We appreciate the editor and both referees for their valuable and insightful comments,
which have greatly improved our manuscript. Below we describe the modifications
made according to their comments. For clarity, comments are given in italics and blue,
and our responses are given in plain text. The line numbers within brackets indicate
the location of the modifications in the revised manuscript. The revised manuscript
with all revisions tracked is appended at the end of this document.

-Refereet#1-

There are many researches focusing on reasons, causes and modelling of
nonstationarity of hydrological extremes such as: Xihui Gu, Qiang Zhang, Vijay P.
Singh, Peijun Shi, 2017. Nonstationarities in the occurrence rate of heavy
precipitation across China and its relationship to climate teleconnection patterns.
International Journal of Climatology, DOI: 10.1002/joc.5058. Xihui Gu, Qiang
Zhang, Vijay P. Singh, Peijun Shi, 2017. Changes in magnitude, frequency and
timing of heavy precipitation across China and its potential links to summer
temperature. Journal of Hydrology, 547, 718-731. Xihui Gu, Qiang Zhang, Vijay
P. Singh, Peijun Shi, 2017. Nonstationarity in timing of extreme precipitation
across China and impact of tropical cyclones. Global and Planetary Change, 149,
153-165. Xihui Gu, Qiang Zhang, Vijay P. Singh, Lin Liu, 2016. Nonstationarity
in the occurrence rate of floods in the Tarim River basin, China, and related
impacts of climate indices. Global and Planetary Change, 142, 1-13. Qiang
Zhang, Xihui Gu, Vijay P. Singh, Mingzhong Xiao, Xiaohong Chen, 2015.
Evaluation of flood frequency under non-stationarity resulting from climate
change and human activities in the East River basin, China. Journal of
Hydrology, 527, 565-575. Qiang Zhang, Xihui Gu, Vijay P. Singh, Mingzhong
Xiao, Chong-Yu Xu, 2014. Stationarity of annual flood peaks during 1951-2010
in the Pearl River basin, China. Journal of Hydrology, 519, 3263-3274. What are
the motivations, research objectives and novel points of this current study when
compared to standing researches? My strong suggestion is that thorough
literature review is pretty necessary. New findings, new ideas, new methods, if any,
should be pointed out with enough citations to justify authors’statements.

AUTHORS’ REPONSE: Thank you for introducing the overlooked references and
for the good suggestion of enhancing the literature review. Following the advice of the
reviewer, we have made a more comprehensive literature survey by citing and
discussing important recent publications in the field, including those introduced by the
reviewer. We have also improved the description of motivations, research objectives
and novel points of this current study. The related paragraphs have been changed into
the following:

“In hydrological analysis and design, conventional frequency analysis estimates the
statistics of a hydrological time series based on recorded data with the stationary
hypothesis which means that this series is ‘free of trends, shifts, or periodicity
(cyclicity)’ (Salas, 1993). However, global warming and human forces have changed



climate and catchment conditions in some regions. Time-varying climate and
catchment conditions can affect all aspects of the flow regime, i.e. changing the
frequency and magnitude of floods, altering flow seasonality, and modifying the
characteristics of low flows, etc. The hypothesis of stationarity has been suspected
(Milly et al., 2008). If this problematic method is still used, the frequency analysis
may lead to high estimation error in hydrological design. Therefore, considerable
literatures have introduced the concept of hydrologic nonstationarity into analysis of
various hydrological variables, such as annual runoff (Arora, 2002; Jiang et al., 2017,
Jiang et al., 2015; Liu et al., 2017; Xiong et al., 2014; Yang and Yang, 2013), flood
(Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; Kwon et al., 2008;
Ldpez and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 2016;
Zhang et al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014;
Liu et al., 2015), precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c;
Mondal and Mujumdar, 2015; Shahabul Alam et al., 2014; Villarini et al., 2010) and
so on. Compared with the literatures on annual runoff, floods and precipitation, the
literatures on the nonstationary analysis of low flow are relatively limited.” [Lines
62-78]

“To our knowledge, compared with the nonstationary flood frequency analysis, the
studies on the nonstationary frequency analysis of low-flow series is not very
extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001).
Most of these studies explain nonstationarity of low-flow series only by using climatic
indicators or a single indicator of human activity. However, the indicators of
catchment conditions (e.g. recession rate) related to physical hydrological processes
have seldom been attached in nonstationary modeling of low flow series. This lack of
linking with hydrological process makes it impossible to accurately quantify the
contributions of influencing factors for the nonstationarity of low flow series, and
such a scientific demand for tracing the sources of nonstationarity of low-flow series
and qualifying their contributions motivated the present study...” [Lines 100-109]

“The goal of this study is to trace origins of nonstationarity in low flows through
developing a nonstationary low-flow frequency analysis framework with the
consideration of the time-varying climate and catchment conditions (TCCCs) and
human activity (HA). In this framework, the climate and catchment conditions are
quantified using the eight indices, i.e., meteorological variables (total precipitation P,
mean frequency of precipitation events A , temperature T and potential
evapotranspiration ET ), basin storage characteristics (base-flow index BFI ,
recession constant K ) and aridity indexes (climate aridity index Al.; , the
recession-related aridity index Al, ). The specific objectives of this study are: (1) to
find the most important index to explain the nonstationarity of low-flow series; (2) to
determine the best subset of TCCCs indices and/or human activity indices (i.e.,
population POP, irrigation area IAR, and gross domestic product GDP) for final
model through stepwise selection method to identify nonstationary mode of low-flow
series; and (3) to quantify the contribution of selected explanatory variables to the
nonstationarity.” [Lines 131-142]



There are no exact and/or results included in the Abstract section. Or only limited
words describing results. More details and particularly in a quantitative way
should be provided for description of results and conclusions

AUTHORS’ REPONSE: The reviewer is correct. In the modified abstract, we have
provided more quantitative results and conclusions. In the revision of the second part
of the Abstract, the description of results and findings has been modified as following:

“The results from stepwise regression for the optimal explanatory variables show that
the variables related to irrigation, recession, temperature and precipitation play an
important role in modeling. Specifically, analysis of annual minimum 30-day flow in
Huaxian shows that Alk is of the highest relative importance among the optimal
variables, followed by IAR (note to reviewer: Irrigated area — a newly added index in
the revised version), BFI and Algr; and nonstationary GA distribution model with
these optimal variables has an AIC value of 207.0, while the AIC values of other
models just with Al or time as explanatory variables or without any variable are
217.4, 225.5, 232.3, respectively. We conclude that the incorporation of multiple
indices related to low-flow generation permits tracing various driving forces.” [Lines
29-36]

In Introduction section, it was noticed that there are numerous researches focused
on nonstationary low flow frequency analysis. However, no novel points were
listed and hence research motivations were not well justified. Besides, as a
tributary of the Yellow River, evaporation or evapotranspiration, irrigation,
population, GDP and so on should be included as factors influcing low flow
changes. Related works have been done using Budyko framework by Prof. Dawen
Yang from Tsinghua University and Prof. Qiang Zhang from Beijing Normal
University and other colleagues from China. Besides, | still have no idea about
how the authors developed the framework to evaluate low flow frequency from a
nonstationary perspective.

AUTHORS’ REPONSE: Thanks to the reviewer for pointing out this. Firstly, in the
introduction section, the related part has been reorganized and modified in order to
clarify our research motivations more clearly. Related part for study motivation, refer
to the response of the first comment above.

Secondly, following the reviewer’s advice, besides the following indices (K, Alk and
BFI) that are related to human activities and the indices (K, Alx and BFI) that are
linked to physical hydrological processes, in the revised version, we have included the
irrigation area (IAR), the Gross Domestic Product (GDP), and population (POP)
indices. The process of their change with time has been presented (see Fig. 5 in the
revised manuscript). The Pearson correlation coefficients between low-flow series and
these indices have been presented (see Fig. 6 in the revised manuscript). The models
(M2b, M5, and M6, as described in Table 2 in the revised manuscript) are added. The
summary of their results have been presented in Table 5 in the revised manuscript.
Analysis of all new results has been shown in Figs. 7, 8, 9, 10 and 11 in the revised
manuscript. Besides, we have added the following statements in the discussion section



in the revised manuscript.

“The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang,
2013; Zhang et al., 2015) have applied the Budyko framework to analyze the impacts
of climate change and/or human activity on annual runoff. Indeed, for annual runoff,
the Budyko framework is a good method because it used the mean annual
water-energy balance equation to consider generation process of total runoff.
Unfortunately, to our knowledge, there is a lack of equation derived from basic
physics laws for generation process of low flows. Therefore, we emphasize the
importance of TCCCs variables to modeling of low-flow nonstationarity.” [Lines
507-513]

Thirdly, the framework is composed of the time varying and GLM methods, and the
method of stepwise selection for TCCCs indices and human activity indices. And to
address this comment, we have added a flow chat of methodology (Fig. 1 in the
revised manuscript) to explain how the framework is organized.

In Method section, a working framework should be formulated besides some
descriptions.

AUTHORS’ REPONSE: Thank you for your good suggestion. Following the
reviewer’s suggestion we have added a flow chart of methodology, as show in Fig. 1
in the revised manuscript.

Why the authors choose Weihe River basin as a case study? Are there any unique
features of the study region when compared to other alternative rivers?

AUTHORS’ REPONSE: The nonstationarity of annual runoff in Weihe River basin
has been shown to be very significant (Lin et al., 2012; Xiong et al., 2014). The
previous studies have demonstrated that the climate change and human activities play
an important role in annual runoff changes. When compared to other alternative rivers,
the nonstationarity mode of low flows in the study region is so complex that it is
difficult to be identified due to the influence of various factors. This feature aroused
our interest in choosing the study area. We try to demonstrate that the nonstationarity
of low flows in this basin is caused by multiple factors and more effective analysis
model should incorporate not only a single climate index or human activity indices
but also the other climate indices and catchment condition indices. We have clarified
this point.
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Geophysical Research Letters, 43, n/a-n/a, 2015.

-Referee#2-

General Comment This work covered an interesting topic. It is qualified for
HESS after a minor revision. Authors incorporated multiple variables into
time-varying model by GLM, and called this a nonstationary mode considering
TCCCs. They calculated and compared AIC of this mode with that of the
stationary mode and the nonstationary mode with a single covariate in two
stations in Weihe. Then they concluded this TCCCs nonstationary mode was the
optimal one for nonstationary low flow frequency analysis in Weihe.

AUTHORS’ REPONSE: Thank you for your positive evaluation and a good
summary of the paper.

Its a pity that they did a lot of work without clearly stating their motivation.
Authors first raised an issue in review that the previous studies in low flow failed
to provide a link between hydrological process and frequency analysis, and this
made it difficult for tracing the origins of low flow change. While readers might
think they intend to trace these origins (which was also hinted by the title), they
defended that “the goal of this study is to develop a nonstationary low-flow
frequency analysis framework”. It is better for them to keep consistent in the
whole introduction section.

AUTHORS’ REPONSE: Thank you for your comments and the good suggestion.
This is also pointed out by reviewer 1. Following the reviewer’s advice, we have also
better stated our study motivation as following.

“To our knowledge, compared with the nonstationary flood frequency analysis, the
studies on the nonstationary frequency analysis of low-flow series are not very
extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001).
Most of these studies explain nonstationarity of low-flow series only by using climatic
indicators or a single indicator of human activity. However, the indicators of
catchment conditions (e.g. recession rate) related to physical hydrological processes
have seldom been attached in nonstationary modeling of low flow series. This lack of
linking with hydrological processes makes it impossible to accurately quantify the
contributions of influencing factors for the nonstationarity of low flow series, and
such a scientific demand for tracing the sources of nonstationarity of low-flow series
and qualifying their contributions motivated the present study...” [Lines 100-109]

We have also explicitly defined and stated the study objectives in the 5 paragraph of
the Introduction Section, as follows:

“The goal of this study is to trace origins of nonstationarity in low flows through
developing a nonstationary low-flow frequency analysis framework with the
consideration of the time-varying climate and catchment conditions (TCCCs) and



human activity (HA). In this framework, the climate and catchment conditions are
quantified using the eight indices, i.e., meteorological variables (total precipitation P,
mean frequency of precipitation events A , temperature T and potential
evapotranspiration ET ), basin storage characteristics (base-flow index BFI ,
recession constant K ) and aridity indexes (climate aridity index Al.; , the
recession-related aridity index Al ).The specific objectives of this study are: (1) to
find the most important index to explain the nonstationarity of low-flow series; (2) to
determine the best subset of TCCCs indices and/or human activity indices (i.e.,
population POP, irrigation area IAR, and gross domestic product GDP) for final
model through stepwise selection method to identify nonstationary mode of low-flow
series; and (3) to quantify the contribution of selected explanatory variables to the
nonstationarity.” [Lines 131-142]

Besides, to better show the advantage of this framework, which was composed of
the time-varying and GLM method, they should compare it with other models
using only climatic indicators or a single indicator of human activity, just as they
mentioned in the review, not just the mode with either AIK or BFI as the
explanatory variable.

AUTHORS’ REPONSE: Thank you for the comment. Our study had included the
model with climate indicators. But, indeed, the model with a single indicator of
human activity (e.g. irrigation, population, GDP as mentioned by the first reviewer)
was not involved in the original submission. Thus to address this comment, the main
and supplementary texts have been revised to compare the nonstationary mode
considering TCCCs with the nonstationary mode considering human activity
(irrigation, population, GDP), as also stated in the reply to reviewer 1. The process of
their change with time has been presented (see Fig. 5 in the revised manuscript). The
Pearson correlation coefficients between low-flow series and these indices have been
presented (see Fig. 6 in the revised manuscript). The models (M2b, M5, and M6, as
described in Table 2 in the revised manuscript) are added. The summary of their
results has been presented in Table 5 in the revised manuscript. All new results have
been shown in Figs. 7, 8, 9, 10 and 11 in the revised manuscript. Statements in the
Results Section have been added and revised, as shown in the revised manuscript with
tracked changes.

In addition, there are some mistakes and improper statements in this paper;
outlines of methods and results are unclear, and the discussion is weak. It is
better for authors to put together contents of results and discussion, and further
discuss their results and compared with other related works.

AUTHORS’ REPONSE: Thank you for your comment. The mistakes and improper
statements have been carefully checked and corrected in the revised version; to clarify
methods, a flow chart of methodology and a table which summarizes the explanatory
variables have been added; and we have revised the contents of results and discussion,
following the reviewer’s good suggestion. The revised manuscript has included
further discussion of results and comparison with other related works as following:



“Overall, the causes of nonstationarity in category for two gauging stations have no
clear difference, but have some differences in the relative importance. As shown in
Table 5, when modeling the low-flow series of Huaxian using TCCCs variables, the
optimal model (M4) preferred the variables are related to recession process; however,
for Xianyang, the preferred variables are related to temperature. The reason for this
may be that as a downstream station, Huaxian station suffers more intensive human
activity, so that the importance of temperature change to the low-flow change is
reduced, and meanwhile the importance of streamflow recession (related to the
capability of water storage) change is enhanced.” [Lines 493-501]

“The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang,
2013; Zhang et al., 2015) have applied the Budyko framework to analyze the impacts
of climate change and/or human activity on annual runoff. Indeed, for annual runoff,
the Budyko framework is a good method because it used the mean annual
water-energy balance equation to consider generation process of total runoff.
Unfortunately, to our knowledge, there is a lack of equation derived from basic
physics laws for generation process of low flows. Therefore, we emphasize the
importance of TCCCs variables to modeling of low-flow nonstationarity.” [Lines
507-513]

Specific Comment The logic of review in the introduction is not smooth. Some
references mentioned in the paragraph starting from Line 52, such as Lars
Gottschalk’s work, were badly concluded and they’d better be put in the next
paragraph.

AUTHORS’ REPONSE: Thank you for pointing out this and for your good
suggestion. To address your comment, we have revised the introduction as mentioned
above.

A flow chart of methodology is needed.

AUTHORS’ REPONSE: This is a good point. To address your comment, we have
added it (Fig. 1 in the revised manuscript).

Line 127 Meaning of this sentence is obscure.

AUTHORS’ REPONSE: The sentence has been revised as following: “The
distribution type used to build the nonstationary model is outlined”

Further explanation for the selection of 8 candidate variables is needed.

AUTHORS’ REPONSE: Thank you for the comment. To address this comment, the
1st paragraph of ‘Section 2.3 Candidate explanatory variables’ has been revised. And
the reason for the selection of 8 candiadte variables has been listed in Table 3 in the
revised manuscript.

Indices more related to irrigation, like irrigation area, need to be considered,
since (Line278) In the Weihe basin, the impacts of agricultural irrigation on
runoff have been found to be significant.



AUTHORS’ REPONSE: Thank you for the comment. Following reviewer’s
suggestions, we have included this index (irrigation area) as mentioned above.

Both those 8 explanatory variables and data resources can be summarized in two
tables.

AUTHORS’ REPONSE: This is a good point. To address this comment, we have
revised the text and added Table 3 in the revised manuscript.

[ don t see much use in Figure 2.

AUTHORS’ REPONSE: Thank you for the comment. Following your suggestion,
the Figure has been deleted in the revised manuscript.

Why do you need to study all the series from AM1, 7, 15 to 30?

AUTHORS’ REPONSE: The main reason for including four series is to investigate
whether the time scale of the series affects the nonstationary mode. As shown in
Figure 7 (the revised manuscript), the effect of time scale is existed but limited. In
response to this good comment, we have revised the part of the Multiple Covariate
Analysis Section to focus on the AMg, series.

In some subplans in Figure 8, AIC of either M2 or M3 is worse than M1. What is
the probable cause? The conclusion in Line 391 cannot be directly generated
from Figure8.

AUTHORS’ REPONSE: We have explained that this phenomenon mainly appears in
the AM; and AMy series. AM; and AMy series are more vulnerable, which means that
multiple causes can affect them. The nonstationary mode with one or two physical
explanatory variables (M2 or M3) cannot work well for AM; and AM;. However, the
overall decreased trend caused by multiple factors is consistent with the nonstationary
mode with time (M1).

What is the impact of location difference on the different AIC results in two
stations? Needs to add discussion.

AUTHORS’ REPONSE: This is a good point. Following the reviewer’s suggestion,
we have added a supplemental part to the discussion section (see lines 482-489 in the
revised manuscript).

The standard of selecting M4 variables with stepwise selection method needs to
be further clarified.

AUTHORS’ REPONSE: Following the reviewer’s suggestion, we have clarified the
standard of the models’ variables using Fig. 1 in the revised manuscript.

Table5 and 6 can be merged into one table.
AUTHORS’ REPONSE: Agree, corrected.

Formula 2, no need to put “i="" on the top



AUTHORS’ REPONSE: Corrected.
Table2, add explanation for parameters down below the table
AUTHORS’ REPONSE: Corrected.

The definition, reason of selection, and formula of 8 indices should be listed in a
table.

AUTHORS’ REPONSE: Corrected.

Line228, 234, 242 add blank space before the paragraph (need to check in the
whole paper)

AUTHORS’ REPONSE: Corrected.
Line298 slash tag between “n”" and “day” is missing (check the whole paper)
AUTHORS’ REPONSE: Corrected.
Line304 mistake in time tense
AUTHORS’ REPONSE: Corrected.
Line388 incomplete sentence
AUTHORS’ REPONSE: Corrected.
Figurel mark the location of Weihe in the map of China with a rectangular frame
AUTHORS’ REPONSE: Corrected.
Figure3 adding R
AUTHORS’ REPONSE: Corrected.
Figure 3 &4 lines are too thick
AUTHORS’ REPONSE: Corrected.
Figure5&6 differences among colors are too delicate to be seen
AUTHORS’ REPONSE: Corrected.
Table 3 &4 add division lines among rows of different stations
AUTHORS’ REPONSE: Corrected.

Mistake in references, year of “Bivariate frequency analysis of nonstationary
low-flow series based on the time-varying copula” was 2015

AUTHORS’ REPONSE: Thank you for pointing out this. We have corrected this.
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Thanks again to the editor and the two reviewers for providing professional and
insightful comments and advices which have significantly improved the revised
version of the manuscript.

Sincerely,
Bin Xiong, Lihua Xiong, Jie Chen, Chong-Yu Xu, Lingqi Li
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Abstract:
Under the background of global climate change and local anthropogenic activities, multiple

driving forces have introduced-a-variety-of various non-stationary components into low-flow series.

This has led to a high demand on low-flow frequency analysis that considers nonstationary

conditions for modeling. In this study, through a nonstationary frequency analysis framework-ef

ith the Generalized Linear Model

(GLM) to consider time-varying distribution parameters,——GLEMs; the eandidate—multiple

explanatory variables_wereas incorporated to explain-the-time-varying the variation in low-flow

distribution parameters. These variables are comprised of the three indices of human activities (i.e.,

population POP, irrigation area 1AR, and gross domestic product GDP) and the eight measuring

indices of the climate and catchment conditions-ir-low-flow-generation; (i.e., total precipitation P,
mean frequency of precipitation events 4, temperature T, potential evapotranspiration ET, climate
aridity index Algr, base-flow index BFI, recession constant K and the recession-related aridity

index Alk). This framework was applied to model the annual minimum flow series of both

Huaxian and Xianyang gauging stations in the Weihe River, China. Stepwiseregression-analysis

optimum-medel-The results_from stepwise regression for the optimal explanatory variables show

that the—inter-anndalvariability—in—the—variables—of those—selected-best-subsets—the variables
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related to irrigation, recession, temperature and precipitation plays an important role in modeling

anhual-low-flow-series. Specifically, analysis of annual minimum 30-day flow in Huaxian shows

that_Alk_is of the highest relative importance among the optimal variables, followed by IAR, BFI

and Algr;, and nonstationary GA distribution model with these optimal variables hasve an AIC

value of 207.0, while the AIC values of other models just with Alx or time as explanatory variables

or without any variable are 217.4, 225.5, 232.3, respectively. —Alc—is—of-thehighestrelative

=r—We conclude

that Fhe-the incorporation of multiple indices related to low-flow generation permits tracing
various driving forces. The established link in nonstationary analysis will be beneficial to-predict

analyze future occurrences of low-flow extremes in similar areas.

Keywords: Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity;

Low-flow Frequency Analysis;

1. Introduction

Low flow is defined as the ‘flow of water in a stream during prolonged dry weather’ (WMO,
1974). Yu et al. (2014) guantitatively described a low flow event as a segment of hydrograph
during a period of dry weather with discharge values below a preset (relatively small) threshold.

According to WMO (2009), annual minimum flows averaged over several days can be used to
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measure low flows. During low-flow periods, the magnitude of river flow will greatly restrict its

various functions (e.q. providing water supply for production and living, diluting waste water,

ensuring navigation, meeting ecological water requirement). Therefore, Fthe investigation of the

magnitude and frequency of low flows is of primary importance for engineering design and water
resources management (Smakhtin, 2001). FerIn recent years, low flows, as an important part of
river flow regime, have been attracting the-an increasing attentions of hydrologists and ecologists;

due-to_in the context of the significant impacts of climate change and human activities-en—mest

(Bradford and Heinonen, 2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu

et al., 2015; Sadri et al., 2015; Smakhtin, 2001; WMO, 2009)._In general, under the impact of a

changing environment, combinations of multiple factors, such as precipitation change, temperature

change, irrigation area change and construction of reservoirs, can drive various patterns of

streamflow changes (Liu et al., 2017; Tang et al., 2015). Unfortunately, when subjected to a variety

of influencing forces, low flow is more vulnerable than high flow or mean flow. Therefore, it is a

pretty important issue in hydrology to identify low-flow changes, track multiple driving factors

and quantify their contributions from the perspective of hydrological frequency analysis.
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In hydrological analysis and design, conventional frequency analysis estimates the statistics

of a hydrological time series based on recorded data with the stationary hypothesis which means

that this series is “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). However, global

warming and human forces have changed climate and catchment conditions in some regions.

Time-varying climate and catchment conditions can affect all aspects of the flow regime, i.e.

changing the frequency and magnitude of floods, altering flow seasonality, and modifying the

characteristics of low flows, etc. The hypothesis of stationarity has been suspected (Milly et al.,

2008). If this problematic method is still used, the frequency analysis may lead to high estimation

error_and—eostlyin hydrological design. Therefore, considerable literatures have introduced the

concept of hydrologic nonstationarity into analysis of various hydrological variables, such as

annual runoff (Arora, 2002; Jiang et al., 2017; Jiang et al., 2015; Liu et al., 2017; Xiong et al.,

2014: Yang and Yang, 2013), flood (Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016;

Kwon et al., 2008; L&ez and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al.,

2016; Zhang et al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; Liu et

al., 2015), precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c; Mondal and

Mujumdar, 2015; Villarini et al., 2010) and so on. Compared with the literatures on annual runoff,

floods and precipitation, the literatures on the nonstationary analysis of low flow are weryrelatively

limited.
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Previous hydrological literatures on frequency analysis of nonstationary tew—flow
hydrological series mainly focus on two aspects: development of nonstationary method and
exploration of covariates reflecting changing environments. Strupczewski et al. (2001) presented
the method of time-varying moment which assumes that the hydrological variable of interest obeys
a certain distribution type, but its moments change over time. The method of time-varying moment
was modified to be the method of time-varying parameter values for the distribution representative
of hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the
Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and
Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying
parameter method can be extended to the physical covariate analysis by replacing time with any
others physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; L&pez and
Francés, 2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example,
Jiang et al. (2014) used reservoir index as an explanatory variables based on the time-varying
copula method for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River,
China. Du et al. (2015) took precipitation and air temperature as the explanatory variables to
explain the inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea
Surface Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years

ahead), the winter areal temperature and precipitation as the candidate explanatory variables to
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explain the inter-annual variability in low flows of Yichang station, China. Kam and Sheffield
(2015) ascribed the increasing inter-annual variability of low flows over the eastern Uniteds States

to North Atlantic Oscillation and Pacific North America.

high—flews—Hewever—To our knowledge, compared with the nonstationary flood frequency

analysis, the studies on the nonstationary frequency analysis of low-flow series is not very
extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001). Most of
these studies explain nonstationarity of low-flow series only by using climatic indicators or a
single indicator of human activity. However, the indicators of catchment conditions (e.g. recession

rate) related to physical hydrological processes have seldom been attached in nonstationary

modeling of low flow series._—TFhisteads-te-lack-of-Hnking-with-hydrological process—which-in

sertesThis lack of linking with hydrological processes makes it impossible to accurately quantify

the contributions of influencing factors for the nonstationarity of low flow series, and such a

scientific demand for tracing the sources of nonstationarity of low-flow series and qualifying their

contributions motivated the present study. The knowledge of low-flow generation has been

increased by efforts of hydrologists, which can help develop physical covariates to address

nonstationarity. Low flows generally originate from groundwater or other delayed outflows
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(Smakhtin, 2001; Tallaksen, 1995). Their generation relates to both an extended dry weather

period (leading to a climatic water deficit) and complex hydrological processes which determine

how these deficits propagate through the vegetation, soil and groundwater system to streamflow

(WMO, 2009). Thus, not only climate conditions drivers (e.q. potential evaporation exceeds

precipitation), but also catchment conditions drivers (e.g. the faster hydrologic response rate to

precipitation) can cause low flows.

The significant factors such as precipitation, temperature, evapotranspiration, streamflow

recession, large-scale teleconnections and human forces may play important roles in influencing

low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; Jones et al.,

2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. (2013)

presented a derived low flow probability distribution function with climate and catchment

characteristics parameters (i.e., the mean length of dry spells A* and recession constant of

streamflow K ) as its distribution parameters. Botter et al. (2013) derived “a measurable index”

(A/K ) which can be used for discriminating erratic river flow regimes from persistent river flow

regimes. Recently, #--Van Loon and Laaha (2015) used climate and catchment characteristics (e.q.

the duration of dry spells in precipitation and the base flow index) to explain the duration and

deficit of hydrological drought event and offered a further understanding of low-flow generation.

Theese studies indicated that climate and catchment conditions play an important role in producing




142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

low flows.

The goal of this study is to trace origins of nonstationarity in low flows through developing a

nonstationary low-flow frequency analysis framework with the consideration of the time-varying

climate and catchment conditions (TCCCs) and human activity (HA). Fhe-goal-ef-this-study-is-to

time-varying—chmate—and—catchment-conditions (FCCCs)y—In this framework, the climate and

catchment conditions are quantified using the eight indices, i.e., meteorological variables (total
precipitation P, mean frequency of precipitation events A, temperature T and potential
evapotranspiration ET ), basin storage characteristics (base-flow index BFI, recession constant
K) and aridity indexes (climate aridity index Al , the recession-related aridity index Al, ).

The specific objectives of this study are: (1) to find the most important index to explain the

nonstationarity of low-flow series; (2) to determine the best subset of TCCCs indices and/or

human activity indices (i.e., population POP, irrigation area IAR, and gross domestic product GDP)

for final model through stepwise selection method to identify nonstationary mode of low-flow

series; and (3) to quantify the contribution of selected explanatory variables to the nonstationarity.
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This paper is organized as follows. Section 2 describes the methods. WWe-deseribe-tThe Weihe
River basin and available data sets used in this study are described in Section 3, followed by a

presentation of the results and discussion in Section 4. Section 5 summarizes the main conclusions.

2 Methodology

The flowchart of how to organize the nonstationary low-flow frequency analysis framework

is shown in Fig. 1. The whole process is divided into three steps. The first step is preliminary

analysis, including the graphical presentation of both explanatory variables and low-flow series,

the statistical test for nonstationarity and the correlations between each explanatory variable and

each low-flow series. The second step is single covariate analysis for the most important

explanatory variable. The third step is multiple covariate analysis for the optimal combination. We

use a low-flow frequency analysis model and stepwise regression method to accomplish the last

two steps. In this—the following sub-sections, first, the low-flow frequency analysis model is

constructed based on the nonstationary probability distributions method, in which distribution

parameters serving as response variables can vary as functions of explanatory variables. Second,

frequenecy-eurves—the distribution types used to build the nonstationary model are outlined. Then,

the eight—candidate explanatory variables_related to the time-varying climate and catchment

10
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conditions (TCCCs) and human activity (HA) are clarifiedpresented-to-incorperate-time-varying

frequeney-analysis. Finally, estimation of model parameters and selection of models are illustrated.

<Figure 1>
2.1 Construction of the low-flow nonstationary frequency analysis model
Generally, a nonstationary frequency analysis model can be established based on the
time-varying distribution parameters method (Du et al., 2015; Ldpez and Francés, 2013; Liu et al.,
2015; Richard et al., 2002; Villarini and Strong, 2014). For the nonstationary probability
distribution  f, (Yt|9t), let Y, be a random variable at time t (t=12,..,N) and vector
0'=[4,6,...6] be the time-varying parameters. The number of parameters m in hydrological

frequency analysis is generally limited to three or less. The function relationship between the k"

parameter ¢, and the multiple explanatory variables is expressed as follows:

gk(eﬁ):hk()q,x;,...,x;) @)
where x;,X,...,X, are explanatory variables; n is the number of explanatory variables; g,(-)
is the link function which ensures the compliance with restrictions on the sample space and is
usually set to natural logarithm for the given negative predictions; h(-) is the function for

nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is

used to build function relationships between distribution parameters and their explanatory

11
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variables. In GLMs, the response relationship can be generally expressed as
gk(eli)zaok +Zaikxit 2
i=1
where «, (i1=0,12,..,n,k=1..,m) arethe GLM parameters.

In order to give-afurthernonstationary-analysiscompare the nonstationary models constructed

by various combinations of explanatory variables, Eq. (2) is modified in this study using

dimensionless method_for the standard GLM parameters. The value of &, could be assumed to be

equal to its mean (6, ) when all explanatory variables are equal to their mean (X;), i.e.,
0 (X =% X =Ry X, =X, ) =0, ®

Eq. (2) is then modified as

Z = ! i; i:1,2,...,n (4)

6! —
ﬂOk =0y (07k|0; = gkj =0y (1)
k

t

where z' is normalized explanatory variables; s, is the standard deviation of xi ;

B (1=12,..,n,k=1..,m) are the standard GLM parameters. Let the link function g,(-) be the
natural logarithmic function In() and ¢/ be the distribution parameter in [&,8;,...,0,] with

most significant change, the degree of nonstationarity in low flow series can be defined as

In@)—In(@) . Then, the contribution c' of each explanatory variable x' to In(¢')—In(6,)

12
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could be defined as

=4 (5)

2.2 Candidate distribution functions

We need to select the form of probability distribution f,(-) to determine what type of
nonstationary frequency curves will be produced. Various probability distributions have been
compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et
al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low
flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five
distributions, i.e. Pearson-1ll (PIIl), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and
Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-I11
distribution, considering that the parameter 6, of Pearson-Ill as lower bound should approach
zero and the parameter ¢, of GEV is quite sensitive and difficult to be estimated, we assume
them to be constant in this study.

2.3 Candidate explanatory variables

We look for variables x,x;,...,x; that can explain parts of the variations in distribution

parameters 0'. From the perspective of low-flow generation, the dependency between low-flow

regime and both climate and catchment conditions has been presented by previous studies (Botter

13
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et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring
indices: total precipitation, mean frequency of precipitation events, temperature, potential
evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related
aridity index. These indices were chosen to incorporate time-varying climate and catchment
conditions (TCCCs) in nonstationary modeling; of low-flow frequency and serving as candidate
explanatory variables. The wvalues of them at each year could be estimated from
hydro-meteorological data. Annual precipitation (P ) and temperature (T ) are calculated directly
by meteorological data. The remaining TCCCs indices need to be estimated indirectly. Detailed

estimation procedures are shown—-as—feHews in following subsections. In addition to TCCCs

indices, the three indices of human activity (irrigation area, population and gross domestic product)

are included, and the reasons for selecting all indices are summarized in Table 2.

2.3.1. Annual mean frequency of precipitation events (1)
Annual mean frequency of precipitation events is defined as an index to represent the

intensity of precipitation recharge to the streamflow:

1Y N, (A)
A=y 2w (6)
W&y

where N,,(A) is the number of daily rainfall events A (with values more than the threshold 0.5

mm) in w" windows with a length t ; W is the number of windows.
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2.3.2. Annual climate aridity index (Algr)

The ratio of annual potential evaporation to precipitation, commonly known as the climate
aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002;
Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and
determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a
measure of time-varying climate and catchment conditions and estimate its value in a whole region
using

Aler == @
where P is annual areal precipitation (mm); ET is annual areal potential evapotranspiration.
The Hargreaves equation (Hargreaves and Samani, 1985) is applied to calculate ET using the
R-package ‘Evapotranspiration” (Guo, 2014).

2.3.3. Annual base-flow index (BFI)

The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has
been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors)
to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base

flow index (BFI) as a measure of TCCCs. BFI is estimated using a hydrograph separation

procedure in R-package ‘Ifstat’ (Koffler and Laaha, 2013).
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2.3.4. Annual streamflow recession constant (K)

Recession constant is an important catchment characteristic index measuring the time scale of
the hydrological response and reflecting water retention ability in the upstream catchment (Botter
et al., 2013). Various estimation methods have been developed to extract recession segments and to
parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg,
2014; Tallaksen, 1995).

In this study, annual recession analysis (ARA) is performed to obtain annual streamflow
recession constant (K). In ARA, the linearized Depuit-Boussinesq equation is used to parameterize
characteristic recession behavior of a catchment and is written as

_dQ 1 (®)

it K

where Q, is the value at time t. Eq. (8) is investigated by plotting data points % against Q,
of all extracted recession segments from hydrographs at each year. The criteria of recession
segments extraction is-are based on the Manual on Low-flow Estimation and Prediction (WMO,
2009). Then, the annual recession rate (K ™) is estimated as the slope of fitted straight line of these
data points with least square method. We calculated K using R-package ‘Ifstat’ (Koffler and
Laaha, 2013).

2.3.5. Annual recession-related aridity index (Alk)

In this study, recession-related aridity index is defined as the ratio of recession rate (k) to

16
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mean precipitation frequency ( ;1 ), denoted as

K

1
Al = KT 9)

This ratio plays an important role in controlling en—river flow regime (Botter et al., 2013;
Gottschalk et al., 2013) and serves as an indicator measuring the recession-related aridity degree of
the streamflow in river channel. For example, faster recession process or lower precipitation

frequency may lead to increased runoff loss or decreased precipitation supply. Consequently, the

higher the value Al, is, the more likely low flow events occur, and vice versa.

2.4 Parameter estimation
The model parameters including 6, (k=12,..,m) and g, (i=12,.,nk=1...,m) are
estimated. 67k(k =1,2,...,m) are estimated from outputs of stationary frequency analysis through

maximum likelihood method. We have

L(é,&z,...,ém)=ZIn[fy(yt|§l,§2,...,§m)] (10)

where Yy, is observed low flow at time t; N is the number of samples. The parameters
B (1=12,..,n,k=1..,m) are estimated through maximum likelihood method to produce

nonstationary low-flow frequency curves:

17



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Piares P
L|.

:leln{fy(yt O (228 B Bra) s O (21 28 o B )| D)

ﬂlm""vﬂnm

The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit
of fitted model objects (Dunn and Symth, 1996):

f =CD‘1(FY (yt ét)) (12)

where F, (-) is the cumulative distribution of VY, ; d)‘l(-) is the inverse function of the standard
normal distribution. The distribution of the true residuals f, converges to standard normal if the
fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether f, have
a standard normal distribution.
2.5 Model selection

Model selection contains the selection of the type of probability distribution and the selection
of the explanatory variables to explain the response variables (i.e., distribution parameters 6, and
6,). In order to obtain the final optimal model, the selection of the explanatory variables for 6,
and 0, is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables,
2002): i.e. select a best subset of candidate explanatory variables for 6, using a forward approach
(which starts with no explanatory variable in the model and tests the addition of each explanatory
variable using a chosen model fit criterion); given this subset for 6, select another subset for 6,

(forward). The stepwise selection strategies can get a series of stepwise models with different
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numbers of explanatory variables, as shown in Figl. In order to detect how the number of

explanatory variables influences the performance of the model for describing non-stationarity, we

investigate the five—eight types of stepwise models_as shown in Table 3: the zero-covariate model

or stationary model (M0), the time covariate model (M1), single physical covariate model M2

(single TCCCs covariate model M2a or single HA covariate model M2b), the-doublephysicaltwo

TCCCs covariates model (M3)-and-, the optimal rumberphysicalTCCCs covariates model (M4),

as-shown-n—Table-2 the optimal HA covariates model (M5) and the final model (M6). The model

fit criterion is based on the Akaike’s information criterion (Akaike, 1974) as shown by the

following

AIC = -2ML + 2df (13)
where ML is the log-likelihood in Eq. (11) and df is the number of degrees of freedom. The
model with the lower AIC value was considered better.

3. Study Area and Data
3.1. The study area

The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest
tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km?
covering the coordinates of 33°42’-37°20'N 104°18’-110°37'E (Fig. 42). This catchment

generally has a semi-arid climate, with extensive sub-humid—continental monsoonal influence.
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Average annual precipitation of the whole area over the period 1954-2009 is about 540 mm, and
has a wide range (400-1000 mm) in various regions. Under the significant impacts of climate
change and human activities in the Weihe River basin in recent decades, the hydrological regime
of the river has changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015a).
<Figure 12>

In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be
significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff
of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation
area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of
P.R. China in 1949, and due to one influential irrigation system project in that area, it became more
than twice of the original ene-irrigation area since 1971. Jiang et al. (2015) demonstrated that in
the Weihe basin, irrigated area, as compared with the other indices e.g. population, gross domestic
product and cultivated land area, was a more suitable human explanatory variable for explaining
the time-varying behavior of annual runoff. Within the above background, it is important to
considering the effects of human activities that mainly originate from irrigation diversion, and
especially for studying low flow series in this basin. In this study, we use the available data
(1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang

(2008) to provide some information for the knowledge of low flow generation. The estimations of

20



347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

annual recession rate (K™) by the daily streamflow data are expected to incorporate the
information of impacts of water diversions on the low flows in the river channel.
3.2. StreamflowdData

We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the
Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106
500 km?) and Xianyang station (with a drainage area of 46 480 km?). Low-flow extreme events
were selected from the daily streamflow series using the widely-used annual minimum series
method (WMO, 2009). AM, is the annual minimum a-n-day flow during hydrological year
defined-to-starbeginningt on 1 March. Consequently, AM;, AM7, AM;5 and AMs, are selected as
low-flow extreme events in this study. The original measure unit of streamflow data (m*-s™) is

converted to 10 m®.s*-km? by—dividing—bythe corresponding—drainage—area—(km?)}—for

convenience of comparison of results between the Huaxian and Xianyang gauging stations
We downloaded daily total precipitation and daily mean air temperature records for 19
meteorological stations over the basin from the National Climate Center of the China

Meteorological Administration (source: http://cdc.cma.gov.cn). The areal average daily series of

both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon

method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T ) and annual
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total precipitation (P ) over the period 1954-2009 are calculated for each catchment.

Human activity data (i.e. gross domestic product, population and irrigation area) were taken

from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics

(http://www.shaanxitj.gov.cn/) and Gansu Provincial Bureau of Statistics (source:

http://www.gstj.gov.cn/).

4. Results and discussion

4.1. Identification of nonstationarity

Graphical representation and statistical test provide a preliminary analysis for low-flow

nonstationarity. The graphical representations of time-series data help visualize the trends of
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related variables (i.e. low-flow, TCCCs and HA variables), the density distributions of TCCCs

variables and the correlations between low-flow variables and these explanatory variables. In Fig.

3, Overalloverall—four annual minimum streamflow series (AM,, AM,, AM, and AM,)) in
both Huaxian and Xianyang gauging stations show overall decreasing trends, as indicated by the
fitted (dashed) trend lines—in—Fig—3. Compared with Huaxian, Xianyang has a larger runoff
modulus (the flow per square kilometer) and a larger decrease in annual minimum streamflow
series. For example, the decline slope of AM,, is -0.0725 (10*m®-s*-km?/yr) in Huaxian

station whieh-while Xianyang station it is argerthan—0.1338 (10 m®-s™-km?/yr )-in-Xianyang

station.
<Figure 3>
Figure 4 shows the kernel density estimations and time processes of the—eightcandidate
explanateryTCCCs variables(Seet—2-3}+eflecting-the FSCCs for both Huaxian (H) and Xianyang
(X) stations. The results show that these variables have different variation patterns. For example,
the mean frequency of precipitation events (1) has a decreasing trend, while temperature (T ) has

an increasing trend. As presented by Fig. 5, three HA variables have a significant upward trend,

especially the irrigation area 1AR _which is increased greatly after about 1970, suggesting that the

impact of human activities in this basin has increased over time.
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<Figure 4>

<Figure 5>

The significance of trends in the four annual minimum streamflow series and eight
explanatery TCCCs variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945;
Yue et al., 2002), and the change_-points in these series are detected by the Pettitt’s test (Pettitt,
1979). The results in Table 3-4 show that in both Huaxian and Xianyang stations, the decreasing
trends in all the four low-flow series (AM,, AM,, AM, and AM,,) and two explanatory
variables (4 and P), and the increasing trendsin T, ET,and Al are significant at the 0.05
level (Table 34), but BFI shows no significant trends. However, K and Al, had significantly
decreasing trends only in Huaxian station ( p -value < 0.05). The results of change-point detection
show that all low-flow series are located at 1968-1971 ( p-value<0.05) except AM,, at
Xianyang station whose change point is located at 1993 ( p - value < 0.05); for the eight candidate
explanatory variables, the change points of the variables related to temperature (T ,ET , Al ) in
both stations are located at 1990-1993 ( p - value < 0.05), the change points of the variables related
to precipitation (1, P) in both stations are close at 1984-1990 ( p -value <0.186) and the change
points of the variables related to streamflow recession (K, Al,. ) in Huaxian station are located at

1968-1971 ( p-value <0.05). However, BFI in both stations and K _and; Al, in Xianyang
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station show no significant change points.

A preliminary attribution analysis is performed using the Pearson correlation matrix to
investigate the relations between the annual minimum series and eight candidate explanatory
variables. Figure 65 indicates that there are significant linear correlations between the four
minimum low-flow series (AM,, AM,, AM,. and AM,,) and all the explanatory variables
except GDP, with-have the absolute values of Pearson correlation coefficients larger than 0.27

(p-value <0.05). These potential physical causes of nonstationarity in low flows are further

considered by establishing low-flow nonstationary model with TCCCs_and HA variables in the

following section.

<Figure 56>

4.2. Nonstationary frequency analysis models
4.2.1 Single covariate models

Figure 76 presents the AIC values of the three—four types of models (MO, M1, M2a and

2bM2—Mi-—-and-MO) fitted for the low flow series (AM,, AM,, AM, and AM,;). Some

interesting results are shown as follows. First, nonstationary models (M1, M2a and M2bMz2-and

M) have lower AIC values than stationary model (MO0), which suggests that nonstationary models

are worth considering. Second, for Huaxian_station, irrespective of the chosen explanatory
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variables, the distribution type plays an important role in modeling nonstationary low flow series.
For example, PIllI, GA and WEI distributions in AM,. _and AM,, mest cases have lower AIC
values than LOGNO and GEV distributions. However, for Xianyang, choosing a suitable
explanatory variable may be more important than choosing a distribution type. For example,
variables t, P, T,and— Al , —POP _and IAR_in most cases have lower AIC values than the

other explanatory variables. Finally, in Huaxian, the lowest AIC values —the-best-M2-medels for

modeling AM,, AM,, AM, and AM, are found in GEV_M2b IAR, LOGNO_M2b IAR,

PIlI_M2a_Alx and GA M2a_ Aly, respectively-are-aH-found-in-the—M2-Al—moedel-{using—Al-

as—an-explanatory—variable); while in Xianyang, the lowest AIC valuesthe-best-M2-models for

modeling AM,, AM,, AM, and AM,, are al-found in-the-M2K-—M2-Al—M2-Al—

and—M2—T- —model_GEV_M2b IAR, GEV_M2b_IAR, PIII_M2b IAR and GEV_M2b_IAR,

respectively. These results indicated that #a-for explaining nonstationarity of low flow in Huaxian

station, AR _is the most dominant HA variables, and Al is the most dominant TCCCs variable

causing—nonstationarity—in—AM —AM= —AM —and—AM=;; while in Xianyang, the most

dominant HA variables_is 1AR, the most dominant TCCCs variables —causing nonstationarity in

AM,, AM,, AM, and AM,, are K, Al , Alg and T, respectively. Fable—4

<Figure 67>
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Figure 87 shows the diagnostic assessment of the-best-M2-model-the GA_M2 model (GA—M2

with the optimal explanatory variable) for AM,, in both Huaxian and Xianyang stations. The
centile curves plots of GA_M2 (Figs. #a-8a and #b8b) show the observed values of AM,,, the
estimated median and the areas between the 5th and 95th centiles. Figure #a-8a shows the response
relationship between AM,, and Al in Huaxian: the increase of Al, means the smaller
magnitude of low-flow events because a high value of Al, (faster stream recession or fewer
rainy days) may lead to faster water loss or less supply. In Fig. #68b, the higher values of IART
means the smaller magnitude of low flow events, which suggests that IART- plays an important
role in driving low-flow generation in Xianyang. Figs 7¢-8c and #&-8d show that the worm points

are within the 95% confidence intervals, thereby indicating a good model fit and a reasonable

model construction.

<Figure 78>
4.2.2 Multiple covariate models

Figure 8-9 shows-that the AIC values of stationary model (MO), time covariate model (M1),

physical covariate models (M2a, M2b, M3, M4, M5 and M6) for AM,, .(M2,-M3-and-M4-with-the

Huaxian-and-Xianyang-statiens: As shown in Fig. 9, M4 (nonstationary GA distribution with the
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optimal TCCCs variables) has a good performance; after adding the HA variables, M6 with the

lowest AIC values is attained; it can be found that the combination of multiple TCCCs variables

isplays a—the major role in changing the low flows of Weihe River, but the influence of HA

variables shouldn't be ignored.FeraHlHowflow-series—t helowest AlC-values-are-alwaysfound-in

<Figure 89>

A summary of frequency analysis based on-five-types-ef-models{MOML-M2-M3-and-M4)
for—both—Huaxian—and—Xianyang—gauging—stations nonstationary GA distribution AM,; _is

presented in Table 5-and-TFable-6,-respectively. We choose to focus on M4, M5 and M6. When only

using TCCCs variables to model nonstationary low-flow frequency distribution, the results of M4

show the optimal combination of explanatory variables for all low-flow series contains more than

three variables. For example, for AM,, of Huaxian, the optimal combination of TCCCs variables

includes Al,, BFI _and Al . When only using HA variables, the results of M5 show AR _is

important to the low flows in this area. And M4 hasve a better performance than M5. When using

both TCCCs variables and HA variables, the results of M6 show the optimal combination contains

multiple TCCCs variables and the irrigation area IAR. For Huaxian, the optimal combination of

all explanatory variables is Al, , IAR, BFI _and P, while for Xianyang, the optimal
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combination is IAR, Al., _and BFI .-ForM4—-and-M3—models,—therelative—importance—of

orderhyby-P—BFH—and—K—_We can also find that if the—eandidatestwo TCCCs variables are

highly correlated, they do not seem to be selected as the explanatory variables at the same time.
For example, one-of those-variables-in terms of only-air temperature (T ), evapotranspiration (ET )

and the climate aridity index (Al ), only one of them will appear in_the optimal combination-a

best-subset-of-eight-candidates—in-thefinal-optimum—model. This suggests that multicollinearity

problem in multiple variables analysis can be reduced, which will help obtain more reliable GLMs

parameters for contribution analysis.

The diagnostic assessment of the best-M4-model{GAM4—GA_M6 model for AM,, at

two stations is presented by Fig. 910. The centile curves plots of GA_M46 (Figs. 910a and 910b)
show the more sophisticated nonstationary modeling than GA_M2 (Fig #8). When using GA_M46
to model AM,, in Huaxian (Fig. 9a), similar to GA_M2, the lower low flows are found to also
correspond to higher value of Al,, but GA_M46 are-is able to identify the more complex
variation patterns of low flows through the incorporation of IAR, BFI and P. Figures 910c
and 910d show that the data points of worm plots of GA_M46 are almost within the 95%

confidence intervals, thereby indicating an acceptable model fit_and a reasonable model
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construction.
<Figure 910>
Figure 10—11 presents the contribution of each selected explanatory variable to
In(6;)~In(§,) in observation year based on GA_M46 for AMy, in Huaxian and Xianyang. We
can find that for Huaxian, the simulation value of |n(49;) frequently occur below In(671) during
the two periods of about 1970-1982 and 1993-2003, which is in accordance with the observed

decrease in AM,, of Huaxian station during these periods. In the former period 1970-1982, the

largest-negative-contribution-isfound-in-both Al _and BFI contribute a lot of negative amount

to_In(6,)-In(8,). whereas during 1993-2003, the contribution of both Al,, _and BFI _becomes

much less. However, IAR_has almost equal negative contribution to In(@f)—ln(él) in_both

periods. Unlike the former therethree variables, the significant negative contribution of Al _is

only found in 1993-2003. For AM,,_of Xianyang, the contribution of IAR, Al _and BFI _is

similar to that at Huaxian station in two periods, however Al, _is not included in the final model.
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<Figure 11>

4.3. Discussion
The impacts of both human activities and climate change on low flows of the study area-ef
the-Wethe—basin led to time-varying climate and catchment conditions (TCCCs). Nonstationary

modeling for annual low flow series eensidering-using TCCCs_variables and/or HA variables as

explanatory variables is clearly different from either the stationary model (MOQ) or the time

covariate model (M1). The result demonstrates that considering multiple drivers (e.g. the
variability in catchment conditions), especially in such an artificially influenced river, is necessary
for nonstationary modeling of annual low flow series.

In this study area, nonstationary modeling considering TCCCs is supported by the following
facts and findings. For human activities, an important milestone representative is the completion
and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect.

3.1). Figure 5c shows the change of irrigation area in this basin. And Fthe change-point detection

test in Sect. 4.1 shows that significant change points of both annual recession constant (K ) and
low flow series occur exactly #a-at around 1971. This result demonstrates that changes in both K
and AM,, may involve a consequence of this project. In addition to human activities, climate
change also makes a considerable contribution to nonstationarity of low flows, as suggested by

nonstationary modeling using TCCCs variables with stepwise analysis. Actually, climate driving
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pattern may strengthen after nearly 1990, which is indicated by change-point detection test of both
annual mean temperature (T ) and annual precipitation (P ) as well as the behavior of annual low

flow series after nearly 1990. Therefore, the temporal variability in irrigation area, streamflow

recession, air temperature and precipitation (the frequency and volume of rain events) should be

the main driving factors of generating low flow regimes_in this basin._ Overall, the causes of

nonstationarity in category for two gauging stations have no clear difference, but have some

differences in the relative importance. As shown in Table 5, when modeling the low-flow series of

Huaxian using TCCCs variables, the optimal model (M4) preferred the variables are related to

recession process; however, for Xianyanq, the preferred variables isare related to temperature. The

reason for this may be that as a downstream station, Huaxian station suffers more intensive human

activity, so that the importance of temperature change to the low-flow change is reduced

meanwhile the importance of streamflow recession (related to the capability of water storage)

change is #nprevenhanced.

Ignoring the negative impacts of the errors in estimating annual recession constant (K)
which are caused by insufficient data points of extracted stream segments at some wet years may
lead to the propagation of high errors in annual recession analysis, and accordingly affect the
quality of nonstationary frequency analysis when using K as an explanatory variable. Further

study will give more reliable estimation of K through improving annual recession analysis.
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The related researches (Jiang et al., 2015; Yang and Yang, 2011 Yang and Yang, 2013; Zhang

et al., 2015) have applied the Budyko framework to analyze the impacts of climate change and/or

human activity on annual runoff. Indeed, for annual runoff, the Budyko framework is a bettergood

method than-theregression-modeling-method-usingr-this-study—because it used the mean annual

water-energy balance equation to consider generation process of total runoff. Unfortunately, to our

knowledge, there is a lack of thecoentrels-equation derived from basic physics laws for generation

process of low flows. Therefore, we emphasize the importance of TCCCs variables to modeling of

low-flow nonstationarity.

5. Conclusion

There is an increasing need to develop an effective nonstationary low-flow frequency model to
deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In
this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were
measured by annual time series of the eight indices, i.e., total precipitation (P), mean frequency of
precipitation events (1), temperature (T), potential evapotranspiration (ET), climate aridity index
(Algr), base-flow index (BFI), recession constant (K), and the recession-related aridity index (Alk).
The nonstationary distribution model was developed using both these eight TCCCs indices and/or

there HA indices as candidate explanatory variables for frequency analysis of time-varying annual

low flow series caused by multiple drivers. The main driving forces of the decrease in low flows in
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the Weihe River include reduced precipitation, warming climate, increasing irrigation area and

faster streamflow recession. Therefore, a complex deterioration mechanism resulting from these
factors demonstrates that in this arid and semi-arid area, the water resources could be vulnerable to
adverse environmental changes, thus portending increasing water shortages. The nonstationary
low-flow model considering TCCCs can provide the knowledge of low-flow generation

mechanism and give more reliable design of low flows for infrastructure and water supply.
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761 | Figure 12. Location, topography, hydro-meteorological stations and river systems of the Weihe
762  River basin.
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788 | Figure 56. The Pearson correlation coefficients matrix between the annual minimum flow series
789 | and eight-candidate explanatory variables in Huaxian (H) and Xianyang (X) stations; the darker
790  color intensity represents a higher level of correlation (blue indicates positive correlation, and red
791 indicates negative correlations).
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795 | Figure 67. Comparisons among MO, M1 and M2 based on the AIC values for the four observed

796  low-flow series in Huaxian (H) at left panel and Xianyang (X) at right panel; darker red color

797  represents a higher goodness of fit.
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Figure #8. Performance assessments of the—best-M2-moedel{GAM2)- GA_M2 for AM,, in
Huaxian (H) at left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots
of GA_M2 (red lines represent the centile curves estimated by GA_M2; the 50th centile curves are
indicated by thick red; the yellow-filled areas are between the 5th and 95th centile curves; the
black points indicate the observed series); (c) and (d) are the worm plots of GA_M2 for the
goodness-of-fit test; a reasonable model fit should have the data points fall within the 95%

confidence intervals (between the two red dashed curves).
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Figure 89. Comparisons ameng-of performance of stationary model (MO), time covariate model

(M1) and physical covariate models (M2

a, M2b, M3, M4, M5 and M6 with the—their

corresponding optimal explanatory variables) for AM,, in Huaxian (H) at left panel and

Xianyang (X) at right panel.
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Figure 910. Performance assessments of the—best-M4—model {GAM4}-GA_M6 for AM,, in
Huaxian (H) at left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots

of GA-M4-GA M6 (red lines represent the centile curves estimated by GA—M4 GA_M6; the 50th

centile curves are indicated by thick red; the yellow-filled areas are between the 5th and 95th
centile curves; the filled black points indicate the observed series); (c) and (d) are the worm plots
of GA—M4 GA M6 for the goodness-of-fit test; A reasonable model fit should have the data points

fall within the 95% confidence intervals (between the two red dashed curves).

58



1.04
054
g
g 0.0 +
=
E —0.5'
<
10
2154
T T T T T T T T T T
1960 1970 1980 1990 2000 2009  Alx BFIAlgy all
Observation year
= - — -
=
2
<
(@]
L]
T T T T T T T T T T T
1960 1970 1980 1990 2000 2009 T P BFI K all
Observation year
831 e Y
-
H | :
= |
-+ |
- T l
»: =} | I
= T |
g %
E < \/ > E D a
2 1
g wv n i
O <7 E
o T
=) ] 1
. ° |
|
i
I I I I I I I I I I I
1960 1970 1980 1990 2000 2010 Alx IAR BFI Algr ALL
Observation year
X
- T
= 4 1
1
1
1
oa T T |
] (=1 \ \
g P/\ Q '
.5 3 B
£ 31
S
3 1
(SR, i
S 1 !
: n H
1
1
= | AL
' T T T T T T T T T T
1960 1970 1980 1990 2000 2010 JAR Algr BFI ALL
Observation year
832

59



833 | Figure 1011. Contribution of selected explanatory variables to c; :In(@f)—ln(é_?l) in different
834 | periods based on GA_M4M6.
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838

839 Table

840  Table 1. The probability density functions and moments (the mean and variance) for the candidate

841  distributions in this study.

Distributions Probability density function Distribution moments
1/6,°-
-, -0,
Pearson-111 r(1/92 )(91,92 ) A0, Var[Y] - g%
y>6,,6,>0,6>06,>0
1/0,°-1
y) y
fv(y‘al'az): ( zexp[ j E[Y]:9
Vo, 0.0.2 1
eemme rives)(ae) “ var[Y]=676;
y>0,6,>0,6,>0
6,-1 6,
7] : : E[Y]=0r(1+7/6,
Weibull fv(y‘g“gz)z[?z][alj eXp[f[el] ] e
’ A ' Var[Y]:6’1{1"(1+£]—1"2[1+iﬂ
y>0,6,>0,6,>0 0, 0,
1, (1]6,6) = —=ex [log(y)-6.] E[Y]=we!
Lognormal G T yoN2r P 26, Var[Y]=w(w-1)e*
y>0,6,>0 w=exp(6,°)
o, 0,
_ Y61 _ 6 E[y]=9,f2+i2,7
fv(y\é’lﬂzﬂs):i[H@[y QH exp{{l+ﬁ3[y @H } A
GEV o, o, o, Var[Y] =6, (772 i )/032
—0 <, <0,0,>0,-0< 0, <o 7, =T (1-m6,)
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843 | Table 2. Description of the developed nonstationary models using time, —e+the-indices-6fTCCCs
844 | indices and/or HA indices as explanatory variables.
D
Codes Variable Fhe-numbers-of
category GA R el P4 e
category variables
Stationary— MO GA-MO WELMO LOGNO-MO PHLMO GEVAMO - Zero
MI  GA-MI WEIMI LOGNO-MI PHEMI GEVMI Fime— One
M2 GA_M2  WELM2 LOGNO_-M2 PIHH_-M2 GEV_M2 FCCCs— One
Nonstationary
e e T e N e
identified-by the-
M4 GA-M4  WELM4  LOGNO-M4  PHH-M4  GEV-M4 FCCCs— . Jocti
845
Distribution Description
Model
Variable
codes GA El LOGNO =11} GEV The numbers of variables
category
MO GA_MO WEI_MO0 LOGNO_MO PIIl_MO GEV_MO0 - Zero
M1 GA_ M1 WEI_M1 LOGNO_M1 PlI_M1 GEV_M1 Time One
M2a GA M2a WEI_M2a LOGNO M2a Plll_M2a GEV_M2a TCCCs One
M2b GA M2bh WEI_M2b LOGNO M2b PlI_M2b GEV_M2b HA One
M3 GA M3 WEI_M3 LOGNO_M3 PIIl_M3 GEV_M3 TCCCs Two
M4 GA_M4 WEI_M4 LOGNO M4 PllI_M4 GEV_M4 TCCCs Identified by the stepwise selection
M5 GA_M5 WEI_M5 LOGNO_M5 PllI_M5 GEV_M5 HA Identified by the stepwise selection
M6 GA_M6 WEI_M6 LOGNO_M6 PllI_M6 GEV_M6 TCCCs+HA Identified by the stepwise selection
846
847
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848

849
850

Table 3. The summary of candidate explanatory variables and reason of selection.

Category ~ Name Indices Reason of selection (related to) Unit
TCCCs
P Precipitation Main supply source mm
2 Mean frequency of precipitation events Water supply intensity per day
T Temperature Evaporation loss °C
ET Potential evapotranspiration Evaporation loss mm
Algr Climate aridity index Degree of meteorological drought -
BFI Base-flow index Water storage capability -
K Recession constant Water storage capability day
Al Recession-related aridity index Both the water storage and supply capability -
HA
1AR Irrigation area Both irrigation diversion and evaporation loss 10° hm?
PO populin e o,y
G crossdomestc proc e ol 4
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851

852 | Table 34. The results of trend test and change-point detection for_both the four low flow series and

853 | eightecandidate-explanatory-TCCCs variables in Huaxian and Xianyang-statiens.

. . Mann-Kendall test Pettitt's test
Station Variable -
S p-value Change point p-value
Huaxian
AM; -564 6.91E-05(***) 1968 1.34E-03(**)
AM; -560 7.79E-05(***) 1968 1.44E-03(**)
AM35 -438 2.01E-03(**) 1971 4.85E-03(**)
AMzo -378 7.71E-03(**) 1971 9.96E-03(**)
P -292 3.97E-02(*) 1985 1.86E-01()
A -632 8.20E-06(***) 1984 3.02E-04(***)
T 752 1.11E-07(***) 1993 8.17E-06(***)
ET 548 1.11E-04(***) 1993 1.98E-03(**)
Algr 384 6.79E-03(**) 1990 6.03E-02(.)
BFI 52 7.19E-01() 1998 3.88E-01()
K -312 2.79E-02(*) 1968 8.11E-02(.)
Alg 376 8.04E-03(**) 1971 3.60E-02(*)
Xianyang
AM; -517 2.65E-04(***) 1968 2.2E-03(**)
AM; -483 6.58E-04(***) 1970 2.5E-03(**)
AM35 -474 8.29E-04(***) 1971 2.2E-03(**)
AM3, -570 5.78E-05(***) 1993 4 5E-04(***)
P -414 3.51E-03(**) 1990 1.45E-02(*)
A -652 4.21E-06(***) 1984 6.00E-05(***)
T 724 3.22E-07(***) 1993 5.41E-06(***)
ET 372 8.74E-03(**) 1993 3.01E-03(**)
Aler 454 1.37E-03(**) 1993 8.82E-03(**)
BFI 64 6.56E-01( ) 2003 8.65E-01( )
| K -210 1.39E-01() 1966 2.03E-01()
| Al 290 4.11E-02(*%) 1968 1.63E-01()
854 Signif. codes: 0 “***#70.001 ‘**>0.01 “*>0.05 > 0.1 <*1
855
856
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861
862

Table 5. The summary of frequency analysis using GA distribution for AM,, _in Huaxian and Xianyang.

Distribution parameters

Station Model Optimal variable AIC
codes In(4,) In(6,) 6
Huaxian
GA MO0 - 232.3 1.09 -0.133 -
GA M1 t 2255 1.09-0.32t -0.133 -
GA M2 Al 217.4 1.09-0.59Al -0.133 -
GA M2b IAR 218.3 1.09-0.471AR -0.133 -
GA_M3 Alx, BFI 213.7 1.09-0.50Alx +0.32BFI -0.133 -
GA M4 Al, BFI, Algr 2111 1.09-0.40AIx+0.32BFI -0.34Algr -0.133 -
GA M5 1AR 218.3 1.09-0.471AR -0.133 -
GA_M6 Alg, 1AR, BFI, Aler 207.0 1.09-0.30AIk-0.271AR+0.32BF1-0.23Aler -0.133 -
Xianyang
GA MO0 - 285.8 1.59 -0.184 -
GA M1 t 270.1 1.59-0.48t -0.184 -
GA M2a T 270.1 1.59-0.50T -0.184 -
GA_M2b 1AR 267.8 1.59-0.501AR -0.184 -
GA M3 TP 267.1 1.59-0.34T+0.32P -0.184 -
GA M4 T,P,BFI,LK 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184 -
GA M5 1AR 267.8 1.59-0.501AR -0.184 -
GA_ M6 1AR, Algr, BEI 259.7 1.59-0.281AR-0.36 Ale7+0.26BFI -0.184+0.23IAR -
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864
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866

867

AMys

AMag

AhBF

AbBRE-Aler P

AhBF

A BRI K

Ahe
Al BFE

A BREEAL

0.43-0.65Al+0.48BF1

0:43-0-62Ak+0-57BF}-0-60Al:1

0-83-0-75Ak
0.83-0.65Al +0.43BF}

0-83-0-70Ak+0-42BF}

1-09-0:59Ak¢
1:00-0-5AK+0:32BF}

1-09-0:4AK+0-32BFH-0-34Ak
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