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-Referee#3-  

We appreciate you for the valuable and insightful comments, which have greatly 

improved our manuscript. Below we describe the modifications made according to the 

comments. For clarity, comments are given in italics and blue, and our responses are 

given in plain text. The line numbers within brackets indicate the location of the 

modifications in the revised manuscript. The revised manuscript with all revisions 

tracked is appended at the end of this document. 

The nonstationarity of the runoff in Wei River basin is very significant and this 

work applied multiple variables into time-varying model by GLM. The revised 

version addressed the comments of the last two referees clearly. 

AUTHORS’ REPONSE: We appreciate you very much for your positive comment. 

Line 26 and the others, “potential evapotranspiration, ET”. Usually, ET is used 

to represent actual evapotranspiration and EP is used to represent potential 

evapotranspiration. It’s better to use EP to represent potential 

evapotranspiration. 

AUTHORS’ REPONSE: Thank you for pointing out this. To address your comment, 

“ET” and “AIET” have been modified as “EP” and “AIEP”, respectively. 

Irrigated area is a very important index in the Wei River due to large agricultural 

irrigation water withdrawn. And irrigated area is added in the revised version. 

AUTHORS’ REPONSE: We quite agree with your comment. 

Line 345-348, “Human activity data(i.e. gross domestic product, population and 

irrigation area) were taken from annals of statistics provided by the Shaanxi 

Provincial Bureau of Statistics (http://www.shaanxitj.gov.cn/) and Gansu 

Provincial Bureau of Statistics (source: http://www.gstj.gov.cn/).” If the data also 

come from Zhang (2008) as shown in Line 326, it should be listed here.  

AUTHORS’ REPONSE: Thank you for your good comment. We realize that this is 

our negligence. After the first revision, the Line 324-326, “In this study, we use the 

available data (1980-2005) of the irrigation diversion system on plateau in Baoji 

Gorge Irrigation Area in Zhang (2008) to provide some information for the knowledge 

of low flow generation”, should have been deleted. And we have deleted this sentence 

in the revised manuscript. This is because human activity data in the annals is more 

detailed than the data in Zhang (2008). As also the referee 2 suggested, the shorted 

records in Zhang (2008) is limited for this study. Thus, after first revision, the data in 

Zhang (2008) was replaced by the data (1954-2009) in the annals.  

It should be noted that the “population” in the annals are different from the 

people who lives in the catchment. So the uncertainty should be presented here to 

remind the readers. Nonetheless, it is the best population data so far. 



 2 / 2 
 

AUTHORS’ REPONSE: We are grateful for your insightful suggestion. We have 

added following sentence to Sect.4.3 Discussion: 

“Besides, it should be noted that the "population" recorded in the annals of statistics 

may not be equal to the actual population living in the catchment. If the “population” 

in the annals is used as explanatory variable, this difference may lead to uncertainty of 

model parameter estimations. Nonetheless, it is the best population data so far and the 

explanatory variable POP  is excluded in the final model (M6).” [Lines 504-508] 
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Abstract:  16 

Under the background of global climate change and local anthropogenic activities, multiple 17 

driving forces have introduced various non-stationary components into low-flow series. This has 18 

led to a high demand on low-flow frequency analysis that considers nonstationary conditions for 19 

modeling. In this study, through a nonstationary frequency analysis framework with the 20 

Generalized Linear Model (GLM) to consider time-varying distribution parameters, the multiple 21 

explanatory variables were incorporated to explain the variation in low-flow distribution 22 

parameters. These variables are comprised of the three indices of human activities (i.e., population 23 

POP, irrigation area IAR, and gross domestic product GDP) and the eight measuring indices of the 24 

climate and catchment conditions (i.e., total precipitation P, mean frequency of precipitation 25 

events λ, temperature T, potential evapotranspiration EPET, climate aridity index AIEPAIET, 26 

base-flow index BFI, recession constant K and the recession-related aridity index AIK). This 27 

framework was applied to model the annual minimum flow series of both Huaxian and Xianyang 28 

gauging stations in the Weihe River, China. The results from stepwise regression for the optimal 29 

explanatory variables show that the variables related to irrigation, recession, temperature and 30 

precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day 31 

flow in Huaxian shows that AIK is of the highest relative importance among the optimal variables, 32 

followed by IAR, BFI and AIEPAIET, and nonstationary GA distribution model with these optimal 33 
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variables has an AIC value of 207.0, while the AIC values of other models just with AIK or time as 34 

explanatory variable or without any variable are 217.4, 225.5, 232.3, respectively. We conclude 35 

that the incorporation of multiple indices related to low-flow generation permits tracing various 36 

driving forces. The established link in nonstationary analysis will be beneficial to analyze future 37 

occurrences of low-flow extremes in similar areas. 38 

Keywords: Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity; 39 

Low-flow Frequency Analysis;  40 

 41 

1. Introduction 42 

Low flow is defined as the „flow of water in a stream during prolonged dry weather‟ (WMO, 43 

1974). Yu et al. (2014) quantitatively described a low flow event as a segment of hydrograph 44 

during a period of dry weather with discharge values below a preset (relatively small) threshold. 45 

According to WMO (2009), annual minimum flows averaged over several days can be used to 46 

measure low flows. During low-flow periods, the magnitude of river flow will greatly restrict its 47 

various functions (e.g. providing water supply for production and living, diluting waste water, 48 

ensuring navigation, meeting ecological water requirement). Therefore, the investigation of the 49 

magnitude and frequency of low flows is of primary importance for engineering design and water 50 

resources management (Smakhtin, 2001). In recent years, low flows, as an important part of river 51 
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flow regime, have been attracting an increasing attention of hydrologists and ecologists in the 52 

context of the significant impacts of climate change and human activities (Bradford and Heinonen, 53 

2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu et al., 2015; Sadri et al., 54 

2015; Smakhtin, 2001; WMO, 2009). In general, under the impact of a changing environment, 55 

combinations of multiple factors, such as precipitation change, temperature change, irrigation area 56 

change and construction of reservoirs, can drive various patterns of streamflow changes (Liu et al., 57 

2017; Tang et al., 2015). Unfortunately, when subjected to a variety of influencing forces, low flow 58 

is more vulnerable than high flow or mean flow. Therefore, it is a pretty important issue in 59 

hydrology to identify low-flow changes, track multiple driving factors and quantify their 60 

contributions from the perspective of hydrological frequency analysis.  61 

In hydrological analysis and design, conventional frequency analysis estimates the statistics 62 

of a hydrological time series based on recorded data with the stationary hypothesis which means 63 

that this series is “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). However, global 64 

warming and human forces have changed climate and catchment conditions in some regions. 65 

Time-varying climate and catchment conditions can affect all aspects of the flow regime, i.e. 66 

changing the frequency and magnitude of floods, altering flow seasonality, and modifying the 67 

characteristics of low flows, etc. The hypothesis of stationarity has been suspected (Milly et al., 68 

2008). If this problematic method is still used, the frequency analysis may lead to high estimation 69 
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error in hydrological design. Therefore, considerable literatures have introduced the concept of 70 

hydrologic nonstationarity into analysis of various hydrological variables, such as annual runoff 71 

(Arora, 2002; Jiang et al., 2017; Jiang et al., 2015; Liu et al., 2017; Xiong et al., 2014; Yang and 72 

Yang, 2013), flood (Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; Kwon et al., 73 

2008; López and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 2016; Zhang et 74 

al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; Liu et al., 2015), 75 

precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c; Mondal and Mujumdar, 2015; 76 

Villarini et al., 2010) and so on. Compared with the literatures on annual runoff, floods and 77 

precipitation, the literatures on the nonstationary analysis of low flow are relatively limited.  78 

Previous hydrological literatures on frequency analysis of nonstationary hydrological series 79 

mainly focus on two aspects: development of nonstationary method and exploration of covariates 80 

reflecting changing environments. Strupczewski et al. (2001) presented the method of 81 

time-varying moment which assumes that the hydrological variable of interest obeys a certain 82 

distribution type, but its moments change over time. The method of time-varying moment was 83 

modified to be the method of time-varying parameter values for the distribution representative of 84 

hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the 85 

Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and 86 

Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying 87 
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parameter method can be extended to the physical covariate analysis by replacing time with any 88 

other physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; López and Francés, 89 

2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example, Jiang et al. 90 

(2014) used reservoir index as an explanatory variable based on the time-varying copula method 91 

for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River, China. Du et 92 

al. (2015) took precipitation and air temperature as the explanatory variables to explain the 93 

inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea Surface 94 

Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years ahead), 95 

the winter areal temperature and precipitation as the candidate explanatory variables to explain the 96 

inter-annual variability in low flows of Yichang station, China. Kam and Sheffield (2015) ascribed 97 

the increasing inter-annual variability of low flows over the eastern United States to North Atlantic 98 

Oscillation and Pacific North America.  99 

To our knowledge, compared with the nonstationary flood frequency analysis, the studies on 100 

the nonstationary frequency analysis of low-flow series is not very extensive because of 101 

incomplete knowledge of low flow generation (Smakhtin, 2001). Most of these studies explain 102 

nonstationarity of low-flow series only by using climatic indicators or a single indicator of human 103 

activity. However, the indicators of catchment conditions (e.g. recession rate) related to physical 104 

hydrological processes have seldom been attached in nonstationary modeling of low flow series. 105 
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This lack of linking with hydrological processes makes it impossible to accurately quantify the 106 

contributions of influencing factors for the nonstationarity of low flow series, and such a scientific 107 

demand for tracing the sources of nonstationarity of low-flow series and qualifying their 108 

contributions motivated the present study. The knowledge of low-flow generation has been 109 

increased by efforts of hydrologists, which can help develop physical covariates to address 110 

nonstationarity. Low flows generally originate from groundwater or other delayed outflows 111 

(Smakhtin, 2001; Tallaksen, 1995). Their generation relates to both an extended dry weather 112 

period (leading to a climatic water deficit) and complex hydrological processes which determine 113 

how these deficits propagate through the vegetation, soil and groundwater system to streamflow 114 

(WMO, 2009). Thus, not only climate condition drivers (e.g. potential evaporation exceeds 115 

precipitation), but also catchment condition drivers (e.g. the faster hydrologic response rate to 116 

precipitation) can cause low flows.  117 

The significant factors such as precipitation, temperature, evapotranspiration, streamflow 118 

recession, large-scale teleconnections and human forces may play important roles in influencing 119 

low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; Jones et al., 120 

2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. (2013) 121 

presented a derived low flow probability distribution function with climate and catchment 122 

characteristics parameters (i.e., the mean length of dry spells 
-1  and recession constant of 123 
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streamflow K  ) as its distribution parameters. Botter et al. (2013) derived “a measurable index” 124 

(
-1 K ) which can be used for discriminating erratic river flow regimes from persistent river flow 125 

regimes. Recently, Van Loon and Laaha (2015) used climate and catchment characteristics (e.g. the 126 

duration of dry spells in precipitation and the base flow index) to explain the duration and deficit 127 

of hydrological drought event and offered a further understanding of low-flow generation. These 128 

studies indicated that climate and catchment conditions play an important role in producing low 129 

flows.  130 

The goal of this study is to trace origins of nonstationarity in low flows through developing a 131 

nonstationary low-flow frequency analysis framework with the consideration of the time-varying 132 

climate and catchment conditions (TCCCs) and human activity (HA). In this framework, the 133 

climate and catchment conditions are quantified using the eight indices, i.e., meteorological 134 

variables (total precipitation P , mean frequency of precipitation events  , temperature T and 135 

potential evapotranspiration EP ET ), basin storage characteristics (base-flow index BFI , 136 

recession constant K ) and aridity indexes (climate aridity index EPAI ETAI , the 137 

recession-related aridity index KAI ). The specific objectives of this study are: (1) to find the most 138 

important index to explain the nonstationarity of low-flow series; (2) to determine the best subset 139 

of TCCCs indices and/or human activity indices (i.e., population POP, irrigation area IAR, and 140 

gross domestic product GDP) for final model through stepwise selection method to identify 141 
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nonstationary mode of low-flow series; and (3) to quantify the contribution of selected explanatory 142 

variables to the nonstationarity.  143 

This paper is organized as follows. Section 2 describes the methods. The Weihe River basin 144 

and available data sets used in this study are described in Section 3, followed by a presentation of 145 

the results and discussion in Section 4. Section 5 summarizes the main conclusions. 146 

2 Methodology 147 

The flowchart of how to organize the nonstationary low-flow frequency analysis framework 148 

is shown in Fig. 1. The whole process is divided into three steps. The first step is preliminary 149 

analysis, including the graphical presentation of both explanatory variables and low-flow series, 150 

the statistical test for nonstationarity and the correlations between each explanatory variable and 151 

each low-flow series. The second step is single covariate analysis for the most important 152 

explanatory variable. The third step is multiple covariate analysis for the optimal combination. We 153 

use a low-flow frequency analysis model and stepwise regression method to accomplish the last 154 

two steps. In the following sub-sections, first, the low-flow frequency analysis model is 155 

constructed based on the nonstationary probability distributions method, in which distribution 156 

parameters serving as response variables can vary as functions of explanatory variables. Second, 157 

the distribution types used to build the nonstationary model are outlined. Then, the candidate 158 
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explanatory variables related to the time-varying climate and catchment conditions (TCCCs) and 159 

human activity (HA) are clarified. Finally, estimation of model parameters and selection of models 160 

are illustrated. 161 

<Figure 1> 162 

2.1 Construction of the low-flow nonstationary frequency analysis model 163 

Generally, a nonstationary frequency analysis model can be established based on the 164 

time-varying distribution parameters method (Du et al., 2015; López and Francés, 2013; Liu et al., 165 

2015; Richard et al., 2002; Villarini and Strong, 2014). For the nonstationary probability 166 

distribution  t

Y tf Y θ , let tY  be a random variable at time  ( 1,2,..., )t t N  and vector 167 

1 2[ , ,..., ]t tt t

m  θ  be the time-varying parameters. The number of parameters m in hydrological 168 

frequency analysis is generally limited to three or less. The function relationship between the 
thk  169 

parameter t

k  and the multiple explanatory variables is expressed as follows: 170 

    1 2, ,...,k

t t t t

k k nh xg x x   (1) 171 

where 
1 2, ,...,t t t

nx x x  are explanatory variables; n  is the number of explanatory variables; ( )kg   172 

is the link function which ensures the compliance with restrictions on the sample space and is 173 

usually set to natural logarithm for the given negative predictions; ( )kh   is the function for 174 

nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is 175 

used to build function relationships between distribution parameters and their explanatory 176 
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variables. In GLMs, the response relationship can be generally expressed as  177 

   0

1

t t

k k k ik i

i

g x 


   (2) 178 

where  ( 0,1,2,..., , 1,..., )ik i n k m    are the GLM parameters.  179 

In order to compare the nonstationary models constructed by various combinations of 180 

explanatory variables, Eq. (2) is modified in this study using dimensionless method for the 181 

standard GLM parameters. The value of t

k  could be assumed to be equal to its mean (
k ) when 182 

all explanatory variables are equal to their mean ( ix ), i.e.,  183 

  1 1 2 2, ,...,t t t t

k n knx x x x x x      (3) 184 

Eq. (2) is then modified as 185 

 

 
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
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 
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

 
  

 


  

 
   

 



，  (4) 186 

where t

iz  is normalized explanatory variable; is  is the standard deviation of t

ix ;187 

 ( 1,2,..., , 1,..., )ik i n k m    are the standard GLM parameters. Let the link function ( )kg   be the 188 

natural logarithmic function ln( )  and t

l
 be the distribution parameter in 

1 2[ , ,..., ]t t t

m    with 189 

most significant change, the degree of nonstationarity in low flow series can be defined as 190 

( )ln l ( )nt

l l
. Then, the contribution t

ic  of each explanatory variable t

ix  to ( )ln l ( )nt

l l
 could 191 
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be defined as  192 

 
t

t i i
i il

i

x x
c

s



  (5) 193 

2.2 Candidate distribution functions 194 

We need to select the form of probability distribution ( )Yf   to determine what type of 195 

nonstationary frequency curves will be produced. Various probability distributions have been 196 

compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et 197 

al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low 198 

flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five 199 

distributions, i.e. Pearson-III (PIII), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and 200 

Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-III 201 

distribution, considering that the parameter 3  of Pearson-III as lower bound should approach 202 

zero and the parameter 3  of GEV is quite sensitive and difficult to be estimated, we assume 203 

them to be constant in this study. 204 

2.3 Candidate explanatory variables 205 

We look for variables 
1 2, ,...,t t t

nx x x  that can explain parts of the variations in distribution 206 

parameters 
t
θ . From the perspective of low-flow generation, the dependency between low-flow 207 

regime and both climate and catchment conditions has been presented by previous studies (Botter 208 
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et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring 209 

indices: total precipitation, mean frequency of precipitation events, temperature, potential 210 

evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related 211 

aridity index. These indices were chosen to incorporate time-varying climate and catchment 212 

conditions (TCCCs) in nonstationary modeling of low-flow frequency and serving as candidate 213 

explanatory variables. The values of them at each year could be estimated from 214 

hydro-meteorological data. Annual precipitation ( P ) and temperature (T ) are calculated directly 215 

by meteorological data. The remaining TCCCs indices need to be estimated indirectly. Detailed 216 

estimation procedures are shown in following subsections. In addition to TCCCs indices, the three 217 

indices of human activity (irrigation area, population and gross domestic product) are included, 218 

and the reasons for selecting all indices are summarized in Table 2.  219 

2.3.1. Annual mean frequency of precipitation events (λ) 220 

Annual mean frequency of precipitation events is defined as an index to represent the 221 

intensity of precipitation recharge to the streamflow: 222 

 
 

1

1 w W
w

w r

N A

W t






     (6) 223 

where  wN A  is the number of daily rainfall events A  (with values more than the threshold 0.5 224 

mm) in 
thw  windows with a length rt ; W is the number of windows.  225 
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2.3.2. Annual climate aridity index (AIEPAIET) 226 

The ratio of annual potential evaporation to precipitation, commonly known as the climate 227 

aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002; 228 

Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and 229 

determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a 230 

measure of time-varying climate and catchment conditions and estimate its value in a whole region 231 

using 232 

 
EP

EP
AI

P
 ET

ET
AI

P
    (7) 233 

where P  is annual areal precipitation (mm); EP ET  is annual areal potential 234 

evapotranspiration. The Hargreaves equation (Hargreaves and Samani, 1985) is applied to 235 

calculate EP ET  using the R-package „Evapotranspiration‟ (Guo, 2014). 236 

2.3.3. Annual base-flow index (BFI) 237 

The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has 238 

been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors) 239 

to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base 240 

flow index ( BFI ) as a measure of TCCCs. BFI  is estimated using a hydrograph separation 241 

procedure in R-package „lfstat‟ (Koffler and Laaha, 2013). 242 
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2.3.4. Annual streamflow recession constant (K) 243 

Recession constant is an important catchment characteristic index measuring the time scale of 244 

the hydrological response and reflecting water retention ability in the upstream catchment (Botter 245 

et al., 2013). Various estimation methods have been developed to extract recession segments and to 246 

parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg, 247 

2014; Tallaksen, 1995). 248 

In this study, annual recession analysis (ARA) is performed to obtain annual streamflow 249 

recession constant (K). In ARA, the linearized Depuit-Boussinesq equation is used to parameterize 250 

characteristic recession behavior of a catchment and is written as  251 

 
1t

t

dQ
Q

dt K
     (8) 252 

where tQ  is the value at time t . Eq. (8) is investigated by plotting data points tdQ

dt
 against tQ  253 

of all extracted recession segments from hydrographs at each year. The criteria of recession 254 

segments extraction are based on the Manual on Low-flow Estimation and Prediction (WMO, 255 

2009). Then, the annual recession rate ( 1K  ) is estimated as the slope of fitted straight line of these 256 

data points with least square method. We calculated K  using R-package „lfstat‟ (Koffler and 257 

Laaha, 2013).   258 

2.3.5. Annual recession-related aridity index (AIK) 259 

In this study, recession-related aridity index is defined as the ratio of recession rate ( 1K  ) to 260 
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mean precipitation frequency ( ), denoted as  261 

 
-1

KAI
K


    (9) 262 

This ratio plays an important role in controlling river flow regime (Botter et al., 2013; Gottschalk 263 

et al., 2013) and serves as an indicator measuring the recession-related aridity degree of the 264 

streamflow in river channel. For example, faster recession process or lower precipitation frequency 265 

may lead to increased runoff loss or decreased precipitation supply. Consequently, the higher the 266 

value 
KAI  is, the more likely low flow events occur, and vice versa.  267 

2.4 Parameter estimation 268 

The model parameters including ( 1,2,..., )k k m   and  ( 1,2,..., , 1,..., )ik i n k m    are 269 

estimated. ( 1,2,..., )k k m   are estimated from outputs of stationary frequency analysis through 270 

maximum likelihood method. We have 271 

    1 2 1 2

1

, ,..., ln , ,...,
t N

m Y t m

t

L f y     




 
     (10) 272 

where ty  is observed low flow at time t ; N is the number of samples. The parameters 273 

 ( 1,2,..., , 1,..., )ik i n k m    are estimated through maximum likelihood method to produce 274 

nonstationary low-flow frequency curves:  275 
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      
11 1

1 11 1 11

1

1

1

,...,

... ,..., ,..., ,..., ,...,

,

ln ,...,

...,

n

t t t t

n n n m nm

m n

t

t

m

N
t t

Y m

t

z z z zL f y

 

   












 
 

 
 
 

  (11) 276 

The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit 277 

of fitted model objects (Dunn and Symth, 1996):  278 

   1 ˆˆ t

t Y tr F y θ   (12) 279 

where ( )YF   is the cumulative distribution of ty ;  1   is the inverse function of the standard 280 

normal distribution. The distribution of the true residuals t̂r  converges to standard normal if the 281 

fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether t̂r  have 282 

a standard normal distribution. 283 

2.5 Model selection  284 

Model selection contains the selection of the type of probability distribution and the selection 285 

of the explanatory variables to explain the response variables (i.e., distribution parameters 1  and 286 

2 ). In order to obtain the final optimal model, the selection of the explanatory variables for 1  287 

and 2  is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables, 288 

2002): i.e. select a best subset of candidate explanatory variables for 1  using a forward approach 289 

(which starts with no explanatory variable in the model and tests the addition of each explanatory 290 

variable using a chosen model fit criterion); given this subset for 1  select another subset for 2  291 

(forward). The stepwise selection strategies can get a series of stepwise models with different 292 
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numbers of explanatory variables, as shown in Fig1. In order to detect how the number of 293 

explanatory variables influences the performance of the model for describing non-stationarity, we 294 

investigate the eight types of stepwise models as shown in Table 3: the zero-covariate model or 295 

stationary model (M0), the time covariate model (M1), single physical covariate model M2 (single 296 

TCCCs covariate model M2a or single HA covariate model M2b), two TCCCs covariates model 297 

(M3), the optimal TCCCs covariates model (M4), the optimal HA covariates model (M5) and the 298 

final model (M6). The model fit criterion is based on the Akaike‟s information criterion (Akaike, 299 

1974) as shown by the following 300 

 2 2AIC ML df      (13) 301 

where ML  is the log-likelihood in Eq. (11) and df  is the number of degrees of freedom. The 302 

model with the lower AIC value was considered better.  303 

3. Study Area and Data  304 

3.1. The study area  305 

The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest 306 

tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km
2
, 307 

covering the coordinates of 33 42 -37 20 N    104 18 -110 37 E     (Fig. 2). This catchment generally 308 

has a semi-arid climate, with extensive continental monsoonal influence. Average annual 309 

precipitation of the whole area over the period 1954-2009 is about 540 mm, and has a wide range 310 
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(400-1000 mm) in various regions. Under the significant impacts of climate change and human 311 

activities in the Weihe River basin in recent decades, the hydrological regime of the river has 312 

changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015a).  313 

<Figure 2> 314 

In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be 315 

significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff 316 

of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation 317 

area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of 318 

P.R. China in 1949, and due to one influential irrigation system project in that area, it became more 319 

than twice of the original irrigation area since 1971. Jiang et al. (2015) demonstrated that in the 320 

Weihe basin, irrigated area, as compared with the other indices e.g. population, gross domestic 321 

product and cultivated land area, was a more suitable human explanatory variable for explaining 322 

the time-varying behavior of annual runoff. With the above background, it is important to 323 

considering the effects of human activities that mainly originate from irrigation diversion, and 324 

especially for studying low flow series in this basin. In this study, we use the available data 325 

(1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang 326 

(2008) to provide some information for the knowledge of low flow generation. The estimations of 327 

annual recession rate ( 1K  ) by the daily streamflow data are expected to incorporate the 328 
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information of impacts of water diversions on the low flows in the river channel. 329 

3.2. Data  330 

We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the 331 

Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106 332 

500 km
2
) and Xianyang station (with a drainage area of 46 480 km

2
). Low-flow extreme events 333 

were selected from the daily streamflow series using the widely-used annual minimum series 334 

method (WMO, 2009). nAM  is the annual minimum n-day flow during hydrological year 335 

beginning on 1 March. Consequently, AM1, AM7, AM15 and AM30 are selected as low-flow extreme 336 

events in this study. The original measure unit of streamflow data (
-3 1m s ) is converted to 337 

--4 213 - s10 m km   for convenience of comparison of results between the Huaxian and Xianyang 338 

gauging stations  339 

We downloaded daily total precipitation and daily mean air temperature records for 19 340 

meteorological stations over the basin from the National Climate Center of the China 341 

Meteorological Administration (source: http://cdc.cma.gov.cn). The areal average daily series of 342 

both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon 343 

method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T ) and annual 344 

total precipitation ( P ) over the period 1954-2009 are calculated for each catchment.  345 

Human activity data (i.e. gross domestic product, population and irrigation area) were taken 346 

http://cdc.cma.gov.cn/
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from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics 347 

(http://www.shaanxitj.gov.cn/) and Gansu Provincial Bureau of Statistics (source: 348 

http://www.gstj.gov.cn/). 349 

4. Results and discussion 350 

4.1. Identification of nonstationarity 351 

Graphical representation and statistical test provide a preliminary analysis for low-flow 352 

nonstationarity. The graphical representations of time-series data help visualize the trends of 353 

related variables (i.e. low-flow, TCCCs and HA variables), the density distributions of TCCCs 354 

variables and the correlations between low-flow variables and these explanatory variables. In Fig. 355 

3, four annual minimum streamflow series ( 1AM , 7AM , 15AM  and 30AM ) in both Huaxian 356 

and Xianyang gauging stations show overall decreasing trends, as indicated by the fitted (dashed) 357 

trend lines. Compared with Huaxian, Xianyang has a larger runoff modulus (the flow per square 358 

kilometer) and a larger decrease in annual minimum streamflow series. For example, the decline 359 

slope of 30AM  is -0.0725 (
-1-4 3 -210 s rkm ym   ) in Huaxian station while Xianyang station it is 360 

-0.1338 (
-1-4 3 -210 s rkm ym   ).  361 

<Figure 3> 362 

Figure 4 shows the kernel density estimations and time processes of TCCCs variables for 363 

both Huaxian (H) and Xianyang (X) stations. The results show that these variables have different 364 

http://www.shaanxitj.gov.cn/
http://www.gstj.gov.cn/
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variation patterns. For example, the mean frequency of precipitation events ( ) has a decreasing 365 

trend, while temperature (T ) has an increasing trend. As presented by Fig. 5, three HA variables 366 

have a significant upward trend, especially the irrigation area IAR  which is increased greatly 367 

after about 1970, suggesting that the impact of human activities in this basin has increased over 368 

time.  369 

<Figure 4> 370 

<Figure 5> 371 

The significance of trends in the four annual minimum streamflow series and TCCCs 372 

variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945; Yue et al., 2002), 373 

and the change points in these series are detected by the Pettitt‟s test (Pettitt, 1979). The results in 374 

Table 4 show that in both Huaxian and Xianyang stations, the decreasing trends in all the four 375 

low-flow series ( 1AM , 7AM , 15AM  and 30AM ) and two explanatory variables (  and P ), 376 

and the increasing trends in T , ET , and EPAI ETAI  are significant at the 0.05 level (Table 4), 377 

but BFI  shows no significant trends. However, K  and KAI  had significantly decreasing 378 

trends only in Huaxian station ( - 0.05p value  ). The results of change-point detection show that 379 

all low-flow series are located at 1968-1971 ( - 0.05p value  ) except 30AM  at Xianyang station 380 

whose change point is located at 1993 ( - 0.05p value  ); for the eight candidate explanatory 381 



 

23 

variables, the change points of the variables related to temperature (T , EP ET , EPAI ETAI ) in 382 

both stations are located at 1990-1993 ( - 0.05p value  ), the change points of the variables related 383 

to precipitation ( , P ) in both stations are close at 1984-1990 ( - 0.186p value  ) and the change 384 

points of the variables related to streamflow recession ( K , KAI ) in Huaxian station are located at 385 

1968-1971 ( - 0.05p value  ). However, BFI  in both stations and K  and KAI  in Xianyang 386 

station show no significant change points. 387 

A preliminary attribution analysis is performed using the Pearson correlation matrix to 388 

investigate the relations between the annual minimum series and eight candidate explanatory 389 

variables. Figure 6 indicates that there are significant linear correlations between the four 390 

minimum low-flow series ( 1AM , 7AM , 15AM  and 30AM ) and all the explanatory variables 391 

except GDP , have the absolute values of Pearson correlation coefficients larger than 0.27 392 

( - 0.05p value  ). These potential physical causes of nonstationarity in low flows are further 393 

considered by establishing low-flow nonstationary model with TCCCs and HA variables in the 394 

following section. 395 

<Figure 6> 396 
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4.2. Nonstationary frequency analysis models  397 

4.2.1 Single covariate models  398 

Figure 7 presents the AIC values of the four types of models (M0, M1, M2a and M2b) fitted 399 

for the low flow series ( 1AM , 7AM , 15AM  and 30AM ). Some interesting results are shown as 400 

follows. First, nonstationary models (M1, M2a and M2b) have lower AIC values than stationary 401 

model (M0), which suggests that nonstationary models are worth considering. Second, for Huaxian 402 

station, irrespective of the chosen explanatory variables, the distribution type plays an important 403 

role in modeling nonstationary low flow series. For example, PIII, GA and WEI distributions in 404 

15AM  and 30AM  cases have lower AIC values than LOGNO and GEV distributions. However, 405 

for Xianyang, choosing a suitable explanatory variable may be more important than choosing a 406 

distribution type. For example, variables t , P , T , EPAI ETAI , POP  and IAR  in most cases 407 

have lower AIC values than the other explanatory variables. Finally, in Huaxian, the lowest AIC 408 

values  for modeling 1AM , 7AM , 15AM  and 30AM  are found in GEV_M2b_IAR, 409 

LOGNO_M2b_IAR, PIII_M2a_AIK and GA_M2a_AIK, respectively; while in Xianyang, the lowest 410 

AIC values for modeling 1AM , 7AM , 15AM  and 30AM  are found in GEV_M2b_IAR, 411 

GEV_M2b_IAR, PIII_M2b_IAR and GEV_M2b_IAR, respectively. These results indicated that for 412 

explaining nonstationarity of low flow in Huaxian station, IAR  is the most dominant HA variable, 413 

and KAI  is the most dominant TCCCs variable; while in Xianyang, the most dominant HA 414 
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variable is IAR , the most dominant TCCCs variables causing nonstationarity in 1AM , 7AM , 415 

15AM  and 30AM  are K , EPAI ETAI , EPAI ETAI  and T , respectively.  416 

<Figure 7> 417 

Figure 8 shows the diagnostic assessment of the GA_M2 model (with the optimal explanatory 418 

variable) for 30AM  in both Huaxian and Xianyang stations. The centile curve plots of GA_M2 419 

(Figs. 8a and 8b) show the observed values of 30AM , the estimated median and the areas between 420 

the 5th and 95th centiles. Figure 8a shows the response relationship between 30AM  and KAI  in 421 

Huaxian: the increase of KAI  means the smaller magnitude of low-flow events because a high 422 

value of KAI  (faster stream recession or fewer rainy days) may lead to faster water loss or less 423 

supply. In Fig. 8b, the higher values of IAR  means the smaller magnitude of low flow events, 424 

which suggests that IAR  plays an important role in driving low-flow generation in Xianyang. 425 

Figs 8c and 8d show that the worm points are within the 95% confidence intervals, thereby 426 

indicating a good model fit and a reasonable model construction.  427 

<Figure 8> 428 

4.2.2 Multiple covariate models 429 

Figure 9 shows the AIC values of stationary model (M0), time covariate model (M1), 430 

physical covariate models (M2a, M2b, M3, M4, M5 and M6) for 30AM . As shown in Fig. 9, M4 431 
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(nonstationary GA distribution with the optimal TCCCs variables) has a good performance; after 432 

adding the HA variables, M6 with the lowest AIC value is attained; it can be found that the 433 

combination of multiple TCCCs variables plays a major role in changing the low flows of Weihe 434 

River, but the influence of HA variables shouldn't be ignored.  435 

<Figure 9> 436 

A summary of frequency analysis based on nonstationary GA distribution 30AM  is presented 437 

in Table 5. We choose to focus on M4, M5 and M6. When only using TCCCs variables to model 438 

nonstationary low-flow frequency distribution, the results of M4 show the optimal combination of 439 

explanatory variables for all low-flow series contains more than three variables. For example, for 440 

30AM  of Huaxian, the optimal combination of TCCCs variables includes KAI , BFI  and EPAI441 

ETAI . When only using HA variables are used, the results of M5 show IAR  is important to the 442 

low flows in this area. And M4 has a better performance than M5. When using both TCCCs 443 

variables and HA variables, the results of M6 show the optimal combination contains multiple 444 

TCCCs variables and the irrigation area IAR . For Huaxian, the optimal combination of all 445 

explanatory variables is KAI , IAR , BFI  and EPAI , while for Xianyang, the optimal 446 

combination is IAR , EPAI ETAI  and BFI . We can also find that if two TCCCs variables are 447 

highly correlated, they do not seem to be selected as the explanatory variables at the same time. 448 

For example, in terms of air temperature (T ), evapotranspiration ( EP ET ) and the climate 449 
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aridity index ( EPAI ETAI ), only one of them will appear in the optimal combination. This suggests 450 

that multicollinearity problem in multiple variables analysis can be reduced, which will help obtain 451 

more reliable GLMs parameters for contribution analysis.  452 

The diagnostic assessment of the GA_M6 model for 30AM  at two stations is presented by 453 

Fig. 10. The centile curve plots of GA_M6 (Figs. 10a and 10b) show the more sophisticated 454 

nonstationary modeling than GA_M2 (Fig 8). When using GA_M6 to model 30AM  in Huaxian 455 

(Fig. 9a), similar to GA_M2, the lower low flows are found to also correspond to higher value of 456 

KAI , but GA_M6 is able to identify the more complex variation patterns of low flows through the 457 

incorporation of IAR , BFI  and EPAI . Figures 10c and 10d show that the data points of worm 458 

plots of GA_M6 are almost within the 95% confidence intervals, thereby indicating an acceptable 459 

model fit and a reasonable model construction. 460 

<Figure 10> 461 

Figure 11 presents the contribution of each selected explanatory variable to    1 1ln lnt   462 

in observation year based on GA_M6 for 30AM  in Huaxian and Xianyang. We can find that for 463 

Huaxian, the simulation value of  1ln t  frequently occur below  1ln   during the two periods 464 

of about 1970-1982 and 1993-2003, which is in accordance with the observed decrease in 30AM  465 

of Huaxian station during these periods. In the former period 1970-1982, both KAI  and BFI466 

contribute a lot of negative amount to    1 1ln lnt  , whereas during 1993-2003, the 467 
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contribution of both KAI  and BFI  becomes much less. However, IAR  has almost equal 468 

negative contribution to    1 1ln lnt   in both periods. Unlike the former three variables, the 469 

significant negative contribution of EPAI ETAI  is only found in 1993-2003. For 30AM  of 470 

Xianyang, the contribution of IAR , EPAI ETAI  and BFI  is similar to that at Huaxian station in 471 

two periods, however KAI  is not included in the final model.  472 

<Figure 11> 473 

4.3. Discussion 474 

The impacts of both human activities and climate change on low flows of the study area led to 475 

time-varying climate and catchment conditions (TCCCs). Nonstationary modeling for annual low 476 

flow series using TCCCs variables and/or HA variables as explanatory variables is clearly different 477 

from either the stationary model (M0) or the time covariate model (M1). The result demonstrates 478 

that considering multiple drivers (e.g. the variability in catchment conditions), especially in such 479 

an artificially influenced river, is necessary for nonstationary modeling of annual low flow series.  480 

In this study area, nonstationary modeling considering TCCCs is supported by the following 481 

facts and findings. For human activities, an important milestone representative is the completion 482 

and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect. 483 

3.1). Figure 5c shows the change of irrigation area in this basin. And the change-point detection 484 

test in Sect. 4.1 shows that significant change points of both annual recession constant ( K ) and 485 
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low flow series occur exactly at around 1971. This result demonstrates that changes in both K  486 

and 30AM  may involve a consequence of this project. In addition to human activities, climate 487 

change also makes a considerable contribution to nonstationarity of low flows, as suggested by 488 

nonstationary modeling using TCCCs variables with stepwise analysis. Actually, climate driving 489 

pattern may strengthen after nearly 1990, which is indicated by change-point detection test of both 490 

annual mean temperature (T ) and annual precipitation ( P ) as well as the behavior of annual low 491 

flow series after nearly 1990. Therefore, the temporal variability in irrigation area, streamflow 492 

recession, air temperature and precipitation (the frequency and volume of rain events) should be 493 

the main driving factors of generating low flow regimes in this basin. Overall, the causes of 494 

nonstationarity in category for two gauging stations have no clear difference, but have some 495 

differences in the relative importance. As shown in Table 5, when modeling the low-flow series of 496 

Huaxian using TCCCs variables, the optimal model (M4) preferred the variables are related to 497 

recession process; however, for Xianyang, the preferred variables are related to temperature. The 498 

reason for this may be that as a downstream station, Huaxian station suffers more intensive human 499 

activity, so that the importance of temperature change to the low-flow change is reduced 500 

meanwhile the importance of streamflow recession (related to the capability of water storage) 501 

change is enhanced. Ignoring the negative impacts of the errors in estimating annual recession 502 

constant ( K ) which are caused by insufficient data points of extracted stream segments at some 503 
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wet years may lead to the propagation of high errors in annual recession analysis, and accordingly 504 

affect the quality of nonstationary frequency analysis when using K  is used as an explanatory 505 

variable. Further study will give more reliable estimation of K  through improving annual 506 

recession analysis. Besides, it should be noted that the "population" recorded in the annals of 507 

statistics may not be equal to the actual population living in the catchment. If the “population” in 508 

the annals is used as explanatory variable, this difference may lead to uncertainty of model 509 

parameter estimations. Nonetheless, it is the best population data so far and the explanatory 510 

variable POP  is excluded in the final model (M6). 511 

The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 2013; Zhang 512 

et al., 2015) have applied the Budyko framework to analyze the impacts of climate change and/or 513 

human activity on annual runoff. Indeed, for annual runoff, the Budyko framework is a good 514 

method because it used the mean annual water-energy balance equation to consider generation 515 

process of total runoff. Unfortunately, to our knowledge, there is a lack of equation derived from 516 

basic physics laws for generation process of low flows. Therefore, we emphasize the importance 517 

of TCCCs variables to modeling of low-flow nonstationarity. 518 

5. Conclusion 519 

There is an increasing need to develop an effective nonstationary low-flow frequency model to 520 

deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In 521 
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this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were 522 

measured by annual time series of the eight indices, i.e., total precipitation ( P ), mean frequency of 523 

precipitation events ( ), temperature (T ), potential evapotranspiration ( EP ET ), climate aridity 524 

index ( EPAI ETAI ), base-flow index ( BFI ), recession constant ( K ), and the recession-related 525 

aridity index (
KAI ). The nonstationary distribution model was developed using both these eight 526 

TCCCs indices and/or there HA indices as candidate explanatory variables for frequency analysis 527 

of time-varying annual low flow series caused by multiple drivers. The main driving forces of the 528 

decrease in low flows in the Weihe River include reduced precipitation, warming climate, 529 

increasing irrigation area and faster streamflow recession. Therefore, a complex deterioration 530 

mechanism resulting from these factors demonstrates that in this arid and semi-arid area, the water 531 

resources could be vulnerable to adverse environmental changes, thus portending increasing water 532 

shortages. The nonstationary low-flow model considering TCCCs can provide the knowledge of 533 

low-flow generation mechanism and give more reliable design of low flows for infrastructure and 534 

water supply.   535 

  536 
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Figure 706 

 707 

 708 

Figure 1. The framework of nonstationary low-flow frequency analysis. 709 
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 711 

Figure 2. Location, topography, hydro-meteorological stations and river systems of the Weihe 712 

River basin.  713 
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 715 

 716 

Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang 717 

(X) gauging stations.  718 
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 720 

 721 

Figure 4. Frequency distributions (using the kernel density estimations) and time series processes 722 

of TCCCs variables in both Huaxian (H) and Xianyang (X) stations. 723 
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 725 

Figure 5. HA indices in both Huaxian (H) and Xianyang (X). (a), (b) and (c) are for population 726 

(POP), gross domestic production (GDP) and irrigated area (IAR), respectively. 727 
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 729 

 730 
 731 

Figure 6. The Pearson correlation coefficients matrix between the annual minimum flow series and 732 

candidate explanatory variables in Huaxian (H) and Xianyang (X) stations; the darker color 733 

intensity represents a higher level of correlation (blue indicates positive correlation, and red 734 

indicates negative correlations). 735 
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 737 

Figure 7. Comparisons among M0, M1 and M2 based on the AIC values for the four observed 738 

low-flow series in Huaxian (H) at left panel and Xianyang (X) at right panel; darker red color 739 

represents a higher goodness of fit.   740 
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 743 

Figure 8. Performance assessments of  GA_M2 for 30AM  in Huaxian (H) at left panel and 744 

Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M2 (red lines represent 745 

the centile curves estimated by GA_M2; the 50th centile curves are indicated by thick red; the 746 

yellow-filled areas are between the 5th and 95th centile curves; the black points indicate the 747 

observed series); (c) and (d) are the worm plots of GA_M2 for the goodness-of-fit test; a 748 

reasonable model fit should have the data points fall within the 95% confidence intervals (between 749 

the two red dashed curves).  750 

(b) GA_M2: ln(θ1)=1.59-0.50IAR, ln(θ2)=-0.184(a) GA_M2: ln(θ1)=1.09-0.59AIK, ln(θ2)=-0.133
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 751 

 752 

Figure 9. Comparisons of performance of stationary model (M0), time covariate model (M1) and 753 

physical covariate models (M2a, M2b, M3, M4, M5 and M6 with their corresponding optimal 754 

explanatory variables) for 30AM  in Huaxian (H) at left panel and Xianyang (X) at right panel. 755 
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 759 

Figure 10. Performance assessments of GA_M6 for 30AM  in Huaxian (H) at left panel and 760 

Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M6 (red lines represent 761 

the centile curves estimated by GA_M6; the 50th centile curves are indicated by thick red; the 762 

yellow-filled areas are between the 5th and 95th centile curves; the filled black points indicate the 763 

observed series); (c) and (d) are the worm plots of  GA_M6 for the goodness-of-fit test; A 764 

reasonable model fit should have the data points fall within the 95% confidence intervals (between 765 

the two red dashed curves). 766 

  767 

(a) GA_M6: ln(θ1)=1.09-0.30AIK-0.27IAR+

0.32BFI-0.23AIEP, ln(θ2)=-0.133

(b) GA_M6: ln(θ1)=1.59-0.28IAR-0.36 AIEP+

0.26BFI, ln(θ2)=-0.184+0.23IAR
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 768 

 769 

Figure 11. Contribution of selected explanatory variables to    1 1ln lnt t

ic     in different 770 

periods based on GA_M6.  771 
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Table 775 

Table 1. The probability density functions and moments (the mean and variance) for the candidate 776 

distributions in this study.  777 
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Table 2. Description of the developed nonstationary models using time, TCCCs indices and/or HA 779 

indices as explanatory variables. 780 

Model 

codes 

Distribution 
 

Description 

GA WEI LOGNO PIII GEV 
 

Variable 

category 
The numbers of variables 

M0 GA_M0 WEI_M0 LOGNO_M0 PIII_M0 GEV_M0  - Zero 

M1 GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_M1 
 

Time  One 

M2a GA_M2a WEI_M2a LOGNO_M2a PIII_M2a GEV_M2a  TCCCs  One 

M2b GA_M2b WEI_M2b LOGNO_M2b PIII_M2b GEV_M2b  HA  One 

M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3 
 

TCCCs  Two 

M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4  TCCCs  Identified by the stepwise selection 

M5 GA_M5 WEI_M5 LOGNO_M5 PIII_M5 GEV_M5  HA Identified by the stepwise selection 

M6 GA_M6 WEI_M6 LOGNO_M6 PIII_M6 GEV_M6  TCCCs+HA Identified by the stepwise selection 

 781 
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Table 3. The summary of candidate explanatory variables and reason of selection. 783 

Category Name Indices Reason of selection (related to) Unit 

TCCCs 

 

P Precipitation Main supply source mm 

λ Mean frequency of precipitation events Water supply intensity per day 

T Temperature Evaporation loss ℃ 

EPET Potential evapotranspiration Evaporation loss mm 

AIEPAIET Climate aridity index Degree of meteorological drought - 

BFI Base-flow index Water storage capability - 

K Recession constant Water storage capability day 

AIK Recession-related aridity index Both the water storage and supply capability - 

HA 

 

IAR Irrigation area Both irrigation diversion and evaporation loss 10
6
 hm

2 

POP Population 
Water withdrawal loss for agricultural, 
domestic and industrial purposes 

10
6 

GDP Gross domestic product 
Water withdrawal loss for agricultural, 
domestic and industrial purposes 

10
9 ￥ 
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Table 4. The results of trend test and change-point detection for both the four low flow series and 786 

TCCCs variables in Huaxian and Xianyang. 787 

Station Variable 
Mann-Kendall test Pettitt's test 

S p-value Change point p-value 

Huaxian      

 

AM1 -564 6.91E-05(***) 1968 1.34E-03(**) 

AM7 -560 7.79E-05(***) 1968 1.44E-03(**) 

AM15 -438 2.01E-03(**) 1971 4.85E-03(**) 

AM30 -378 7.71E-03(**) 1971 9.96E-03(**) 

P -292 3.97E-02(*) 1985 1.86E-01( ) 

λ -632 8.20E-06(***) 1984 3.02E-04(***) 

T 752 1.11E-07(***) 1993 8.17E-06(***) 

EPET 548 1.11E-04(***) 1993 1.98E-03(**) 

AIEPAIET 384 6.79E-03(**) 1990 6.03E-02(.) 

BFI 52 7.19E-01( ) 1998 3.88E-01( ) 

K -312 2.79E-02(*) 1968 8.11E-02(.) 

AIK 376 8.04E-03(**) 1971 3.60E-02(*) 

Xianyang      

 

AM1 -517 2.65E-04(***) 1968 2.2E-03(**) 

AM7 -483 6.58E-04(***) 1970 2.5E-03(**) 

AM15 -474 8.29E-04(***) 1971 2.2E-03(**) 

AM30 -570 5.78E-05(***) 1993 4.5E-04(***) 

P -414 3.51E-03(**) 1990 1.45E-02(*) 

λ -652 4.21E-06(***) 1984 6.00E-05(***) 

T 724 3.22E-07(***) 1993 5.41E-06(***) 

EPET 372 8.74E-03(**) 1993 3.01E-03(**) 

AIEPAIET 454 1.37E-03(**) 1993 8.82E-03(**) 

BFI 64 6.56E-01( ) 2003 8.65E-01( ) 

K -210 1.39E-01( ) 1966 2.03E-01( ) 

AIK 290 4.11E-02(*) 1968 1.63E-01( ) 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 788 
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Table 5. The summary of frequency analysis using GA distribution for 
30AM  in Huaxian and Xianyang. 791 

 792 

 793 

Station 
Model 

codes 
Optimal variable AIC 

Distribution parameters 

 1ln    2ln   
3  

Huaxian 

 GA_M0 - 232.3 1.09 -0.133 - 

GA_M1 t 225.5 1.09-0.32t -0.133 - 

GA_M2 AIK 217.4 1.09-0.59AIK -0.133 - 

GA_M2b IAR 218.3 1.09-0.47IAR -0.133 - 
GA_M3 AIK, BFI 213.7 1.09-0.50AIK +0.32BFI -0.133 - 

GA_M4 AIK, BFI, AIEPAIET 211.1 1.09-0.40AIK+0.32BFI -0.34AIEPAIET -0.133 - 

GA_M5 IAR 218.3 1.09-0.47IAR -0.133 - 

GA_M6 
AIK, IAR, BFI, 

AIEPAIET 
207.0 1.09-0.30AIK-0.27IAR+0.32BFI-0.23AIEPAIET -0.133 

- 

Xianyang  

 GA_M0 - 285.8 1.59 -0.184 - 
GA_M1 t 270.1 1.59-0.48t -0.184 - 

GA_M2a T 270.1 1.59-0.50T -0.184 - 

GA_M2b IAR 267.8 1.59-0.50IAR -0.184 - 

GA_M3 T, P 267.1 1.59-0.34T+0.32P -0.184 - 

GA_M4 T, P, BFI, K 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184 - 

GA_M5 IAR 267.8 1.59-0.50IAR -0.184 - 

GA_M6 IAR, AIEPAIET, BFI 259.7 1.59-0.28IAR-0.36 AIEPAIET+0.26BFI -0.184+0.23IAR - 


