

mean lag time of the IUH. Note that the IUH parameters can be related to watershed geomorphology; in these terms the 5 

Geomorphologic Unit Hydrograph (GIUH) theory attempts to relate the IUH of a catchment to the geometry of the stream 

network (e.g. Rodriguez-Iturbe and Valdes, 1979; Rosso, 1984). The use of the Nash IUH allows defining an analytical 

framework to assess the relationship between the maximum dimensionless peak and the n structure exponent for a given 

dimensionless duration and similar analytical derivation can be carried out for simple synthetic IUHs. The dimensionless 

form of the IUH is obtained by using the dimensionless time, 𝑡∗, defined as follows: 10 

 𝑡∗ =
𝑡

𝛼𝑘
             (6) 

The proposed dimensionless approach is based on the use of the IUH scale parameter as the reference time of the hydrologic 

response (i.e. 𝑡𝑟= αk). Using the first order moment in the dimensionless procedure, the proposed approach can be applied to 

any IUH form even if, for experimentally derived IUH, the analytical solution of the problem is not feasible.  

By applying the change of variable t = αk 𝑡∗, the IUH may be expressed as follows: 15 

𝑓(𝑡) =
1

𝑘(𝛼)
(

𝛼𝑘𝑡∗

𝑘
)

𝛼−1

𝑒−(
𝛼𝑘𝑡∗

𝑘
)
          (7) 

The dimensionless form of the IUH, 𝑓(𝑡∗), is defined and derived from Eq. (7) as follows: 

 𝑓(𝑡∗) =  𝑓(𝑡) ∙ 𝛼𝑘 =
𝛼

(𝛼)
(𝛼𝑡∗)𝛼−1𝑒−(𝛼𝑡∗)         (8) 

Note that for the dimensionless IUH the first order moment is equal to one and the time-to-peak, 𝑡𝐼∗, can be expressed as 

follows: 20 

𝑑𝑓(𝑡∗)

𝑑𝑡∗
= 0  →    𝑡𝐼∗ =

𝛼−1

𝛼
           (9) 

The dimensionless Unit Hydrograph (UH) is derived by integrating the dimensionless IUH: 

𝑆(𝑡∗) = ∫ 𝑓(𝜏∗
𝑡∗

0
)𝑑𝜏∗           (10) 

where 𝑆(𝑡∗) is the dimensionless S-curve (e.g. Henderson, 1963). 

For a unit dimensionless rainfall of a given dimensionless duration, 𝑑∗, the dimensionless UH is obtained by subtracting the 25 

two consecutive S curves that are lagged 𝑑∗: 
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𝑈(𝑡∗) = {
𝑆(𝑡∗)                               𝑓𝑜𝑟 𝑡∗ < 𝑑∗

𝑆(𝑡∗) − 𝑆(𝑡∗ − 𝑑∗)     𝑓𝑜𝑟 𝑡∗ ≥ 𝑑∗
          (11) 

where 𝑈(𝑡∗) is the dimensionless UH.  The time-to-peak of the dimensionless UH, 𝑡𝑝∗,  is derived by solving 𝑑𝑈(𝑡∗)/𝑑𝑡∗ =

0 . Using (8) and (11) and recognizing that 𝑡𝑝∗ ≥  𝑑∗ gives the following equation for 𝑡𝑝∗: 

𝑓(𝑡𝑝∗) = 𝑓(𝑡𝑝∗ − 𝑑∗)  →  𝑡𝑝∗ = 𝑑∗
𝑒

𝛼𝑑∗
𝛼−1

𝑒
𝛼𝑑∗
𝛼−1−1

= 𝑑∗
1

1−𝑒
−

𝛼𝑑∗
𝛼−1

         (12) 

Similar expressions for the time-to-peak are available in the literature (e.g. Rigon et al., 2011; Robinson and Sivapalan, 5 

1997). Consequently the peak value of the dimensionless UH may be expressed as a function of 𝑑∗ by: 

𝑈𝑚𝑎𝑥(𝑑∗) =  𝑆(𝑡𝑝∗) − 𝑆(𝑡𝑝∗ − 𝑑∗)          (13) 

2.3 The dimensionless runoff peak analysis 

Based on the unit hydrograph theory and assuming a rectangular hyetograph of duration 𝑑∗, the dimensionless convolution 

equation for a given catchment becomes: 10 

𝑄(𝑡∗) =  𝑖𝑒(𝑑∗)𝑈(𝑡∗)            (14) 

where 𝑄(𝑡∗) is the dimensionless hydrograph and 𝑖𝑒(𝑑∗) is the dimensionless excess rainfall intensity.  

Note that the hypothesis of rectangular hyetograph is not motivated in order to simplify the methodology but in order to 

describe the rainfall event structure. Based on such approach, the rainfall event structure at a given duration is represented 

throughout the n structure exponent, it follows that the rainfall event is described by a simple rectangular hyetograph. It has 15 

to be noticed that the constant hyetograph derived by a given n structure is assumed valid in the same range of duration from 

which it is derived [𝑑𝑖 2⁄ ; 2𝑑𝑖].  

In the following sections the dimensionless hydrograph and the corresponding peak are examined in case of constant and 

variable runoff coefficients. 

2.3.1 The analysis in case of constant runoff coefficient 20 

By considering a constant runoff coefficient, 𝜑0 [-], similarly to the dimensionless rainfall depth ℎ∗ the dimensionless excess 

rainfall depth ℎ𝑒∗ is defined by: 

ℎ𝑒∗ =
𝜑0ℎ

𝜑0ℎ𝑟
= 𝑑∗

𝑛
            (15) 

The corresponding dimensionless excess rainfall intensity becomes: 

𝑖𝑒∗ = 𝑑∗
𝑛−1

            (16) 25 
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From Eqs. (13), (14) and (16), the dimensionless hydrograph and the corresponding peak may be expressed by: 

𝑄(𝑡∗) =  𝑑∗
𝑛−1𝑈(𝑡∗)             (17) 

𝑄𝑚𝑎𝑥(𝑑∗) =  𝑑∗
𝑛−1𝑈𝑚𝑎𝑥(𝑑∗) = 𝑑∗

𝑛−1[𝑆(𝑡𝑝∗) − 𝑆(𝑡𝑝∗ − 𝑑∗)]        (18) 

In order to investigate the critical condition for a given catchment which maximizes the runoff peak, the partial derivative of 

the Eq. (18) with respect to the variable 𝑑∗ is calculated. 5 

𝜕𝑄𝑚𝑎𝑥(𝑑∗)

𝜕𝑑∗
= 0  →   

𝑓(𝑡𝑝∗)𝑑∗

1−𝑛
= 𝑆(𝑡𝑝∗) − 𝑆(𝑡𝑝∗ − 𝑑∗) = 𝑈𝑚𝑎𝑥(𝑑∗)      (19) 

The analytical expression for estimating the critical duration of rainfall that maximizes the peak flow was firstly derived by 

Meynink and Cordery (1976). Similarly, from Eq. (19) it is possible to analytically derive the n structure value that 

maximizes the dimensionless runoff peak for a specific duration 𝑑∗ referring to a given catchment: 

𝑛 = 1 −  
𝑓(𝑡𝑝∗)𝑑∗

𝑈𝑚𝑎𝑥(𝑑∗)
            (20) 10 

2.3.2 The analysis in case of variable runoff coefficient 

The variability of the infiltration process across the rainfall event as well as the initial soil moisture conditions significantly 

affect the hydrological response of the catchment. In order to take into account these elements a variable runoff coefficient, 

φ, is introduced. The variable runoff coefficient is estimated based on the SCS method for computing soil abstractions (SCS, 

1985). Since the analysis deals with high rainfall intensity events it would be reasonable to force the SCS-method in order to 15 

always produce runoff (Boni et al., 2007). The assumption that the rainfall depth always exceeds the initial abstraction is 

implemented in the model by supposing that a previous rainfall depth at least equal to the initial abstraction occurred; 

therefore, the excess rainfall depth ℎ𝑒 is evaluated as follows: 

ℎ𝑒 = 𝜑ℎ =
ℎ2

ℎ+𝑆
 →  𝜑 =

ℎ

ℎ+𝑆
          (21) 

where 𝑆 is the soil abstraction [L]. The variable runoff coefficient is therefore described as a monotonic increasing function 20 

of the rainfall depth. It follows that the runoff component is affected by the variability of the infiltration process: the runoff is 

reduced in case of small rainfall events and is enhanced in case of heavy events.  

The dimensionless excess rainfall depth, ℎ𝑒∗, is defined by: 

ℎ𝑒∗ =
ℎ𝑒

ℎ𝑒𝑟

=
𝜑ℎ

𝜑𝑟ℎ𝑟
=

𝜑

𝜑𝑟
ℎ∗ =

𝜑

𝜑𝑟
𝑑∗

𝑛
          (22) 

where ℎ𝑒𝑟
[L] is the reference excess rainfall depth and 𝜑𝑟[-] is the corresponding reference runoff coefficient. 25 

The corresponding dimensionless excess rainfall intensity becomes: 
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𝑖𝑒∗ =
𝜑

𝜑𝑟
𝑑∗

𝑛−1
            (23) 

From Eq. (21) the ratio 
𝜑

𝜑𝑟
 may be determined in terms of ℎ∗:  

𝜑

𝜑𝑟
=

ℎ
(ℎ+𝑆)⁄

ℎ𝑟
(ℎ𝑟+𝑆)⁄

= ℎ∗ (
ℎ𝑟+𝑆

ℎ+𝑆
) = ℎ∗ (

1+𝑆∗

ℎ∗+𝑆∗
)         (24) 

where 𝑆∗ is the dimensionless soil abstraction defined by the ratio of 𝑆 to hr.   

According to the dimensionless approach proposed in the present paper, different initial moisture conditions can be analyzed 5 

by considering different 𝑆∗  associated with different CN conditions (i.e. 𝐶𝑁𝐼 or 𝐶𝑁𝐼𝐼𝐼 or different soil characteristics) for the 

same reference rainfall depth. 

The ratio 
𝜑

𝜑𝑟
 is lower than one when the dimensionless rainfall depth is lower than one and vice versa. In the domain of ℎ∗ < 

1 (i.e. 𝑑∗ < 1), the variable runoff coefficient implies that the runoff component is reduced with respect to the reference case 

and vice versa. The impact of the ratio 
𝜑

𝜑𝑟
 on the runoff production is enhanced if 𝑆∗ increases thus causing a wider range of 10 

runoff coefficients. 

From Eqs. (13), (14) and (23), the dimensionless hydrograph and the corresponding peak may be expressed by: 

𝑄(𝑡∗) =  
𝜑

𝜑𝑟
𝑑∗

𝑛−1𝑈(𝑡∗)             (25) 

𝑄𝑚𝑎𝑥(𝑑∗) =  
𝜑

𝜑𝑟
𝑑∗

𝑛−1𝑈𝑚𝑎𝑥(𝑑∗) =
𝜑

𝜑𝑟
𝑑∗

𝑛−1[𝑆(𝑡𝑝∗) − 𝑆(𝑡𝑝∗ − 𝑑∗)]      (26) 

Similarly to the runoff peak analysis carried out in case of the constant runoff coefficient, the partial derivative of the Eq. 15 

(26) with respect to the variable 𝑑∗ is calculated: 

𝜕𝑄𝑚𝑎𝑥(𝑑∗)

𝜕𝑑∗
= 0  →  𝑓(𝑡𝑝∗)𝑑∗  = [𝑆(𝑡𝑝∗) − 𝑆(𝑡𝑝∗ − 𝑑∗)] [1 − 2𝑛 +

𝑛𝑑∗
𝑛

𝑑∗
𝑛+𝑆∗

]     (27) 

From Eq. (27) it is possible to implicitly derive the n structure value that maximizes the dimensionless runoff peak for a 

specific duration 𝑑∗ referring to a given catchment. 

3 Results and discussion  20 

The proposed dimensionless approach is derived using the two-parameter gamma distribution for the shape parameter equal 

to 3. Such assumption is derived by using the Nash model relation proposed by Rosso (1984) to estimate the shape parameter 

based on Horton order ratios according to which the  parameter is generally in the neighbourhood of 3 (La Barbera and 

Rosso, 1989; Rosso et al., 1991). In Figure 2, the dimensionless rainfall duration is plotted vs. the dimensionless time-to-
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peak together with the dimensionless IUH and the corresponding dimensionless UH for 𝑑∗=1.0. Note that the dotted grey 

line indicates the UH peak while the dashed grey lines show 𝑡𝑝∗, 𝑓(𝑡𝑝∗) and 𝑓(𝑡𝑝∗ − 𝑑∗), respectively. 

The dimensionless UH is evaluated varying the dimensionless rainfall duration in the range between 0.5 and 2 according 

with the n structure definition in the range of durations [𝑑𝑖 2⁄ ; 2𝑑𝑖]; then the runoff peak analysis is carried out in case of 

constant and variable runoff coefficients. The achieved results are presented with respect to the above mentioned 5 

dimensionless duration range [0.5; 2] that is wide enough to include the duration of the rainfall able to generate the 

maximum peak flow for a given catchment (Robinson and Sivapalan, 1997). 

Finally the dimensionless procedure is referred to a small Mediterranean catchment. In the catchment application the 

dimensionless procedure is fully specified as from the evaluation of the rainfall structures associated with three observed 

rainfall events as far as the determination of the reference peak flow and consequently of the dimensionless hydrograph 10 

peaks for the three observed rainfall structures. 

3.1 Maximum dimensionless runoff peak with constant runoff coefficient 

The dimensionless form of the hydrograph is shown in Figure 3 with varying the rainfall structure exponents, n, for the 

selected dimensionless rainfall duration. The hydrographs are obtained for excess rainfall intensities characterized by 

constant runoff coefficient and rainfall structure exponents of 0.2, 0.3, 0.5 and 0.8. 15 

The impact of the rainfall structure exponents on the hydrograph form depends on the rainfall duration: for 𝑑∗lower than one, 

the higher n the lower is the peak flow rate and vice versa. Figure 4 illustrates the 3D mesh plot and the contour plot of the 

dimensionless runoff peak as a function of the rainfall structure exponent and the dimensionless rainfall duration. In the 3D 

mesh plot as well as in the contour plot, it is possible to observe a saddle point located in the neighbourhood of 𝑑∗ and n 

values equal to 1 and 0.3, respectively. Note that the intersection line (reported as bold line in Fig. 4) between the saddle 20 

surface and the plane of the principal curvatures where the saddle point is a minimum indicates the highest values of the 

runoff peak for a given n structure exponent.  

In Figure 5, the maximum dimensionless hydrograph peak and the corresponding rainfall structure exponent are plotted vs. 

the dimensionless time-to-peak. Further, the dimensionless IUH and the corresponding dimensionless UH for 𝑑∗=1.0 are 

reported as an example. The reference line (indicated as short-short-short dashed grey line in Fig. 5) illustrates the lower 25 

control line corresponding to the rainfall duration infinitesimally small. Note that the rainfall structure exponent that 

maximizes the runoff peak for a given duration can be simply derived as a function of the dimensionless time-to-peak (see 

Eq. 20). The maximum dimensionless runoff peak curve tends to one for long dimensionless rainfall duration (𝑑∗ > 3) when 

the corresponding n structure exponent tends to one (see Eq. 18): for high-values of n structure, the critical conditions occur 

for long durations that correspond to paroxysmal events for which the rainfall intensity remains fairly constant. The local 30 

minimum of the maximum dimensionless runoff peak curve (see Fig.5) occurs at 𝑡𝑝∗of 1.29 corresponding to n structure 

value of 0.31 and 𝑑∗ of 1, thus pointing out that the less critical runoff peak occurs at n structure exponent values 
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corresponding to the ones typically derived by the statistical analysis of the annual maximum rainfall depth series in 

Mediterranean climate. Furthermore, it can be observed that different rainfall event conditions (i.e. rainfall structure 

exponent n and duration 𝑑∗) in the neighborhood of the local minimum point could determine comparable effects in term of 

the runoff peak value. 

3.2 Maximum dimensionless runoff peak with variable runoff coefficient 5 

The excess rainfall depth, in the case of variable runoff coefficient, is evaluated by assigning a value to the reference runoff 

coefficient. In particular, the reference runoff coefficient is defined as follows utilizing Eq. (21): 

𝜑𝑟 =
ℎ𝑟

ℎ𝑟+𝑆
 →  𝜑𝑟 =

1

1+𝑆∗
           (28)  

In order to provide an example of the proposed approach, the presented results are obtained assuming a dimensionless soil 

abstraction 𝑆∗ of 0.25. It follows that the reference runoff coefficient 𝜑𝑟 is equal to 0.8.  10 

Similarly to the results presented for the case of constant runoff coefficient, Figure 6 illustrates the dimensionless 

hydrographs obtained for excess rainfall intensities characterized by variable runoff coefficient and n structure exponents of 

0.2, 0.3, 0.5 and 0.8. at assigned dimensionless rainfall duration (𝑑∗=0.5, 1.0, 1.5, and 2.0). The dimensionless hydrographs, 

obtained for the variable runoff coefficient, show the same behaviours of the ones derived for the constant runoff coefficient 

(see Figs. 3 and 6), even if they differ in magnitude, thus confirming the role of the variable runoff coefficient on the runoff 15 

peak. In particular, due to the variability of the infiltration process, the runoff peaks slightly decrease for rainfall duration 

lower than one (i.e. 𝑑∗=0.5) when compared with the ones observed in case of constant runoff coefficient while they rise up 

for duration larger than one (i.e. 𝑑∗=1.5 and 2).  

Figure 7 shows the 3D mesh plot and the contour plot of the dimensionless runoff peak as a function of the rainfall structure 

exponent and the dimensionless rainfall duration in case of variable runoff coefficient. By comparing Figs. 7 and 4, it 20 

emerges that the contour lines observed in case of variable runoff coefficient reveal a steeper trend with respect to constant 

runoff coefficient ones indeed the impact of the n structure exponent on the runoff peak is enhanced when the runoff 

coefficient is assumed variable. The saddle point is again located in the neighbourhood of 𝑑∗ and n values equal to 1 and 0.3, 

respectively while the curve of the maximum values of the runoff peak (reported as bold line in Fig. 7) is moved on the left. 

In Figure 8, the maximum dimensionless hydrograph peak and the corresponding rainfall structure exponent are plotted vs. 25 

the dimensionless time-to-peak in case of variable runoff coefficient. Results plotted in Fig. 8 confirm that the maximum 

runoff peak curve reveals the local minimum point at 𝑡𝑝∗ of 1.29 corresponding to n of 0.26 and 𝑑∗of 1. Referring to 𝑆∗ of 

0.25, the maximum dimensionless runoff peak tends to 1.25 for long dimensionless rainfall duration ( 𝑑∗ > 3) when 

consequently the n structure exponent tends to one (see Eqs. 24 and 26). Figure 9 illustrates the influence of different 

variable runoff coefficients (i.e. for instance different initial moisture conditions or different soil characteristics) on the 30 

maximum dimensionless runoff peak. Similarly to Fig. 8, the maximum dimensionless hydrograph peak (see the top graph) 
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and the corresponding rainfall structure exponent (see the centre graph) are plotted vs. the dimensionless time-to peak in case 

of variable runoff coefficient (for 𝑆∗ values of 0.25 and 0.67) together with the comparison to the case of constant runoff 

coefficient. The maximum dimensionless runoff peak are similar for short rainfall duration (i.e. 𝑡𝑝∗ lower than 1.5) when the 

variable runoff coefficient reduces the runoff component with respect to the reference runoff case (that is also the constant 

runoff case i.e. 𝑆∗=0). On the contrary, the maximum dimensionless runoff peak increases with increasing the dimensionless 5 

soil abstraction for long rainfall duration. Such behaviour is due to the rate of change in the runoff production with respect to 

the rainfall duration: with increasing the rainfall volume the relevance of runoff with respect to the soil abstraction rises. In 

other words, the n structure exponent that maximizes the runoff peak, decreases for increasing the dimensionless soil 

abstractions (see Eq. 27). 

3.3 Catchment application 10 

In order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall event 

structures, the proposed methodology has been implemented for the Bisagno catchment at La Presa station, located at the 

centre of Liguria Region, (Genoa, Italy).  

The Bisagno – La Presa catchment has a drainage area of 34 km
2
 with an index flood of about 95 m

3
/s. The upstream river 

network is characterized by main channel length of 8.36 km and mean streamflow velocity of 2.4 m/s. Regarding the 15 

geomorphology of the catchment, the area (RA), bifurcation (RB) and length (RL) ratios that are evaluated according to the 

Horton-Strahler ordering scheme, are respectively equal to 5.9, 5.6 and 2.5. By considering the altimetry, vegetation and 

limited anthropogenic exploitation of the territory, the Bisagno – La Presa is a mountain catchment characterized by an 

average slope of 33%. The soil abstraction, SII is assumed equal to 41 mm; its evaluation is based on the land use analysis 

provided in the framework of the EU Project CORINE (EEA, 2009). The mean value of the annual maximum rainfall depth 20 

for unit duration (hourly) and the scaling exponent of the DDF curves are respectively equal to 41.31 mm/h and 0.39. 

Detailed hydrologic characterization of the Bisagno catchment can be found elsewhere (Bocchiola and Rosso, 2009; Rulli 

and Rosso, 2002; Rosso and Rulli, 2002). Focusing on the rainfall-runoff process the two parameters of the gamma 

distribution are evaluated based on the Horton order ratio relationship (Rosso, 1984). The shape and scale parameters are 

estimated equal to 3.4 and 0.25 h respectively, thus corresponding to the lag time of 0.85 h. 25 

In this application three rainfall events observed in the catchment area have been selected in order to analyse the different 

runoff peaks occurred for the three rainfall event structures. For comparison purposes, the selected events are characterized 

by analogous magnitude of the maximum rainfall depth observed for the duration equal the reference time (i.e. hr = 80 mm, tr 

= 0.85 h). 

Figure 10 illustrates the rainfall event structure curves derived for the three selected rainfall events. The graphs at the top 30 

report the observed rainfall depths while the central graphs show the estimated rainfall structure exponents. At the bottom of 

Fig. 10, by considering the three structure exponents corresponding to the Bisagno – La Presa reference time (i.e. n = 0.55, 

0.62, 0.71), the rainfall event structure curves are derived for a rainfall durations ranging between 0.5·tr and 2·tr; for 
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comparison purpose, the DDF curve is also reported.  Based on each rainfall structure curve, four rectangular hyetographs 

with duration of 0.425, 0.85, 1.275, and 1.7 h in the range [𝑡𝑟 2⁄ ; 2𝑡𝑟] are derived to evaluate the impact on the hydrograph 

peak of the Bisagno – La Presa catchment. Note that the analysis is performed in case of variable runoff coefficient whose 

reference value is equal to 0.66 (i.e. 𝑆∗ = 0.5; S = 41 mm). In Figure 11, the net hyetographs, the corresponding hydrographs 

and the reference value of the runoff peak flow are plotted for the three investigated rainfall structure exponents. The 5 

reference value of the runoff peak flow (dash-dot line) is evaluated by assuming a constant-intensity hyetograph of infinite 

duration and having excess rainfall intensity equal to the one estimated for the reference time. The role of the rainfall 

structure exponent emerges in the different decreasing rate of the excess rainfall intensity with the duration, thus resulting in 

the corresponding increasing rate of the peak flow values. 

Figure 12 shows the contour plot of the dimensionless hydrograph peak in case of variable runoff coefficient (𝑆∗ = 0.5). The 10 

maximum runoff peak curve is also reported (bold line) together with the dimensionless hydrograph peaks (grey-filled stars) 

for the selected rainfall structure exponents (n = 0.55, 0.62, 0.71) and durations (𝑑∗ = 0.5, 1.0, 1.5, and 2.0). Note that, these 

selected rainfall structures represent only three of the possible outcomes in the sample space of the rainfall structures that are 

described in the contour plot. Similarly to Fig. 7, the Bisagno – La Presa catchment application shows a curve of the highest 

values of the runoff peak characterized by a local minimum (saddle point) in the neighbourhood of 𝑑∗ and n values equal to 1 15 

and 0.3, respectively. 

4 Conclusions 

The proposed analytical dimensionless approach allows investigating the impact of the rainfall event structure on the 

hydrograph peak. At this aim a methodology to describe the rainfall event structure is proposed based on the similarity with 

the Depth-Duration-Frequency (DDF) curves. The rainfall input consists in a constant hyetograph where all the possible 20 

outcomes in the sample space of the rainfall structures can be condensed through the n structure exponent. The rainfall-

runoff processes are modelled using the Soil Conservation Service (SCS) method for soil abstractions and the Instantaneous 

Unit Hydrograph (IUH) theory. In the present paper the two-parameter gamma distribution is adopted as IUH form; however 

the analysis can be repeated using other synthetic IUH forms obtaining similar results. 

The proposed dimensionless approach allows defining an analytical framework that can be applied to any study case for 25 

which the model assumptions are valid; the site-specific characteristics (such as the morphologic and climatic characteristics 

of the catchment) are no more relevant being included within the parameters of the dimensionless procedure (i.e. ℎ𝑟(𝑇𝑟) and 

𝑡𝑟) thus allowing to figure out the implication on the hydrograph peak irrespective of the absolute value of the rainfall depth 

(i.e. the corresponding return period).A set of analytical expressions has been derived to provide the estimation of the 

maximum peak with respect to a given n structure exponent. Results reveal the impact of the rainfall event structure on the 30 

runoff peak thus pointing out the following features: 

 the curve of the maximum values of the runoff peak reveals a local minimum point (saddle point); 
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 different combinations of n structure exponent and rainfall duration may determine similar conditions in terms of 

runoff peak; 

 analogous behaviour of the maximum dimensionless runoff peak curve is observed for different runoff coefficients 

although wider range of variation are observed with increasing soil abstraction values. 

Referring to the Bisagno – La Presa catchment application (ℎ𝑟= 80mm; 𝑡𝑟= 0.85 h and 𝑆∗= 0.5), the saddle point of the 5 

runoff peaks is located in the neighbourhood of n value equal to 0.3 and rainfall duration corresponding to the reference time 

(𝑑∗ =1). Further, it emerge that the maximum runoff peak value, corresponding to the scaling exponent of the DDF curve, is 

comparable to the less critical one (saddle point).Findings of the present research suggest reviewing the derived flood 

distribution approaches that coupled the information on precipitation via DDF curves and on the catchment response based 

on the iso-frequency hypothesis. Future research with regard to the structure of the extreme rainfall event is needed; in 10 

particular the analysis of several rainfall data series belonging to a homogeneous climatic region is required in order to 

investigate the frequency distribution of specific rainfall structures.  

The developed approach, besides suggesting remarkable issues for further researches and unlike the merely analytical 

exercise succeeds in highlighting once more the complexity in the assessment of the maximum runoff peak. 
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Figure 1: Rainfall event structure: the observed rainfall depth (at the top), the observed maximum rainfall depths (at the centre), 

and the corresponding rainfall structure exponent (at the bottom) are reported. 
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Figure 2: Dimensionless rainfall duration vs. dimensionless time-to-peak; Dimensionless Instantaneous Unit Hydrograph and the 

corresponding dimensionless Unit Hydrographs for 𝒅∗=1.0. Note that the shape parameter 𝛂 is equal to 3. 
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Figure 3: Dimensionless hydrographs obtained for excess rainfall intensities characterized by constant runoff coefficient and 

different rainfall structure exponents, n (n = 0.2, 0.3, 0.4 and 0.5) at assigned dimensionless rainfall duration,  𝒅∗ (𝒅∗=0.5, 1.0, 1.5, 

and 2.0). Note that the shape parameter 𝛂 is equal to 3. 
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Figure 4: 3D mesh plot (at the top) and contour plot (at the bottom) of the dimensionless hydrograph peak as a function of the 

rainfall structure exponent and the dimensionless rainfall duration in case of constant runoff coefficient. The maximum 

dimensionless hydrograph peak curve is also reported (bold line). 
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Figure 5: Maximum dimensionless hydrograph peak and the corresponding rainfall structure exponent vs. dimensionless time-to-

peak in case of constant runoff coefficient; Dimensionless Instantaneous Unit Hydrograph and the corresponding dimensionless 

Unit Hydrographs for 𝒅∗=1.0. Note that the shape parameter 𝛂 is equal to 3. 5 
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Figure 6: Dimensionless hydrographs obtained for excess rainfall intensities characterized by variable runoff coefficient and 

different rainfall structure exponent, n (n = 0.2, 0.3, 0.4 and 0.5) at assigned dimensionless rainfall duration,  𝒅∗ (𝒅∗=0.5, 1.0, 1.5, 

and 2.0). Note that the shape parameter 𝛂 is equal to 3. 
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Figure 7: 3D mesh plot (at the top) and contour plot (at the bottom) of the dimensionless hydrograph peak as a function of the 

rainfall structure exponent and the dimensionless rainfall duration in case of variable runoff coefficient. The maximum 

dimensionless hydrograph peak curve is also reported (bold line). 
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Figure 8: Maximum dimensionless hydrograph peak and the corresponding rainfall structure exponent vs. dimensionless time-to-

peak in case of variable runoff coefficient; Dimensionless Instantaneous Unit Hydrograph and the corresponding dimensionless 

Unit Hydrographs for 𝒅∗=1.0. Note that the shape parameter 𝛂 is equal to 3. 5 
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Figure 9: Maximum dimensionless hydrograph peak and the corresponding rainfall structure exponent vs. dimensionless time-to-

peak in case of variable runoff coefficients with respect to dimensionless maximum retention  𝐒∗ of 0.25 and 0.67. The comparison 

to the case of constant runoff coefficient is also reported.  
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Figure 10: Rainfall event structure of three events observed in Genoa (IT): the observed rainfall depths (at the top) and the 

estimated rainfall structure exponents (at the centre) are reported. At the bottom, the rainfall structure and Depth-Duration-

Frequency curves, evaluated for the reference time of the Bisagno – La Presa catchment, are reported. 
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Figure 11: The excess rainfall hyetographs, the corresponding hydrographs and the reference value of the hydrograph peak flow 

for the Bisagno – La Presa catchment evaluated for three rainfall structure exponents. Note that each graph includes four rainfall 

durations (i.e. 0.5, 1.0, 1.5, and 2.0 times the reference time).  5 
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Figure 12: Contour plot of the dimensionless hydrograph peak evaluated for the Bisagno – La Presa catchment in case of variable 

runoff coefficient (  𝑺∗  =0.5). The maximum dimensionless runoff peak curve is also reported (bold line) together with the 

dimensionless hydrograph peaks (grey-filled stars) for the selected rainfall structure exponents (n = 0.55, 0.62, 0.71) and durations 

(𝒅∗= 0.5, 1.0, 1.5, and 2.0).   5 

 


