-Referee#3-

We appreciate you for the valuable and insightful comments, which have greatly
improved our manuscript. Below we describe the modifications made according to the
comments. For clarity, comments are given in italics and blue, and our responses are
given in plain text. The line numbers within brackets indicate the location of the
modifications in the revised manuscript. The revised manuscript with all revisions
tracked is appended at the end of this document.

The nonstationarity of the runoff in Wei River basin is very significant and this
work applied multiple variables into time-varying model by GLM. The revised
version addressed the comments of the last two referees clearly.

AUTHORS’ REPONSE: We appreciate you very much for your positive comment.

Line 26 and the others, “potential evapotranspiration, ET”. Usually, ET is used
to represent actual evapotranspiration and EP is used to represent potential
evapotranspiration. Its better to wuse EP to represent potential
evapotranspiration.

AUTHORS’ REPONSE: Thank you for pointing out this. To address your comment,
“ET” and “Algr” have been modified as “EP” and “Algp”, respectively.

Irrigated area is a very important index in the Wei River due to large agricultural
irrigation water withdrawn. And irrigated area is added in the revised version.

AUTHORS’ REPONSE: We quite agree with your comment.

Line 345-348, “Human activity data(i.e. gross domestic product, population and
irrigation area) were taken from annals of statistics provided by the Shaanxi
Provincial Bureau of Statistics (http://www.shaanxitj.gov.cn/) and Gansu
Provincial Bureau of Statistics (source: http.//www.gstj.gov.cn/).” If the data also
come from Zhang (2008) as shown in Line 326, it should be listed here.

AUTHORS’ REPONSE: Thank you for your good comment. We realize that this is
our negligence. After the first revision, the Line 324-326, “In this study, we use the
available data (1980-2005) of the irrigation diversion system on plateau in Baoji
Gorge Irrigation Area in Zhang (2008) to provide some information for the knowledge
of low flow generation”, should have been deleted. And we have deleted this sentence
in the revised manuscript. This is because human activity data in the annals is more
detailed than the data in Zhang (2008). As also the referee 2 suggested, the shorted
records in Zhang (2008) is limited for this study. Thus, after first revision, the data in
Zhang (2008) was replaced by the data (1954-2009) in the annals.

It should be noted that the “population” in the annals are different from the
people who lives in the catchment. So the uncertainty should be presented here to
remind the readers. Nonetheless, it is the best population data so far.
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AUTHORS’ REPONSE: We are grateful for your insightful suggestion. We have
added following sentence to Sect.4.3 Discussion:

“Besides, it should be noted that the "population” recorded in the annals of statistics
may not be equal to the actual population living in the catchment. If the “population”
in the annals is used as explanatory variable, this difference may lead to uncertainty of
model parameter estimations. Nonetheless, it is the best population data so far and the
explanatory variable POP is excluded in the final model (M6).” [Lines 504-508]
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Abstract:

Under the background of global climate change and local anthropogenic activities, multiple
driving forces have introduced various non-stationary components into low-flow series. This has
led to a high demand on low-flow frequency analysis that considers nonstationary conditions for
modeling. In this study, through a nonstationary frequency analysis framework with the
Generalized Linear Model (GLM) to consider time-varying distribution parameters, the multiple
explanatory variables were incorporated to explain the variation in low-flow distribution
parameters. These variables are comprised of the three indices of human activities (i.e., population
POP, irrigation area IAR, and gross domestic product GDP) and the eight measuring indices of the
climate and catchment conditions (i.e., total precipitation P, mean frequency of precipitation
events 1, temperature T, potential evapotranspiration EPET, climate aridity index AlgpAder,
base-flow index BFI, recession constant K and the recession-related aridity index Alg). This
framework was applied to model the annual minimum flow series of both Huaxian and Xianyang
gauging stations in the Weihe River, China. The results from stepwise regression for the optimal
explanatory variables show that the variables related to irrigation, recession, temperature and
precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day
flow in Huaxian shows that Al is of the highest relative importance among the optimal variables,

followed by IAR, BFI and AlgpAler, and nonstationary GA distribution model with these optimal
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variables has an AIC value of 207.0, while the AIC values of other models just with Alk or time as
explanatory variable or without any variable are 217.4, 225.5, 232.3, respectively. We conclude
that the incorporation of multiple indices related to low-flow generation permits tracing various
driving forces. The established link in nonstationary analysis will be beneficial to analyze future

occurrences of low-flow extremes in similar areas.

Keywords: Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity;

Low-flow Frequency Analysis;

1. Introduction

Low flow is defined as the ‘flow of water in a stream during prolonged dry weather’ (WMO,
1974). Yu et al. (2014) quantitatively described a low flow event as a segment of hydrograph
during a period of dry weather with discharge values below a preset (relatively small) threshold.
According to WMO (2009), annual minimum flows averaged over several days can be used to
measure low flows. During low-flow periods, the magnitude of river flow will greatly restrict its
various functions (e.g. providing water supply for production and living, diluting waste water,
ensuring navigation, meeting ecological water requirement). Therefore, the investigation of the
magnitude and frequency of low flows is of primary importance for engineering design and water

resources management (Smakhtin, 2001). In recent years, low flows, as an important part of river
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flow regime, have been attracting an increasing attention of hydrologists and ecologists in the
context of the significant impacts of climate change and human activities (Bradford and Heinonen,
2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu et al., 2015; Sadri et al.,
2015; Smakhtin, 2001; WMO, 2009). In general, under the impact of a changing environment,
combinations of multiple factors, such as precipitation change, temperature change, irrigation area
change and construction of reservoirs, can drive various patterns of streamflow changes (Liu et al.,
2017; Tang et al., 2015). Unfortunately, when subjected to a variety of influencing forces, low flow
is more vulnerable than high flow or mean flow. Therefore, it is a pretty important issue in
hydrology to identify low-flow changes, track multiple driving factors and quantify their
contributions from the perspective of hydrological frequency analysis.

In hydrological analysis and design, conventional frequency analysis estimates the statistics
of a hydrological time series based on recorded data with the stationary hypothesis which means
that this series is “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). However, global
warming and human forces have changed climate and catchment conditions in some regions.
Time-varying climate and catchment conditions can affect all aspects of the flow regime, i.e.
changing the frequency and magnitude of floods, altering flow seasonality, and modifying the
characteristics of low flows, etc. The hypothesis of stationarity has been suspected (Milly et al.,

2008). If this problematic method is still used, the frequency analysis may lead to high estimation
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error in hydrological design. Therefore, considerable literatures have introduced the concept of
hydrologic nonstationarity into analysis of various hydrological variables, such as annual runoff
(Arora, 2002; Jiang et al., 2017; Jiang et al., 2015; Liu et al., 2017; Xiong et al., 2014; Yang and
Yang, 2013), flood (Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; Kwon et al.,
2008; Lpez and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 2016; Zhang et
al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; Liu et al., 2015),
precipitation (Cheng and AghaKouchak, 2014; Gu et al., 20173, b, ¢; Mondal and Mujumdar, 2015;
Villarini et al., 2010) and so on. Compared with the literatures on annual runoff, floods and
precipitation, the literatures on the nonstationary analysis of low flow are relatively limited.
Previous hydrological literatures on frequency analysis of nonstationary hydrological series
mainly focus on two aspects: development of nonstationary method and exploration of covariates
reflecting changing environments. Strupczewski et al. (2001) presented the method of
time-varying moment which assumes that the hydrological variable of interest obeys a certain
distribution type, but its moments change over time. The method of time-varying moment was
modified to be the method of time-varying parameter values for the distribution representative of
hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the
Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and

Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying
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parameter method can be extended to the physical covariate analysis by replacing time with any
other physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; Lpez and Franceés,
2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example, Jiang et al.
(2014) used reservoir index as an explanatory variable based on the time-varying copula method
for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River, China. Du et
al. (2015) took precipitation and air temperature as the explanatory variables to explain the
inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea Surface
Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years ahead),
the winter areal temperature and precipitation as the candidate explanatory variables to explain the
inter-annual variability in low flows of Yichang station, China. Kam and Sheffield (2015) ascribed
the increasing inter-annual variability of low flows over the eastern United States to North Atlantic
Oscillation and Pacific North America.

To our knowledge, compared with the nonstationary flood frequency analysis, the studies on
the nonstationary frequency analysis of low-flow series is not very extensive because of
incomplete knowledge of low flow generation (Smakhtin, 2001). Most of these studies explain
nonstationarity of low-flow series only by using climatic indicators or a single indicator of human
activity. However, the indicators of catchment conditions (e.g. recession rate) related to physical

hydrological processes have seldom been attached in nonstationary modeling of low flow series.
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This lack of linking with hydrological processes makes it impossible to accurately quantify the
contributions of influencing factors for the nonstationarity of low flow series, and such a scientific
demand for tracing the sources of nonstationarity of low-flow series and qualifying their
contributions motivated the present study. The knowledge of low-flow generation has been
increased by efforts of hydrologists, which can help develop physical covariates to address
nonstationarity. Low flows generally originate from groundwater or other delayed outflows
(Smakhtin, 2001; Tallaksen, 1995). Their generation relates to both an extended dry weather
period (leading to a climatic water deficit) and complex hydrological processes which determine
how these deficits propagate through the vegetation, soil and groundwater system to streamflow
(WMO, 2009). Thus, not only climate condition drivers (e.g. potential evaporation exceeds
precipitation), but also catchment condition drivers (e.g. the faster hydrologic response rate to
precipitation) can cause low flows.

The significant factors such as precipitation, temperature, evapotranspiration, streamflow
recession, large-scale teleconnections and human forces may play important roles in influencing
low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; Jones et al.,
2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. (2013)
presented a derived low flow probability distribution function with climate and catchment

characteristics parameters (i.e., the mean length of dry spells A" and recession constant of
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streamflow K ) as its distribution parameters. Botter et al. (2013) derived “a measurable index”
(/1'1/K ) which can be used for discriminating erratic river flow regimes from persistent river flow
regimes. Recently, Van Loon and Laaha (2015) used climate and catchment characteristics (e.g. the
duration of dry spells in precipitation and the base flow index) to explain the duration and deficit
of hydrological drought event and offered a further understanding of low-flow generation. These
studies indicated that climate and catchment conditions play an important role in producing low
flows.

The goal of this study is to trace origins of nonstationarity in low flows through developing a
nonstationary low-flow frequency analysis framework with the consideration of the time-varying
climate and catchment conditions (TCCCs) and human activity (HA). In this framework, the
climate and catchment conditions are quantified using the eight indices, i.e., meteorological
variables (total precipitation P, mean frequency of precipitation events A, temperature T and
potential evapotranspiration EP E¥-), basin storage characteristics (base-flow index BFI,

recession constant K ) and aridity indexes (climate aridity index Al Al , the

recession-related aridity index Al, ). The specific objectives of this study are: (1) to find the most
important index to explain the nonstationarity of low-flow series; (2) to determine the best subset
of TCCCs indices and/or human activity indices (i.e., population POP, irrigation area IAR, and

gross domestic product GDP) for final model through stepwise selection method to identify
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nonstationary mode of low-flow series; and (3) to quantify the contribution of selected explanatory
variables to the nonstationarity.

This paper is organized as follows. Section 2 describes the methods. The Weihe River basin
and available data sets used in this study are described in Section 3, followed by a presentation of

the results and discussion in Section 4. Section 5 summarizes the main conclusions.

2 Methodology

The flowchart of how to organize the nonstationary low-flow frequency analysis framework
is shown in Fig. 1. The whole process is divided into three steps. The first step is preliminary
analysis, including the graphical presentation of both explanatory variables and low-flow series,
the statistical test for nonstationarity and the correlations between each explanatory variable and
each low-flow series. The second step is single covariate analysis for the most important
explanatory variable. The third step is multiple covariate analysis for the optimal combination. We
use a low-flow frequency analysis model and stepwise regression method to accomplish the last
two steps. In the following sub-sections, first, the low-flow frequency analysis model is
constructed based on the nonstationary probability distributions method, in which distribution
parameters serving as response variables can vary as functions of explanatory variables. Second,

the distribution types used to build the nonstationary model are outlined. Then, the candidate
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explanatory variables related to the time-varying climate and catchment conditions (TCCCs) and
human activity (HA) are clarified. Finally, estimation of model parameters and selection of models
are illustrated.
<Figure 1>

2.1 Construction of the low-flow nonstationary frequency analysis model

Generally, a nonstationary frequency analysis model can be established based on the
time-varying distribution parameters method (Du et al., 2015; L&ez and Frances, 2013; Liu et al.,
2015; Richard et al.,, 2002; Villarini and Strong, 2014). For the nonstationary probability
distribution  f, (Yt‘et) , let Y, be a random variable at time t (t=212,...,N) and vector
0'=[4,6,...6] be the time-varying parameters. The number of parameters m in hydrological

frequency analysis is generally limited to three or less. The function relationship between the k"

parameter ¢, and the multiple explanatory variables is expressed as follows:

9, (Hﬁ)zhk(x;,x;,...,x;) 1)
where x,x;,...,X. are explanatory variables; n is the number of explanatory variables; g, ()
is the link function which ensures the compliance with restrictions on the sample space and is
usually set to natural logarithm for the given negative predictions; h (-) is the function for

nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is

used to build function relationships between distribution parameters and their explanatory

10
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variables. In GLMs, the response relationship can be generally expressed as
J, (Qk‘):aok +§o¢ikxit )
where ¢, (1=0,12,..,n,k=1...,m) are the GLM parameters.

In order to compare the nonstationary models constructed by various combinations of
explanatory variables, Eqg. (2) is modified in this study using dimensionless method for the
standard GLM parameters. The value of @; could be assumed to be equal to its mean (6, ) when
all explanatory variables are equal to their mean (X;), i.e.,

6?,§(x;:71,x;:_2,...,x‘:_):¢§k (3)

Eqg. (2) is then modified as

t —_—
2 =5TK 0 12 n @)
S

o =
Box = 9 (ka‘elz = ek] =0 (l)
k

>

where 2!

is normalized explanatory variable; s, is the standard deviation of x' ;
B (1=12,..,n,k=1..,m) are the standard GLM parameters. Let the link function g,(-) be the
natural logarithmic function In() and @' be the distribution parameter in [&],é,...,6.] with
most significant change, the degree of nonstationarity in low flow series can be defined as

In(6") —In(@,) . Then, the contribution c' of each explanatory variable x' to In(g')—In(§,) could

11
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be defined as

i =B % ®)

2.2 Candidate distribution functions

We need to select the form of probability distribution f,(-) to determine what type of
nonstationary frequency curves will be produced. Various probability distributions have been
compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et
al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low
flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five
distributions, i.e. Pearson-I1I (PIll), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and
Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-I11
distribution, considering that the parameter ¢, of Pearson-Ill as lower bound should approach
zero and the parameter 6, of GEV is quite sensitive and difficult to be estimated, we assume
them to be constant in this study.
2.3 Candidate explanatory variables

We look for variables x;,x;,...,X, that can explain parts of the variations in distribution

parameters 0'. From the perspective of low-flow generation, the dependency between low-flow

regime and both climate and catchment conditions has been presented by previous studies (Botter

12
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et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring
indices: total precipitation, mean frequency of precipitation events, temperature, potential
evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related
aridity index. These indices were chosen to incorporate time-varying climate and catchment
conditions (TCCCs) in nonstationary modeling of low-flow frequency and serving as candidate
explanatory variables. The values of them at each year could be estimated from
hydro-meteorological data. Annual precipitation (P ) and temperature (T ) are calculated directly
by meteorological data. The remaining TCCCs indices need to be estimated indirectly. Detailed
estimation procedures are shown in following subsections. In addition to TCCCs indices, the three
indices of human activity (irrigation area, population and gross domestic product) are included,
and the reasons for selecting all indices are summarized in Table 2.
2.3.1. Annual mean frequency of precipitation events (1)

Annual mean frequency of precipitation events is defined as an index to represent the

intensity of precipitation recharge to the streamflow:

1 wW N (A)
A=— 2 (6)
Wt

where NW(A) is the number of daily rainfall events A (with values more than the threshold 0.5

mm) in w" windows with a length t,; W is the number of windows.
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2.3.2. Annual climate aridity index (AlgpAder)

The ratio of annual potential evaporation to precipitation, commonly known as the climate
aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002;
Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and
determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a

measure of time-varying climate and catchment conditions and estimate its value in a whole region

using
EP ET
AIEP = —‘A‘|?=T @)

where P is annual areal precipitation (mm), EP ET is annual areal potential
evapotranspiration. The Hargreaves equation (Hargreaves and Samani, 1985) is applied to
calculate EP-ET- using the R-package ‘Evapotranspiration’ (Guo, 2014).

2.3.3. Annual base-flow index (BFI)

The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has
been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors)
to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base
flow index (BFI) as a measure of TCCCs. BFI is estimated using a hydrograph separation

procedure in R-package ‘Ifstat’ (Koffler and Laaha, 2013).
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2.3.4. Annual streamflow recession constant (K)

Recession constant is an important catchment characteristic index measuring the time scale of
the hydrological response and reflecting water retention ability in the upstream catchment (Botter
et al., 2013). Various estimation methods have been developed to extract recession segments and to
parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg,
2014; Tallaksen, 1995).

In this study, annual recession analysis (ARA) is performed to obtain annual streamflow
recession constant (K). In ARA, the linearized Depuit-Boussinesq equation is used to parameterize

characteristic recession behavior of a catchment and is written as

dQ, 1
e S (8)
dt K 2

where Q, is the value at time t. Eq. (8) is investigated by plotting data points % against Q,
of all extracted recession segments from hydrographs at each year. The criteria of recession
segments extraction are based on the Manual on Low-flow Estimation and Prediction (WMO,
2009). Then, the annual recession rate (K ™) is estimated as the slope of fitted straight line of these
data points with least square method. We calculated K using R-package ‘Ifstat’ (Koffler and

Laaha, 2013).

2.3.5. Annual recession-related aridity index (Alk)

In this study, recession-related aridity index is defined as the ratio of recession rate (k -t) to

15
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mean precipitation frequency ( 4 ), denoted as

1
Al :K_ 9)
A

This ratio plays an important role in controlling river flow regime (Botter et al., 2013; Gottschalk
et al., 2013) and serves as an indicator measuring the recession-related aridity degree of the
streamflow in river channel. For example, faster recession process or lower precipitation frequency

may lead to increased runoff loss or decreased precipitation supply. Consequently, the higher the

value Al, is, the more likely low flow events occur, and vice versa.

2.4 Parameter estimation
The model parameters including 6 (k=212,...,m) and B, (i=12,..,nk=1..,m) are
estimated. 4, (k=12,...,m) are estimated from outputs of stationary frequency analysis through

maximum likelihood method. We have

L(é,éz,...,ém)zgln[fy(yt\é,éz,...,ém)} (10)

where Y, is observed low flow at time t; N is the number of samples. The parameters
By (1=1,2,..,n,k=1..,m) are estimated through maximum likelihood method to produce

nonstationary low-flow frequency curves:
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Birses B (=N
L. =S'In { (Ve[ (2 2o s B ) O (212! |ﬁlm,...,ﬁnm))} (11)
B Bam )

The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit

of fitted model objects (Dunn and Symth, 1996):

-
Il

>, (v

ét)) (12)
where F, () is the cumulative distribution of VY, ; CD‘l(-) is the inverse function of the standard
normal distribution. The distribution of the true residuals f, converges to standard normal if the
fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether f, have
a standard normal distribution.
2.5 Model selection

Model selection contains the selection of the type of probability distribution and the selection
of the explanatory variables to explain the response variables (i.e., distribution parameters ¢, and
6,). In order to obtain the final optimal model, the selection of the explanatory variables for 6,
and 0, is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables,
2002): i.e. select a best subset of candidate explanatory variables for ¢, using a forward approach
(which starts with no explanatory variable in the model and tests the addition of each explanatory
variable using a chosen model fit criterion); given this subset for 6, select another subset for 6,

(forward). The stepwise selection strategies can get a series of stepwise models with different
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numbers of explanatory variables, as shown in Figl. In order to detect how the number of
explanatory variables influences the performance of the model for describing non-stationarity, we
investigate the eight types of stepwise models as shown in Table 3: the zero-covariate model or
stationary model (MO0), the time covariate model (M1), single physical covariate model M2 (single
TCCCs covariate model M2a or single HA covariate model M2b), two TCCCs covariates model
(M3), the optimal TCCCs covariates model (M4), the optimal HA covariates model (M5) and the
final model (M6). The model fit criterion is based on the Akaike’s information criterion (Akaike,

1974) as shown by the following

AIC =-2ML + 2df (13)
where ML is the log-likelihood in Eq. (11) and df is the number of degrees of freedom. The
model with the lower AIC value was considered better.

3. Study Area and Data
3.1. The study area

The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest
tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km?
covering the coordinates of 33°42’-37°20'N 104°18'-110°37'E (Fig. 2). This catchment generally
has a semi-arid climate, with extensive continental monsoonal influence. Average annual

precipitation of the whole area over the period 1954-2009 is about 540 mm, and has a wide range
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(400-1000 mm) in various regions. Under the significant impacts of climate change and human
activities in the Weihe River basin in recent decades, the hydrological regime of the river has
changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015a).
<Figure 2>

In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be
significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff
of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation
area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of
P.R. China in 1949, and due to one influential irrigation system project in that area, it became more
than twice of the original irrigation area since 1971. Jiang et al. (2015) demonstrated that in the
Weihe basin, irrigated area, as compared with the other indices e.g. population, gross domestic
product and cultivated land area, was a more suitable human explanatory variable for explaining
the time-varying behavior of annual runoff. With the above background, it is important to

considering the effects of human activities that mainly originate from irrigation diversion, and

especially for studying low flow series in this basin.—ta—this—study—weusethe—avatlable—data

annual recession rate (K™) by the daily streamflow data are expected to incorporate the
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information of impacts of water diversions on the low flows in the river channel.
3.2. Data

We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the
Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106
500 km?) and Xianyang station (with a drainage area of 46 480 km?). Low-flow extreme events
were selected from the daily streamflow series using the widely-used annual minimum series
method (WMO, 2009). AM, is the annual minimum n-day flow during hydrological year
beginning on 1 March. Consequently, AM;, AM7, AM;s and AMgs are selected as low-flow extreme
events in this study. The original measure unit of streamflow data (m*-s™) is converted to
10" m®-s™-km? for convenience of comparison of results between the Huaxian and Xianyang
gauging stations

We downloaded daily total precipitation and daily mean air temperature records for 19
meteorological stations over the basin from the National Climate Center of the China

Meteorological Administration (source: http://cdc.cma.gov.cn). The areal average daily series of

both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon
method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T ) and annual
total precipitation (P ) over the period 1954-2009 are calculated for each catchment.

Human activity data (i.e. gross domestic product, population and irrigation area) were taken
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from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics

(http://www.shaanxitj.gov.cn/) and Gansu Provincial Bureau of Statistics (source:

http://www.gstj.gov.cn/).

4. Results and discussion
4.1. ldentification of nonstationarity

Graphical representation and statistical test provide a preliminary analysis for low-flow
nonstationarity. The graphical representations of time-series data help visualize the trends of
related variables (i.e. low-flow, TCCCs and HA variables), the density distributions of TCCCs
variables and the correlations between low-flow variables and these explanatory variables. In Fig.
3, four annual minimum streamflow series (AM,, AM,, AM, and AM,,) in both Huaxian
and Xianyang gauging stations show overall decreasing trends, as indicated by the fitted (dashed)
trend lines. Compared with Huaxian, Xianyang has a larger runoff modulus (the flow per square
kilometer) and a larger decrease in annual minimum streamflow series. For example, the decline
slope of AM,, is -0.0725 (10 m® -s'l-km'z/yr) in Huaxian station while Xianyang station it is
-0.1338 (10" m?-s™ - km?/yr).

<Figure 3>
Figure 4 shows the kernel density estimations and time processes of TCCCs variables for

both Huaxian (H) and Xianyang (X) stations. The results show that these variables have different
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variation patterns. For example, the mean frequency of precipitation events (1) has a decreasing
trend, while temperature (T ) has an increasing trend. As presented by Fig. 5, three HA variables
have a significant upward trend, especially the irrigation area IAR which is increased greatly
after about 1970, suggesting that the impact of human activities in this basin has increased over

time.

<Figure 4>

<Figure 5>

The significance of trends in the four annual minimum streamflow series and TCCCs
variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945; Yue et al., 2002),
and the change points in these series are detected by the Pettitt’s test (Pettitt, 1979). The results in
Table 4 show that in both Huaxian and Xianyang stations, the decreasing trends in all the four
low-flow series (AM,, AM,, AM,. and AM,,) and two explanatory variables (4 and P),

and the increasing trends in T, ET,and Al Al are significant at the 0.05 level (Table 4),

but BFI shows no significant trends. However, K and Al, had significantly decreasing
trends only in Huaxian station ( p-value <0.05). The results of change-point detection show that
all low-flow series are located at 1968-1971 ( p-value <0.05) except AM,, at Xianyang station

whose change point is located at 1993 ( p-value <0.05); for the eight candidate explanatory
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variables, the change points of the variables related to temperature (T, EP ET-, Al -Ale) in

both stations are located at 1990-1993 ( p -value < 0.05), the change points of the variables related
to precipitation (A, P) in both stations are close at 1984-1990 ( p-value <0.186) and the change
points of the variables related to streamflow recession (K, Al ) in Huaxian station are located at
1968-1971 ( p-value<0.05). However, BFI in both stations and K and Al, in Xianyang

station show no significant change points.

A preliminary attribution analysis is performed using the Pearson correlation matrix to
investigate the relations between the annual minimum series and eight candidate explanatory
variables. Figure 6 indicates that there are significant linear correlations between the four
minimum low-flow series (AM,, AM,, AM,. and AM,;) and all the explanatory variables
except GDP, have the absolute values of Pearson correlation coefficients larger than 0.27
(p-value <0.05). These potential physical causes of nonstationarity in low flows are further
considered by establishing low-flow nonstationary model with TCCCs and HA variables in the

following section.

<Figure 6>
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4.2. Nonstationary frequency analysis models
4.2.1 Single covariate models

Figure 7 presents the AIC values of the four types of models (M0, M1, M2a and M2Db) fitted
for the low flow series (AM,, AM., AM, and AM,,). Some interesting results are shown as
follows. First, nonstationary models (M1, M2a and M2b) have lower AIC values than stationary
model (MO0), which suggests that nonstationary models are worth considering. Second, for Huaxian
station, irrespective of the chosen explanatory variables, the distribution type plays an important
role in modeling nonstationary low flow series. For example, PIIl, GA and WEI distributions in
AM,. and AM,, cases have lower AIC values than LOGNO and GEV distributions. However,

for Xianyang, choosing a suitable explanatory variable may be more important than choosing a

distribution type. For example, variables t, P, T, Al -Al=, POP and IAR in most cases

have lower AIC values than the other explanatory variables. Finally, in Huaxian, the lowest AIC

values  for modeling AM;, , AM,, AM, and AM,, are found in GEV_M2b_IAR,

LOGNO_M2b_IAR, PlII_M2a_Alx and GA_M2a_Al, respectively; while in Xianyang, the lowest

AIC values for modeling AM,, AM,, AM, and AM,, are found in GEV_M2b IAR,
GEV_M2b_IAR, Pll1_M2b_IAR and GEV_M2b_1AR, respectively. These results indicated that for
explaining nonstationarity of low flow in Huaxian station, IAR is the most dominant HA variable,

and Al is the most dominant TCCCs variable; while in Xianyang, the most dominant HA
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variable is IAR, the most dominant TCCCs variables causing nonstationarity in AM,, AM,,

AM, and AM,, are K, Al A=, Al Al and T, respectively.

<Figure 7>

Figure 8 shows the diagnostic assessment of the GA_M2 model (with the optimal explanatory
variable) for AM,, in both Huaxian and Xianyang stations. The centile curve plots of GA_M2
(Figs. 8a and 8b) show the observed values of AM,,, the estimated median and the areas between
the 5th and 95th centiles. Figure 8a shows the response relationship between AM,; and Al, in
Huaxian: the increase of Al, means the smaller magnitude of low-flow events because a high
value of Al, (faster stream recession or fewer rainy days) may lead to faster water loss or less
supply. In Fig. 8b, the higher values of IAR means the smaller magnitude of low flow events,
which suggests that IAR plays an important role in driving low-flow generation in Xianyang.
Figs 8c and 8d show that the worm points are within the 95% confidence intervals, thereby

indicating a good model fit and a reasonable model construction.

<Figure 8>
4.2.2 Multiple covariate models
Figure 9 shows the AIC values of stationary model (MO0), time covariate model (M1),

physical covariate models (M2a, M2b, M3, M4, M5 and M6) for AM,,. As shown in Fig. 9, M4
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(nonstationary GA distribution with the optimal TCCCs variables) has a good performance; after
adding the HA variables, M6 with the lowest AIC value is attained; it can be found that the
combination of multiple TCCCs variables plays a major role in changing the low flows of Weihe
River, but the influence of HA variables shouldn't be ignored.
<Figure 9>

A summary of frequency analysis based on nonstationary GA distribution AM,, is presented
in Table 5. We choose to focus on M4, M5 and M6. When only using TCCCs variables to model
nonstationary low-flow frequency distribution, the results of M4 show the optimal combination of

explanatory variables for all low-flow series contains more than three variables. For example, for

AM,, of Huaxian, the optimal combination of TCCCs variables includes Al,, BFI and Al

Al When only using-HA variables_are used, the results of M5 show IAR is important to the
low flows in this area. And M4 has a better performance than M5. When using both TCCCs
variables and HA variables, the results of M6 show the optimal combination contains multiple
TCCCs variables and the irrigation area IAR. For Huaxian, the optimal combination of all

explanatory variables is Al,, IAR, BFI and Al , while for Xianyang, the optimal

combination is IAR, Al Atz and BFI. We can also find that if two TCCCs variables are

highly correlated, they do not seem to be selected as the explanatory variables at the same time.

‘ For example, in terms of air temperature (T ), evapotranspiration (EP-ET-) and the climate
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aridity index (Al -Alz), only one of them will appear in the optimal combination. This suggests

that multicollinearity problem in multiple variables analysis can be reduced, which will help obtain
more reliable GLMs parameters for contribution analysis.
The diagnostic assessment of the GA_M6 model for AM,, at two stations is presented by
Fig. 10. The centile curve plots of GA_M6 (Figs. 10a and 10b) show the more sophisticated
nonstationary modeling than GA_M2 (Fig 8). When using GA_M6 to model AM,, in Huaxian
(Fig. 9a), similar to GA_M2, the lower low flows are found to also correspond to higher value of
Al , but GA_ME6 is able to identify the more complex variation patterns of low flows through the
incorporation of IAR, BFI and Al . Figures 10c and 10d show that the data points of worm
plots of GA_M6 are almost within the 95% confidence intervals, thereby indicating an acceptable
model fit and a reasonable model construction.
<Figure 10>
Figure 11 presents the contribution of each selected explanatory variable to In(6} )-In(4,)
in observation year based on GA_M6 for AM,, in Huaxian and Xianyang. We can find that for
Huaxian, the simulation value of In(@f) frequently occur below In(él) during the two periods
of about 1970-1982 and 1993-2003, which is in accordance with the observed decrease in AM,,
of Huaxian station during these periods. In the former period 1970-1982, both Al, and BFI

contribute a lot of negative amount to In(@f)—ln(é_?l), whereas during 1993-2003, the
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contribution of both Al, and BFI becomes much less. However, IAR has almost equal
negative contribution to In(6})~In(8,) in both periods. Unlike the former three variables, the

significant negative contribution of Al Al is only found in 1993-2003. For AM,, of

Xianyang, the contribution of IAR, Al Al and BFI is similar to that at Huaxian station in

two periods, however Al, is not included in the final model.
<Figure 11>

4.3. Discussion

The impacts of both human activities and climate change on low flows of the study area led to
time-varying climate and catchment conditions (TCCCs). Nonstationary modeling for annual low
flow series using TCCCs variables and/or HA variables as explanatory variables is clearly different
from either the stationary model (MO) or the time covariate model (M1). The result demonstrates
that considering multiple drivers (e.g. the variability in catchment conditions), especially in such
an artificially influenced river, is necessary for nonstationary modeling of annual low flow series.

In this study area, nonstationary modeling considering TCCCs is supported by the following
facts and findings. For human activities, an important milestone representative is the completion
and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect.
3.1). Figure 5c shows the change of irrigation area in this basin. And the change-point detection

test in Sect. 4.1 shows that significant change points of both annual recession constant (K) and
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low flow series occur exactly at around 1971. This result demonstrates that changes in both K
and AM,, may involve a consequence of this project. In addition to human activities, climate
change also makes a considerable contribution to nonstationarity of low flows, as suggested by
nonstationary modeling using TCCCs variables with stepwise analysis. Actually, climate driving
pattern may strengthen after nearly 1990, which is indicated by change-point detection test of both
annual mean temperature (T ) and annual precipitation (P ) as well as the behavior of annual low
flow series after nearly 1990. Therefore, the temporal variability in irrigation area, streamflow
recession, air temperature and precipitation (the frequency and volume of rain events) should be
the main driving factors of generating low flow regimes in this basin. Overall, the causes of
nonstationarity in category for two gauging stations have no clear difference, but have some
differences in the relative importance. As shown in Table 5, when modeling the low-flow series of
Huaxian using TCCCs variables, the optimal model (M4) preferred the variables are related to
recession process; however, for Xianyang, the preferred variables are related to temperature. The
reason for this may be that as a downstream station, Huaxian station suffers more intensive human
activity, so that the importance of temperature change to the low-flow change is reduced
meanwhile the importance of streamflow recession (related to the capability of water storage)
change is enhanced. Ignoring the negative impacts of the errors in estimating annual recession

constant ( K) which are caused by insufficient data points of extracted stream segments at some
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wet years may lead to the propagation of high errors in annual recession analysis, and accordingly
affect the quality of nonstationary frequency analysis when usirg— K _is used as an explanatory
variable. Further study will give more reliable estimation of K through improving annual

recession analysis._Besides, it should be noted that the "population” recorded in the annals of

statistics may not be equal to the actual population living in the catchment. If the “population” in

the annals is used as explanatory variable, this difference may lead to uncertainty of model

parameter estimations. Nonetheless, it is the best population data so far and the explanatory

variable POP _is excluded in the final model (M6).

The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 2013; Zhang
et al., 2015) have applied the Budyko framework to analyze the impacts of climate change and/or
human activity on annual runoff. Indeed, for annual runoff, the Budyko framework is a good
method because it used the mean annual water-energy balance equation to consider generation
process of total runoff. Unfortunately, to our knowledge, there is a lack of equation derived from
basic physics laws for generation process of low flows. Therefore, we emphasize the importance
of TCCCs variables to modeling of low-flow nonstationarity.

5. Conclusion
There is an increasing need to develop an effective nonstationary low-flow frequency model to

deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In
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this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were
measured by annual time series of the eight indices, i.e., total precipitation ( P ), mean frequency of
precipitation events (1), temperature (T ), potential evapotranspiration ( EP E¥), climate aridity

index (Alg, -Ale), base-flow index (BFI), recession constant (K), and the recession-related

aridity index (Al ). The nonstationary distribution model was developed using both these eight
TCCCs indices and/or there HA indices as candidate explanatory variables for frequency analysis
of time-varying annual low flow series caused by multiple drivers. The main driving forces of the
decrease in low flows in the Weihe River include reduced precipitation, warming climate,
increasing irrigation area and faster streamflow recession. Therefore, a complex deterioration
mechanism resulting from these factors demonstrates that in this arid and semi-arid area, the water
resources could be vulnerable to adverse environmental changes, thus portending increasing water
shortages. The nonstationary low-flow model considering TCCCs can provide the knowledge of
low-flow generation mechanism and give more reliable design of low flows for infrastructure and

water supply.
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717  Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang
718  (X) gauging stations.
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Figure 8. Performance assessments of GA M2 for AM,, in Huaxian (H) at left panel and

Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M2 (red lines represent

the centile curves estimated by GA_M2; the 50th centile curves are indicated by thick red; the

yellow-filled areas are between the 5th and 95th centile curves; the black points indicate the

observed series); (c) and (d) are the worm plots of GA_M2 for the goodness-of-fit test; a

reasonable model fit should have the data points fall within the 95% confidence intervals (between

the two red dashed curves).
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Figure 10. Performance assessments of GA_M6 for AM,, in Huaxian (H) at left panel and
Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M6 (red lines represent
the centile curves estimated by GA_M®6; the 50th centile curves are indicated by thick red; the
yellow-filled areas are between the 5th and 95th centile curves; the filled black points indicate the
observed series); (c) and (d) are the worm plots of GA_M6 for the goodness-of-fit test; A
reasonable model fit should have the data points fall within the 95% confidence intervals (between

the two red dashed curves).
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775 Table

776  Table 1. The probability density functions and moments (the mean and variance) for the candidate

777  distributions in this study.

Distributions Probability density function Distribution moments
1/0,°
-0, -0,
e ct=0°0
Pearson-Il| r(16,)(6.67) 1% Var[Y]= 6267

y>6,,6,>0,6>06,>0

(o) :
fy y‘&l,@z = j/ozexp( 2] E[Y]:ﬁl
d 6,0,
Gamma r(ye,)(66,°) 2 Var[Y]=67%6,
y>0,6,>0,0,>0
6,-1 0,
P . : E[Y]=6T(1+16
Weibull fy(m’@):[j]gj exp[(;’j ] e
! A ' Var[Y]=6? r[1+ij—r2[1+i]
y>0,6,>0,6,>0 6, 2
()= L _op) [-4] e
Lognormal v (Y166, RN p 207 Var[Y]=w(w-1)e*
y>0,6,>0 w=exp(6;)
6, 6
e N E[Y]=6,-2+2p
fv(y\é’lﬁzﬁg)=i[l+93[y 91]:| exp{—{l#—%[y Hlﬂ } [Y]=6 6, 60"
GEV 0, 6, b, var[Y]=6;2(n,-n?) /6
0 <6 <o0,6,>0,—0<f, <0 7, =T (1-mé;)
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779  Table 2. Description of the developed nonstationary models using time, TCCCs indices and/or HA

780 indices as explanatory variables.

Distribution Description
Model
Variable
codes GA WEI LOGNO PIll GEV The numbers of variables
category
MO GA_MO0 WEI_MO0 LOGNO_MO PIII_MO GEV_MO - Zero
M1 GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_M1 Time One
M2a  GA_M2a WEI_M2a LOGNO_M2a PIll_M2a GEV_M2a TCCCs One
M2b  GA_M2b WEI_M2b LOGNO_M2b PIlI_M2b GEV_M2b HA One
M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3 TCCCs Two
M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4 TCCCs Identified by the stepwise selection
M5 GA_M5 WEI_M5 LOGNO_M5 PIII_M5 GEV_M5 HA Identified by the stepwise selection
M6 GA_M6 WEI_M6 LOGNO_M6 PIII_M6 GEV_M6 TCCCs+HA Identified by the stepwise selection
781
782
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783  Table 3. The summary of candidate explanatory variables and reason of selection.

Category Name Indices Reason of selection (related to) Unit
TCCCs
P Precipitation Main supply source mm
A Mean frequency of precipitation events Water supply intensity per day
T Temperature Evaporation loss °C
EPET Potential evapotranspiration Evaporation loss mm
AlepAler Climate aridity index Degree of meteorological drought -
BFI Base-flow index Water storage capability -
K Recession constant Water storage capability day
Alg Recession-related aridity index Both the water storage and supply capability -
HA
IAR Irrigation area Both irrigation diversion and evaporation loss 10° hm?
e it o o sy
GDP Gross domestic product Water withdrawal loss for agricultural, 10° Y

domestic and industrial purposes

784
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786  Table 4. The results of trend test and change-point detection for both the four low flow series and

787  TCCCs variables in Huaxian and Xianyang.

Mann-Kendall test Pettitt's test

Station Variable

S p-value Change point p-value
Huaxian
AM; -564 6.91E-05(***) 1968 1.34E-03(**)
AM; -560 7.79E-05(***) 1968 1.44E-03(**)
AM;5 -438 2.01E-03(**) 1971 4.85E-03(**)
AMgo -378 7.71E-03(**) 1971 9.96E-03(**)
P -292 3.97E-02(*) 1985 1.86E-01()
A -632 8.20E-06(***) 1984 3.02E-04(***)
T 752 1.11E-07(***) 1993 8.17E-06(***)
EPEF 548 1.11E-04(***) 1993 1.98E-03(**)
AlepAder 384 6.79E-03(**) 1990 6.03E-02(.)
BFI 52 7.19E-01() 1998 3.88E-01()
K -312 2.79E-02(*) 1968 8.11E-02(.)
Al 376 8.04E-03(**) 1971 3.60E-02(*)
Xianyang
AM, -517 2.65E-04(***) 1968 2.2E-03(**)
AM; -483 6.58E-04(***) 1970 2.5E-03(**)
AM;5 -474 8.29E-04(***) 1971 2.2E-03(**)
AMgo -570 5.78E-05(***) 1993 4.5E-04(***)
P -414 3.51E-03(**) 1990 1.45E-02(*)
A -652 4.21E-06(***) 1984 6.00E-05(***)
T 724 3.22E-07(***) 1993 5.41E-06(***)
| EPET 372 8.74E-03(**) 1993 3.01E-03(**)
| AlgpAder 454 1.37E-03(**) 1993 8.82E-03(**)
Fl 64 6.56E-01() 2003 8.65E-01()
K -210 1.39E-01() 1966 2.03E-01()
Al 290 4.11E-02(*) 1968 1.63E-01()
788 Signif. codes: 0 “***0.001 “**>0.01 **0.05 *.”0.1 “* 1
789
790
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Table 5. The summary of frequency analysis using GA distribution for AM,, in Huaxian and Xianyang.

Model

Distribution parameters

Station Optimal variable AIC
codes n(4,) In(,) )
Huaxian
GA_MO - 2323 1.09 -0.133
GA_M1 t 225.5 1.09-0.32t -0.133
GA_M2 Al 217.4 1.09-0.59Alk -0.133
GA_M2b  IAR 218.3 1.09-0.471AR -0.133
GA_M3 Alk, BFI 213.7 1.09-0.50Al +0.32BFI -0.133
GA_M4 Alk, BFI, AlgpAler 2111 1.09-0.40Alx+0.32BFI -0.34AlgpAder -0.133
GA_M5 IAR 2183 1.09-0.471AR -0.133
GA_M6 Q:K’A?R’ BFI, 207.0 1.09-0.30Alk-0.271AR+0.32BFI-0.23AlgpAter  -0.133
AlepAder —
Xianyang
GA_MO - 285.8 1.59 -0.184
GA_M1 t 270.1 1.59-0.48t -0.184
GA M2a T 270.1 1.59-0.50T -0.184
GA_M2b  IAR 267.8 1.59-0.501AR -0.184
GA_M3 TP 267.1 1.59-0.34T+0.32P -0.184
GA_M4 T, P, BFI, K 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184
GA_M5 IAR 267.8 1.59-0.501AR -0.184
GA_M6 1AR, AlepAler, BFI 259.7 1.59-0.281AR-0.36 AlgpAler+0.26BFI -0.184+0.231AR
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