

-Referee#3-

We appreciate you for the valuable and insightful comments, which have greatly improved our manuscript. Below we describe the modifications made according to the comments. For clarity, comments are given in italics and blue, and our responses are given in plain text. The line numbers within brackets indicate the location of the modifications in the revised manuscript. The revised manuscript with all revisions tracked is appended at the end of this document.

The nonstationarity of the runoff in Wei River basin is very significant and this work applied multiple variables into time-varying model by GLM. The revised version addressed the comments of the last two referees clearly.

AUTHORS' REONSE: We appreciate you very much for your positive comment.

Line 26 and the others, “potential evapotranspiration, ET”. Usually, ET is used to represent actual evapotranspiration and EP is used to represent potential evapotranspiration. It's better to use EP to represent potential evapotranspiration.

AUTHORS' REONSE: Thank you for pointing out this. To address your comment, “ET” and “ AI_{ET} ” have been modified as “EP” and “ AI_{EP} ”, respectively.

Irrigated area is a very important index in the Wei River due to large agricultural irrigation water withdrawn. And irrigated area is added in the revised version.

AUTHORS' REONSE: We quite agree with your comment.

Line 345-348, “Human activity data(i.e. gross domestic product, population and irrigation area) were taken from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics (<http://www.shaanxitj.gov.cn/>) and Gansu Provincial Bureau of Statistics (source: <http://www.gstj.gov.cn/>).” If the data also come from Zhang (2008) as shown in Line 326, it should be listed here.

AUTHORS' REONSE: Thank you for your good comment. We realize that this is our negligence. After the first revision, the Line 324-326, “In this study, we use the available data (1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang (2008) to provide some information for the knowledge of low flow generation”, should have been deleted. And we have deleted this sentence in the revised manuscript. This is because human activity data in the annals is more detailed than the data in Zhang (2008). As also the referee 2 suggested, the shorted records in Zhang (2008) is limited for this study. Thus, after first revision, the data in Zhang (2008) was replaced by the data (1954-2009) in the annals.

It should be noted that the “population” in the annals are different from the people who lives in the catchment. So the uncertainty should be presented here to remind the readers. Nonetheless, it is the best population data so far.

AUTHORS' REONSE: We are grateful for your insightful suggestion. We have added following sentence to Sect.4.3 Discussion:

“Besides, it should be noted that the "population" recorded in the annals of statistics may not be equal to the actual population living in the catchment. If the “population” in the annals is used as explanatory variable, this difference may lead to uncertainty of model parameter estimations. Nonetheless, it is the best population data so far and the explanatory variable *POP* is excluded in the final model (M6).” [Lines 504-508]

1 **Multiple Causes of Nonstationarity in the Weihe Annual Low Flow Series**

2 Bin Xiong¹, Lihua Xiong^{1*}, Jie Chen¹, Chong-Yu Xu^{1, 2}, Lingqi Li¹

3 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan

4 University, Wuhan 430072, P.R. China

5 2 Department of Geosciences, University of Oslo, P.O. Box 1022 Blindern, N-0315 Oslo,

6 Norway

7 * *Corresponding author:*

8 Lihua Xiong, PhD, Professor

9 State Key Laboratory of Water Resources and Hydropower Engineering Science

10 Wuhan University, Wuhan 430072, P.R. China

11 E-mail: xionglh@whu.edu.cn

12 Telephone: +86-13871078660

13 Fax: +86-27-68773568

14

15

16 **Abstract:**

17 Under the background of global climate change and local anthropogenic activities, multiple
18 driving forces have introduced various non-stationary components into low-flow series. This has
19 led to a high demand on low-flow frequency analysis that considers nonstationary conditions for
20 modeling. In this study, through a nonstationary frequency analysis framework with the
21 Generalized Linear Model (GLM) to consider time-varying distribution parameters, the multiple
22 explanatory variables were incorporated to explain the variation in low-flow distribution
23 parameters. These variables are comprised of the three indices of human activities (i.e., population
24 POP , irrigation area IAR , and gross domestic product GDP) and the eight measuring indices of the
25 climate and catchment conditions (i.e., total precipitation P , mean frequency of precipitation
26 events λ , temperature T , potential evapotranspiration $EPET$, climate aridity index $AI_{EP}AI_{ET}$,
27 base-flow index BFI , recession constant K and the recession-related aridity index AI_K). This
28 framework was applied to model the annual minimum flow series of both Huaxian and Xianyang
29 gauging stations in the Weihe River, China. The results from stepwise regression for the optimal
30 explanatory variables show that the variables related to irrigation, recession, temperature and
31 precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day
32 flow in Huaxian shows that AI_K is of the highest relative importance among the optimal variables,
33 followed by IAR , BFI and $AI_{EP}AI_{ET}$, and nonstationary GA distribution model with these optimal

34 variables has an AIC value of 207.0, while the AIC values of other models just with AI_K or time as
35 explanatory variable or without any variable are 217.4, 225.5, 232.3, respectively. We conclude
36 that the incorporation of multiple indices related to low-flow generation permits tracing various
37 driving forces. The established link in nonstationary analysis will be beneficial to analyze future
38 occurrences of low-flow extremes in similar areas.

39 **Keywords:** Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity;
40 Low-flow Frequency Analysis;

41

42 **1. Introduction**

43 Low flow is defined as the ‘flow of water in a stream during prolonged dry weather’ (WMO,
44 1974). Yu et al. (2014) quantitatively described a low flow event as a segment of hydrograph
45 during a period of dry weather with discharge values below a preset (relatively small) threshold.
46 According to WMO (2009), annual minimum flows averaged over several days can be used to
47 measure low flows. During low-flow periods, the magnitude of river flow will greatly restrict its
48 various functions (e.g. providing water supply for production and living, diluting waste water,
49 ensuring navigation, meeting ecological water requirement). Therefore, the investigation of the
50 magnitude and frequency of low flows is of primary importance for engineering design and water
51 resources management (Smakhtin, 2001). In recent years, low flows, as an important part of river

52 flow regime, have been attracting an increasing attention of hydrologists and ecologists in the
53 context of the significant impacts of climate change and human activities (Bradford and Heinonen,
54 2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu et al., 2015; Sadri et al.,
55 2015; Smakhtin, 2001; WMO, 2009). In general, under the impact of a changing environment,
56 combinations of multiple factors, such as precipitation change, temperature change, irrigation area
57 change and construction of reservoirs, can drive various patterns of streamflow changes (Liu et al.,
58 2017; Tang et al., 2015). Unfortunately, when subjected to a variety of influencing forces, low flow
59 is more vulnerable than high flow or mean flow. Therefore, it is a pretty important issue in
60 hydrology to identify low-flow changes, track multiple driving factors and quantify their
61 contributions from the perspective of hydrological frequency analysis.

62 In hydrological analysis and design, conventional frequency analysis estimates the statistics
63 of a hydrological time series based on recorded data with the stationary hypothesis which means
64 that this series is “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). However, global
65 warming and human forces have changed climate and catchment conditions in some regions.
66 Time-varying climate and catchment conditions can affect all aspects of the flow regime, i.e.
67 changing the frequency and magnitude of floods, altering flow seasonality, and modifying the
68 characteristics of low flows, etc. The hypothesis of stationarity has been suspected (Milly et al.,
69 2008). If this problematic method is still used, the frequency analysis may lead to high estimation

70 error in hydrological design. Therefore, considerable literatures have introduced the concept of
71 hydrologic nonstationarity into analysis of various hydrological variables, such as annual runoff
72 (Arora, 2002; Jiang et al., 2017; Jiang et al., 2015; Liu et al., 2017; Xiong et al., 2014; Yang and
73 Yang, 2013), flood (Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; Kwon et al.,
74 2008; López and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 2016; Zhang et
75 al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; Liu et al., 2015),
76 precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c; Mondal and Mujumdar, 2015;
77 Villarini et al., 2010) and so on. Compared with the literatures on annual runoff, floods and
78 precipitation, the literatures on the nonstationary analysis of low flow are relatively limited.

79 Previous hydrological literatures on frequency analysis of nonstationary hydrological series
80 mainly focus on two aspects: development of nonstationary method and exploration of covariates
81 reflecting changing environments. Strupczewski et al. (2001) presented the method of
82 time-varying moment which assumes that the hydrological variable of interest obeys a certain
83 distribution type, but its moments change over time. The method of time-varying moment was
84 modified to be the method of time-varying parameter values for the distribution representative of
85 hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the
86 Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and
87 Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying

88 parameter method can be extended to the physical covariate analysis by replacing time with any
89 other physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; López and Francés,
90 2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example, Jiang et al.
91 (2014) used reservoir index as an explanatory variable based on the time-varying copula method
92 for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River, China. Du et
93 al. (2015) took precipitation and air temperature as the explanatory variables to explain the
94 inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea Surface
95 Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years ahead),
96 the winter areal temperature and precipitation as the candidate explanatory variables to explain the
97 inter-annual variability in low flows of Yichang station, China. Kam and Sheffield (2015) ascribed
98 the increasing inter-annual variability of low flows over the eastern United States to North Atlantic
99 Oscillation and Pacific North America.

100 To our knowledge, compared with the nonstationary flood frequency analysis, the studies on
101 the nonstationary frequency analysis of low-flow series is not very extensive because of
102 incomplete knowledge of low flow generation (Smakhtin, 2001). Most of these studies explain
103 nonstationarity of low-flow series only by using climatic indicators or a single indicator of human
104 activity. However, the indicators of catchment conditions (e.g. recession rate) related to physical
105 hydrological processes have seldom been attached in nonstationary modeling of low flow series.

106 This lack of linking with hydrological processes makes it impossible to accurately quantify the
107 contributions of influencing factors for the nonstationarity of low flow series, and such a scientific
108 demand for tracing the sources of nonstationarity of low-flow series and qualifying their
109 contributions motivated the present study. The knowledge of low-flow generation has been
110 increased by efforts of hydrologists, which can help develop physical covariates to address
111 nonstationarity. Low flows generally originate from groundwater or other delayed outflows
112 (Smakhtin, 2001; Tallaksen, 1995). Their generation relates to both an extended dry weather
113 period (leading to a climatic water deficit) and complex hydrological processes which determine
114 how these deficits propagate through the vegetation, soil and groundwater system to streamflow
115 (WMO, 2009). Thus, not only climate condition drivers (e.g. potential evaporation exceeds
116 precipitation), but also catchment condition drivers (e.g. the faster hydrologic response rate to
117 precipitation) can cause low flows.

118 The significant factors such as precipitation, temperature, evapotranspiration, streamflow
119 recession, large-scale teleconnections and human forces may play important roles in influencing
120 low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; Jones et al.,
121 2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. (2013)
122 presented a derived low flow probability distribution function with climate and catchment
123 characteristics parameters (i.e., the mean length of dry spells λ^{-1} and recession constant of

124 streamflow K) as its distribution parameters. Botter et al. (2013) derived “a measurable index”
125 (λ^{-1}/K) which can be used for discriminating erratic river flow regimes from persistent river flow
126 regimes. Recently, Van Loon and Laaha (2015) used climate and catchment characteristics (e.g. the
127 duration of dry spells in precipitation and the base flow index) to explain the duration and deficit
128 of hydrological drought event and offered a further understanding of low-flow generation. These
129 studies indicated that climate and catchment conditions play an important role in producing low
130 flows.

131 The goal of this study is to trace origins of nonstationarity in low flows through developing a
132 nonstationary low-flow frequency analysis framework with the consideration of the time-varying
133 climate and catchment conditions (TCCCs) and human activity (HA). In this framework, the
134 climate and catchment conditions are quantified using the eight indices, i.e., meteorological
135 variables (total precipitation P , mean frequency of precipitation events λ , temperature T and
136 potential evapotranspiration $\underline{EP} \underline{ET}$), basin storage characteristics (base-flow index BFI ,
137 recession constant K) and aridity indexes (climate aridity index $\underline{AI}_{EP} \underline{AI}_{ET}$, the
138 recession-related aridity index AI_K). The specific objectives of this study are: (1) to find the most
139 important index to explain the nonstationarity of low-flow series; (2) to determine the best subset
140 of TCCCs indices and/or human activity indices (i.e., population POP , irrigation area IAR , and
141 gross domestic product GDP) for final model through stepwise selection method to identify

142 nonstationary mode of low-flow series; and (3) to quantify the contribution of selected explanatory
143 variables to the nonstationarity.

144 This paper is organized as follows. Section 2 describes the methods. The Weihe River basin
145 and available data sets used in this study are described in Section 3, followed by a presentation of
146 the results and discussion in Section 4. Section 5 summarizes the main conclusions.

147 **2 Methodology**

148 The flowchart of how to organize the nonstationary low-flow frequency analysis framework
149 is shown in Fig. 1. The whole process is divided into three steps. The first step is preliminary
150 analysis, including the graphical presentation of both explanatory variables and low-flow series,
151 the statistical test for nonstationarity and the correlations between each explanatory variable and
152 each low-flow series. The second step is single covariate analysis for the most important
153 explanatory variable. The third step is multiple covariate analysis for the optimal combination. We
154 use a low-flow frequency analysis model and stepwise regression method to accomplish the last
155 two steps. In the following sub-sections, first, the low-flow frequency analysis model is
156 constructed based on the nonstationary probability distributions method, in which distribution
157 parameters serving as response variables can vary as functions of explanatory variables. Second,
158 the distribution types used to build the nonstationary model are outlined. Then, the candidate

159 explanatory variables related to the time-varying climate and catchment conditions (TCCCs) and
160 human activity (HA) are clarified. Finally, estimation of model parameters and selection of models
161 are illustrated.

162 <Figure 1>

163 **2.1 Construction of the low-flow nonstationary frequency analysis model**

164 Generally, a nonstationary frequency analysis model can be established based on the
165 time-varying distribution parameters method (Du et al., 2015; López and Francés, 2013; Liu et al.,
166 2015; Richard et al., 2002; Villarini and Strong, 2014). For the nonstationary probability
167 distribution $f_Y(Y_t | \boldsymbol{\theta}^t)$, let Y_t be a random variable at time $t (t=1,2,\dots,N)$ and vector
168 $\boldsymbol{\theta}^t = [\theta_1^t, \theta_2^t, \dots, \theta_m^t]$ be the time-varying parameters. The number of parameters m in hydrological
169 frequency analysis is generally limited to three or less. The function relationship between the k^{th}
170 parameter θ_k^t and the multiple explanatory variables is expressed as follows:

171
$$g_k(\theta_k^t) = h_k(x_1^t, x_2^t, \dots, x_n^t) \quad (1)$$

172 where $x_1^t, x_2^t, \dots, x_n^t$ are explanatory variables; n is the number of explanatory variables; $g_k(\cdot)$
173 is the link function which ensures the compliance with restrictions on the sample space and is
174 usually set to natural logarithm for the given negative predictions; $h_k(\cdot)$ is the function for
175 nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is
176 used to build function relationships between distribution parameters and their explanatory

177 variables. In GLMs, the response relationship can be generally expressed as

178

$$g_k(\theta_k^t) = \alpha_{0k} + \sum_{i=1} \alpha_{ik} x_i^t \quad (2)$$

179 where α_{ik} ($i = 0, 1, 2, \dots, n, k = 1, \dots, m$) are the GLM parameters.

180 In order to compare the nonstationary models constructed by various combinations of
 181 explanatory variables, Eq. (2) is modified in this study using dimensionless method for the
 182 standard GLM parameters. The value of θ_k^t could be assumed to be equal to its mean ($\bar{\theta}_k$) when
 183 all explanatory variables are equal to their mean (\bar{x}_i), i.e.,

184

$$\theta_k^t(x_1^t = \bar{x}_1, x_2^t = \bar{x}_2, \dots, x_n^t = \bar{x}_n) = \bar{\theta}_k \quad (3)$$

185 Eq. (2) is then modified as

186

$$\begin{aligned} g_k\left(\frac{\theta_k^t}{\bar{\theta}_k}\right) &= \beta_{0k} + \sum_{i=1}^n \beta_{ik} z_i^t \\ z_i^t &= \frac{x_i^t - \bar{x}_i}{s_i}, \quad i = 1, 2, \dots, n \\ \beta_{0k} &= g_k\left(\frac{\theta_k^t}{\bar{\theta}_k} \mid \theta_k^t = \bar{\theta}_k\right) = g_k(1) \end{aligned} \quad (4)$$

187 where z_i^t is normalized explanatory variable; s_i is the standard deviation of x_i^t ;

188 β_{ik} ($i = 1, 2, \dots, n, k = 1, \dots, m$) are the standard GLM parameters. Let the link function $g_k(\cdot)$ be the
 189 natural logarithmic function $\ln(\cdot)$ and θ_l^t be the distribution parameter in $[\theta_1^t, \theta_2^t, \dots, \theta_m^t]$ with
 190 most significant change, the degree of nonstationarity in low flow series can be defined as
 191 $\ln(\theta_l^t) - \ln(\bar{\theta}_l)$. Then, the contribution c_i^t of each explanatory variable x_i^t to $\ln(\theta_l^t) - \ln(\bar{\theta}_l)$ could

192 be defined as

193

$$c_i^t = \beta_{il} \frac{x_i^t - \bar{x}_i}{s_i} \quad (5)$$

194 **2.2 Candidate distribution functions**

195 We need to select the form of probability distribution $f_y(\cdot)$ to determine what type of
196 nonstationary frequency curves will be produced. Various probability distributions have been
197 compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et
198 al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low
199 flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five
200 distributions, i.e. Pearson-III (PIII), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and
201 Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-III
202 distribution, considering that the parameter θ_3 of Pearson-III as lower bound should approach
203 zero and the parameter θ_3 of GEV is quite sensitive and difficult to be estimated, we assume
204 them to be constant in this study.

205 **2.3 Candidate explanatory variables**

206 We look for variables $x_1^t, x_2^t, \dots, x_n^t$ that can explain parts of the variations in distribution
207 parameters θ^t . From the perspective of low-flow generation, the dependency between low-flow
208 regime and both climate and catchment conditions has been presented by previous studies (Botter

209 et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring
210 indices: total precipitation, mean frequency of precipitation events, temperature, potential
211 evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related
212 aridity index. These indices were chosen to incorporate time-varying climate and catchment
213 conditions (TCCCs) in nonstationary modeling of low-flow frequency and serving as candidate
214 explanatory variables. The values of them at each year could be estimated from
215 hydro-meteorological data. Annual precipitation (P) and temperature (T) are calculated directly
216 by meteorological data. The remaining TCCCs indices need to be estimated indirectly. Detailed
217 estimation procedures are shown in following subsections. In addition to TCCCs indices, the three
218 indices of human activity (irrigation area, population and gross domestic product) are included,
219 and the reasons for selecting all indices are summarized in Table 2.

220 **2.3.1. Annual mean frequency of precipitation events (λ)**

221 Annual mean frequency of precipitation events is defined as an index to represent the
222 intensity of precipitation recharge to the streamflow:

$$223 \quad \lambda = \frac{1}{W} \sum_{w=1}^{w=W} \frac{N_w(A)}{t_r} \quad (6)$$

224 where $N_w(A)$ is the number of daily rainfall events A (with values more than the threshold 0.5
225 mm) in w^{th} windows with a length t_r ; W is the number of windows.

226 | **2.3.2. Annual climate aridity index ($AI_{EP/ET}$)**

227 The ratio of annual potential evaporation to precipitation, commonly known as the climate
228 aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002;
229 Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and
230 determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a
231 measure of time-varying climate and catchment conditions and estimate its value in a whole region
232 using

233
$$AI_{EP} = \frac{EP}{P} \quad AI_{ET} = \frac{ET}{P} \quad (7)$$

234 where P is annual areal precipitation (mm); EP is annual areal potential
235 evapotranspiration. The Hargreaves equation (Hargreaves and Samani, 1985) is applied to
236 calculate EP using the R-package 'Evapotranspiration' (Guo, 2014).

237 | **2.3.3. Annual base-flow index (BFI)**

238 The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has
239 been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors)
240 to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base
241 flow index (BFI) as a measure of TCCCs. BFI is estimated using a hydrograph separation
242 procedure in R-package 'lfstat' (Koffler and Laaha, 2013).

243 **2.3.4. Annual streamflow recession constant (K)**

244 Recession constant is an important catchment characteristic index measuring the time scale of
245 the hydrological response and reflecting water retention ability in the upstream catchment (Botter
246 et al., 2013). Various estimation methods have been developed to extract recession segments and to
247 parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg,
248 2014; Tallaksen, 1995).

249 In this study, annual recession analysis (ARA) is performed to obtain annual streamflow
250 recession constant (K). In ARA, the linearized Deput-Boussinesq equation is used to parameterize
251 characteristic recession behavior of a catchment and is written as

$$252 \quad -\frac{dQ_t}{dt} = \frac{1}{K} Q_t \quad (8)$$

253 where Q_t is the value at time t . Eq. (8) is investigated by plotting data points $\frac{dQ_t}{dt}$ against Q_t
254 of all extracted recession segments from hydrographs at each year. The criteria of recession
255 segments extraction are based on the Manual on Low-flow Estimation and Prediction (WMO,
256 2009). Then, the annual recession rate (K^{-1}) is estimated as the slope of fitted straight line of these
257 data points with least square method. We calculated K using R-package ‘lfstat’ (Koffler and
258 Laaha, 2013).

259 **2.3.5. Annual recession-related aridity index (AI_K)**

260 In this study, recession-related aridity index is defined as the ratio of recession rate (K^{-1}) to

261 mean precipitation frequency (λ), denoted as

262

$$AI_K = \frac{K^{-1}}{\lambda} \quad (9)$$

263 This ratio plays an important role in controlling river flow regime (Botter et al., 2013; Gottschalk
264 et al., 2013) and serves as an indicator measuring the recession-related aridity degree of the
265 streamflow in river channel. For example, faster recession process or lower precipitation frequency
266 may lead to increased runoff loss or decreased precipitation supply. Consequently, the higher the
267 value AI_K is, the more likely low flow events occur, and vice versa.

268 **2.4 Parameter estimation**

269 The model parameters including $\bar{\theta}_k (k=1,2,\dots,m)$ and $\beta_{ik} (i=1,2,\dots,n, k=1,\dots,m)$ are
270 estimated. $\bar{\theta}_k (k=1,2,\dots,m)$ are estimated from outputs of stationary frequency analysis through
271 maximum likelihood method. We have

272

$$L(\bar{\theta}_1, \bar{\theta}_2, \dots, \bar{\theta}_m) = \sum_{t=1}^{t=N} \ln \left[f_Y(y_t | \bar{\theta}_1, \bar{\theta}_2, \dots, \bar{\theta}_m) \right] \quad (10)$$

273 where y_t is observed low flow at time t ; N is the number of samples. The parameters
274 $\beta_{ik} (i=1,2,\dots,n, k=1,\dots,m)$ are estimated through maximum likelihood method to produce
275 nonstationary low-flow frequency curves:

276

$$L\begin{pmatrix} \beta_{11}, \dots, \beta_{n1} \\ \dots \\ \beta_{1m}, \dots, \beta_{nm} \end{pmatrix} = \sum_{t=1}^{t=N} \ln \left\{ f_Y \left(y_t \left| \theta_1^t (z_1^t, \dots, z_n^t | \beta_{11}, \dots, \beta_{n1}), \dots, \theta_m^t (z_1^t, \dots, z_n^t | \beta_{1m}, \dots, \beta_{nm}) \right. \right) \right\} \quad (11)$$

277 The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit

278 of fitted model objects (Dunn and Symth, 1996):

279

$$\hat{r}_t = \Phi^{-1} \left(F_Y \left(y_t \left| \hat{\theta}^t \right. \right) \right) \quad (12)$$

280 where $F_Y(\cdot)$ is the cumulative distribution of y_t ; $\Phi^{-1}(\cdot)$ is the inverse function of the standard
 281 normal distribution. The distribution of the true residuals \hat{r}_t converges to standard normal if the
 282 fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether \hat{r}_t have
 283 a standard normal distribution.

284 **2.5 Model selection**

285 Model selection contains the selection of the type of probability distribution and the selection
 286 of the explanatory variables to explain the response variables (i.e., distribution parameters θ_1 and
 287 θ_2). In order to obtain the final optimal model, the selection of the explanatory variables for θ_1
 288 and θ_2 is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables,
 289 2002): i.e. select a best subset of candidate explanatory variables for θ_1 using a forward approach
 290 (which starts with no explanatory variable in the model and tests the addition of each explanatory
 291 variable using a chosen model fit criterion); given this subset for θ_1 select another subset for θ_2
 292 (forward). The stepwise selection strategies can get a series of stepwise models with different

293 numbers of explanatory variables, as shown in Fig1. In order to detect how the number of
294 explanatory variables influences the performance of the model for describing non-stationarity, we
295 investigate the eight types of stepwise models as shown in Table 3: the zero-covariate model or
296 stationary model (M0), the time covariate model (M1), single physical covariate model M2 (single
297 TCCCs covariate model M2a or single HA covariate model M2b), two TCCCs covariates model
298 (M3), the optimal TCCCs covariates model (M4), the optimal HA covariates model (M5) and the
299 final model (M6). The model fit criterion is based on the Akaike's information criterion (Akaike,
300 1974) as shown by the following

301
$$AIC = -2ML + 2df \quad (13)$$

302 where ML is the log-likelihood in Eq. (11) and df is the number of degrees of freedom. The
303 model with the lower AIC value was considered better.

304 **3. Study Area and Data**

305 **3.1. The study area**

306 The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest
307 tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km^2 ,
308 covering the coordinates of 33°42'-37°20'N 104°18'-110°37'E (Fig. 2). This catchment generally
309 has a semi-arid climate, with extensive continental monsoonal influence. Average annual
310 precipitation of the whole area over the period 1954-2009 is about 540 mm, and has a wide range

311 (400-1000 mm) in various regions. Under the significant impacts of climate change and human
312 activities in the Weihe River basin in recent decades, the hydrological regime of the river has
313 changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015a).

314 <Figure 2>

315 In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be
316 significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff
317 of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation
318 area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of
319 P.R. China in 1949, and due to one influential irrigation system project in that area, it became more
320 than twice of the original irrigation area since 1971. Jiang et al. (2015) demonstrated that in the
321 Weihe basin, irrigated area, as compared with the other indices e.g. population, gross domestic
322 product and cultivated land area, was a more suitable human explanatory variable for explaining
323 the time-varying behavior of annual runoff. With the above background, it is important to
324 considering the effects of human activities that mainly originate from irrigation diversion, and
325 especially for studying low flow series in this basin. ~~In this study, we use the available data
(1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang
(2008) to provide some information for the knowledge of low flow generation.~~ The estimations of
326 annual recession rate (K^{-1}) by the daily streamflow data are expected to incorporate the
327

329 information of impacts of water diversions on the low flows in the river channel.

330 **3.2. Data**

331 We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the
332 Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106
333 500 km²) and Xianyang station (with a drainage area of 46 480 km²). Low-flow extreme events
334 were selected from the daily streamflow series using the widely-used annual minimum series
335 method (WMO, 2009). AM_n is the annual minimum n -day flow during hydrological year
336 beginning on 1 March. Consequently, AM_1 , AM_7 , AM_{15} and AM_{30} are selected as low-flow extreme
337 events in this study. The original measure unit of streamflow data (m³·s⁻¹) is converted to
338 10⁴ m³·s⁻¹·km⁻² for convenience of comparison of results between the Huaxian and Xianyang
339 gauging stations

340 We downloaded daily total precipitation and daily mean air temperature records for 19
341 meteorological stations over the basin from the National Climate Center of the China
342 Meteorological Administration (source: <http://cdc.cma.gov.cn>). The areal average daily series of
343 both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon
344 method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T) and annual
345 total precipitation (P) over the period 1954-2009 are calculated for each catchment.

346 Human activity data (i.e. gross domestic product, population and irrigation area) were taken

347 from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics
348 (<http://www.shaanxitj.gov.cn/>) and Gansu Provincial Bureau of Statistics (source:
349 <http://www.gstj.gov.cn/>).

350 **4. Results and discussion**

351 **4.1. Identification of nonstationarity**

352 Graphical representation and statistical test provide a preliminary analysis for low-flow
353 nonstationarity. The graphical representations of time-series data help visualize the trends of
354 related variables (i.e. low-flow, TCCCs and HA variables), the density distributions of TCCCs
355 variables and the correlations between low-flow variables and these explanatory variables. In Fig.
356 3, four annual minimum streamflow series (AM_1 , AM_7 , AM_{15} and AM_{30}) in both Huaxian
357 and Xianyang gauging stations show overall decreasing trends, as indicated by the fitted (dashed)
358 trend lines. Compared with Huaxian, Xianyang has a larger runoff modulus (the flow per square
359 kilometer) and a larger decrease in annual minimum streamflow series. For example, the decline
360 slope of AM_{30} is $-0.0725 (10^{-4} \text{ m}^3 \cdot \text{s}^{-1} \cdot \text{km}^{-2}/\text{yr})$ in Huaxian station while Xianyang station it is
361 $-0.1338 (10^{-4} \text{ m}^3 \cdot \text{s}^{-1} \cdot \text{km}^{-2}/\text{yr})$.

362 <Figure 3>

363 Figure 4 shows the kernel density estimations and time processes of TCCCs variables for
364 both Huaxian (H) and Xianyang (X) stations. The results show that these variables have different

365 variation patterns. For example, the mean frequency of precipitation events (λ) has a decreasing
366 trend, while temperature (T) has an increasing trend. As presented by Fig. 5, three HA variables
367 have a significant upward trend, especially the irrigation area IAR which is increased greatly
368 after about 1970, suggesting that the impact of human activities in this basin has increased over
369 time.

370 <Figure 4>

371 <Figure 5>

372 The significance of trends in the four annual minimum streamflow series and TCCCs
373 variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945; Yue et al., 2002),
374 and the change points in these series are detected by the Pettitt's test (Pettitt, 1979). The results in
375 Table 4 show that in both Huaxian and Xianyang stations, the decreasing trends in all the four
376 low-flow series (AM_1 , AM_7 , AM_{15} and AM_{30}) and two explanatory variables (λ and P),
377 and the increasing trends in T , ET , and AI_{EP} ~~AI_{ET}~~ are significant at the 0.05 level (Table 4),
378 but BFI shows no significant trends. However, K and AI_K had significantly decreasing
379 trends only in Huaxian station (p -value < 0.05). The results of change-point detection show that
380 all low-flow series are located at 1968-1971 (p -value < 0.05) except AM_{30} at Xianyang station
381 whose change point is located at 1993 (p -value < 0.05); for the eight candidate explanatory

382 variables, the change points of the variables related to temperature (T , EP ~~ET~~ , AI_{EP} ~~AI_{ET}~~) in
383 both stations are located at 1990-1993 (p -value < 0.05), the change points of the variables related
384 to precipitation (λ , P) in both stations are close at 1984-1990 (p -value ≤ 0.186) and the change
385 points of the variables related to streamflow recession (K , AI_K) in Huaxian station are located at
386 1968-1971 (p -value < 0.05). However, BFI in both stations and K and AI_K in Xianyang
387 station show no significant change points.

388 A preliminary attribution analysis is performed using the Pearson correlation matrix to
389 investigate the relations between the annual minimum series and eight candidate explanatory
390 variables. Figure 6 indicates that there are significant linear correlations between the four
391 minimum low-flow series (AM_1 , AM_7 , AM_{15} and AM_{30}) and all the explanatory variables
392 except GDP , have the absolute values of Pearson correlation coefficients larger than 0.27
393 (p -value < 0.05). These potential physical causes of nonstationarity in low flows are further
394 considered by establishing low-flow nonstationary model with TCCCs and HA variables in the
395 following section.

396

<Figure 6>

397 **4.2. Nonstationary frequency analysis models**398 **4.2.1 Single covariate models**

399 Figure 7 presents the AIC values of the four types of models (M0, M1, M2a and M2b) fitted
400 for the low flow series (AM_1 , AM_7 , AM_{15} and AM_{30}). Some interesting results are shown as
401 follows. First, nonstationary models (M1, M2a and M2b) have lower AIC values than stationary
402 model (M0), which suggests that nonstationary models are worth considering. Second, for Huaxian
403 station, irrespective of the chosen explanatory variables, the distribution type plays an important
404 role in modeling nonstationary low flow series. For example, PIII, GA and WEI distributions in
405 AM_{15} and AM_{30} cases have lower AIC values than LOGNO and GEV distributions. However,
406 for Xianyang, choosing a suitable explanatory variable may be more important than choosing a
407 distribution type. For example, variables t , P , T , AI_{EP} ~~AI_{ET}~~ , POP and IAR in most cases
408 have lower AIC values than the other explanatory variables. Finally, in Huaxian, the lowest AIC
409 values for modeling AM_1 , AM_7 , AM_{15} and AM_{30} are found in GEV_M2b_IAR ,
410 $LOGNO_M2b_IAR$, $PIII_M2a_AI_K$ and $GA_M2a_AI_K$, respectively; while in Xianyang, the lowest
411 AIC values for modeling AM_1 , AM_7 , AM_{15} and AM_{30} are found in GEV_M2b_IAR ,
412 GEV_M2b_IAR , $PIII_M2b_IAR$ and GEV_M2b_IAR , respectively. These results indicated that for
413 explaining nonstationarity of low flow in Huaxian station, IAR is the most dominant HA variable,
414 and AI_K is the most dominant TCCCs variable; while in Xianyang, the most dominant HA

415 variable is *IAR*, the most dominant TCCCs variables causing nonstationarity in AM_1 , AM_7 ,
416 AM_{15} and AM_{30} are K , AI_{EP} $\cancel{AI_{ET}}$, AI_{EP} $\cancel{AI_{ET}}$ and T , respectively.

417 <Figure 7>

418 Figure 8 shows the diagnostic assessment of the GA_M2 model (with the optimal explanatory
419 variable) for AM_{30} in both Huaxian and Xianyang stations. The centile curve plots of GA_M2
420 (Figs. 8a and 8b) show the observed values of AM_{30} , the estimated median and the areas between
421 the 5th and 95th centiles. Figure 8a shows the response relationship between AM_{30} and AI_K in
422 Huaxian: the increase of AI_K means the smaller magnitude of low-flow events because a high
423 value of AI_K (faster stream recession or fewer rainy days) may lead to faster water loss or less
424 supply. In Fig. 8b, the higher values of *IAR* means the smaller magnitude of low flow events,
425 which suggests that *IAR* plays an important role in driving low-flow generation in Xianyang.
426 Figs 8c and 8d show that the worm points are within the 95% confidence intervals, thereby
427 indicating a good model fit and a reasonable model construction.

428 <Figure 8>

429 **4.2.2 Multiple covariate models**

430 Figure 9 shows the AIC values of stationary model (M0), time covariate model (M1),
431 physical covariate models (M2a, M2b, M3, M4, M5 and M6) for AM_{30} . As shown in Fig. 9, M4

432 (nonstationary GA distribution with the optimal TCCCs variables) has a good performance; after
433 adding the HA variables, M6 with the lowest AIC value is attained; it can be found that the
434 combination of multiple TCCCs variables plays a major role in changing the low flows of Weihe
435 River, but the influence of HA variables shouldn't be ignored.

436 <Figure 9>

437 A summary of frequency analysis based on nonstationary GA distribution AM_{30} is presented
438 in Table 5. We choose to focus on M4, M5 and M6. When only using TCCCs variables to model
439 nonstationary low-flow frequency distribution, the results of M4 show the optimal combination of

440 explanatory variables for all low-flow series contains more than three variables. For example, for
441 AM_{30} of Huaxian, the optimal combination of TCCCs variables includes AI_K , BFI and AI_{EP}
442 AI_{ET} . When only ~~using~~ HA variables are used, the results of M5 show IAR is important to the

443 low flows in this area. And M4 has a better performance than M5. When using both TCCCs
444 variables and HA variables, the results of M6 show the optimal combination contains multiple

445 TCCCs variables and the irrigation area IAR . For Huaxian, the optimal combination of all
446 explanatory variables is AI_K , IAR , BFI and AI_{EP} , while for Xianyang, the optimal

447 combination is IAR , AI_{EP} ~~AI_{ET}~~ and BFI . We can also find that if two TCCCs variables are
448 highly correlated, they do not seem to be selected as the explanatory variables at the same time.

449 For example, in terms of air temperature (T), evapotranspiration (EP ~~ET~~) and the climate

450 aridity index (AI_{EP} ~~AI_{ET}~~), only one of them will appear in the optimal combination. This suggests
451 that multicollinearity problem in multiple variables analysis can be reduced, which will help obtain
452 more reliable GLMs parameters for contribution analysis.

453 The diagnostic assessment of the GA_M6 model for AM_{30} at two stations is presented by
454 Fig. 10. The centile curve plots of GA_M6 (Figs. 10a and 10b) show the more sophisticated
455 nonstationary modeling than GA_M2 (Fig 8). When using GA_M6 to model AM_{30} in Huaxian
456 (Fig. 9a), similar to GA_M2, the lower low flows are found to also correspond to higher value of
457 AI_K , but GA_M6 is able to identify the more complex variation patterns of low flows through the
458 incorporation of IAR , BFI and AI_{EP} . Figures 10c and 10d show that the data points of worm
459 plots of GA_M6 are almost within the 95% confidence intervals, thereby indicating an acceptable
460 model fit and a reasonable model construction.

461 <Figure 10>

462 Figure 11 presents the contribution of each selected explanatory variable to $\ln(\theta_1^t) - \ln(\bar{\theta}_1)$
463 in observation year based on GA_M6 for AM_{30} in Huaxian and Xianyang. We can find that for
464 Huaxian, the simulation value of $\ln(\theta_1^t)$ frequently occur below $\ln(\bar{\theta}_1)$ during the two periods
465 of about 1970-1982 and 1993-2003, which is in accordance with the observed decrease in AM_{30}
466 of Huaxian station during these periods. In the former period 1970-1982, both AI_K and BFI
467 contribute a lot of negative amount to $\ln(\theta_1^t) - \ln(\bar{\theta}_1)$, whereas during 1993-2003, the

468 contribution of both AI_K and BFI becomes much less. However, IAR has almost equal
469 negative contribution to $\ln(\theta'_1) - \ln(\bar{\theta}_1)$ in both periods. Unlike the former three variables, the
470 significant negative contribution of AI_{EP} AI_{ET} is only found in 1993-2003. For AM_{30} of
471 Xianyang, the contribution of IAR , AI_{EP} AI_{ET} and BFI is similar to that at Huaxian station in
472 two periods, however AI_K is not included in the final model.

473 <Figure 11>

474 **4.3. Discussion**

475 The impacts of both human activities and climate change on low flows of the study area led to
476 time-varying climate and catchment conditions (TCCCs). Nonstationary modeling for annual low
477 flow series using TCCCs variables and/or HA variables as explanatory variables is clearly different
478 from either the stationary model (M0) or the time covariate model (M1). The result demonstrates
479 that considering multiple drivers (e.g. the variability in catchment conditions), especially in such
480 an artificially influenced river, is necessary for nonstationary modeling of annual low flow series.

481 In this study area, nonstationary modeling considering TCCCs is supported by the following
482 facts and findings. For human activities, an important milestone representative is the completion
483 and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect.
484 3.1). Figure 5c shows the change of irrigation area in this basin. And the change-point detection
485 test in Sect. 4.1 shows that significant change points of both annual recession constant (K) and

486 low flow series occur exactly at around 1971. This result demonstrates that changes in both K
487 and AM_{30} may involve a consequence of this project. In addition to human activities, climate
488 change also makes a considerable contribution to nonstationarity of low flows, as suggested by
489 nonstationary modeling using TCCCs variables with stepwise analysis. Actually, climate driving
490 pattern may strengthen after nearly 1990, which is indicated by change-point detection test of both
491 annual mean temperature (T) and annual precipitation (P) as well as the behavior of annual low
492 flow series after nearly 1990. Therefore, the temporal variability in irrigation area, streamflow
493 recession, air temperature and precipitation (the frequency and volume of rain events) should be
494 the main driving factors of generating low flow regimes in this basin. Overall, the causes of
495 nonstationarity in category for two gauging stations have no clear difference, but have some
496 differences in the relative importance. As shown in Table 5, when modeling the low-flow series of
497 Huaxian using TCCCs variables, the optimal model (M4) preferred the variables are related to
498 recession process; however, for Xianyang, the preferred variables are related to temperature. The
499 reason for this may be that as a downstream station, Huaxian station suffers more intensive human
500 activity, so that the importance of temperature change to the low-flow change is reduced
501 meanwhile the importance of streamflow recession (related to the capability of water storage)
502 change is enhanced. Ignoring the negative impacts of the errors in estimating annual recession
503 constant (K) which are caused by insufficient data points of extracted stream segments at some

504 wet years may lead to the propagation of high errors in annual recession analysis, and accordingly
505 affect the quality of nonstationary frequency analysis when ~~using~~ K is used as an explanatory
506 variable. Further study will give more reliable estimation of K through improving annual
507 recession analysis. Besides, it should be noted that the "population" recorded in the annals of
508 statistics may not be equal to the actual population living in the catchment. If the "population" in
509 the annals is used as explanatory variable, this difference may lead to uncertainty of model
510 parameter estimations. Nonetheless, it is the best population data so far and the explanatory
511 variable POP is excluded in the final model (M6).

512 The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 2013; Zhang
513 et al., 2015) have applied the Budyko framework to analyze the impacts of climate change and/or
514 human activity on annual runoff. Indeed, for annual runoff, the Budyko framework is a good
515 method because it used the mean annual water-energy balance equation to consider generation
516 process of total runoff. Unfortunately, to our knowledge, there is a lack of equation derived from
517 basic physics laws for generation process of low flows. Therefore, we emphasize the importance
518 of TCCCs variables to modeling of low-flow nonstationarity.

519 **5. Conclusion**

520 There is an increasing need to develop an effective nonstationary low-flow frequency model to
521 deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In

522 this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were
523 measured by annual time series of the eight indices, i.e., total precipitation (P), mean frequency of
524 precipitation events (λ), temperature (T), potential evapotranspiration ($\underline{EP} \underline{ET}$), climate aridity
525 index ($\underline{AI}_{EP} \underline{AI}_{ET}$), base-flow index (BFI), recession constant (K), and the recession-related
526 aridity index (AI_K). The nonstationary distribution model was developed using both these eight
527 TCCCs indices and/or there HA indices as candidate explanatory variables for frequency analysis
528 of time-varying annual low flow series caused by multiple drivers. The main driving forces of the
529 decrease in low flows in the Weihe River include reduced precipitation, warming climate,
530 increasing irrigation area and faster streamflow recession. Therefore, a complex deterioration
531 mechanism resulting from these factors demonstrates that in this arid and semi-arid area, the water
532 resources could be vulnerable to adverse environmental changes, thus portending increasing water
533 shortages. The nonstationary low-flow model considering TCCCs can provide the knowledge of
534 low-flow generation mechanism and give more reliable design of low flows for infrastructure and
535 water supply.

536

537 **Acknowledgements**

538 The study was financially supported by the National Natural Science Foundation of China
539 (NSFC Grants 51525902 and 51479139), and projects from State Key Laboratory of Water
540 Resources and Hydropower Engineering Science, Wuhan University. We greatly appreciate ~~two~~
541 three reviewers for their insightful comments and constructive suggestions that helped us to
542 improve the manuscript.

543

544 **Reference**

545 Akaike, H.: A new look at the statistical model identification, IEEE Transactions on
546 Automatic Control, 19, 716-723, 1974.

547 Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff,
548 Journal of Hydrology, 265, 164-177, 2002.

549 Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes,
550 Proc Natl Acad Sci U S A, 110, 12925-12930, 2013.

551 Bradford, M. J. and Heinonen, J. S.: Low Flows, Instream Flow Needs and Fish Ecology in
552 Small Streams, Canadian Water Resources Journal, 33, 165-180, 2008.

553 Buuren, S. V. and Fredriks, M.: Worm plot: a simple diagnostic device for modelling growth
554 reference curves, Statistics in Medicine, 20, 1259-1277, 2001.

555 Chen, X., Zhang, L., Xu, C.-Y., Zhang, J., and Ye, C.: Hydrological Design of Nonstationary
556 Flood Extremes and Durations in Wujiang River, South China: Changing Properties, Causes, and
557 Impacts, Mathematical Problems in Engineering, 2013,(2013-6-2), 2013, 211-244, 2013.

558 Cheng, L. and AghaKouchak, A.: Nonstationary precipitation Intensity-Duration-Frequency
559 curves for infrastructure design in a changing climate, Sci Rep, 4, 7093, 2014.

560 Dobson, A. J. and Barnett, A. G.: An Introduction to Generalized Linear Models, Third
561 Edition, Journal of the Royal Statistical Society, 11, 272-272, 2012.

562 Du, T., Xiong, L., Xu, C.-Y., Gippel, C. J., Guo, S., and Liu, P.: Return period and risk
563 analysis of nonstationary low-flow series under climate change, Journal of Hydrology, 527,
564 234-250, 2015.

565 Dunn, P. K. and Symth, G. K.: Randomized quantile residuals, Journal of Computational and
566 Graphical Statistics, 5, 236-244, 1996.

567 Gilroy, K. L. and Mccuen, R. H.: A nonstationary flood frequency analysis method to adjust
568 for future climate change and urbanization, Journal of Hydrology, s 414–415, 40-48, 2012.

569 Giuntoli, I., Renard, B., Vidal, J. P., and Bard, A.: Low flows in France and their relationship
570 to large-scale climate indices, Journal of Hydrology, 482, 105-118, 2013.

571 Gottschalk, L., Yu, K.-x., Leblois, E., and Xiong, L.: Statistics of low flow: Theoretical
572 derivation of the distribution of minimum streamflow series, Journal of Hydrology, 481, 204-219,
573 2013.

574 Gu, X., Zhang, Q., Singh, V. P., Chen, X., and Liu, L.: Nonstationarity in the occurrence rate
575 of floods in the Tarim River basin, China, and related impacts of climate indices, Global &
576 Planetary Change, 142, 1-13, 2016.

577 Gu, X., Zhang, Q., Singh, V. P., and Shi, P.: Changes in magnitude and frequency of heavy

578 precipitation across China and its potential links to summer temperature, *Journal of Hydrology*,
579 547, 2017a.

580 Gu, X., Zhang, Q., Singh, V. P., and Shi, P.: Non - stationarities in the occurrence rate of
581 heavy precipitation across China and its relationship to climate teleconnection patterns,
582 *International Journal of Climatology*, 37, 4186-4198, 2017b.

583 Gu, X., Zhang, Q., Singh, V. P., and Shi, P.: Nonstationarity in timing of extreme precipitation
584 across China and impact of tropical cyclones, *Global & Planetary Change*, 149, 153-165, 2017c.

585 Guo, D.: An R Package for Implementing Multiple Evapotranspiration Formulations,
586 International Environmental Modelling and Software Society. 2014.

587 Hall, F. R.: Base flow recessions: A review, *Water Resources Research*, 4, 973-983, 1968.

588 Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration From Temperature,
589 1, 96-99 1985.

590 Hewa, G. A., Wang, Q. J., McMahon, T. A., Nathan, R. J., and Peel, M. C.: Generalized
591 extreme value distribution fitted by LH moments for low-flow frequency analysis, *Water
592 Resources Research*, 43, 227-228, 2007.

593 Jiang, C., Xiong, L., Guo, S., Xia, J., and Xu, C.-Y.: A process - based insight into
594 nonstationarity of the probability distribution of annual runoff, *Water Resources Research*, 2017.

595 Jiang, C., Xiong, L., Wang, D., Liu, P., Guo, S., and Xu, C.-Y.: Separating the impacts of
596 climate change and human activities on runoff using the Budyko-type equations with time-varying
597 parameters, *Journal of Hydrology*, 522, 326-338, 2015.

598 Jiang, C., Xiong, L., Xu, C.-Y., and Guo, S.: Bivariate frequency analysis of nonstationary
599 low - flow series based on the time - varying copula, *Hydrological Processes*, 29, 1521-1534,
600 2015.

601 Jones, R. N., Chiew, F. H. S., Boughton, W. C., and Zhang, L.: Estimating the sensitivity of
602 mean annual runoff to climate change using selected hydrological models, *Advances in Water
603 Resources*, 29, 1419-1429, 2006.

604 Kam, J. and Sheffield, J.: Changes in the low flow regime over the eastern United States
605 (1962–2011): variability, trends, and attributions, *Climatic Change*, 135, 639-653, 2015.

606 Kendall, M. G.: *Rank Correlation Methods.* , Griffin, LONDON, 1975.

607 Koffler, D. and Laaha, G.: LFSTAT - Low-Flow Analysis in R, *Egu General Assembly*, 15,
608 2013.

609 Kormos, P. R., Luce, C. H., Wenger, S. J., and Berghuijs, W. R.: Trends and sensitivities of
610 low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain
611 streams, *Water Resources Research*, 52, 4990-5007, 2016.

612 Kwon, H.-H., Brown, C., and Lall, U.: Climate informed flood frequency analysis and

613 prediction in Montana using hierarchical Bayesian modeling, *Geophysical Research Letters*, 35,
614 L05404, 2008. López, J. and Francés, F.: Non-stationary flood frequency analysis in continental
615 Spanish rivers, using climate and reservoir indices as external covariates, *Hydrology and Earth
616 System Sciences*, 17, 3189-3203, 2013.

617 Lin, Q. C., Huai-En, L. I., and Xi-Jun, W. U.: Impact of Water Diversion of Baojixia
618 Irrigation Area to the Weihe River Runoff, *Yellow River*, 34, 106-108, 2012.

619 Liu, D., Guo, S., Lian, Y., Xiong, L., and Chen, X.: Climate-informed low-flow frequency
620 analysis using nonstationary modelling, *Hydrological Processes*, 29, 2112-2124, 2015.

621 Liu, J., Zhang, Q., Singh, V. P., and Shi, P.: Contribution of multiple climatic variables and
622 human activities to streamflow changes across China, *Journal of Hydrology*, 545, 145–162 2017.

623 Mann, H. B.: Nonparametric Tests Against Trend, *Econometrica*, 13, 245-259, 1945.

624 Matalas, N. C.: Probability distribution of low flows, U.S. Geological Survey professional
625 Paper, 434-A, 1963.

626 Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W.,
627 Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, *Science*,
628 319, 573-574, 2008.

629 Mondal, A. and Mujumdar, P. P.: Modeling non-stationarity in intensity, duration and
630 frequency of extreme rainfall over India, *Journal of Hydrology*, 521, 217-231, 2015.

631 Pettitt, A. N.: A Non-Parametric Approach to the Change-Point Problem, *Journal of the Royal
632 Statistical Society*, 28, 126-135, 1979.

633 Richard, W. K., Marc, B. P., and Philippe, N.: Statistics of extremes in hydrology, *Advances
634 in Water Resources*, 25, 1287-1304, 2002.

635 Rigby, R. A. and Stasinopoulos, D. M.: Generalized additive models for location, scale and
636 shape, *Appl. Statist.*, 54, 507-554, 2005.

637 Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for
638 understanding the response of the water cycle to global warming over land and ocean, *Hydrology
639 & Earth System Sciences Discussions*, 10, 15263-15294, 2013.

640 Sadri, S., Kam, J., and Sheffield, J.: Nonstationarity of low flows and their timing in the
641 eastern United States, *Hydrology & Earth System Sciences Discussions*, 12, 2761-2798, 2015.

642 Salas, J. D.: Analysis and modeling of hydrologic time series, *Handbook of Hydrology*, 1993.

643 Sawaske, S. R. and Freyberg, D. L.: An analysis of trends in baseflow recession and
644 low-flows in rain-dominated coastal streams of the pacific coast, *Journal of Hydrology*, 519,
645 599-610, 2014.

646 Smakhtin, V. U.: Low flow hydrology: a review, *Journal of Hydrology*, 240, 147-186, 2001.

647 Stasinopoulos, D. M. and Rigby, R. A.: Generalized additive models for location scale and

648 shape (GAMLSS) in R, Journal of Statistical Software, 23, 2007.
649 Strupczewski, W. G., Singh, V. P., and Feluch, W.: Non-stationary approach to at-site flood
650 frequency modeling I. Maximum likelihood estimation, Journal of Hydrology, 248, 123-142, 2001.
651 Szolgayova, E., Parajka, J., Blöschl, G., and Bucher, C.: Long term variability of the Danube
652 River flow and its relation to precipitation and air temperature, Journal of Hydrology, 519,
653 871-880, 2014.
654 Tallaksen, L. M.: A review of baseflow recession analysis, Journal of Hydrology, 165,
655 349-370, 1995.
656 Tallaksen, L. M., Madsen, H., and Hisdal, H.: Hydrological Drought- Processes and
657 Estimation Methods for Streamflow and Groundwater, Elsevier B.V., the Netherlands, 2004.
658 Tang, Y., Xi, S., Chen, X., and Lian, Y.: Quantification of Multiple Climate Change and
659 Human Activity Impact Factors on Flood Regimes in the Pearl River Delta of China, Advances in
660 Meteorology, 2016, 1-11, 2015.
661 Thiessen, A. H.: Precipitation averages for large areas, Monthly Weather Review, 39,
662 1082-1084, 1911.
663 Van Loon, A. F. and Laaha, G.: Hydrological drought severity explained by climate and
664 catchment characteristics, Journal of Hydrology, 526, 3-14, 2015.
665 Venables, W. N. a. R., B. D. (2002) Modern Applied Statistics with S. Fourth edition, 2002.
666 Villarini, G., Smith, J. A., and Napolitano, F.: Nonstationary modeling of a long record of
667 rainfall and temperature over Rome, Advances in Water Resources, 33, 1256-1267, 2010.
668 Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., and Krajewski, W. F.: Flood
669 frequency analysis for nonstationary annual peak records in an urban drainage basin, Advances in
670 Water Resources, 32, 1255-1266, 2009.
671 Villarini, G. and Strong, A.: Roles of climate and agricultural practices in discharge changes
672 in an agricultural watershed in Iowa, Agriculture, Ecosystems & Environment, 188, 204-211,
673 2014.
674 WMO: Manual on Low-flow Estimation and Prediction. WMO-No.1029, Switzerland, 2009.
675 Xiong, L., Du, T., Xu, C.-Y., Guo, S., Jiang, C., and Gippel, C. J.: Non-Stationary Annual
676 Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider
677 Non-Stationarity in the Annual Daily Flow Series, Water Resources Management, 29, 3615-3633,
678 2015
679 Xiong, L., Jiang, C., and Du, T.: Statistical attribution analysis of the nonstationarity of the
680 annual runoff series of the Weihe River, Water Science & Technology, 70, 939-946, 2014.
681 Yan, L., Xiong, L., Liu, D., Hu, T., and Xu, C.-Y.: Frequency analysis of nonstationary annual
682 maximum flood series using the time - varying two - component mixture distributions,

683 Hydrological Processes, 31, 69–89, 2017.

684 Yang, H. and Yang, D.: Derivation of climate elasticity of runoff to assess the effects of
685 climate change on annual runoff, Water Resources Research, 47, 197-203, 2011.

686 Yang, H. and Yang, D.: Evaluating attribution of annual runoff change: according to climate
687 elasticity derived using Budyko hypothesis, Egu General Assembly, 15, 14029, 2013.

688 Yu, K.-x., Xiong, L., and Gottschalk, L.: Derivation of low flow distribution functions using
689 copulas, Journal of Hydrology, 508, 273-288, 2014.

690 Yue, S., Pilon, P., and Cavadias, G.: Power of the Mann–Kendall and Spearman's rho tests for
691 detecting monotonic trends in hydrological series, Journal of Hydrology, 259, 254-271, 2002.

692 Zhang, Q., Gu, X., Singh, V. P., and Xiao, M.: Flood frequency analysis with consideration of
693 hydrological alterations: Changing properties, causes and implications, Journal of Hydrology, 519,
694 803-813, 2014.

695 Zhang, Q., Gu, X., Singh, V. P., Xiao, M., and Chen, X.: Evaluation of flood frequency under
696 non-stationarity resulting from climate indices and reservoir indices in the East River basin, China,
697 Journal of Hydrology, 527, 565-575, 2015.

698 Zhang, S., Yang, H., Yang, D., and Jayawardena, A. W.: Quantifying the effect of vegetation
699 change on the regional water balance within the Budyko framework, Geophysical Research Letters,
700 43, 1140-1148, 2015.

701 ~~Zhang, Y. P.: Economical water use mode research of Baoji Gorge Irrigation Area based on
702 WebGIS. Chinese, 2008.~~

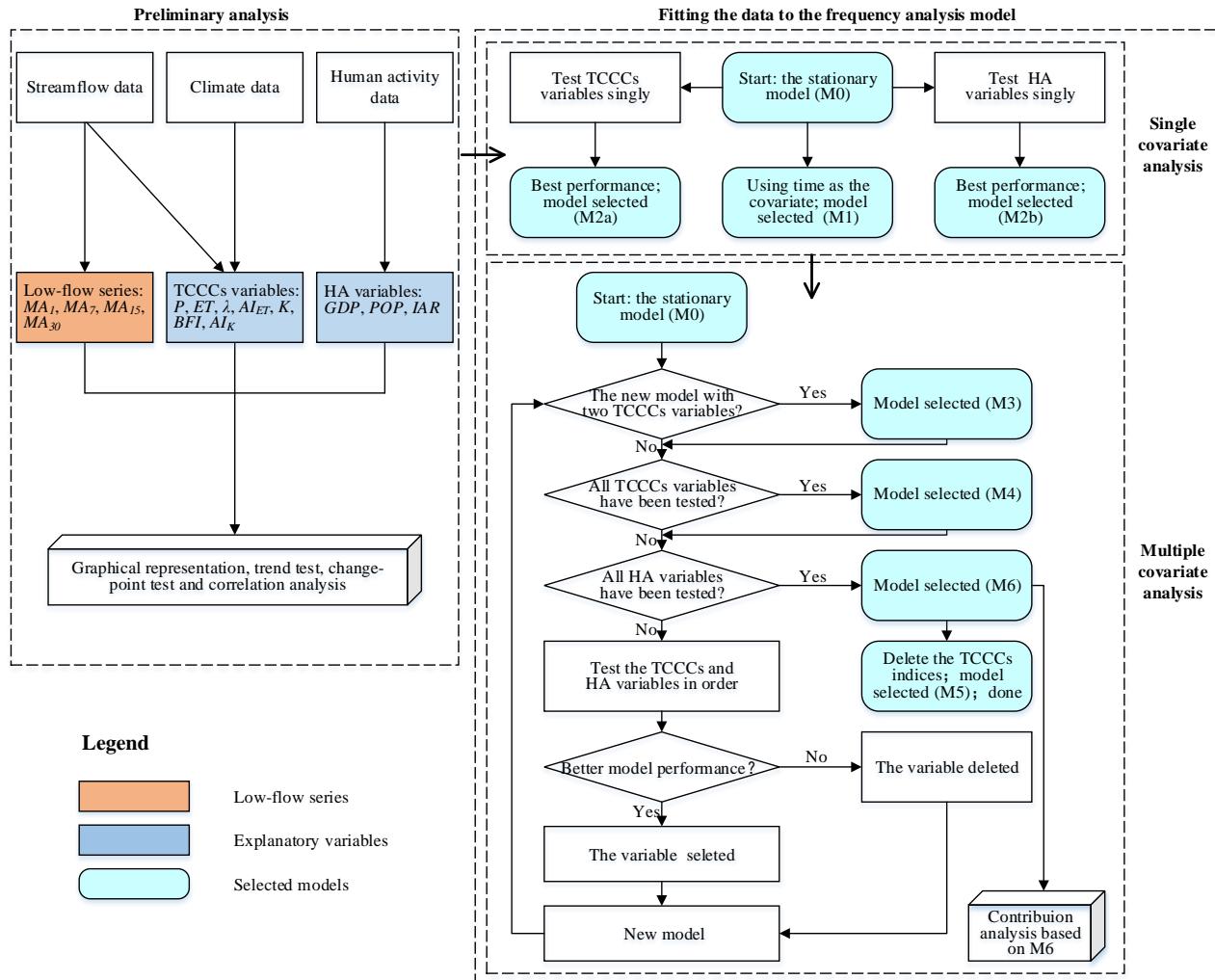
703

704

705

706 **Figure**

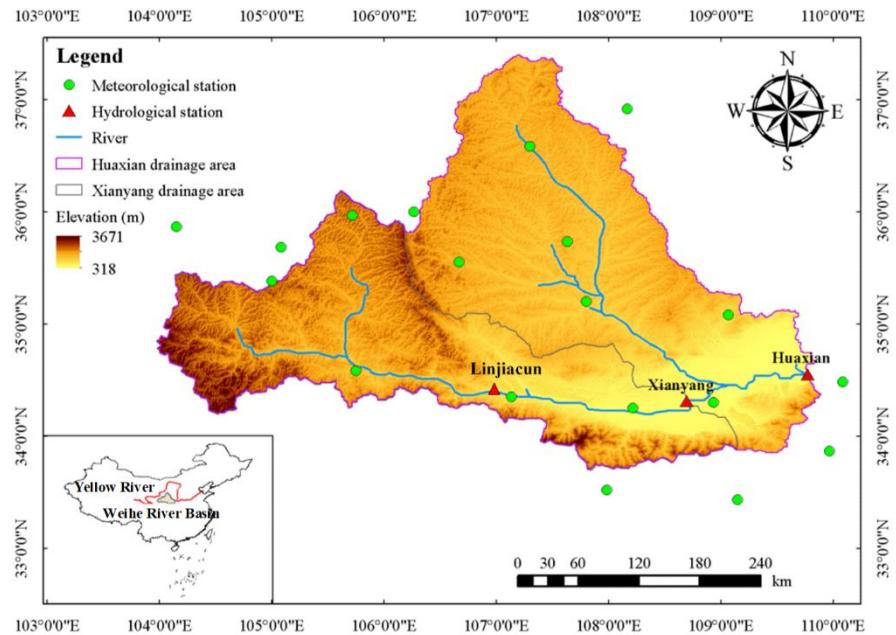
707



708

709 Figure 1. The framework of nonstationary low-flow frequency analysis.

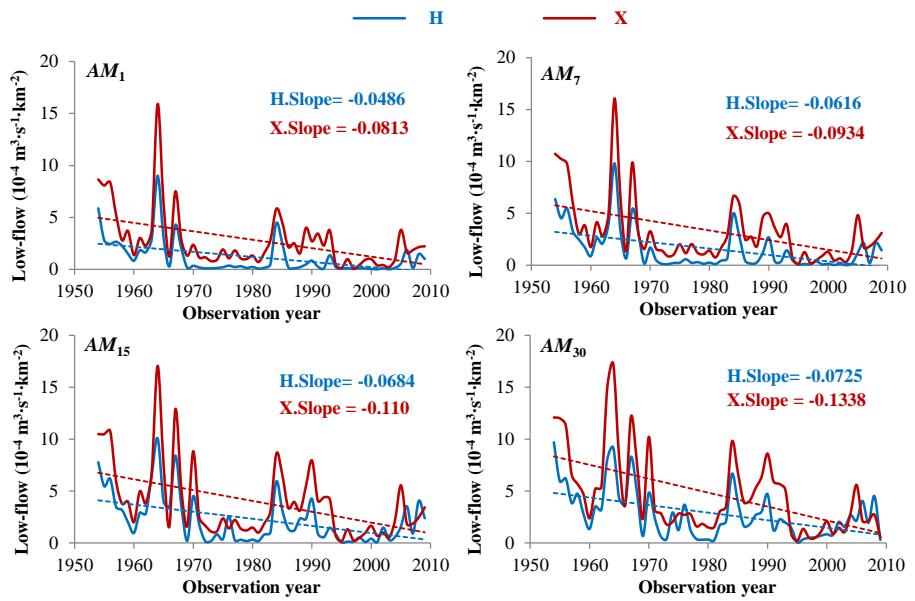
710



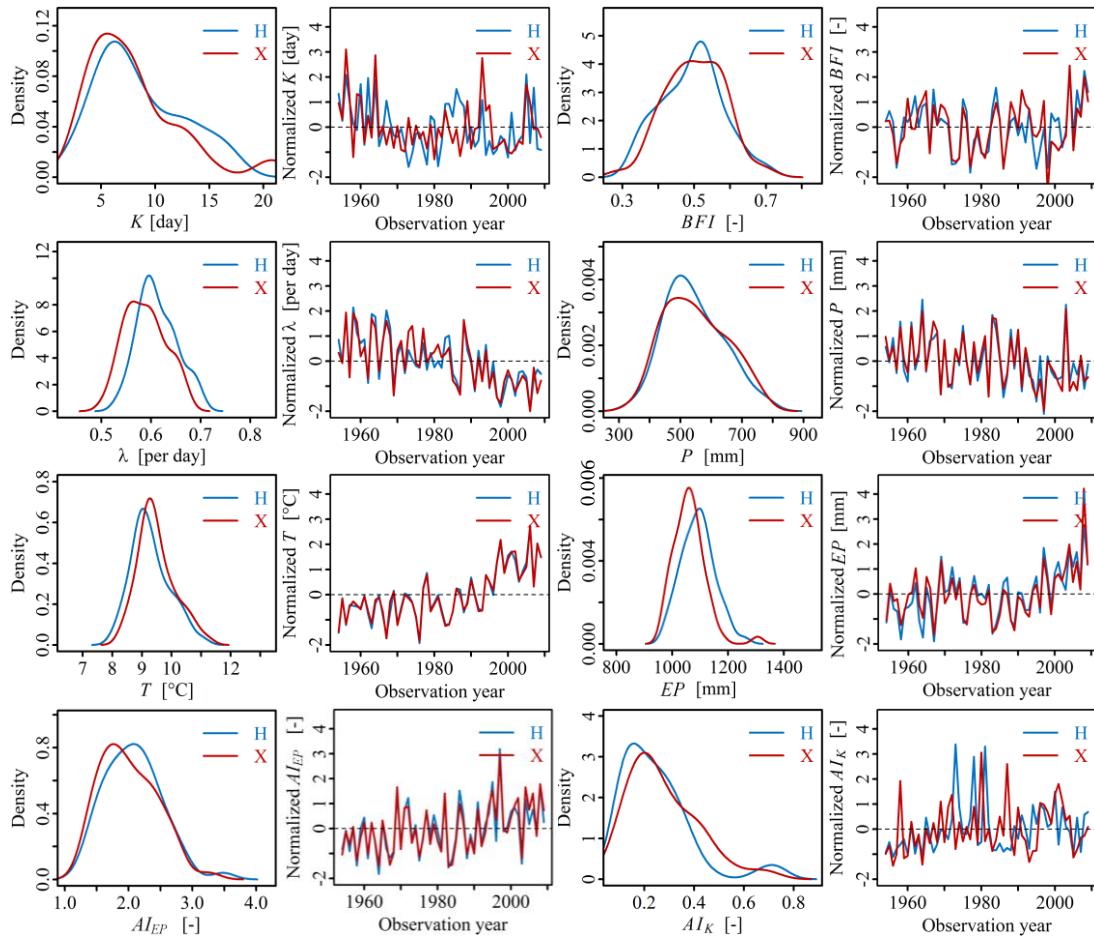
711

712 Figure 2. Location, topography, hydro-meteorological stations and river systems of the Weihe
 713 River basin.

714

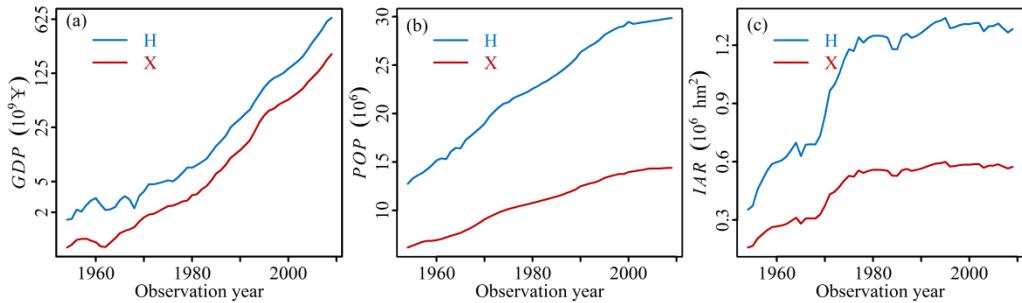


717 Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang
 718 (X) gauging stations.



722 Figure 4. Frequency distributions (using the kernel density estimations) and time series processes

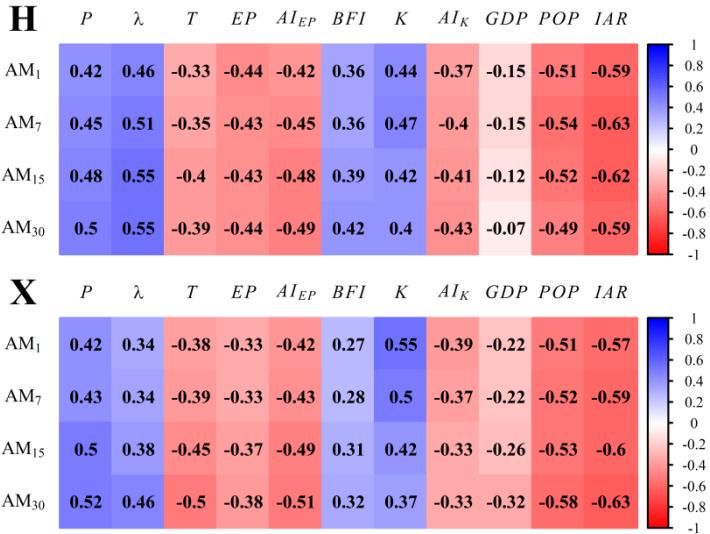
723 of TCCCs variables in both Huaxian (H) and Xianyang (X) stations.



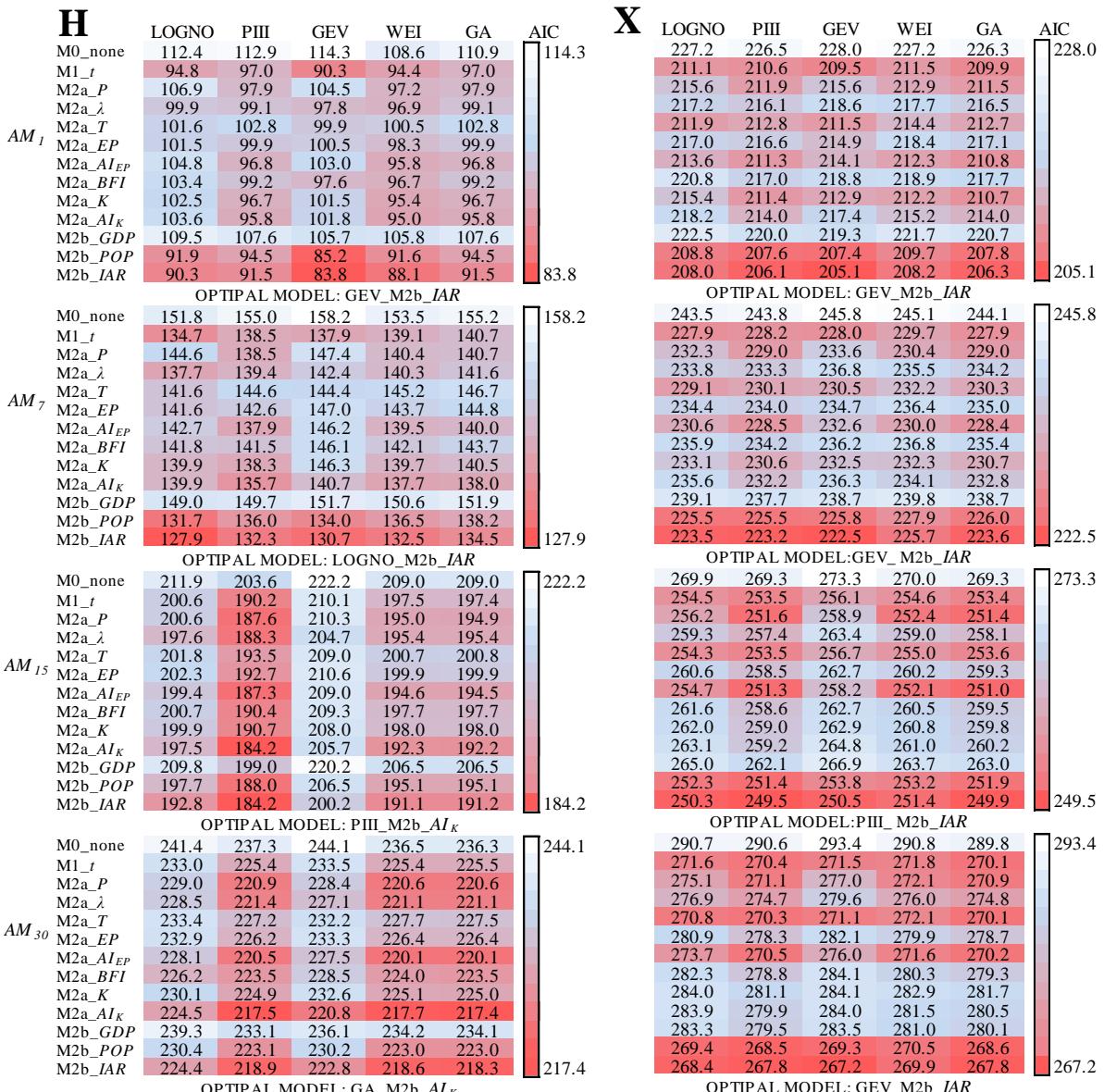
725

726 Figure 5. HA indices in both Huaxian (H) and Xianyang (X). (a), (b) and (c) are for population
 727 (POP), gross domestic production (GDP) and irrigated area (IAR), respectively.

728



732 Figure 6. The Pearson correlation coefficients matrix between the annual minimum flow series and
 733 candidate explanatory variables in Huaxian (H) and Xianyang (X) stations; the darker color
 734 intensity represents a higher level of correlation (blue indicates positive correlation, and red
 735 indicates negative correlations).



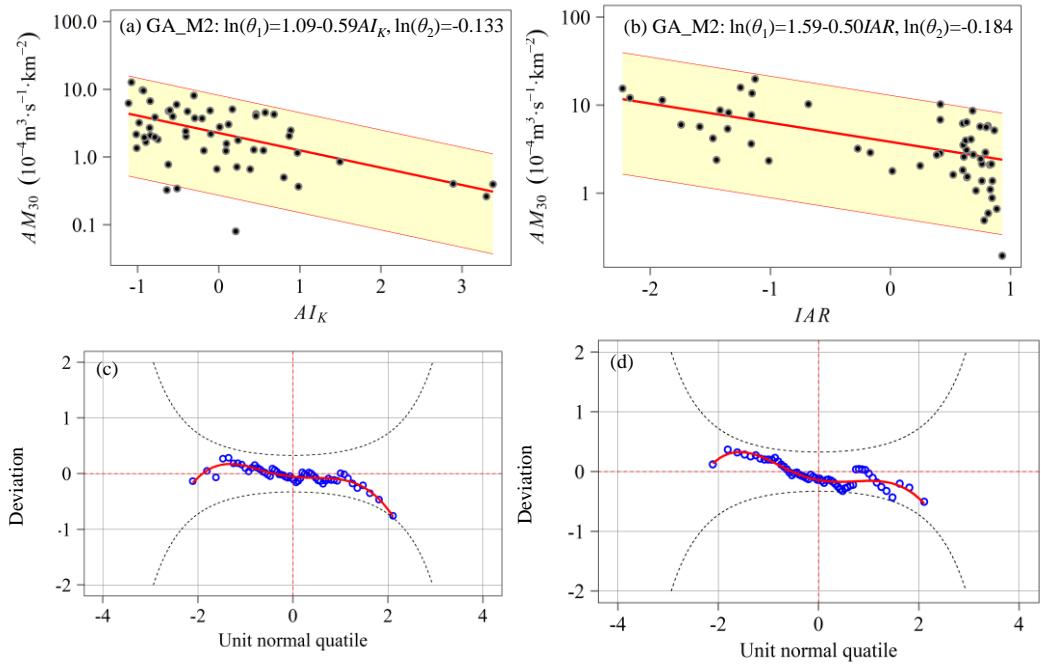
737

738 Figure 7. Comparisons among M0, M1 and M2 based on the AIC values for the four observed

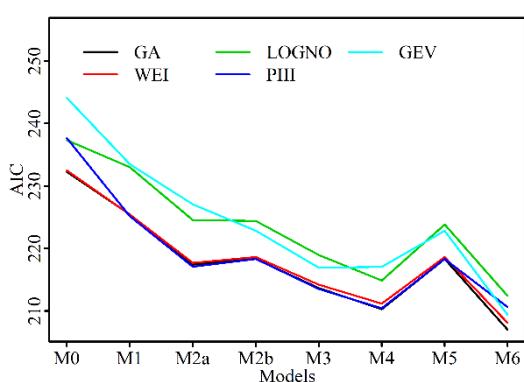
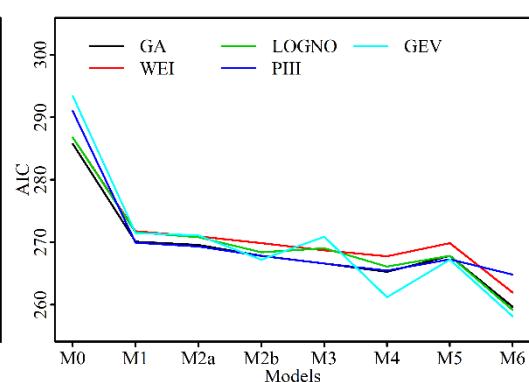
739 low-flow series in Huaxian (H) at left panel and Xianyang (X) at right panel; darker red color

740 represents a higher goodness of fit.

741

H

744 Figure 8. Performance assessments of GA_M2 for AM_{30} in Huaxian (H) at left panel and
 745 Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M2 (red lines represent
 746 the centile curves estimated by GA_M2; the 50th centile curves are indicated by thick red; the
 747 yellow-filled areas are between the 5th and 95th centile curves; the black points indicate the
 748 observed series); (c) and (d) are the worm plots of GA_M2 for the goodness-of-fit test; a
 749 reasonable model fit should have the data points fall within the 95% confidence intervals (between
 750 the two red dashed curves).

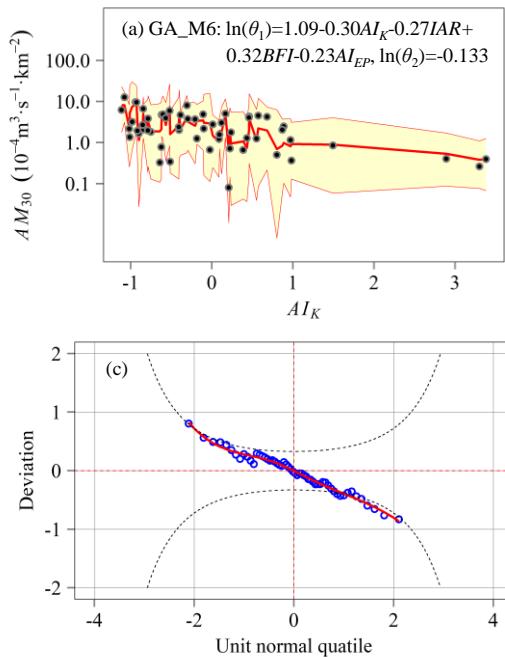
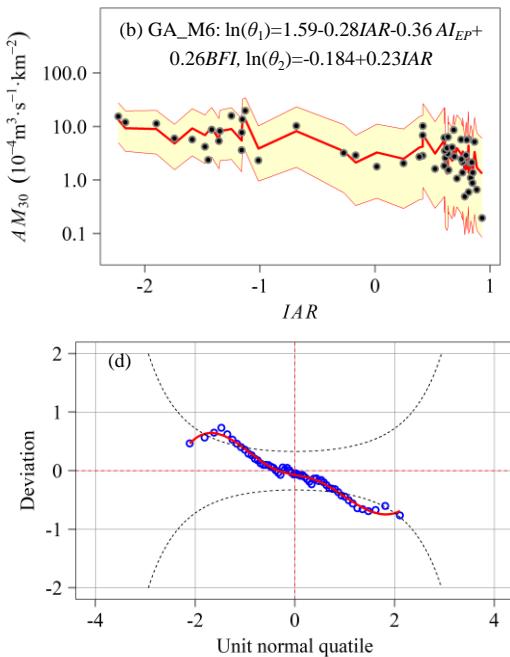
751
H**X**

752

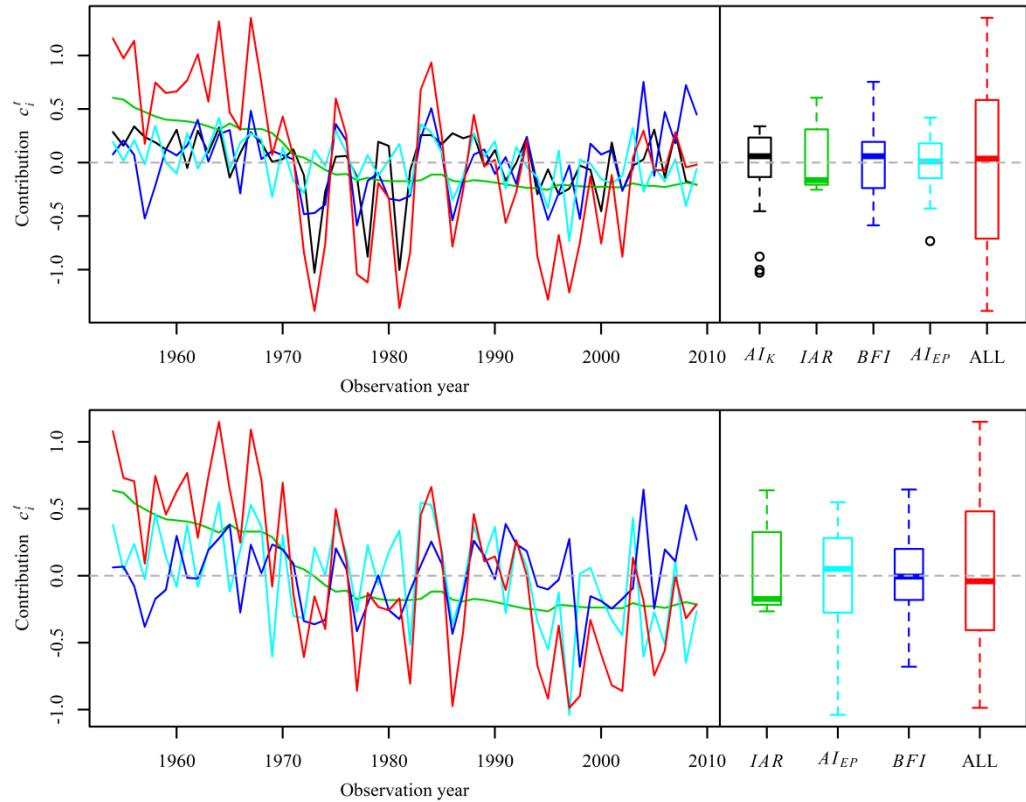
753 Figure 9. Comparisons of performance of stationary model (M0), time covariate model (M1) and
754 physical covariate models (M2a, M2b, M3, M4, M5 and M6 with their corresponding optimal
755 explanatory variables) for AM_{30} in Huaxian (H) at left panel and Xianyang (X) at right panel.

756

757

H**X**

760 Figure 10. Performance assessments of GA_M6 for AM_{30} in Huaxian (H) at left panel and
 761 Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M6 (red lines represent
 762 the centile curves estimated by GA_M6; the 50th centile curves are indicated by thick red; the
 763 yellow-filled areas are between the 5th and 95th centile curves; the filled black points indicate the
 764 observed series); (c) and (d) are the worm plots of GA_M6 for the goodness-of-fit test; A
 765 reasonable model fit should have the data points fall within the 95% confidence intervals (between
 766 the two red dashed curves).



770 Figure 11. Contribution of selected explanatory variables to $c_i^t = \ln(\theta_i^t) - \ln(\bar{\theta}_i)$ in different
 771 periods based on GA_M6.

775 **Table**

776 Table 1. The probability density functions and moments (the mean and variance) for the candidate
 777 distributions in this study.

Distributions	Probability density function	Distribution moments
Pearson-III	$f_Y(y \theta_1, \theta_2, \theta_3) = \frac{(y-\theta_3)^{1/\theta_2^2-1}}{\Gamma(1/\theta_2^2)(\theta_1\theta_2^2)^{1/\theta_2^2}} \exp\left(-\frac{y-\theta_3}{\theta_1\theta_2^2}\right)$ $y > \theta_3, \theta_3 > 0, \theta_1 > 0, \theta_2 > 0$	$E[Y] = \theta_1 + \theta_3$ $Var[Y] = \theta_1^2\theta_2^2$
Gamma	$f_Y(y \theta_1, \theta_2) = \frac{(y)^{1/\theta_2^2-1}}{\Gamma(1/\theta_2^2)(\theta_1\theta_2^2)^{1/\theta_2^2}} \exp\left(-\frac{y}{\theta_1\theta_2^2}\right)$ $y > 0, \theta_1 > 0, \theta_2 > 0$	$E[Y] = \theta_1$ $Var[Y] = \theta_1^2\theta_2^2$
Weibull	$f_Y(y \theta_1, \theta_2) = \left(\frac{\theta_2}{\theta_1}\right) \left(\frac{y}{\theta_1}\right)^{\theta_2-1} \exp\left(-\left(\frac{y}{\theta_1}\right)^{\theta_2}\right)$ $y > 0, \theta_1 > 0, \theta_2 > 0$	$E[Y] = \theta_1 \Gamma(1 + 1/\theta_2)$ $Var[Y] = \theta_1^2 \left[\Gamma\left(1 + \frac{2}{\theta_2}\right) - \Gamma^2\left(1 + \frac{1}{\theta_2}\right) \right]$
Lognormal	$f_Y(y \theta_1, \theta_2) = \frac{1}{y\theta_2\sqrt{2\pi}} \exp\left\{-\frac{[\log(y)-\theta_1]^2}{2\theta_2^2}\right\}$ $y > 0, \theta_2 > 0$	$E[Y] = w^{1/2}e^{\theta_1}$ $Var[Y] = w(w-1)e^{2\theta_1}$ $w = \exp(\theta_2^2)$
GEV	$f_Y(y \theta_1, \theta_2, \theta_3) = \frac{1}{\theta_2} \left[1 + \theta_3 \left(\frac{y-\theta_1}{\theta_2} \right) \right]^{-1/\theta_3-1} \exp\left\{-\left[1 + \theta_3 \left(\frac{y-\theta_1}{\theta_2} \right) \right]^{-1/\theta_3}\right\}$ $-\infty < \theta_1 < \infty, \theta_2 > 0, -\infty < \theta_3 < \infty$	$E[Y] = \theta_1 - \frac{\theta_2}{\theta_3} + \frac{\theta_2}{\theta_3}\eta_1$ $Var[Y] = \theta_2^2(\eta_2 - \eta_1^2)/\theta_3^2$ $\eta_m = \Gamma(1 - m\theta_3)$

778

779 Table 2. Description of the developed nonstationary models using time, TCCCs indices and/or HA
 780 indices as explanatory variables.

Model	Distribution					Description	
	codes	GA	WEI	LOGNO	PIII	GEV	Variable category
M0	GA_M0	WEI_M0	LOGNO_M0	PIII_M0	GEV_M0	-	Zero
M1	GA_M1	WEI_M1	LOGNO_M1	PIII_M1	GEV_M1	Time	One
M2a	GA_M2a	WEI_M2a	LOGNO_M2a	PIII_M2a	GEV_M2a	TCCCs	One
M2b	GA_M2b	WEI_M2b	LOGNO_M2b	PIII_M2b	GEV_M2b	HA	One
M3	GA_M3	WEI_M3	LOGNO_M3	PIII_M3	GEV_M3	TCCCs	Two
M4	GA_M4	WEI_M4	LOGNO_M4	PIII_M4	GEV_M4	TCCCs	Identified by the stepwise selection
M5	GA_M5	WEI_M5	LOGNO_M5	PIII_M5	GEV_M5	HA	Identified by the stepwise selection
M6	GA_M6	WEI_M6	LOGNO_M6	PIII_M6	GEV_M6	TCCCs+HA	Identified by the stepwise selection

781

782

783 Table 3. The summary of candidate explanatory variables and reason of selection.

Category	Name	Indices	Reason of selection (related to)	Unit
TCCCs				
	<i>P</i>	Precipitation	Main supply source	mm
	λ	Mean frequency of precipitation events	Water supply intensity	per day
	<i>T</i>	Temperature	Evaporation loss	°C
	<i>EPET</i>	Potential evapotranspiration	Evaporation loss	mm
	<i>AI_{EP}AI_{EF}</i>	Climate aridity index	Degree of meteorological drought	-
	<i>BFI</i>	Base-flow index	Water storage capability	-
	<i>K</i>	Recession constant	Water storage capability	day
	<i>AI_K</i>	Recession-related aridity index	Both the water storage and supply capability	-
HA				
	<i>IAR</i>	Irrigation area	Both irrigation diversion and evaporation loss	10^6 hm^2
	<i>POP</i>	Population	Water withdrawal loss for agricultural, domestic and industrial purposes	10^6
	<i>GDP</i>	Gross domestic product	Water withdrawal loss for agricultural, domestic and industrial purposes	10^9 ¥

784

785

786 Table 4. The results of trend test and change-point detection for both the four low flow series and

787 TCCCs variables in Huaxian and Xianyang.

Station	Variable	Mann-Kendall test		Pettitt's test	
		S	p-value	Change point	p-value
Huaxian					
	<i>AM₁</i>	-564	6.91E-05(***)	1968	1.34E-03(**)
	<i>AM₇</i>	-560	7.79E-05(***)	1968	1.44E-03(**)
	<i>AM₁₅</i>	-438	2.01E-03(**)	1971	4.85E-03(**)
	<i>AM₃₀</i>	-378	7.71E-03(**)	1971	9.96E-03(**)
	<i>P</i>	-292	3.97E-02(*)	1985	1.86E-01()
	<i>λ</i>	-632	8.20E-06(***)	1984	3.02E-04(***)
	<i>T</i>	752	1.11E-07(***)	1993	8.17E-06(***)
	<i>EPE_T</i>	548	1.11E-04(***)	1993	1.98E-03(**)
	<i>AI_EAI_{EF}</i>	384	6.79E-03(**)	1990	6.03E-02()
	<i>BFI</i>	52	7.19E-01()	1998	3.88E-01()
	<i>K</i>	-312	2.79E-02(*)	1968	8.11E-02()
	<i>AI_K</i>	376	8.04E-03(**)	1971	3.60E-02(*)
Xianyang					
	<i>AM₁</i>	-517	2.65E-04(***)	1968	2.2E-03(**)
	<i>AM₇</i>	-483	6.58E-04(***)	1970	2.5E-03(**)
	<i>AM₁₅</i>	-474	8.29E-04(***)	1971	2.2E-03(**)
	<i>AM₃₀</i>	-570	5.78E-05(***)	1993	4.5E-04(***)
	<i>P</i>	-414	3.51E-03(**)	1990	1.45E-02(*)
	<i>λ</i>	-652	4.21E-06(***)	1984	6.00E-05(***)
	<i>T</i>	724	3.22E-07(***)	1993	5.41E-06(***)
	<i>EPE_T</i>	372	8.74E-03(**)	1993	3.01E-03(**)
	<i>AI_EAI_{EF}</i>	454	1.37E-03(**)	1993	8.82E-03(**)
	<i>BFI</i>	64	6.56E-01()	2003	8.65E-01()
	<i>K</i>	-210	1.39E-01()	1966	2.03E-01()
	<i>AI_K</i>	290	4.11E-02(*)	1968	1.63E-01()

788 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

789

790

791 Table 5. The summary of frequency analysis using GA distribution for AM_{30} in Huaxian and Xianyang.

Station	Model codes	Optimal variable	AIC	Distribution parameters		
				$\ln(\theta_1)$	$\ln(\theta_2)$	θ_3
Huaxian						
	GA_M0	-	232.3	1.09	-0.133	-
	GA_M1	t	225.5	1.09-0.32 t	-0.133	-
	GA_M2	AI_K	217.4	1.09-0.59 AI_K	-0.133	-
	GA_M2b	IAR	218.3	1.09-0.47 IAR	-0.133	-
	GA_M3	AI_K, BFI	213.7	1.09-0.50 AI_K +0.32 BFI	-0.133	-
	GA_M4	$AI_K, BFI, AI_{EP}AI_{EF}$	211.1	1.09-0.40 AI_K +0.32 BFI -0.34 $AI_{EP}AI_{EF}$	-0.133	-
	GA_M5	IAR	218.3	1.09-0.47 IAR	-0.133	-
	GA_M6	$AI_K, IAR, BFI, AI_{EP}AI_{EF}$	207.0	1.09-0.30 AI_K -0.27 IAR +0.32 BFI -0.23 $AI_{EP}AI_{EF}$	-0.133	-
Xianyang						
	GA_M0	-	285.8	1.59	-0.184	-
	GA_M1	t	270.1	1.59-0.48 t	-0.184	-
	GA_M2a	T	270.1	1.59-0.50 T	-0.184	-
	GA_M2b	IAR	267.8	1.59-0.50 IAR	-0.184	-
	GA_M3	T, P	267.1	1.59-0.34 T +0.32 P	-0.184	-
	GA_M4	T, P, BFI, K	265.4	1.59-0.33 T +0.27 P +0.22 BFI +0.18 K	-0.184	-
	GA_M5	IAR	267.8	1.59-0.50 IAR	-0.184	-
	GA_M6	$IAR, AI_{EP}AI_{EF}, BFI$	259.7	1.59-0.28 IAR -0.36 $AI_{EP}AI_{EF}$ +0.26 BFI	-0.184+0.23 IAR	-

792

793