
We appreciate the editor and both referees for their valuable and insightful comments, 

which have greatly improved our manuscript. Below we describe the modifications 

made according to their comments. For clarity, comments are given in italics and blue, 

and our responses are given in plain text. The line numbers within brackets indicate 

the location of the modifications in the revised manuscript. The revised manuscript 

with all revisions tracked is appended at the end of this document. 

 

-Referee#1- 

There are many researches focusing on reasons, causes and modelling of 

nonstationarity of hydrological extremes such as: Xihui Gu, Qiang Zhang, Vijay P. 

Singh, Peijun Shi, 2017. Nonstationarities in the occurrence rate of heavy 

precipitation across China and its relationship to climate teleconnection patterns. 

International Journal of Climatology, DOI: 10.1002/joc.5058. Xihui Gu, Qiang 

Zhang, Vijay P. Singh, Peijun Shi, 2017. Changes in magnitude, frequency and 

timing of heavy precipitation across China and its potential links to summer 

temperature. Journal of Hydrology, 547, 718-731. Xihui Gu, Qiang Zhang, Vijay 

P. Singh, Peijun Shi, 2017. Nonstationarity in timing of extreme precipitation 

across China and impact of tropical cyclones. Global and Planetary Change, 149, 

153-165. Xihui Gu, Qiang Zhang, Vijay P. Singh, Lin Liu, 2016. Nonstationarity 

in the occurrence rate of floods in the Tarim River basin, China, and related 

impacts of climate indices. Global and Planetary Change, 142, 1-13. Qiang 

Zhang, Xihui Gu, Vijay P. Singh, Mingzhong Xiao, Xiaohong Chen, 2015. 

Evaluation of flood frequency under non-stationarity resulting from climate 

change and human activities in the East River basin, China. Journal of 

Hydrology, 527, 565-575. Qiang Zhang, Xihui Gu, Vijay P. Singh, Mingzhong 

Xiao, Chong-Yu Xu, 2014. Stationarity of annual flood peaks during 1951-2010 

in the Pearl River basin, China. Journal of Hydrology, 519, 3263-3274. What are 

the motivations, research objectives and novel points of this current study when 

compared to standing researches? My strong suggestion is that thorough 

literature review is pretty necessary. New findings, new ideas, new methods, if any, 

should be pointed out with enough citations to justify authors’ statements. 

AUTHORS’ REPONSE: Thank you for introducing the overlooked references and 

for the good suggestion of enhancing the literature review. Following the advice of the 

reviewer, we have made a more comprehensive literature survey by citing and 

discussing important recent publications in the field, including those introduced by the 

reviewer. We have also improved the description of motivations, research objectives 

and novel points of this current study. The related paragraphs have been changed into 

the following: 

“In hydrological analysis and design, conventional frequency analysis estimates the 

statistics of a hydrological time series based on recorded data with the stationary 

hypothesis which means that this series is „free of trends, shifts, or periodicity 

(cyclicity)‟ (Salas, 1993). However, global warming and human forces have changed 



climate and catchment conditions in some regions. Time-varying climate and 

catchment conditions can affect all aspects of the flow regime, i.e. changing the 

frequency and magnitude of floods, altering flow seasonality, and modifying the 

characteristics of low flows, etc. The hypothesis of stationarity has been suspected 

(Milly et al., 2008). If this problematic method is still used, the frequency analysis 

may lead to high estimation error in hydrological design. Therefore, considerable 

literatures have introduced the concept of hydrologic nonstationarity into analysis of 

various hydrological variables, such as annual runoff (Arora, 2002; Jiang et al., 2017; 

Jiang et al., 2015; Liu et al., 2017; Xiong et al., 2014; Yang and Yang, 2013), flood 

(Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; Kwon et al., 2008; 

López and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 2016; 

Zhang et al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; 

Liu et al., 2015), precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c; 

Mondal and Mujumdar, 2015; Shahabul Alam et al., 2014; Villarini et al., 2010) and 

so on. Compared with the literatures on annual runoff, floods and precipitation, the 

literatures on the nonstationary analysis of low flow are relatively limited.” [Lines 

62-78] 

“To our knowledge, compared with the nonstationary flood frequency analysis, the 

studies on the nonstationary frequency analysis of low-flow series is not very 

extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001). 

Most of these studies explain nonstationarity of low-flow series only by using climatic 

indicators or a single indicator of human activity. However, the indicators of 

catchment conditions (e.g. recession rate) related to physical hydrological processes 

have seldom been attached in nonstationary modeling of low flow series.This lack of 

linking with hydrological process makes it impossible to accurately quantify the 

contributions of influencing factors for the nonstationarity of low flow series, and 

such a scientific demand for tracing the sources of nonstationarity of low-flow series 

and qualifying their contributions motivated the present study…” [Lines 100-109] 

“The goal of this study is to trace origins of nonstationarity in low flows through 

developing a nonstationary low-flow frequency analysis framework with the 

consideration of the time-varying climate and catchment conditions (TCCCs) and 

human activity (HA). In this framework, the climate and catchment conditions are 

quantified using the eight indices, i.e., meteorological variables (total precipitation P , 

mean frequency of precipitation events  , temperature T and potential 

evapotranspiration ET ), basin storage characteristics (base-flow index BFI , 

recession constant K ) and aridity indexes (climate aridity index ETAI , the 

recession-related aridity index KAI ). The specific objectives of this study are: (1) to 

find the most important index to explain the nonstationarity of low-flow series; (2) to 

determine the best subset of TCCCs indices and/or human activity indices (i.e., 

population POP, irrigation area IAR, and gross domestic product GDP) for final 

model through stepwise selection method to identify nonstationary mode of low-flow 

series; and (3) to quantify the contribution of selected explanatory variables to the 

nonstationarity.” [Lines 131-142] 



There are no exact and/or results included in the Abstract section. Or only limited 

words describing results. More details and particularly in a quantitative way 

should be provided for description of results and conclusions 

AUTHORS’ REPONSE: The reviewer is correct. In the modified abstract, we have 

provided more quantitative results and conclusions. In the revision of the second part 

of the Abstract, the description of results and findings has been modified as following:  

“The results from stepwise regression for the optimal explanatory variables show that 

the variables related to irrigation, recession, temperature and precipitation play an 

important role in modeling. Specifically, analysis of annual minimum 30-day flow in 

Huaxian shows that AIK is of the highest relative importance among the optimal 

variables, followed by IAR (note to reviewer: Irrigated area – a newly added index in 

the revised version), BFI and AIET; and nonstationary GA distribution model with 

these optimal variables has an AIC value of 207.0, while the AIC values of other 

models just with AIK or time as explanatory variables or without any variable are 

217.4, 225.5, 232.3, respectively. We conclude that the incorporation of multiple 

indices related to low-flow generation permits tracing various driving forces.” [Lines 

29-36] 

In Introduction section, it was noticed that there are numerous researches focused 

on nonstationary low flow frequency analysis. However, no novel points were 

listed and hence research motivations were not well justified. Besides, as a 

tributary of the Yellow River, evaporation or evapotranspiration, irrigation, 

population, GDP and so on should be included as factors influcing low flow 

changes. Related works have been done using Budyko framework by Prof. Dawen 

Yang from Tsinghua University and Prof. Qiang Zhang from Beijing Normal 

University and other colleagues from China. Besides, I still have no idea about 

how the authors developed the framework to evaluate low flow frequency from a 

nonstationary perspective. 

AUTHORS’ REPONSE: Thanks to the reviewer for pointing out this. Firstly, in the 

introduction section, the related part has been reorganized and modified in order to 

clarify our research motivations more clearly. Related part for study motivation, refer 

to the response of the first comment above. 

Secondly, following the reviewer‟s advice, besides the following indices (K, AIK and 

BFI) that are related to human activities and the indices (K, AIK and BFI) that are 

linked to physical hydrological processes, in the revised version, we have included the 

irrigation area (IAR), the Gross Domestic Product (GDP), and population (POP) 

indices. The process of their change with time has been presented (see Fig. 5 in the 

revised manuscript). The Pearson correlation coefficients between low-flow series and 

these indices have been presented (see Fig. 6 in the revised manuscript). The models 

(M2b, M5, and M6, as described in Table 2 in the revised manuscript) are added. The 

summary of their results have been presented in Table 5 in the revised manuscript. 

Analysis of all new results has been shown in Figs. 7, 8, 9, 10 and 11 in the revised 

manuscript. Besides, we have added the following statements in the discussion section 



in the revised manuscript. 

“The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 

2013; Zhang et al., 2015) have applied the Budyko framework to analyze the impacts 

of climate change and/or human activity on annual runoff. Indeed, for annual runoff, 

the Budyko framework is a good method because it used the mean annual 

water-energy balance equation to consider generation process of total runoff. 

Unfortunately, to our knowledge, there is a lack of equation derived from basic 

physics laws for generation process of low flows. Therefore, we emphasize the 

importance of TCCCs variables to modeling of low-flow nonstationarity.” [Lines 

507-513] 

Thirdly, the framework is composed of the time varying and GLM methods, and the 

method of stepwise selection for TCCCs indices and human activity indices. And to 

address this comment, we have added a flow chat of methodology (Fig. 1 in the 

revised manuscript) to explain how the framework is organized. 

In Method section, a working framework should be formulated besides some 

descriptions. 

AUTHORS’ REPONSE: Thank you for your good suggestion. Following the 

reviewer‟s suggestion we have added a flow chart of methodology, as show in Fig. 1 

in the revised manuscript. 

Why the authors choose Weihe River basin as a case study? Are there any unique 

features of the study region when compared to other alternative rivers? 

AUTHORS’ REPONSE: The nonstationarity of annual runoff in Weihe River basin 

has been shown to be very significant (Lin et al., 2012; Xiong et al., 2014). The 

previous studies have demonstrated that the climate change and human activities play 

an important role in annual runoff changes. When compared to other alternative rivers, 

the nonstationarity mode of low flows in the study region is so complex that it is 

difficult to be identified due to the influence of various factors. This feature aroused 

our interest in choosing the study area. We try to demonstrate that the nonstationarity 

of low flows in this basin is caused by multiple factors and more effective analysis 

model should incorporate not only a single climate index or human activity indices 

but also the other climate indices and catchment condition indices. We have clarified 

this point. 
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-Referee#2- 

General Comment This work covered an interesting topic. It is qualified for 

HESS after a minor revision. Authors incorporated multiple variables into 

time-varying model by GLM, and called this a nonstationary mode considering 

TCCCs. They calculated and compared AIC of this mode with that of the 

stationary mode and the nonstationary mode with a single covariate in two 

stations in Weihe. Then they concluded this TCCCs nonstationary mode was the 

optimal one for nonstationary low flow frequency analysis in Weihe. 

AUTHORS’ REPONSE: Thank you for your positive evaluation and a good 

summary of the paper.  

It’s a pity that they did a lot of work without clearly stating their motivation. 

Authors first raised an issue in review that the previous studies in low flow failed 

to provide a link between hydrological process and frequency analysis, and this 

made it difficult for tracing the origins of low flow change. While readers might 

think they intend to trace these origins (which was also hinted by the title), they 

defended that “the goal of this study is to develop a nonstationary low-flow 

frequency analysis framework”. It is better for them to keep consistent in the 

whole introduction section. 

AUTHORS’ REPONSE: Thank you for your comments and the good suggestion. 

This is also pointed out by reviewer 1. Following the reviewer‟s advice, we have also 

better stated our study motivation as following.  

“To our knowledge, compared with the nonstationary flood frequency analysis, the 

studies on the nonstationary frequency analysis of low-flow series are not very 

extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001). 

Most of these studies explain nonstationarity of low-flow series only by using climatic 

indicators or a single indicator of human activity. However, the indicators of 

catchment conditions (e.g. recession rate) related to physical hydrological processes 

have seldom been attached in nonstationary modeling of low flow series.This lack of 

linking with hydrological processes makes it impossible to accurately quantify the 

contributions of influencing factors for the nonstationarity of low flow series, and 

such a scientific demand for tracing the sources of nonstationarity of low-flow series 

and qualifying their contributions motivated the present study…” [Lines 100-109] 

We have also explicitly defined and stated the study objectives in the 5
th

 paragraph of 

the Introduction Section, as follows:  

“The goal of this study is to trace origins of nonstationarity in low flows through 

developing a nonstationary low-flow frequency analysis framework with the 

consideration of the time-varying climate and catchment conditions (TCCCs) and 



human activity (HA). In this framework, the climate and catchment conditions are 

quantified using the eight indices, i.e., meteorological variables (total precipitation P , 

mean frequency of precipitation events  , temperature T and potential 

evapotranspiration ET ), basin storage characteristics (base-flow index BFI , 

recession constant K ) and aridity indexes (climate aridity index ETAI , the 

recession-related aridity index KAI ).The specific objectives of this study are: (1) to 

find the most important index to explain the nonstationarity of low-flow series; (2) to 

determine the best subset of TCCCs indices and/or human activity indices (i.e., 

population POP, irrigation area IAR, and gross domestic product GDP) for final 

model through stepwise selection method to identify nonstationary mode of low-flow 

series; and (3) to quantify the contribution of selected explanatory variables to the 

nonstationarity.” [Lines 131-142] 

Besides, to better show the advantage of this framework, which was composed of 

the time-varying and GLM method, they should compare it with other models 

using only climatic indicators or a single indicator of human activity, just as they 

mentioned in the review, not just the mode with either AIK or BFI as the 

explanatory variable. 

AUTHORS’ REPONSE: Thank you for the comment. Our study had included the 

model with climate indicators. But, indeed, the model with a single indicator of 

human activity (e.g. irrigation, population, GDP as mentioned by the first reviewer) 

was not involved in the original submission. Thus to address this comment, the main 

and supplementary texts have been revised to compare the nonstationary mode 

considering TCCCs with the nonstationary mode considering human activity 

(irrigation, population, GDP), as also stated in the reply to reviewer 1. The process of 

their change with time has been presented (see Fig. 5 in the revised manuscript). The 

Pearson correlation coefficients between low-flow series and these indices have been 

presented (see Fig. 6 in the revised manuscript). The models (M2b, M5, and M6, as 

described in Table 2 in the revised manuscript) are added. The summary of their 

results has been presented in Table 5 in the revised manuscript. All new results have 

been shown in Figs. 7, 8, 9, 10 and 11 in the revised manuscript. Statements in the 

Results Section have been added and revised, as shown in the revised manuscript with 

tracked changes.  

In addition, there are some mistakes and improper statements in this paper; 

outlines of methods and results are unclear, and the discussion is weak. It is 

better for authors to put together contents of results and discussion, and further 

discuss their results and compared with other related works. 

AUTHORS’ REPONSE: Thank you for your comment. The mistakes and improper 

statements have been carefully checked and corrected in the revised version; to clarify 

methods, a flow chart of methodology and a table which summarizes the explanatory 

variables have been added; and we have revised the contents of results and discussion, 

following the reviewer‟s good suggestion. The revised manuscript has included 

further discussion of results and comparison with other related works as following: 



“Overall, the causes of nonstationarity in category for two gauging stations have no 

clear difference, but have some differences in the relative importance. As shown in 

Table 5, when modeling the low-flow series of Huaxian using TCCCs variables, the 

optimal model (M4) preferred the variables are related to recession process; however, 

for Xianyang, the preferred variables are related to temperature. The reason for this 

may be that as a downstream station, Huaxian station suffers more intensive human 

activity, so that the importance of temperature change to the low-flow change is 

reduced, and meanwhile the importance of streamflow recession (related to the 

capability of water storage) change is enhanced.” [Lines 493-501] 

“The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 

2013; Zhang et al., 2015) have applied the Budyko framework to analyze the impacts 

of climate change and/or human activity on annual runoff. Indeed, for annual runoff, 

the Budyko framework is a good method because it used the mean annual 

water-energy balance equation to consider generation process of total runoff. 

Unfortunately, to our knowledge, there is a lack of equation derived from basic 

physics laws for generation process of low flows. Therefore, we emphasize the 

importance of TCCCs variables to modeling of low-flow nonstationarity.” [Lines 

507-513] 

Specific Comment The logic of review in the introduction is not smooth. Some 

references mentioned in the paragraph starting from Line 52, such as Lars 

Gottschalk’s work, were badly concluded and they’d better be put in the next 

paragraph. 

AUTHORS’ REPONSE: Thank you for pointing out this and for your good 

suggestion. To address your comment, we have revised the introduction as mentioned 

above. 

A flow chart of methodology is needed. 

AUTHORS’ REPONSE: This is a good point. To address your comment, we have 

added it (Fig. 1 in the revised manuscript). 

Line 127 Meaning of this sentence is obscure. 

AUTHORS’ REPONSE: The sentence has been revised as following: “The 

distribution type used to build the nonstationary model is outlined” 

Further explanation for the selection of 8 candidate variables is needed. 

AUTHORS’ REPONSE: Thank you for the comment. To address this comment, the 

1st paragraph of „Section 2.3 Candidate explanatory variables‟ has been revised. And 

the reason for the selection of 8 candiadte variables has been listed in Table 3 in the 

revised manuscript. 

Indices more related to irrigation, like irrigation area, need to be considered, 

since (Line278) In the Weihe basin, the impacts of agricultural irrigation on 

runoff have been found to be significant. 



AUTHORS’ REPONSE: Thank you for the comment. Following reviewer‟s 

suggestions, we have included this index (irrigation area) as mentioned above. 

Both those 8 explanatory variables and data resources can be summarized in two 

tables. 

AUTHORS’ REPONSE: This is a good point. To address this comment, we have 

revised the text and added Table 3 in the revised manuscript. 

I don’t see much use in Figure 2. 

AUTHORS’ REPONSE: Thank you for the comment. Following your suggestion, 

the Figure has been deleted in the revised manuscript.  

Why do you need to study all the series from AM1, 7, 15 to 30? 

AUTHORS’ REPONSE: The main reason for including four series is to investigate 

whether the time scale of the series affects the nonstationary mode. As shown in 

Figure 7 (the revised manuscript), the effect of time scale is existed but limited. In 

response to this good comment, we have revised the part of the Multiple Covariate 

Analysis Section to focus on the AM30 series. 

In some subplans in Figure 8, AIC of either M2 or M3 is worse than M1. What is 

the probable cause? The conclusion in Line 391 cannot be directly generated 

from Figure8. 

AUTHORS’ REPONSE: We have explained that this phenomenon mainly appears in 

the AM1 and AM7 series. AM1 and AM7 series are more vulnerable, which means that 

multiple causes can affect them. The nonstationary mode with one or two physical 

explanatory variables (M2 or M3) cannot work well for AM1 and AM7. However, the 

overall decreased trend caused by multiple factors is consistent with the nonstationary 

mode with time (M1).  

What is the impact of location difference on the different AIC results in two 

stations? Needs to add discussion. 

AUTHORS’ REPONSE: This is a good point. Following the reviewer‟s suggestion, 

we have added a supplemental part to the discussion section (see lines 482-489 in the 

revised manuscript). 

The standard of selecting M4 variables with stepwise selection method needs to 

be further clarified. 

AUTHORS’ REPONSE: Following the reviewer‟s suggestion, we have clarified the 

standard of the models‟ variables using Fig. 1 in the revised manuscript.  

Table5 and 6 can be merged into one table.  

AUTHORS’ REPONSE: Agree, corrected.  

Formula 2, no need to put “i=” on the top 



AUTHORS’ REPONSE: Corrected. 

Table2, add explanation for parameters down below the table 

AUTHORS’ REPONSE: Corrected. 

The definition, reason of selection, and formula of 8 indices should be listed in a 

table. 

AUTHORS’ REPONSE: Corrected. 

 Line228, 234, 242 add blank space before the paragraph (need to check in the 

whole paper) 

AUTHORS’ REPONSE: Corrected.  

Line298 slash tag between “n” and “day” is missing (check the whole paper) 

AUTHORS’ REPONSE: Corrected.  

Line304 mistake in time tense 

AUTHORS’ REPONSE: Corrected.  

Line388 incomplete sentence 

AUTHORS’ REPONSE: Corrected.  

Figure1 mark the location of Weihe in the map of China with a rectangular frame 

AUTHORS’ REPONSE: Corrected. 

Figure3 adding R 

AUTHORS’ REPONSE: Corrected. 

Figure 3 &4 lines are too thick 

AUTHORS’ REPONSE: Corrected. 

Figure5&6 differences among colors are too delicate to be seen 

AUTHORS’ REPONSE: Corrected. 

Table 3 &4 add division lines among rows of different stations 

AUTHORS’ REPONSE: Corrected. 

Mistake in references, year of “Bivariate frequency analysis of nonstationary 

low-flow series based on the time-varying copula” was 2015 

AUTHORS’ REPONSE: Thank you for pointing out this. We have corrected this. 
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Abstract:  16 

Under the background of global climate change and local anthropogenic activities, multiple 17 

driving forces have introduced a variety of various non-stationary components into low-flow series. 18 

This has led to a high demand on low-flow frequency analysis that considers nonstationary 19 

conditions for modeling. In this study, through a nonstationary frequency analysis framework of 20 

low-flow frequency analysis has been developed on basis of with the Generalized Linear Model 21 

(GLM) to consider time-varying distribution parameters,. In GLMs, the candidate multiple 22 

explanatory variables wereas incorporated to explain the time-varying the variation in low-flow 23 

distribution parameters. These variables are comprised of the three indices of human activities (i.e., 24 

population POP, irrigation area IAR, and gross domestic product GDP) and the eight measuring 25 

indices of the climate and catchment conditions in low flow generation, (i.e., total precipitation P, 26 

mean frequency of precipitation events λ, temperature T, potential evapotranspiration ET, climate 27 

aridity index AIET, base-flow index BFI, recession constant K and the recession-related aridity 28 

index AIK). This framework was applied to model the annual minimum flow series of both 29 

Huaxian and Xianyang gauging stations in the Weihe River, China. Stepwise regression analysis 30 

was performed to obtain the best subset of those candidate explanatory variables for the final 31 

optimum model. The results from stepwise regression for the optimal explanatory variables show 32 

that the inter-annual variability in the variables of those selected best subsets  the variables 33 
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related to irrigation, recession, temperature and precipitation plays an important role in modeling 34 

annual low flow series. Specifically, analysis of annual minimum 30-day flow in Huaxian shows 35 

that AIK is of the highest relative importance among the optimal variables, followed by IAR, BFI 36 

and AIET;, and nonstationary GA distribution model with these optimal variables hasve an AIC 37 

value of 207.0, while the AIC values of other models just with AIK or time as explanatory variables 38 

or without any variable are 217.4, 225.5, 232.3, respectively.  AIK is of the highest relative 39 

importance among the best subset of eight candidates, followed by BFI and AIET. We conclude 40 

that The the incorporation of multiple indices related to low-flow generation permits tracing 41 

various driving forces. The established link in nonstationary analysis will be beneficial to predict 42 

analyze future occurrences of low-flow extremes in similar areas. 43 

Keywords: Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity; 44 

Low-flow Frequency Analysis;  45 

 46 

1. Introduction 47 

Low flow is defined as the „flow of water in a stream during prolonged dry weather‟ (WMO, 48 

1974). Yu et al. (2014) quantitatively described a low flow event as a segment of hydrograph 49 

during a period of dry weather with discharge values below a preset (relatively small) threshold. 50 

According to WMO (2009), annual minimum flows averaged over several days can be used to 51 
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measure low flows. During low-flow periods, the magnitude of river flow will greatly restrict its 52 

various functions (e.g. providing water supply for production and living, diluting waste water, 53 

ensuring navigation, meeting ecological water requirement). Therefore, Tthe investigation of the 54 

magnitude and frequency of low flows is of primary importance for engineering design and water 55 

resources management (Smakhtin, 2001). For In recent years, low flows, as an important part of 56 

river flow regime, have been attracting the an increasing attentions of hydrologists and ecologists, 57 

due to in the context of the significant impacts of climate change and human activities on most 58 

functions (e.g. providing water supply for production and living, diluting waste water, ensuring 59 

navigation, meeting ecological water requirement) of river flow during low-flow periods. 60 

(Bradford and Heinonen, 2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu 61 

et al., 2015; Sadri et al., 2015; Smakhtin, 2001; WMO, 2009). In general, under the impact of a 62 

changing environment, combinations of multiple factors, such as precipitation change, temperature 63 

change, irrigation area change and construction of reservoirs, can drive various patterns of 64 

streamflow changes (Liu et al., 2017; Tang et al., 2015). Unfortunately, when subjected to a variety 65 

of influencing forces, low flow is more vulnerable than high flow or mean flow. Therefore, it is a 66 

pretty important issue in hydrology to identify low-flow changes, track multiple driving factors 67 

and quantify their contributions from the perspective of hydrological frequency analysis.  68 

 69 
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In hydrological analysis and design, conventional frequency analysis estimates the statistics 70 

of a hydrological time series based on recorded data with the stationary hypothesis which means 71 

that this series is “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). However, global 72 

warming and human forces have changed climate and catchment conditions in some regions. 73 

Time-varying climate and catchment conditions can affect all aspects of the flow regime, i.e. 74 

changing the frequency and magnitude of floods, altering flow seasonality, and modifying the 75 

characteristics of low flows, etc. The hypothesis of stationarity has been suspected (Milly et al., 76 

2008). If this problematic method is still used, the frequency analysis may lead to high estimation 77 

error and costlyin hydrological design. Therefore, considerable literatures have introduced the 78 

concept of hydrologic nonstationarity into analysis of various hydrological variables, such as 79 

annual runoff (Arora, 2002; Jiang et al., 2017; Jiang et al., 2015; Liu et al., 2017; Xiong et al., 80 

2014; Yang and Yang, 2013), flood (Chen et al., 2013; Gilroy and Mccuen, 2012; Gu et al., 2016; 81 

Kwon et al., 2008; López and Francés, 2013; Tang et al., 2015; Xiong et al., 2015b; Yan et al., 82 

2016; Zhang et al., 2014; Zhang et al., 2015), low flow (Du et al., 2015; Jiang et al., 2014; Liu et 83 

al., 2015), precipitation (Cheng and AghaKouchak, 2014; Gu et al., 2017a, b, c; Mondal and 84 

Mujumdar, 2015; Villarini et al., 2010) and so on. Compared with the literatures on annual runoff, 85 

floods and precipitation, the literatures on the nonstationary analysis of low flow are veryrelatively 86 

limited.  87 
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Previous hydrological literatures on frequency analysis of nonstationary low flow 88 

hydrological series mainly focus on two aspects: development of nonstationary method and 89 

exploration of covariates reflecting changing environments. Strupczewski et al. (2001) presented 90 

the method of time-varying moment which assumes that the hydrological variable of interest obeys 91 

a certain distribution type, but its moments change over time. The method of time-varying moment 92 

was modified to be the method of time-varying parameter values for the distribution representative 93 

of hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the 94 

Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and 95 

Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying 96 

parameter method can be extended to the physical covariate analysis by replacing time with any 97 

others physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; López and 98 

Francés, 2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example, 99 

Jiang et al. (2014) used reservoir index as an explanatory variables based on the time-varying 100 

copula method for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River, 101 

China. Du et al. (2015) took precipitation and air temperature as the explanatory variables to 102 

explain the inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea 103 

Surface Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years 104 

ahead), the winter areal temperature and precipitation as the candidate explanatory variables to 105 
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explain the inter-annual variability in low flows of Yichang station, China. Kam and Sheffield 106 

(2015) ascribed the increasing inter-annual variability of low flows over the eastern Uniteds States 107 

to North Atlantic Oscillation and Pacific North America.  108 

Low flows are more vulnerable to influences of climate change and human activities than 109 

high flows. However, To our knowledge, compared with the nonstationary flood frequency 110 

analysis, the studies on the nonstationary frequency analysis of low-flow series is not very 111 

extensive because of incomplete knowledge of low flow generation (Smakhtin, 2001). Most of 112 

these studies explain nonstationarity of low-flow series only by using climatic indicators or a 113 

single indicator of human activity. However, the indicators of catchment conditions (e.g. recession 114 

rate) related to physical hydrological processes have seldom been attached in nonstationary 115 

modeling of low flow series.  This leads to lack of linking with hydrological process, which in 116 

turn would exclude further analysis, such as accurately tracing origins of change in low flow 117 

seriesThis lack of linking with hydrological processes makes it impossible to accurately quantify 118 

the contributions of influencing factors for the nonstationarity of low flow series, and such a 119 

scientific demand for tracing the sources of nonstationarity of low-flow series and qualifying their 120 

contributions motivated the present study. The knowledge of low-flow generation has been 121 

increased by efforts of hydrologists, which can help develop physical covariates to address 122 

nonstationarity. Low flows generally originate from groundwater or other delayed outflows 123 
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(Smakhtin, 2001; Tallaksen, 1995). Their generation relates to both an extended dry weather 124 

period (leading to a climatic water deficit) and complex hydrological processes which determine 125 

how these deficits propagate through the vegetation, soil and groundwater system to streamflow 126 

(WMO, 2009). Thus, not only climate conditions drivers (e.g. potential evaporation exceeds 127 

precipitation), but also catchment conditions drivers (e.g. the faster hydrologic response rate to 128 

precipitation) can cause low flows.  129 

The significant factors such as precipitation, temperature, evapotranspiration, streamflow 130 

recession, large-scale teleconnections and human forces may play important roles in influencing 131 

low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; Jones et al., 132 

2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. (2013) 133 

presented a derived low flow probability distribution function with climate and catchment 134 

characteristics parameters (i.e., the mean length of dry spells 
-1  and recession constant of 135 

streamflow K  ) as its distribution parameters. Botter et al. (2013) derived “a measurable index” 136 

(
-1 K ) which can be used for discriminating erratic river flow regimes from persistent river flow 137 

regimes. Recently, in Van Loon and Laaha (2015) used climate and catchment characteristics (e.g. 138 

the duration of dry spells in precipitation and the base flow index) to explain the duration and 139 

deficit of hydrological drought event and offered a further understanding of low-flow generation. 140 

Thoese studies indicated that climate and catchment conditions play an important role in producing 141 
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low flows.  142 

The goal of this study is to trace origins of nonstationarity in low flows through developing a 143 

nonstationary low-flow frequency analysis framework with the consideration of the time-varying 144 

climate and catchment conditions (TCCCs) and human activity (HA). The goal of this study is to 145 

develop a nonstationary low-flow frequency analysis framework with the consideration of the 146 

time-varying climate and catchment conditions (TCCCs). In this framework, the climate and 147 

catchment conditions are quantified using the eight indices, i.e., meteorological variables (total 148 

precipitation P , mean frequency of precipitation events  , temperature T and potential 149 

evapotranspiration ET ), basin storage characteristics (base-flow index BFI , recession constant 150 

K ) and aridity indexes (climate aridity index ETAI , the recession-related aridity index KAI ).  151 

The specific objectives of this study are: (1) to find the most important index to explain the 152 

nonstationarity of low-flow series; (2) to determine the best subset of TCCCs indices and/or 153 

human activity indices (i.e., population POP, irrigation area IAR, and gross domestic product GDP) 154 

for final model through stepwise selection method to identify nonstationary mode of low-flow 155 

series; and (3) to quantify the contribution of selected explanatory variables to the nonstationarity. 156 

The non-stationary frequency analysis with TCCCs developed in this study is able to give the trace 157 

of nonstationary low-flow drivers and to estimate the contribution of each driver to the change in 158 

low-flow series.  159 
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This paper is organized as follows. Section 2 describes the methods. We describe tThe Weihe 160 

River basin and available data sets used in this study are described in Section 3, followed by a 161 

presentation of the results and discussion in Section 4. Section 5 summarizes the main conclusions. 162 

2 Methodology 163 

The flowchart of how to organize the nonstationary low-flow frequency analysis framework 164 

is shown in Fig. 1. The whole process is divided into three steps. The first step is preliminary 165 

analysis, including the graphical presentation of both explanatory variables and low-flow series, 166 

the statistical test for nonstationarity and the correlations between each explanatory variable and 167 

each low-flow series. The second step is single covariate analysis for the most important 168 

explanatory variable. The third step is multiple covariate analysis for the optimal combination. We 169 

use a low-flow frequency analysis model and stepwise regression method to accomplish the last 170 

two steps. In this the following sub-sections, first, the low-flow frequency analysis model is 171 

constructed based on the nonstationary probability distributions method, in which distribution 172 

parameters serving as response variables can vary as functions of explanatory variables. Second, 173 

the candidate distributions are described to determine the different types of nonstationary 174 

frequency curves. the distribution types used to build the nonstationary model are outlined. Then, 175 

the eight candidate explanatory variables related to the time-varying climate and catchment 176 
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conditions (TCCCs) and human activity (HA) are clarifiedpresented to incorporate time-varying 177 

climate and catchment conditions (TCCCs) into distribution models for the nonstationary 178 

frequency analysis. Finally, estimation of model parameters and selection of models are illustrated. 179 

<Figure 1> 180 

2.1 Construction of the low-flow nonstationary frequency analysis model 181 

Generally, a nonstationary frequency analysis model can be established based on the 182 

time-varying distribution parameters method (Du et al., 2015; López and Francés, 2013; Liu et al., 183 

2015; Richard et al., 2002; Villarini and Strong, 2014). For the nonstationary probability 184 

distribution  t

Y tf Y θ , let tY  be a random variable at time  ( 1,2,..., )t t N  and vector 185 

1 2[ , ,..., ]t tt t

m  θ  be the time-varying parameters. The number of parameters m in hydrological 186 

frequency analysis is generally limited to three or less. The function relationship between the 
thk  187 

parameter t

k  and the multiple explanatory variables is expressed as follows: 188 

    1 2, ,...,k

t t t t

k k nh xg x x   (1) 189 

where 
1 2, ,...,t t t

nx x x  are explanatory variables; n  is the number of explanatory variables; ( )kg   190 

is the link function which ensures the compliance with restrictions on the sample space and is 191 

usually set to natural logarithm for the given negative predictions; ( )kh   is the function for 192 

nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is 193 

used to build function relationships between distribution parameters and their explanatory 194 
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variables. In GLMs, the response relationship can be generally expressed as  195 

   0

1

t t

k k k ik i

i

g x 


   (2) 196 

where  ( 0,1,2,..., , 1,..., )ik i n k m    are the GLM parameters.  197 

In order to give a further nonstationary analysiscompare the nonstationary models constructed 198 

by various combinations of explanatory variables, Eq. (2) is modified in this study using 199 

dimensionless method for the standard GLM parameters. The value of t

k  could be assumed to be 200 

equal to its mean (
k ) when all explanatory variables are equal to their mean ( ix ), i.e.,  201 

  1 1 2 2, ,...,t t t t

k n knx x x x x x      (3) 202 

Eq. (2) is then modified as 203 
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   

 



，  (4) 204 

where t

iz  is normalized explanatory variables; is  is the standard deviation of t

ix ;205 

 ( 1,2,..., , 1,..., )ik i n k m    are the standard GLM parameters. Let the link function ( )kg   be the 206 

natural logarithmic function ln( )  and t

l
 be the distribution parameter in 

1 2[ , ,..., ]t t t

m    with 207 

most significant change, the degree of nonstationarity in low flow series can be defined as 208 

( )ln l ( )nt

l l
. Then, the contribution t

ic  of each explanatory variable t

ix  to ( )ln l ( )nt

l l
 209 
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could be defined as  210 

 

t
t i i
i il

i

x x
c

s



  (5) 211 

2.2 Candidate distribution functions 212 

We need to select the form of probability distribution ( )Yf   to determine what type of 213 

nonstationary frequency curves will be produced. Various probability distributions have been 214 

compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et 215 

al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low 216 

flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five 217 

distributions, i.e. Pearson-III (PIII), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and 218 

Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-III 219 

distribution, considering that the parameter 3  of Pearson-III as lower bound should approach 220 

zero and the parameter 3  of GEV is quite sensitive and difficult to be estimated, we assume 221 

them to be constant in this study. 222 

2.3 Candidate explanatory variables 223 

We look for variables 
1 2, ,...,t t t

nx x x  that can explain parts of the variations in distribution 224 

parameters 
t
θ . From the perspective of low-flow generation, the dependency between low-flow 225 

regime and both climate and catchment conditions has been presented by previous studies (Botter 226 
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et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring 227 

indices: total precipitation, mean frequency of precipitation events, temperature, potential 228 

evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related 229 

aridity index. These indices were chosen to incorporate time-varying climate and catchment 230 

conditions (TCCCs) in nonstationary modeling, of low-flow frequency and serving as candidate 231 

explanatory variables. The values of them at each year could be estimated from 232 

hydro-meteorological data. Annual precipitation ( P ) and temperature (T ) are calculated directly 233 

by meteorological data. The remaining TCCCs indices need to be estimated indirectly. Detailed 234 

estimation procedures are shown as follows in following subsections. In addition to TCCCs 235 

indices, the three indices of human activity (irrigation area, population and gross domestic product) 236 

are included, and the reasons for selecting all indices are summarized in Table 2.  237 

2.3.1. Annual mean frequency of precipitation events (λ) 238 

Annual mean frequency of precipitation events is defined as an index to represent the 239 

intensity of precipitation recharge to the streamflow: 240 

 
 

1

1 w W
w

w r

N A

W t






     (6) 241 

where  wN A  is the number of daily rainfall events A  (with values more than the threshold 0.5 242 

mm) in 
thw  windows with a length rt ; W is the number of windows.  243 
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2.3.2. Annual climate aridity index (AIET) 244 

The ratio of annual potential evaporation to precipitation, commonly known as the climate 245 

aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002; 246 

Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and 247 

determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a 248 

measure of time-varying climate and catchment conditions and estimate its value in a whole region 249 

using 250 

 
ET

ET
AI

P
    (7) 251 

where P  is annual areal precipitation (mm); ET  is annual areal potential evapotranspiration. 252 

The Hargreaves equation (Hargreaves and Samani, 1985) is applied to calculate ET  using the 253 

R-package „Evapotranspiration‟ (Guo, 2014). 254 

2.3.3. Annual base-flow index (BFI) 255 

The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has 256 

been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors) 257 

to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base 258 

flow index ( BFI ) as a measure of TCCCs. BFI  is estimated using a hydrograph separation 259 

procedure in R-package „lfstat‟ (Koffler and Laaha, 2013). 260 
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2.3.4. Annual streamflow recession constant (K) 261 

Recession constant is an important catchment characteristic index measuring the time scale of 262 

the hydrological response and reflecting water retention ability in the upstream catchment (Botter 263 

et al., 2013). Various estimation methods have been developed to extract recession segments and to 264 

parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg, 265 

2014; Tallaksen, 1995). 266 

In this study, annual recession analysis (ARA) is performed to obtain annual streamflow 267 

recession constant (K). In ARA, the linearized Depuit-Boussinesq equation is used to parameterize 268 

characteristic recession behavior of a catchment and is written as  269 

 
1t

t

dQ
Q

dt K
     (8) 270 

where tQ  is the value at time t . Eq. (8) is investigated by plotting data points tdQ

dt
 against tQ  271 

of all extracted recession segments from hydrographs at each year. The criteria of recession 272 

segments extraction is are based on the Manual on Low-flow Estimation and Prediction (WMO, 273 

2009). Then, the annual recession rate ( 1K  ) is estimated as the slope of fitted straight line of these 274 

data points with least square method. We calculated K  using R-package „lfstat‟ (Koffler and 275 

Laaha, 2013).   276 

2.3.5. Annual recession-related aridity index (AIK) 277 

In this study, recession-related aridity index is defined as the ratio of recession rate ( 1K  ) to 278 
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mean precipitation frequency ( ), denoted as  279 

 
-1

KAI
K


    (9) 280 

This ratio plays an important role in controlling on river flow regime (Botter et al., 2013; 281 

Gottschalk et al., 2013) and serves as an indicator measuring the recession-related aridity degree of 282 

the streamflow in river channel. For example, faster recession process or lower precipitation 283 

frequency may lead to increased runoff loss or decreased precipitation supply. Consequently, the 284 

higher the value 
KAI  is, the more likely low flow events occur, and vice versa.  285 

2.4 Parameter estimation 286 

The model parameters including ( 1,2,..., )k k m   and  ( 1,2,..., , 1,..., )ik i n k m    are 287 

estimated. ( 1,2,..., )k k m   are estimated from outputs of stationary frequency analysis through 288 

maximum likelihood method. We have 289 

    1 2 1 2

1

, ,..., ln , ,...,
t N

m Y t m

t

L f y     




 
     (10) 290 

where ty  is observed low flow at time t ; N is the number of samples. The parameters 291 

 ( 1,2,..., , 1,..., )ik i n k m    are estimated through maximum likelihood method to produce 292 

nonstationary low-flow frequency curves:  293 
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 
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 
 
 

  (11) 294 

The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit 295 

of fitted model objects (Dunn and Symth, 1996):  296 

   1 ˆˆ t

t Y tr F y θ   (12) 297 

where ( )YF   is the cumulative distribution of ty ;  1   is the inverse function of the standard 298 

normal distribution. The distribution of the true residuals t̂r  converges to standard normal if the 299 

fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether t̂r  have 300 

a standard normal distribution. 301 

2.5 Model selection  302 

Model selection contains the selection of the type of probability distribution and the selection 303 

of the explanatory variables to explain the response variables (i.e., distribution parameters 1  and 304 

2 ). In order to obtain the final optimal model, the selection of the explanatory variables for 1  305 

and 2  is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables, 306 

2002): i.e. select a best subset of candidate explanatory variables for 1  using a forward approach 307 

(which starts with no explanatory variable in the model and tests the addition of each explanatory 308 

variable using a chosen model fit criterion); given this subset for 1  select another subset for 2  309 

(forward). The stepwise selection strategies can get a series of stepwise models with different 310 



 

19 

numbers of explanatory variables, as shown in Fig1. In order to detect how the number of 311 

explanatory variables influences the performance of the model for describing non-stationarity, we 312 

investigate the five eight types of stepwise models as shown in Table 3: the zero-covariate model 313 

or stationary model (M0), the time covariate model (M1), single physical covariate model M2 314 

(single TCCCs covariate model M2a or single HA covariate model M2b), the double physicaltwo 315 

TCCCs covariates model (M3) and , the optimal number physicalTCCCs covariates model (M4),  316 

as shown in Table 2 the optimal HA covariates model (M5) and the final model (M6). The model 317 

fit criterion is based on the Akaike‟s information criterion (Akaike, 1974) as shown by the 318 

following 319 

 2 2AIC ML df      (13) 320 

where ML  is the log-likelihood in Eq. (11) and df  is the number of degrees of freedom. The 321 

model with the lower AIC value was considered better.  322 

3. Study Area and Data  323 

3.1. The study area  324 

The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest 325 

tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km
2
, 326 

covering the coordinates of 33 42 -37 20 N    104 18 -110 37 E     (Fig. 12). This catchment 327 

generally has a semi-arid climate, with extensive sub-humid continental monsoonal influence. 328 
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Average annual precipitation of the whole area over the period 1954-2009 is about 540 mm, and 329 

has a wide range (400-1000 mm) in various regions. Under the significant impacts of climate 330 

change and human activities in the Weihe River basin in recent decades, the hydrological regime 331 

of the river has changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015a).  332 

<Figure 12> 333 

In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be 334 

significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff 335 

of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation 336 

area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of 337 

P.R. China in 1949, and due to one influential irrigation system project in that area, it became more 338 

than twice of the original one irrigation area since 1971. Jiang et al. (2015) demonstrated that in 339 

the Weihe basin, irrigated area, as compared with the other indices e.g. population, gross domestic 340 

product and cultivated land area, was a more suitable human explanatory variable for explaining 341 

the time-varying behavior of annual runoff. Within the above background, it is important to 342 

considering the effects of human activities that mainly originate from irrigation diversion, and 343 

especially for studying low flow series in this basin. In this study, we use the available data 344 

(1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang 345 

(2008) to provide some information for the knowledge of low flow generation. The estimations of 346 
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annual recession rate ( 1K  ) by the daily streamflow data are expected to incorporate the 347 

information of impacts of water diversions on the low flows in the river channel. 348 

3.2. Streamflow dData  349 

We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the 350 

Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106 351 

500 km
2
) and Xianyang station (with a drainage area of 46 480 km

2
). Low-flow extreme events 352 

were selected from the daily streamflow series using the widely-used annual minimum series 353 

method (WMO, 2009). nAM  is the annual minimum n n-day flow during hydrological year 354 

defined to starbeginningt on 1 March. Consequently, AM1, AM7, AM15 and AM30 are selected as 355 

low-flow extreme events in this study. The original measure unit of streamflow data (
-3 1m s ) is 356 

converted to 
--4 213 - s10 m km   by dividing by the corresponding drainage area (km

2
) for 357 

convenience of comparison of results between the Huaxian and Xianyang gauging stations  358 

3.3. Precipitation and temperature data  359 

We downloaded daily total precipitation and daily mean air temperature records for 19 360 

meteorological stations over the basin from the National Climate Center of the China 361 

Meteorological Administration (source: http://cdc.cma.gov.cn). The areal average daily series of 362 

both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon 363 

method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T ) and annual 364 

http://cdc.cma.gov.cn/
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total precipitation ( P ) over the period 1954-2009 are calculated for each catchment.  365 

Human activity data (i.e. gross domestic product, population and irrigation area) were taken 366 

from annals of statistics provided by the Shaanxi Provincial Bureau of Statistics 367 

(http://www.shaanxitj.gov.cn/) and Gansu Provincial Bureau of Statistics (source: 368 

http://www.gstj.gov.cn/). 369 

 370 

4. Results and discussion 371 

4.1. Identification of nonstationarity 372 

Figure 2 shows that the Weihe River basin is characterized by a warm and humid summer 373 

(June, July, and August) with low ratio of irrigated diversion, and by a cold and dry winter 374 

(December, January, and February) with high ratio of irrigated diversion. The majority of the low 375 

flow events in this basin occur in these two seasons and show a bimodal frequency distributions of 376 

occurrence with two peaks in February and June, respectively (Fig. 2a). This result implies that the 377 

generation of low flows may be influenced by more than one factor such as high ratio of irrigated 378 

diversion, high air temperature or lack of precipitation.  379 

<Figure 2> 380 

Graphical representation and statistical test provide a preliminary analysis for low-flow 381 

nonstationarity. The graphical representations of time-series data help visualize the trends of 382 

http://www.shaanxitj.gov.cn/
http://www.gstj.gov.cn/
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related variables (i.e. low-flow, TCCCs and HA variables), the density distributions of TCCCs 383 

variables and the correlations between low-flow variables and these explanatory variables. In Fig. 384 

3, Overalloverall, four annual minimum streamflow series ( 1AM , 7AM , 15AM  and 30AM ) in 385 

both Huaxian and Xianyang gauging stations show overall decreasing trends, as indicated by the 386 

fitted (dashed) trend lines in Fig. 3. Compared with Huaxian, Xianyang has a larger runoff 387 

modulus (the flow per square kilometer) and a larger decrease in annual minimum streamflow 388 

series. For example, the decline slope of 30AM  is -0.0725 (
-1-4 3 -210 s rkm ym   ) in Huaxian 389 

station which while Xianyang station it is larger than -0.1338 (
-1-4 3 -210 s rkm ym   ) in Xianyang 390 

station.  391 

<Figure 3> 392 

Figure 4 shows the kernel density estimations and time processes of the eight candidate 393 

explanatoryTCCCs variables (Sect. 2.3) reflecting the TCCCs for both Huaxian (H) and Xianyang 394 

(X) stations. The results show that these variables have different variation patterns. For example, 395 

the mean frequency of precipitation events ( ) has a decreasing trend, while temperature (T ) has 396 

an increasing trend. As presented by Fig. 5, three HA variables have a significant upward trend, 397 

especially the irrigation area IAR  which is increased greatly after about 1970, suggesting that the 398 

impact of human activities in this basin has increased over time.  399 
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<Figure 4> 400 

<Figure 5> 401 

The significance of trends in the four annual minimum streamflow series and eight 402 

explanatoryTCCCs variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945; 403 

Yue et al., 2002), and the change -points in these series are detected by the Pettitt‟s test (Pettitt, 404 

1979). The results in Table 3 4 show that in both Huaxian and Xianyang stations, the decreasing 405 

trends in all the four low-flow series ( 1AM , 7AM , 15AM  and 30AM ) and two explanatory 406 

variables (  and P ), and the increasing trends in T , ET , and ETAI  are significant at the 0.05 407 

level (Table 34), but BFI  shows no significant trends. However, K  and KAI  had significantly 408 

decreasing trends only in Huaxian station ( - 0.05p value  ). The results of change-point detection 409 

show that all low-flow series are located at 1968-1971 ( - 0.05p value  ) except 30AM  at 410 

Xianyang station whose change point is located at 1993 ( - 0.05p value  ); for the eight candidate 411 

explanatory variables, the change points of the variables related to temperature (T , ET , ETAI ) in 412 

both stations are located at 1990-1993 ( - 0.05p value  ), the change points of the variables related 413 

to precipitation ( , P ) in both stations are close at 1984-1990 ( - 0.186p value  ) and the change 414 

points of the variables related to streamflow recession ( K , KAI ) in Huaxian station are located at 415 

1968-1971 ( - 0.05p value  ). However, BFI  in both stations and K  and, KAI  in Xianyang 416 
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station show no significant change points. 417 

A preliminary attribution analysis is performed using the Pearson correlation matrix to 418 

investigate the relations between the annual minimum series and eight candidate explanatory 419 

variables. Figure 65 indicates that there are significant linear correlations between the four 420 

minimum low-flow series ( 1AM , 7AM , 15AM  and 30AM ) and all the explanatory variables 421 

except GDP , with have the absolute values of Pearson correlation coefficients larger than 0.27 422 

( - 0.05p value  ). These potential physical causes of nonstationarity in low flows are further 423 

considered by establishing low-flow nonstationary model with TCCCs and HA variables in the 424 

following section. 425 

<Figure 56> 426 

4.2. Nonstationary frequency analysis models  427 

4.2.1 Single covariate models  428 

Figure 76 presents the AIC values of the three four types of models (M0, M1, M2a and 429 

M2bM2, M1 and M0) fitted for the low flow series ( 1AM , 7AM , 15AM  and 30AM ). Some 430 

interesting results are shown as follows. First, nonstationary models (M1, M2a and M2bM2 and 431 

M1) have lower AIC values than stationary model (M0), which suggests that nonstationary models 432 

are worth considering. Second, for Huaxian station, irrespective of the chosen explanatory 433 
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variables, the distribution type plays an important role in modeling nonstationary low flow series. 434 

For example, PIII, GA and WEI distributions in 15AM  and 30AM most cases have lower AIC 435 

values than LOGNO and GEV distributions. However, for Xianyang, choosing a suitable 436 

explanatory variable may be more important than choosing a distribution type. For example, 437 

variables t , P , T , and ETAI ,  POP  and IAR  in most cases have lower AIC values than the 438 

other explanatory variables. Finally, in Huaxian, the lowest AIC values  the best M2 models for 439 

modeling 1AM , 7AM , 15AM  and 30AM  are found in GEV_M2b_IAR, LOGNO_M2b_IAR, 440 

PIII_M2a_AIK and GA_M2a_ AIK, respectively are all found in the M2_ KAI  model (using KAI  441 

as an explanatory variable); while in Xianyang, the lowest AIC valuesthe best M2 models for 442 

modeling 1AM , 7AM , 15AM  and 30AM  are all found in the M2_K , M2_ ETAI , M2_ ETAI  443 

and M2_T  model GEV_M2b_IAR, GEV_M2b_IAR, PIII_M2b_IAR and GEV_M2b_IAR, 444 

respectively. These results indicated that in for explaining nonstationarity of low flow in Huaxian 445 

station, IAR  is the most dominant HA variables, and KAI  is the most dominant TCCCs variable 446 

causing nonstationarity in 1AM , 7AM , 15AM  and 30AM ; while in Xianyang, the most 447 

dominant HA variables is IAR , the most dominant TCCCs variables  causing nonstationarity in 448 

1AM , 7AM , 15AM  and 30AM  are K , ETAI , ETAI  and T , respectively. Table 4 449 

summarizes the above analysis.  450 

<Figure 67> 451 
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Figure 87 shows the diagnostic assessment of the best M2 model the GA_M2 model (GA_M2 452 

with the optimal explanatory variable) for 30AM  in both Huaxian and Xianyang stations. The 453 

centile curves plots of GA_M2 (Figs. 7a 8a and 7b8b) show the observed values of 30AM , the 454 

estimated median and the areas between the 5th and 95th centiles. Figure 7a 8a shows the response 455 

relationship between 30AM  and KAI  in Huaxian: the increase of KAI  means the smaller 456 

magnitude of low-flow events because a high value of KAI  (faster stream recession or fewer 457 

rainy days) may lead to faster water loss or less supply. In Fig. 7b8b, the higher values of IAR T  458 

means the smaller magnitude of low flow events, which suggests that IAR T  plays an important 459 

role in driving low-flow generation in Xianyang. Figs 7c 8c and 7d 8d show that the worm points 460 

are within the 95% confidence intervals, thereby indicating a good model fit and a reasonable 461 

model construction.  462 

<Figure 78> 463 

4.2.2 Multiple covariate models 464 

Figure 8 9 shows that the AIC values of stationary model (M0), time covariate model (M1), 465 

physical covariate models (M2a, M2b, M3, M4, M5 and M6) for 30AM .(M2, M3 and M4 with the 466 

corresponding optimal explanatory variables) for 1AM , 7AM , 15AM  and 30AM  in both 467 

Huaxian and Xianyang stations. As shown in Fig. 9, M4 (nonstationary GA distribution with the 468 

域代码已更改

域代码已更改
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optimal TCCCs variables) has a good performance; after adding the HA variables, M6 with the 469 

lowest AIC values is attained; it can be found that the combination of multiple TCCCs variables 470 

isplays a the major role in changing the low flows of Weihe River, but the influence of HA 471 

variables shouldn't be ignored.For all low flow series, t he lowest AIC values are always found in 472 

the M4 models, suggesting that it is necessary to consider multiple explanatory variables for 473 

nonstationary modeling. 474 

<Figure 89> 475 

A summary of frequency analysis based on five types of models (M0, M1, M2, M3 and M4) 476 

for both Huaxian and Xianyang gauging stations nonstationary GA distribution 30AM  is 477 

presented in Table 5 and Table 6, respectively. We choose to focus on M4, M5 and M6. When only 478 

using TCCCs variables to model nonstationary low-flow frequency distribution, the results of M4 479 

show the optimal combination of explanatory variables for all low-flow series contains more than 480 

three variables. For example, for 30AM  of Huaxian, the optimal combination of TCCCs variables 481 

includes KAI , BFI  and ETAI . When only using HA variables, the results of M5 show IAR  is 482 

important to the low flows in this area. And M4 hasve a better performance than M5. When using 483 

both TCCCs variables and HA variables, the results of M6 show the optimal combination contains 484 

multiple TCCCs variables and the irrigation area IAR . For Huaxian, the optimal combination of 485 

all explanatory variables is KAI , IAR , BFI  and P , while for Xianyang, the optimal 486 
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combination is IAR , ETAI  and BFI . For M4 and M3 models, the relative importance of 487 

selected explanatory variables is identified through the stepwise selection method. For instance, 488 

for 30AM  in Xianyang (Table 5), temperature (T) with highest relative importance, followed 489 

orderly by P , BFI  and K .  We can also find that if the candidatestwo TCCCs variables are 490 

highly correlated, they do not seem to be selected as the explanatory variables at the same time. 491 

For example, one of those variables in terms of only air temperature (T ), evapotranspiration ( ET ) 492 

and the climate aridity index ( ETAI ), only one of them will appear in the optimal combination a 493 

best subset of eight candidates in the final optimum model. This suggests that multicollinearity 494 

problem in multiple variables analysis can be reduced, which will help obtain more reliable GLMs 495 

parameters for contribution analysis.  496 

The diagnostic assessment of the best M4 model (GA_M4)  GA_M6 model for 30AM  at 497 

two stations is presented by Fig. 910. The centile curves plots of GA_M46 (Figs. 910a and 910b) 498 

show the more sophisticated nonstationary modeling than GA_M2 (Fig 78). When using GA_M46 499 

to model 30AM  in Huaxian (Fig. 9a), similar to GA_M2, the lower low flows are found to also 500 

correspond to higher value of KAI , but GA_M46 are is able to identify the more complex 501 

variation patterns of low flows through the incorporation of IAR , BFI  and P . Figures 910c 502 

and 910d show that the data points of worm plots of GA_M46 are almost within the 95% 503 

confidence intervals, thereby indicating an acceptable model fit and a reasonable model 504 
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construction. 505 

<Figure 910> 506 

Figure 10 11 presents the contribution of each selected explanatory variable to 507 

   1 1ln lnt   in observation year based on GA_M46 for 30AM  in Huaxian and Xianyang. We 508 

can find that for Huaxian, the simulation value of  1ln t  frequently occur below  1ln   during 509 

the two periods of about 1970-1982 and 1993-2003, which is in accordance with the observed 510 

decrease in 30AM  of Huaxian station during these periods. In the former period 1970-1982, the 511 

largest negative contribution is found in both KAI  and BFI contribute a lot of negative amount 512 

to    1 1ln lnt  , whereas during 1993-2003, the contribution of both KAI  and BFI  becomes 513 

much less. However, IAR  has almost equal negative contribution to    1 1ln lnt   in both 514 

periods. Unlike the former therethree variables, the significant negative contribution of ETAI  is 515 

only found in 1993-2003. For 30AM  of Xianyang, the contribution of IAR , ETAI  and BFI  is 516 

similar to that at Huaxian station in two periods, however KAI  is not included in the final model. 517 

In the latter period 1993-2003, the largest negative contribution was found in ETAI . These results 518 

suggest that the significant change of KAI  (mainly because of faster streamflow recession after 519 

nearly 1971) dominates the decrease in 30AM  of Huaxian during 1970-1982, while after 1993, 520 

the significant change of ETAI  (due to decreasing precipitation and increasing evapotranspiration) 521 

has a main effect on the decrease in 30AM  of Huaxian.  522 
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<Figure 11> 523 

4.3. Discussion 524 

The impacts of both human activities and climate change on low flows of the study area of 525 

the Weihe basin led to time-varying climate and catchment conditions (TCCCs). Nonstationary 526 

modeling for annual low flow series considering using TCCCs variables and/or HA variables as 527 

explanatory variables is clearly different from either the stationary model (M0) or the time 528 

covariate model (M1). The result demonstrates that considering multiple drivers (e.g. the 529 

variability in catchment conditions), especially in such an artificially influenced river, is necessary 530 

for nonstationary modeling of annual low flow series.  531 

In this study area, nonstationary modeling considering TCCCs is supported by the following 532 

facts and findings. For human activities, an important milestone representative is the completion 533 

and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect. 534 

3.1). Figure 5c shows the change of irrigation area in this basin. And Tthe change-point detection 535 

test in Sect. 4.1 shows that significant change points of both annual recession constant ( K ) and 536 

low flow series occur exactly in at around 1971. This result demonstrates that changes in both K  537 

and 30AM  may involve a consequence of this project. In addition to human activities, climate 538 

change also makes a considerable contribution to nonstationarity of low flows, as suggested by 539 

nonstationary modeling using TCCCs variables with stepwise analysis. Actually, climate driving 540 
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pattern may strengthen after nearly 1990, which is indicated by change-point detection test of both 541 

annual mean temperature (T ) and annual precipitation ( P ) as well as the behavior of annual low 542 

flow series after nearly 1990. Therefore, the temporal variability in irrigation area, streamflow 543 

recession, air temperature and precipitation (the frequency and volume of rain events) should be 544 

the main driving factors of generating low flow regimes in this basin. Overall, the causes of 545 

nonstationarity in category for two gauging stations have no clear difference, but have some 546 

differences in the relative importance. As shown in Table 5, when modeling the low-flow series of 547 

Huaxian using TCCCs variables, the optimal model (M4) preferred the variables are related to 548 

recession process; however, for Xianyang, the preferred variables isare related to temperature. The 549 

reason for this may be that as a downstream station, Huaxian station suffers more intensive human 550 

activity, so that the importance of temperature change to the low-flow change is reduced 551 

meanwhile the importance of streamflow recession (related to the capability of water storage) 552 

change is improvenhanced.  553 

Ignoring the negative impacts of the errors in estimating annual recession constant ( K ) 554 

which are caused by insufficient data points of extracted stream segments at some wet years may 555 

lead to the propagation of high errors in annual recession analysis, and accordingly affect the 556 

quality of nonstationary frequency analysis when using K  as an explanatory variable. Further 557 

study will give more reliable estimation of K  through improving annual recession analysis. 558 
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The related researches (Jiang et al., 2015; Yang and Yang, 2011; Yang and Yang, 2013; Zhang 559 

et al., 2015) have applied the Budyko framework to analyze the impacts of climate change and/or 560 

human activity on annual runoff. Indeed, for annual runoff, the Budyko framework is a bettergood 561 

method than the regression modeling method using in this study, because it used the mean annual 562 

water-energy balance equation to consider generation process of total runoff. Unfortunately, to our 563 

knowledge, there is a lack of the controls equation derived from basic physics laws for generation 564 

process of low flows. Therefore, we emphasize the importance of TCCCs variables to modeling of 565 

low-flow nonstationarity. 566 

5. Conclusion 567 

There is an increasing need to develop an effective nonstationary low-flow frequency model to 568 

deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In 569 

this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were 570 

measured by annual time series of the eight indices, i.e., total precipitation (P), mean frequency of 571 

precipitation events (λ), temperature (T), potential evapotranspiration (ET), climate aridity index 572 

(AIET), base-flow index (BFI), recession constant (K), and the recession-related aridity index (AIK). 573 

The nonstationary distribution model was developed using both these eight TCCCs indices and/or 574 

there HA indices as candidate explanatory variables for frequency analysis of time-varying annual 575 

low flow series caused by multiple drivers. The main driving forces of the decrease in low flows in 576 
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the Weihe River include reduced precipitation, warming climate, increasing irrigation area and 577 

faster streamflow recession. Therefore, a complex deterioration mechanism resulting from these 578 

factors demonstrates that in this arid and semi-arid area, the water resources could be vulnerable to 579 

adverse environmental changes, thus portending increasing water shortages. The nonstationary 580 

low-flow model considering TCCCs can provide the knowledge of low-flow generation 581 

mechanism and give more reliable design of low flows for infrastructure and water supply.   582 

  583 
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Figure 754 

 755 

 756 

Figure 1. The framework of nonstationary low-flow frequency analysis. 757 

  758 

Yes

The variable  seleted

Yes

 New model

No

Multiple 

covariate 

analysis

Single 

covariate 

analysis 

Preliminary analysis Fitting the data to the frequency analysis model

Start: the stationary 
model (M0)

Yes

Yes

No

Contribuion 
analysis based 

on M6

Graphical representation, trend test, change-
point test and correlation analysis

Climate data
Human activity 

data
Streamflow data

Legend

Test TCCCs 
variables singly

Start: the stationary 
model (M0)

Best performance; 
model selected  

(M2a)

Test  HA 
variables singly

Best performance; 
model selected  

(M2b)

Using time as the 
covariate; model 
selected  (M1)

No

The new model with 
two TCCCs variables?

Model selected (M3)

All TCCCs variables 
have been tested?

Model selected (M4)

All HA variables
have been tested?

Model selected (M6)

Test the TCCCs and 
HA variables in order

Delete the TCCCs 
indices；model 

selected (M5)；done

The variable deleted Better model performance？

HA variables: 
GDP, POP, IAR 

TCCCs variables: 
P, ET, λ, AIET, K, 
BFI, AIK

Low-flow series: 
MA1, MA7, MA15, 
MA30

No

Low-flow series

Explanatory variables

Selected models



 

42 

 759 

 760 

 



 

43 

Figure 12. Location, topography, hydro-meteorological stations and river systems of the Weihe 761 

River basin.  762 
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 764 

 765 

Figure 2. Overview of annual low flows and important environment factors using mean monthly 766 

data. (a) is frequency distributions of the occurrence time of the annual minimum flows with four 767 

durations at Huaxian (H) and Xianyang (X); the black line is mean monthly diversion (1980 to 768 

2005) in Baoji Gorge area. (b) Mean monthly precipitation and temperature from 1954 to 2009.  769 
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 771 

 772 

Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang 773 

(X) gauging stations.  774 
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 777 

Figure 4. Frequency distributions (using the kernel density estimations) and annual series of eight 778 

candidate explanatory variables time series processes of TCCCs variables in both Huaxian (H) and 779 

Xianyang (X) stations. 780 
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 782 

Figure 5. HA indices in both Huaxian (H) and Xianyang (X). (a), (b) and (c) are for population 783 

(POP), gross domestic production (GDP) and irrigated area (IAR), respectively. 784 
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50 

Figure 56. The Pearson correlation coefficients matrix between the annual minimum flow series 788 

and eight candidate explanatory variables in Huaxian (H) and Xianyang (X) stations; the darker 789 

color intensity represents a higher level of correlation (blue indicates positive correlation, and red 790 

indicates negative correlations). 791 
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 794 

Figure 67. Comparisons among M0, M1 and M2 based on the AIC values for the four observed 795 

low-flow series in Huaxian (H) at left panel and Xianyang (X) at right panel; darker red color 796 

represents a higher goodness of fit.   797 
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Figure 78. Performance assessments of the best M2 model (GA_M2)  GA_M2 for 30AM  in 803 

Huaxian (H) at left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots 804 

of GA_M2 (red lines represent the centile curves estimated by GA_M2; the 50th centile curves are 805 

indicated by thick red; the yellow-filled areas are between the 5th and 95th centile curves; the 806 

black points indicate the observed series); (c) and (d) are the worm plots of GA_M2 for the 807 

goodness-of-fit test; a reasonable model fit should have the data points fall within the 95% 808 

confidence intervals (between the two red dashed curves).  809 
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Figure 89. Comparisons among of performance of stationary model (M0), time covariate model 813 

(M1) and physical covariate models (M2a, M2b, M3, M4, M5 and M6 with the their 814 

corresponding optimal explanatory variables) for 30AM  in Huaxian (H) at left panel and 815 

Xianyang (X) at right panel. 816 
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Figure 910. Performance assessments of the best M4 model (GA_M4) GA_M6 for 30AM  in 823 

Huaxian (H) at left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots 824 

of GA_M4 GA_M6 (red lines represent the centile curves estimated by GA_M4 GA_M6; the 50th 825 

centile curves are indicated by thick red; the yellow-filled areas are between the 5th and 95th 826 

centile curves; the filled black points indicate the observed series); (c) and (d) are the worm plots 827 

of GA_M4 GA_M6 for the goodness-of-fit test; A reasonable model fit should have the data points 828 

fall within the 95% confidence intervals (between the two red dashed curves). 829 
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Figure 1011. Contribution of selected explanatory variables to    1 1ln lnt t

ic     in different 833 

periods based on GA_M4M6.  834 
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Table 839 

Table 1. The probability density functions and moments (the mean and variance) for the candidate 840 

distributions in this study.  841 
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Table 2. Description of the developed nonstationary models using time,  or the indices of TCCCs 843 

indices and/or HA indices as explanatory variables. 844 

Model 

category 
Codes 

Distribution  Description 

GA WEI LOGNO PIII GEV  
Variable 

category 

The numbers of 

variables 

Stationary  M0 GA_M0 WEI_M0 LOGNO_M0 PIII_M0 GEV_M0  - Zero 

Nonstationary  

M1 GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_M1  Time  One 

M2 GA_M2 WEI_M2 LOGNO_M2 PIII_M2 GEV_M2  TCCCs  One 

M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3  TCCCs  Two 

M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4  TCCCs  
Identified by the 

stepwise selection 

 845 

Model 

codes 

Distribution 
 

Description 

GA WEI LOGNO PIII GEV 
 

Variable 

category 
The numbers of variables 

M0 GA_M0 WEI_M0 LOGNO_M0 PIII_M0 GEV_M0  - Zero 

M1 GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_M1 
 

Time  One 

M2a GA_M2a WEI_M2a LOGNO_M2a PIII_M2a GEV_M2a  TCCCs  One 

M2b GA_M2b WEI_M2b LOGNO_M2b PIII_M2b GEV_M2b  HA  One 

M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3 
 

TCCCs  Two 

M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4  TCCCs  Identified by the stepwise selection 

M5 GA_M5 WEI_M5 LOGNO_M5 PIII_M5 GEV_M5  HA Identified by the stepwise selection 

M6 GA_M6 WEI_M6 LOGNO_M6 PIII_M6 GEV_M6  TCCCs+HA Identified by the stepwise selection 

 846 
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Table 3. The summary of candidate explanatory variables and reason of selection. 848 

Category Name Indices Reason of selection (related to) Unit 

TCCCs 

 

P Precipitation Main supply source mm 

λ Mean frequency of precipitation events Water supply intensity per day 

T Temperature Evaporation loss ℃ 

ET Potential evapotranspiration Evaporation loss mm 

AIET Climate aridity index Degree of meteorological drought - 

BFI Base-flow index Water storage capability - 

K Recession constant Water storage capability day 

AIK Recession-related aridity index Both the water storage and supply capability - 

HA 

 

IAR Irrigation area Both irrigation diversion and evaporation loss 10
6
 hm

2 

POP Population 
Water withdrawal loss for agricultural, 
domestic and industrial purposes 

10
6 

GDP Gross domestic product 
Water withdrawal loss for agricultural, 
domestic and industrial purposes 

10
9 ￥ 

 849 
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 851 

Table 34. The results of trend test and change-point detection for both the four low flow series and 852 

eight candidate explanatory TCCCs variables in Huaxian and Xianyang stations. 853 

Station Variable 
Mann-Kendall test Pettitt's test 

S p-value Change point p-value 

Huaxian      

 

AM1 -564 6.91E-05(***) 1968 1.34E-03(**) 

AM7 -560 7.79E-05(***) 1968 1.44E-03(**) 

AM15 -438 2.01E-03(**) 1971 4.85E-03(**) 

AM30 -378 7.71E-03(**) 1971 9.96E-03(**) 

P -292 3.97E-02(*) 1985 1.86E-01( ) 

λ -632 8.20E-06(***) 1984 3.02E-04(***) 

T 752 1.11E-07(***) 1993 8.17E-06(***) 

ET 548 1.11E-04(***) 1993 1.98E-03(**) 

AIET 384 6.79E-03(**) 1990 6.03E-02(.) 

BFI 52 7.19E-01( ) 1998 3.88E-01( ) 

K -312 2.79E-02(*) 1968 8.11E-02(.) 

AIK 376 8.04E-03(**) 1971 3.60E-02(*) 

Xianyang      

 

AM1 -517 2.65E-04(***) 1968 2.2E-03(**) 

AM7 -483 6.58E-04(***) 1970 2.5E-03(**) 

AM15 -474 8.29E-04(***) 1971 2.2E-03(**) 

AM30 -570 5.78E-05(***) 1993 4.5E-04(***) 

P -414 3.51E-03(**) 1990 1.45E-02(*) 

λ -652 4.21E-06(***) 1984 6.00E-05(***) 

T 724 3.22E-07(***) 1993 5.41E-06(***) 

ET 372 8.74E-03(**) 1993 3.01E-03(**) 

AIET 454 1.37E-03(**) 1993 8.82E-03(**) 

BFI 64 6.56E-01( ) 2003 8.65E-01( ) 

K -210 1.39E-01( ) 1966 2.03E-01( ) 

AIK 290 4.11E-02(*) 1968 1.63E-01( ) 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 854 

 855 
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Table 4. The results of M2 models for modeling low-flow series in Huaxian and Xianyang stations. 857 

Station Series 
Optimal 

variable 

Optimal 

distribution 
AIC 

Distribution parameters 

 1ln    2ln   
3  

Huaxian 

AM1 AIK WEI 95.0 0.19 0.72 KAI   -0.418 - 

AM7 AIK PIII 135.7 0.43 0.76 KAI  0.219 0.007 

AM15 AIK PIII 184.2 0.83 0.75 KAI  0.105 0.069 

AM30 AIK GA 217.4 1.09 0.59 KAI  -0.133 - 

Xianyang 

AM1 K GA 210.7 1.00 0.40K  -0.118 - 

AM7 AIET GA 228.4 1.17 0.45 ETAI  -0.139 - 

AM15 AIET GA 251.0 1.39 0.49 ETAI  -0.139 - 

AM30 T GA 270.1 1.59 0.50T  -0.184 - 

 858 
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Table 5. The summary of frequency analysis using GA distribution for 
30AM  in Huaxian and Xianyang. 860 

 861 

  862 

Station 
Model 

codes 
Optimal variable AIC 

Distribution parameters 

 1ln    2ln   
3  

Huaxian 

 GA_M0 - 232.3 1.09 -0.133 - 

GA_M1 t 225.5 1.09-0.32t -0.133 - 

GA_M2 AIK 217.4 1.09-0.59AIK -0.133 - 

GA_M2b IAR 218.3 1.09-0.47IAR -0.133 - 
GA_M3 AIK, BFI 213.7 1.09-0.50AIK +0.32BFI -0.133 - 

GA_M4 AIK, BFI, AIET 211.1 1.09-0.40AIK+0.32BFI -0.34AIET -0.133 - 

GA_M5 IAR 218.3 1.09-0.47IAR -0.133 - 

GA_M6 AIK, IAR, BFI, AIET 207.0 1.09-0.30AIK-0.27IAR+0.32BFI-0.23AIET -0.133 - 

Xianyang  

 GA_M0 - 285.8 1.59 -0.184 - 

GA_M1 t 270.1 1.59-0.48t -0.184 - 
GA_M2a T 270.1 1.59-0.50T -0.184 - 

GA_M2b IAR 267.8 1.59-0.50IAR -0.184 - 

GA_M3 T, P 267.1 1.59-0.34T+0.32P -0.184 - 

GA_M4 T, P, BFI, K 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184 - 

GA_M5 IAR 267.8 1.59-0.50IAR -0.184 - 

GA_M6 IAR, AIET, BFI 259.7 1.59-0.28IAR-0.36 AIET+0.26BFI -0.184+0.23IAR - 
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Table 5. The summary of frequency analysis for four annual low flow series of Huaxian. 864 

Series 
Model 

codes 
Optimal variable AIC 

Distribution parameters 

 1ln    2ln   
3  

AM1 WEI_M0 - 104.6 -0.19 -0.418 - 

 WEI_M1 t 91.1 -0.19-0.84t -0.418-0.30t - 

 WEI_M2 AIK 95.0 -0.19-0.72 AIK -0.418 - 

 WEI_M3 AIK, BFI 91.3 -0.19-0.58 AIK +0.55BFI -0.418 - 

 WEI_M4 AIK, BFI, ET, λ 87.9 -0.19-0.39 AIK +0.61BFI-0.54ET -0.418+0.27λ - 

AM7 PIII_M0 - 155.0 0.43 0.219 0.007 

 PIII_M1 t 136.8 0.43-0.59t 0.219+0.19t 0.007 

 PIII_M2 AIK 135.7 0.43-0.76AIK 0.219 0.007 

 PIII_M3 AIK, BFI 132.4 0.43-0.65AIK +0.48BFI 0.219 0.007 

 PIII_M4 AIK, BFI, AIET, λ, P 127.5 0.43-0.62AIK +0.57BFI-0.60AIET 0.219-0.32λ-0.30 AIK +0.21P 0.007 

AM15 PIII_M0 - 203.5 0.83 0.105 0.069 

 PIII_M1 t 188.0 0.83-0.46t 0.105+0.208t 0.069 

 PIII_M2 AIK 184.2 0.83-0.75AIK 0.105 0.069 

 PIII_M3 AIK, BFI 180.6 0.83-0.65AIK +0.43BFI 0.105 0.069 

 PIII_M4 AIK, BFI, λ, K 170.4 0.83-0.70AIK +0.42BFI 0.105-0.36λ-0.71 AIK -0.43K 0.069 

AM30 GA_M0 - 232.3 1.09 -0.133 - 

 GA_M1 t 225.5 1.09-0.32t -0.133 - 

 GA_M2 AIK 217.4 1.09-0.59AIK -0.133 - 

 GA_M3 AIK, BFI 213.7 1.09-0.5AIK +0.32BFI -0.133 - 

 GA_M4 AIK, BFI, AIT 211.1 1.09-0.4AIK+0.32BFI -0.34AIT -0.133 - 

 865 
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Table 6. The summary of frequency analysis for four annual low flow series of Xianyang. 868 

Series Model codes Optimal variable AIC 
Distribution parameters 

 1ln    2ln   

AM1 GA_M0 - 222.3 1.0 -0.118 

 GA_M1 t 209.9 1.0-0.44t -0.118 

 GA_M2 K 210.7 1.0+0.4K -0.118 

 GA_M3 K, T 204.3 1.0+0.37K-0.38T -0.118 

 GA_M4 K, T, BFI, λ 203.2 1.0+0.33K-0.32T+0.27BFI -0.118-0.17 λ 

AM7 GA_M0 - 240.1 1.17 -0.139 

 GA_M1 t 227.9 1.17-0.42t -0.139 

 GA_M2 AIET 228.4 1.17-0.45 AIET -0.139 

 GA_M3 AIET, K 223.7 1.17-0.38 AIET +0.31K -0.139 

 GA_M4 AIET, K, BFI, λ 221.7 1.17-0.31 AIET +0.3K+0.28BFI -0.139-0.2 λ 

AM15 GA_M0 - 265.3 1.39 -0.139 

 GA_M1 t 253.4 1.39-0.43t -0.139 

 GA_M2 AIET 251.0 1.39-0.49 AIET -0.139 

 GA_M3 AIET, K 249.2 1.39-0.45AIET +0.24K -0.139 

 GA_M4 AIET, K, BFI, λ 246.6 1.39-0.36AIET +0.23K+0.32BFI -0.139-0.21 λ 

AM30 GA_M0 - 285.8 1.59 -0.184 

 GA_M1 t 270.1 1.59-0.48t -0.184 

 GA_M2 T 270.1 1.59-0.5T -0.184 

 GA_M3 T, P 267.1 1.59-0.34T+0.32P -0.184 

 GA_M4 T, P, BFI, K 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184 

 869 
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 872 
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