
Global change in streamflow extremes under climate change over the 21st 1 

century 2 

Behzad Asadieh
 1,

*, Nir Y. Krakauer 
2
 3 

[1],[2] Civil Engineering Department and NOAA-CREST, The City College of New York, 4 

the City University of New York, New York, USA; basadie00@citymail.cuny.edu; 5 

nkrakauer@ccny.cuny.edu 6 
 7 
* Correspondence to Behzad Asadieh: basadie00@citymail.cuny.edu 8 

 9 

Abstract 10 

Global warming is expected to intensify the Earth’s hydrological cycle and increase flood and 11 

drought risks. Changes over the 21st century under two warming scenarios in different 12 

percentiles of the probability distribution of streamflow, and particularly of high and low 13 

streamflow extremes (95
th

 and 5
th

 percentiles) are analyzed using an ensemble of 14 

bias-corrected global climate model (GCM) fields fed into different global hydrological 15 

models (GHMs), to understand the changes in streamflow distribution and simultaneous 16 

vulnerability to different types of hydrological risk in different regions. In the multi-model 17 

mean under RCP8.5 scenario, 37% of global land areas experience increase in magnitude of 18 

extremely high streamflow (with an average increase of 24.5%), potentially increasing the 19 

chance of flooding in those regions. On the other hand, 43% of global land areas show a 20 

decrease in the magnitude of extremely low streamflow (average decrease of 51.5%), 21 

potentially increasing the chance of drought in those regions. About 10% of the global land 22 

area is projected to face simultaneously increasing high extreme streamflow and decreasing 23 

low extreme streamflow, reflecting potentially worsening hazard of both flood and drought; 24 

further, these regions tend to be highly populated parts of the globe, currently holding around 25 

30% of the world’s population (over 2.1 billion people). In a world more than 4 degrees 26 

warmer by the end of the 21
st
 century compared to the pre-industrial era (RCP8.5 scenario), 27 

changes in magnitude of streamflow extremes are projected to be about twice as large as in a 2 28 

degree warmer world (RCP2.6 scenario). Results also show that inter-GHMs uncertainty in 29 

streamflow changes, due to representation of terrestrial hydrology, is greater than the 30 

inter-GCMs uncertainty due to simulation of climate change. Under both forcing scenarios, 31 

there is high model agreement for t increases in streamflow of the regions near and above the 32 
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Arctic Circle, and consequent increases in the freshwater inflow to the Arctic Ocean, while 1 

subtropical arid areas experience reduction in streamflow. 2 

1. Introduction 3 

Floods and droughts, the natural disasters with the highest cost in human lives (Dilley, 2005; 4 

IFRC, 2002), are projected to become more intense under anthropogenic global warming and 5 

climate change (Dai, 2011; Dankers et al., 2013; Field, 2012; Stocker et al., 2013). 6 

Observational records as well as global climate model (GCM) simulations both show that the 7 

amount of water vapor in the atmosphere increases at a rate of approximately 7% per K of 8 

increase in global mean temperature (Allen and Ingram, 2002; Held and Soden, 2006; Wentz et 9 

al., 2007), as expected from the Clausius-Clapeyron equation conditional to stable relative 10 

humidity (Held and Soden, 2006; Pall et al., 2006). Increased amount of atmospheric water 11 

content is expected to intensify precipitation extremes (Allan and Soden, 2008; O’Gorman and 12 

Schneider, 2009; Trenberth, 2011), as evidenced by both observations and GCM simulations 13 

(Alexander et al., 2006; Asadieh and Krakauer, 2015, 2016; Kharin et al., 2013; Min et al., 14 

2011; O’Gorman and Schneider, 2009; Stocker et al., 2013; Toreti et al., 2013; Westra et al., 15 

2013), with relatively stronger impact than for mean precipitation (Asadieh and Krakauer, 16 

2016; Lambert et al., 2008; Pall et al., 2006). Change in intensity and distribution of 17 

precipitation events under climate change is expected to increase the intensity and frequency of 18 

flood and drought events in many regions (Alfieri et al., 2015, 2017, Asadieh and Krakauer, 19 

2015, 2016; Dankers et al., 2013; Ehsani et al., 2017; Field, 2012; Held and Soden, 2006; Min 20 

et al., 2011; O’Gorman and Schneider, 2009; Stocker et al., 2013). 21 

Average runoff projections from 3 GCMs show strong positive trend around high latitudes 22 

and negative trend for some mid-latitude regions, by the end of the 21
st
 century (Hagemann et 23 

al., 2013). Another study of runoff projections from a larger ensemble of GCMs also confirms 24 

such trends in runoff for the 21
st
 century (Tang and Lettenmaier., 2012). Changes in runoff, and 25 

consequently in streamflow, under current and future climate change has strong implications 26 

for available freshwater resources (Arnell, 2004; Brekke et al., 2009; Oki and Kanae, 2006; 27 

Stocker et al., 2013; Vörösmarty et al., 2000). Climate change is projected to decrease mean 28 

runoff in land areas around Mediterranean and some parts of Europe, southern Africa and 29 

central and southern America, and consequently increase water stress in those regions (Arnell, 30 

2004). It is also projected to worsen aridity in southern Europe and the Middle East, Australia, 31 

Southeast Asia, and large parts of Americas and Africa, in the 21st century (Dai, 2011). 32 
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Regions experiencing increase in total annual precipitation and runoff under climate 1 

change may also face increased water stress, as a result of change in precipitation and runoff 2 

distribution (Arnell, 2004; Asadieh and Krakauer, 2016; Oki and Kanae, 2006). Implications of 3 

anthropogenic climate change for flood events are widely noted in the literature; However, 4 

there are few multi-model analyses of future change in streamflow extremes at global scale 5 

(Arnell, 2004; Dankers et al., 2013; Hirabayashi et al., 2008, 2013; Koirala et al., 2014; Schewe 6 

et al., 2013). A study of streamflow provided by the Inter-Sectoral Impact Model 7 

Intercomparison Project (ISI-MIP) (Warszawski et al., 2013) projects increases for the high 8 

latitudes, eastern Africa and India, and decreases in streamflow of Mediterranean and southern 9 

Europe as well as South America and southern parts of North America, by the end of the 21
st
 10 

century (Schewe et al., 2013), similar to some other studies (Hagemann et al., 2013; Tang and 11 

Lettenmaier., 2012). Another study of ISI-MIP streamflow projects increases in 30 year return 12 

period of high flow in major parts of Siberia and some regions around Southeast Asia, and 13 

decreases in northern and eastern Europe and some regions around western United States, by 14 

the end of the 21
st
 century (Dankers et al., 2013). Approximately two-thirds of global land area 15 

are projected to experience positive trend in the magnitude and frequency of 30-year return 16 

period of high flow (Dankers et al., 2013) and magnitude of 95
th

 percentile of streamflow 17 

(Koirala et al., 2014), and have shown increase in magnitude of annual-maximum daily 18 

streamflow (Asadieh et al., 2016). The 95
th

 and 5
th

 percentiles of flow have been used as 19 

indices for analysis of streamflow extremes by United States Geological Survey (USGS) (Jian 20 

et al., 2015) and other studies (Koirala et al., 2014). Some studies have used changes in the 95
th

 21 

percentile of flow in gridded streamflow data to study changes in flood events (Wu et al., 2012, 22 

2014), while the 5
th

 percentile of streamflow has been used to study changes in drought events 23 

(Ellis et al., 2010; Sprague, 2005). Although changes in high and low extremes of streamflow 24 

may not be directly interpreted as changes in flood and drought events, since the thresholds for 25 

flood and drought damage vary according to factors such as mean climate, the magnitude of 26 

water demand, and engineering works for water storage and transport , such changes affect the 27 

likelihood of occurrence of those events, and can be considered a reasonable indicator of 28 

climate impacts on large-scale flood and drought hazard respectively (Vörösmarty et al., 2000). 29 

Accurate simulation of weather fields such as precipitation, as well as simulation of the 30 

diverse hydrological processes that lead to streamflow generation, are major sources of 31 

uncertainty in streamflow simulation (Giuntoli et al., 2015; Hagemann et al., 2013; Schewe et 32 

al., 2013). Some earlier adoptions of climate model projections for flooding studies utilized 33 

single global hydrological models (GHMs) for flow routing and streamflow simulation under 34 
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the GCM-simulated climate (Hirabayashi et al., 2013; Koirala et al., 2014). However, the 1 

process simulation in GHMs is also a major source of uncertainty, as flow routings in different 2 

GHMs using the same weather fields can result in markedly different flood and drought trend 3 

predictions (Giuntoli et al., 2015; Haddeland et al., 2011; Hagemann et al., 2013). 4 

Additionally, historical simulations of weather variables from GCMs have shown 5 

discrepancies (biases) compared to the observations (Asadieh and Krakauer, 2015; Ehret et al., 6 

2012; Hempel et al., 2013; Krakauer and Fekete, 2014), which may affect the climate change 7 

impact projections using the GCM outputs (Hagemann et al., 2011, 2013). This issue is often 8 

solved utilizing bias correction methods, in which the mean value of the time series is adjusted 9 

according to the observational records, while supposedly preserving the trends (Hempel et al., 10 

2013), as done in ISI-MIP dataset (Warszawski et al., 2013). 11 

A study of changes in frequency of 95
th

 and 10
th

 percentiles of un-routed runoff in the 21
st
 12 

century, using multiple GCMs and GHMs from ISI-MIP under RCP8.5 scenario, shows that 13 

the number of days with flow above the historical 95
th

 percentile will significantly increases in 14 

the high latitudes and the number of days with flow below the historical 10
th

 percentile will 15 

increase significantly in Mediterranean, southern North America, and Southern Hemisphere 16 

(Giuntoli et al., 2015). However, changes in runoff extremes do not directly correspond to 17 

floods of large water bodies, where routed runoff (streamflow) has been widely used instead 18 

for this purpose (Dankers et al., 2013; Hirabayashi et al., 2013; Koirala et al., 2014). 19 

Additionally, Giuntoli et al., 2015 studies changes in frequency of streamflow extremes, and 20 

not magnitude/intensity. Change in frequency of extremes may be studied using the historical 21 

extreme thresholds/percentiles, which may come to occupy different points in the streamflow 22 

probability distribution under future climate change. A study of change in 100-yr flood return 23 

period in the last 3 decades of the 21
st
 century compared to the last 3 decades of the 20

th
 24 

century, projected by 11 GCMs under various emission scenarios, shows increased flood 25 

frequency over the South and Southeast Asia, northern Eurasia, South America, and tropical 26 

Africa (Hirabayashi et al., 2013). Another similar study investigated changes in 5
th

 and 95
th

 27 

percentiles of streamflow, projected by the same 11 GCMs (Koirala et al., 2014). However, 28 

both these studies used a single river routing model for simulating streamflow using the GCM 29 

inputs.  However, a single multi-GCM multi-GHM global analysis of projected changes in 30 

magnitude of streamflow (routed runoff) extremes under different warming scenarios over the 31 

21
st
 century is not yet available.Here, we study changes in the magnitude of the 95

th
 percentile 32 

of annual streamflow (P95) in 21C compared to 20C, in which an increase may indicate a 33 
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greater potential for flood events. We also study the change in the magnitude of the 5
th

 1 

percentile (P5), in which a decrease may indicate greater potential for drought events. We 2 

study changes in both extremes to understand the changes in streamflow distribution and 3 

simultaneous vulnerability profiles to different types of hydrological risk in different regions. 4 

We use daily streamflow simulations from 25 GCM-GHM combinations (5 bias-corrected 5 

GCMs and 5 GHMs) from the ISI-MIP. We analyze simulated streamflow at the end of the 21
st
 6 

century (2070-2099, 21C) in comparison with the end of the 20
th

 century (1971-2000, 20C). 7 

GHM-generated streamflow based on GCM inputs does not well capture the interannual 8 

variability in flow compared to observations, even where, as in ISI-MIP, the GCM outputs are 9 

bias-corrected. However, the multi-decade average of bias-corrected ISI-MIP streamflow is 10 

shown to be similar to that of observation-based streamflow simulations (Asadieh et al., 2016). 11 

Other studies have also used relative changes in multi-decade average of streamflow 12 

percentiles in a future 21C time window compared to a historical 20C time window for 13 

flooding and streamflow extremes analyses (Dankers et al., 2013; Hirabayashi et al., 2013; 14 

Koirala et al., 2014; Tang and Lettenmaier., 2012). Alongside the study of the magnitude of 15 

change, we also study the percentage of global population affected by changes in high and low 16 

streamflow extremes, as an indication of the potential impact of changes in flood or drought 17 

events in those regions. Limiting global warming to 2 degrees Celsius above the pre-industrial 18 

era (achievable in RCP2.6 scenario (Moss et al., 2010; Stocker et al., 2013)) has been targeted 19 

in many scientific and governmental plans, for instance the 2015 Paris Climate Agreement 20 

(UNFCCC, 2015). However, the increasing trajectory of emissions observed over the 21 

beginning on the 21st century, if continued, is more consistent with around 4 degrees Celsius of 22 

warming by the end of the century (similar to RCP 8.5 scenario (Moss et al., 2010; Stocker et 23 

al., 2013)). Hence, we study both low and high radiative forcing scenarios (RCP2.6 and 24 

RCP8.5) to investigate the impacts of 21C anthropogenic forcing on streamflow extremes. 25 

2. Materials and Methods 26 

We use daily streamflow data obtained from the first phase of the ISI-MIP (Warszawski et al., 27 

2013). The ISI-MIP streamflow projections are produced by multiple GHMs, based on 28 

bias-corrected meteorological outputs of 5 GCMs from the fifth version of the Coupled Model 29 

Intercomparison Project (CMIP5) (Dankers et al., 2013), which are downscaled to 0.5 degree 30 

resolution for the period 1971-2099. The GCMs contributing to the first phase of ISI-MIP are: 31 

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M 32 

(Warszawski et al., 2013). The 5 GHMs selected for this study are WBM, MacPDM, 33 
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PCR-GLOBWB, DBH and LPJmL (refer to supplementary materials for details). These 1 

models which have been used in previous studies, along with other models (Schewe et al., 2 

2013). However, we limit the number of GHMs to 5 so the analysis in this global scale is 3 

practical. 4 

Increasing/decreasing extreme high/low streamflow can form four combinations, which 5 

are categorized as the following four quadrants: 1. Increased high extreme and decreased low 6 

extreme, 2. Increased high and low extreme, 3. Decreased high and low extreme, and 4. 7 

Decreased high extreme and increased low extreme. Results obtained are averaged for each of 8 

these quadrants and the comparison of results between different scenarios is made for each 9 

quadrant individually. Assignment of each grid cell to the specified quadrant is based on the 10 

averaged change across GCMs and GHMs. 11 

In order to calculate the normalized change in high extreme of a grid cell, the magnitude of 12 

the 95
th

 percentile of daily streamflow (P95) is calculated for each year, and then averaged for 13 

20C (called Q20C) and 21C (called Q21C). The normalized change is calculated as: 14 

    
         
         

 Eq.1 

The ΔQ value ranges between -1 and +1, where a normalized change equal to -1 indicates 15 

total loss of the 20C flow in the 21C and a normalized change equal to +1 indicates that all of 16 

the 21C flow is resultant of the change and the flow in 20C was zero. As mentioned in the 17 

Introduction, an increase in P95 suggests the potential for an increase in flooding hazards. For 18 

normalized change in low extreme of a grid cell, the same calculations are performed on the 19 

magnitude of the 5
th

 percentile of annual streamflow (P5). A decrease in P5 indicates the 20 

potential for worse drought hazards, and hence, the ΔQ for P5 is multiplied by -1 when shown 21 

in the plots, so that a positive value  corresponds directly to increase in potential for 22 

hydrological drought. Multi-model ensemble averages of changes are calculated based on the 23 

normalized change values. However, averaged normalized changes are then reverted to relative 24 

changes, and results are shown in both normalized change and relative percentages (cf. Figure 25 

S1). Normalized change is symmetrical with respect to zero, meaning that multiplying flow by 26 

a factor of m and dividing flow by m over the 21C both yield normalized change values with 27 

same magnitude but opposite sign. For instance, tripling the flow over the 21C will yield a 28 

normalized change of 0.5, while dividing flow by 3 yields a normalized change value of -0.5. 29 

Relative changes in streamflow can be very large for individual grid cells, particularly in high 30 

latitudes that are currently ice-covered. This biases the averaging across models and grid cells 31 
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towards a positive value, as the decreases are limited to 100% loss of the historic flow, while 1 

the increase can be well over 100% of the historic flow. Normalizing changes to between -1 2 

and +1 is adopted here so the ranges of increases and decreases are comparable.We exclude 3 

grid cells that have average daily flow below 0.01 mm over the period of 1971-2000 4 

(Hirabayashi et al., 2013). Greenland and Antarctica are also excluded from the analysis. The 5 

remaining grid cells cover 75.9% of global land area, but include 95.9% of global population as 6 

of the year 2015. The grid cells with very low streamflow volume are excluded from the 7 

calculations, because such regions are very sensitive to changes projected by models and small 8 

increases in streamflow result in large relative changes in flood index, which may not 9 

meaningfully indicate to flooding risk for such dry regions. To identify the dry grid cells, the 10 

streamflow simulation of the WBM-plus model driven by reanalysis climate fields of WATCH 11 

Forcing Data (WFD) is used (Asadieh et al., 2016), as the ISI-MIP uses the WFD dataset for 12 

bias-correction of the GCM output (Hempel et al., 2013). 13 

Calculation of normalized change in streamflow in 21C compared to 20C is performed on 14 

each of the 25 GCM-GHM combination datasets individually. The results are averaged over 15 

the models for each grid cell. The multi-model averages are then averaged over the grid cells 16 

that show increase in the indicator and also separately over the grid cells that show decreases in 17 

the indicator (two separate values for each indicator). The multi-model averages are also 18 

averaged for each quadrant. This averaging gives a better sense of the projected magnitudes of 19 

changes in the high and low streamflow extremes for each warming scenario in affected 20 

regions than averaging over all land areas, because the positive and negative trends cancel each 21 

other out in a global averaging due to the semi-symmetric behavior of changes (Figures 2.c and 22 

d). In a supplementary analysis, the streamflow data of all the model combinations were 23 

averaged first and the normalized change was calculated on the multimodel-averaged 24 

streamflow data. Both approaches yielded very similar results, indicating that the analyses are 25 

not sensitive to the method of averaging. 26 

The two-sample t-test (Snedecor and Cochran, 1989) is used in this study to quantify the 27 

statistical significance level of difference between the means of the 20C and 21C streamflow 28 

time series (refer to supplementary materials). The percentage of land area with statistically 29 

significant change (at 95% confidence level) is reported. The affected population is 30 

calculated using the Gridded Population of the World (GPW) data from the Center for 31 

International Earth Science Information Network (CIESIN) (Doxsey-Whitfield et al., 2015). 32 
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3. Results and Discussion 1 

Based on multi-model mean results under RCP8.5 scenario, 36.7% of global land area shows 2 

an increase in high extreme (95
th

 percentile) of streamflow (whose magnitude averages 3 

24.55%), potentially increasing the chance of flooding in those regions, and 39.2% of land area 4 

shows an average 21.10% decrease in P95. On the other hand, 43.2% of global land area shows 5 

an average 51.40% decrease in low extreme (5
th

 percentile), potentially increasing the chance 6 

of drought in those regions, and 32.7% of land area shows an average 30.30% decrease in P5 7 

(Table 1). Compared to RCP8.5, RCP2.6 shows a higher percentage of land area with 8 

increasing P95, a lower percentage with decreasing P5, and much smaller magnitudes of mean 9 

changes (Table 1). 10 

Figure 1 shows global maps of normalized change in median, P5, and P95 of streamflow in 11 

21C compared to 20C under two different warming scenarios, obtained from the ensemble 12 

mean of all 25 GCM-GHM combination datasets. Under RCP8.5 scenario, the high latitudes 13 

show an increase in all percentiles of flow, while the Mediterranean shores, Middle East, 14 

southern North America and the Southern Hemisphere show a decrease in all percentiles. The 15 

United Kingdom, some parts of Indonesia, India and southern Asia show an increase in the 16 

magnitude of P95 while experiencing a decrease in the magnitude of P5. Median flow shows a 17 

general pattern of change similar to P5. As shown in the figure, changes are more intense in 18 

RCP8.5 scenario (representative of 4 degrees warmer world in 21C compared to pre-industrial 19 

era) than in RCP2.6 scenario (representative of 2 degrees warmer world in 21C compared to 20 

pre-industrial era). However, unlike the RCP8.5 scenario, the RCP2.6 scenario projects 21 

increase in P95 for eastern United States as well as southern and western Europe. Global maps 22 

of change in median, P5, and P95 of streamflow for each individual model, are shown in 23 

supplemental Figures S2-7. 24 

Figure 2 depicts the multi-model mean changes in high and low extremes of streamflow 25 

averaged by latitude, as well as the scatter of the grid cells over the defined quadrants, under 26 

each RCP scenario. Results show increasing P95 (and thus increased potential for flooding) 27 

and increasing P5 (and thus decreasing potential for drought) in high latitudes, especially in the 28 

regions near and above the Arctic Circle, in both warming scenarios. The changes are projected 29 

with high agreement among the models in both scenarios, with greater change in RCP8.5 30 

compared to RCP2.6 (Figure 2). This indicates future increase in the flow volume of the Arctic 31 

rivers and increased freshwater inflow into the Arctic Ocean, continuing the trend observed 32 

over the last decades (Peterson et al., 2002; Rawlins et al., 2010), which can be attributed to the 33 
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thaw of permafrost and increased precipitation in a warmer climate. Rivers play a critical role 1 

in the Arctic freshwater system (Carmack et al., 2016; Lique et al., 2016), as river runoff is the 2 

major component of freshwater flux into the Arctic Ocean (Carmack et al., 2016). Arctic 3 

rivers’ inflow to the Arctic Ocean accounts for around 10% of global annual water flux into the 4 

oceans (Haine et al., 2015; Lique et al., 2016). The projected increase in meltwater flux into the 5 

Arctic Ocean may contribute to sea level rise and changes in water salinity, temperature as well 6 

as circulation in the Arctic Ocean (Peterson et al., 2002; Rawlins et al., 2010). The Southern 7 

Hemisphere shows a general decreasing trend in both P5 and P95, indicating a negative trend in 8 

flow volume. The Northern Hemisphere tropics however show a mixed trend, as changes 9 

averaged over latitude show fluctuations between latitudes within the tropics (Figure 2). 10 

Figures 3 and 4 depict multi-model changes in streamflow extremes under different 11 

warming scenarios, averaged over different latitudinal windows. Figure 3 shows the results 12 

from streamflow routings of each GHM based on inputs from multiple GCM simulations, 13 

where the thick lines in the plots denote the mean of change in the indicator and the shades 14 

denote ±1 st. dev. For each single GHM (shown by distinct colors), the thick line in the plots 15 

show the average of GCMs and the shading denotes the standard deviation of GCMs. Hence, 16 

the shadings in this figure are representative of uncertainties arising from GCMs. Also, 17 

different average values (thick lines) means that different GHMs have produced different 18 

streamflow routings and different change values in the indicators, even though the routings are 19 

based on inputs from the same ensemble of GCMs. Figure 4, on the other hand, shows 20 

streamflow routings of multiple GHMs based on inputs from each of the GCMs, where the 21 

thick lines in the plots denote the mean of change in the indicator and the shades denote ±1 st. 22 

dev. For each single GCM (shown by distinct colors), the shading denotes the standard 23 

deviation of GHMs and hence, is representative of uncertainties arising from GHMs. The 24 

RCP8.5 scenario show higher normalized change values and larger uncertainties, compared to 25 

the RCP2.6 scenario. The uncertainties are proportionally greater for P5 trend projection than 26 

for P95 (Figure 3 and 4). 27 

The shadings in Figure 4 (inter-GHM uncertainty) is broader than in Figure 3 (inter-GCM 28 

uncertainty), which shows that the GHMs contribute to higher rate of uncertainties in 29 

streamflow change projections than GCMs. As seen in Figure 3 (c-d), for instance, the P5 30 

predictions of the DBH hydrological model for Northern Hemisphere are significantly 31 

different from the other 4 hydrological models considered here, even though the streamflow 32 

routings are based on the same GCM inputs. Such inconsistency between DBH models and 33 
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other models’ results may not be detectable, if, as in the Figure 4, only the mean and standard 1 

deviation across GHMs is shown. High uncertainties in Northern Hemisphere low extreme 2 

trends in Figure 4 (c-d) reflects large disagreements among the GHMs for that region, while 3 

Figure 3 (c-d) reveals the major cause of such uncertainties to be the DBH model. 4 

Figure 5 illustrates the global maps of combined change in high and low streamflow 5 

extremes under each RCP scenarios, obtained from the multi-model mean results across all 25 6 

GCM-GHM combination datasets. Grid cells falling in each of the defined quadrants are 7 

shown with different colors, saturation of which is representative of the intensity of changes. 8 

As shown in the Figure, northern high latitudes, especially north Eurasia, northern Canada and 9 

Alaska, as well as eastern Africa and parts of South and Southeast Asia and Eastern Oceania 10 

show increase in the magnitude of high streamflow extremes (P95) in both scenarios, similar to 11 

findings of earlier studies and reflecting a potential for increasing flood hazard (Dankers et al., 12 

2013; Hirabayashi et al., 2013; Schewe et al., 2013). Central America, Southern Africa, Middle 13 

East, Southern Europe, Mediterranean and major parts of South America and Australia show 14 

decrease in the magnitude of low streamflow extrem (P5) in both scenarios, comparable to 15 

findings of earlier studies and reflecting a potential for increasing drought hazard (Arnell, 16 

2004; Dai, 2011; Hagemann et al., 2013; Schewe et al., 2013). The United Kingdom and the 17 

shores of the North Sea as well as large parts of Tibetan, South Asia and Western Oceania show 18 

increase in potential for both flood and drought hazards (increase in P95 and decrease in P5). In 19 

these cases, while preserving the direction of change, the RCP8.5 scenario projects stronger 20 

magnitude change compared to the RCP2.6 scenario. Southern and Western Europe and 21 

southern parts of the United States show small-magnitude, mixed-sign changes in P95 and P5 22 

in the RCP2.6 scenario. However, projections under RCP8.5 scenario are for strong decrease in 23 

P5 in those regions, suggesting increasing potential for drought hazard. Some parts of eastern 24 

Russia and northern United States show decreases in P95 and increases in P5, suggesting the 25 

potential for reduction in both flood and drought hazards (Figure 5).  26 

Under the low radiative forcing scenario (RCP2.6), 45.4% of global land area shows 27 

increase in high extreme in the multi-model mean and 36.4% shows decrease in low extreme, 28 

indicating more land area exposed to increasing flood hazard compared to to drought hazard. 29 

The high radiative forcing scenario (RCP8.5) projections show the opposite outcome, with 30 

increased high extreme streamflow in 36.6% of global land area and decreased low extreme in 31 

43.2%. Unlike the RCP2.6 scenario, the RCP8.5 scenario projects more land area exposed to 32 

increasing drought hazard compared to flood. Moreover, changes in streamflow extremes are 33 
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larger in magnitude in RCP8.5 compared to RCP2.6, as the relative change values for 21C are 1 

approximately double; for instance, comparing the relative increases in high extreme in Quad.2 2 

(30.2% vs. 15.1%), and relative decrease in low extreme in Quad.3 (62.2% vs. 28.1%) (Table 3 

3). Under RCP8.5 scenario, change in high and low extremes in 54.0 and 64.9%, respectively, 4 

of the global land area is statistically significant. The significance fraction is lower for the 5 

RCP2.6 scenario (38.4 and 53.8% of global land area in high and low, respectively). The 6 

significance percentage is calculated for the multimodel-averaged streamflow time series in 7 

21C compared to 20C, and the percentages for each individual model may be different. 8 

Under RCP8.5 scenario (and similarly in RCP2.6), nearly 9.6% of global land areas show 9 

increasing potential exposure to both increase flood and drought hazards (increasing P95 10 

combined with decreasing P5). Unfortunately, these regions are dominantly highly populated 11 

parts of the globe, the residence of around 29.6% of the world’s current population, or more 12 

than 2.1 billion people (Table 2). The 2015 Paris Climate Agreement, adopted at the 21
st
 13 

meeting of the Conference of Parties (COP21), targets to limit the global temperature rise “well 14 

below” 2°C above the pre-industrial levels (UNFCCC, 2015). Even though seeming to be 15 

ambitious, such an agreement in intergovernmental level is a start to motivate the developed 16 

countries producing the majority of greenhouse gases to limit emissions and finance the 17 

climate-resilient development in lower income economies, and, based on the projections 18 

analyzed here, would limit changes in streamflow extremes that correspond to the potential for 19 

increasing flood and drought hazards in many densely populated areas. 20 

4. Conclusion 21 

Global daily streamflow simulations of 25 GCM-GHM combination datasets are analyzed to 22 

study the implications of increased GHG emissions and consequent atmospheric temperature 23 

rise for global streamflow extremes. The projected changes in high and low streamflow 24 

percentiles in the 21C compared to the 20C were studied, under both low and high radiative 25 

forcing scenarios, to investigate the changes in streamflow distribution and simultaneous 26 

vulnerability to different types of hydrological risk in different regions, and study the number 27 

of people affected by such changes. Multiple GHMs and GCMs are used to account for 28 

uncertainties arising from the hydrological models and flow routing process on the flood and 29 

drought studies, additional to the weather field simulation uncertainties. 30 

Results suggest that northern high latitudes, especially north Eurasia, northern Canada and 31 

Alaska, as well as Tibet Plateau and southern India will face strong increases in high extreme 32 
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of streamflow over the 21
st
 century, with the potential for increasing flood hazard in those 1 

regions. The Mediterranean shores, Middle East, southern North America and the Southern 2 

Hemisphere are projected to see strong decrease in low extreme of streamflow, with the 3 

potential for increasing drought hazard for those areas. The projected increase in meltwater 4 

flux from the pan-Arctic watershed into the Arctic Ocean may contribute to sea level rise, and 5 

changes in salinity, temperature and circulation in the Arctic Ocean. The United Kingdom and 6 

the shores of the North Sea as well as large parts of Tibetan, South Asia and Western Oceania 7 

show increase in potential for both flood and drought hazards. Regions projected to experience 8 

simultaneous increases in both flood and drought chances as a result of change in streamflow 9 

distribution, are highly populated parts of the globe, even though covering a small fraction of 10 

global land area. A world 2°C warmer than the pre-industrial era will still face increases in 11 

flood and drought in most regions. However, the GCM and GHM ensemble projects that 4°C 12 

of warming will bring nearly twice as much increase in the magnitude of high and low 13 

streamflow extremes that, in many densely populated areas, are likely to correspond to 14 

high-impact flood and droughts. 15 

Similar to previous studies (Giuntoli et al., 2015; Hagemann et al., 2013), our results show 16 

that GHMs contribute to more uncertainty in streamflow changes than the GCMs, where 17 

different GHMs have produced different streamflow routings and different change values in 18 

the extremes, even though the routings are based on inputs from the same ensemble of GCMs. 19 

Our findings suggest that in addition to inclusion of ensembles of GCMs for hydrological 20 

impact assessments in lieu of a single model, inclusion of ensembles of GHMs, as done in 21 

projects like ISI-MIP, may further improve accuracy of projections. The bias-corrections 22 

applied on GCM outputs in ISI-MIP may help reduce the uncertainties of climate models in 23 

hydrological impact assessments. However, high inter-GHM uncertainties suggest that more 24 

focus is needed on improving the process representation and calibration of hydrological 25 

models, so that the next generations of climate-hydrological model intercomparison projects 26 

yield higher agreement on future hydrological hazard assessments. 27 
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Table 1. Multi-model average change in high and low streamflow extremes, as well as 1 

percent of population and land area affected by each category, for RCP2.6 and 2 

RCP8.5 scenarios. Presented percentages are for total global land area and total global 3 

population, and sum up to the 75.9% of global land area and 95.9% of the year 2015 4 

total global population considered in this study. The value of change for indicators are 5 

normalized change and the numbers in parenthesis show the changes reverted to the 6 

relative percentages. 7 

 

Normalized (and Percent) 

of Change 

in magnitude of extremes 

Land Area Affected 

(% of total 148.9 million 

km2, sum up to 75.9%) 

Population Affected 

(% of total 7.13 billion 

people, sum up to 95.9%) 

 RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 

High extreme (P95) 

Increased cells 

(Increased flood potential) 

0.1093 

(24.55 %) 

0.0606 

(12.90 %) 
36.7% 45.4% 53.7% 62.7% 

High extreme (P95) 

Decreased cells 

(Decreased flood potential) 

-0.1178 

(-21.10 %) 

-0.0539 

(-10.25 %) 
39.2% 30.5% 42.2% 32.2% 

Low extreme (P5) 

Decreased cells 

(Increased drought potential) 

-0.2045 

(-51.40 %) 

-0.1029 

(-22.95 %) 
43.2% 36.3% 67.8% 56.1% 

Low extreme (P5) 

Increased cells 

(Decreased drought 

potential) 

0.1784 

(30.30 %) 

0.1018 

(18.50 %) 
32.7% 39.6% 28.1% 39.8% 

  8 
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Table 2. Percent of population and land area affected by each high and low extreme 1 

change quadrants, for RCP2.6 and RCP8.5 scenarios. Presented percentages are for 2 

total global land area and total global population. Hence, the percentages presented 3 

for quads. 1-4 sum up to the 75.9% of global land area and 95.9% of the year 2015 4 

total global population considered in this study. 5 

  

Quad. 1. increased 

high extreme and 

decreased low 

extreme 

Quad. 2. 

increased high 

and low 

extreme 

Quad. 3. 

decreased high 

and low extreme 

Quad. 4. decreased 

high extreme and 

increased low 

extreme 

Land area affected 

(% of total 148.9 

million km2) 

RCP8.5 9.6% 27.0% 33.6% 5.7% 

RCP2.6 10.8% 34.5% 25.5% 5.1% 

Population affected 

(% of total 7.13 

billion people) 

RCP8.5 29.6% 24.1% 38.2% 4.0% 

RCP2.6 27.1% 35.6% 28.9% 4.3% 

  6 
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Table 3. Multi-model average change in high and low streamflow extremes, averaged 1 

for each quadrant, for RCP2.6 and RCP8.5 scenarios. The numbers show the 2 

normalized change and the numbers in parenthesis show the changes reverted to the 3 

relative percentages. 4 

 

Quad. 1. increased high 

extreme and decreased 

low extreme 

Quad. 2. increased high 

and low extreme 

Quad. 3. decreased high 

and low extreme 

Quad. 4. decreased high 

extreme and increased 

low extreme 

Change in 

high ext. 

Change in 

low ext. 

Change in 

high ext. 

Change in 

low ext. 

Change in 

high ext. 

Change in 

low ext. 

Change in 

high ext. 

Change in 

low ext. 

RCP8.5 
0.0481 

(10.10 %) 

-0.0901 

(-19.80 %) 

0.1311 

(30.20 %) 

0.1909 

(32.05 %) 

-0.1290 

(-22.85 %) 

-0.2372 

(-62.20 %) 

-0.0508 

(-9.65 %) 

0.1183 

(21.15 %) 

RCP2.6 
0.0306 

(6.30 %) 

0.0556 

(-11.80 %) 

0.0700 

(15.05 %) 

0.1074 

(19.40 %) 

-0.0593 

(-11.20 %) 

-0.1230 

(-28.05 %) 

-0.0267 

(-5.20 %) 

0.0635 

(11.95 %) 

  5 
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 1 

 2 

Figure 1. Global maps of normalized change in different streamflow percentiles (95
th

, 3 

5th and median), under the RCP8.5 and RCP2.6 scenarios. Maps show the ensemble 4 

mean results of all 25 models.   5 
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 1 

 2 

Figure 2. Multi-model change in P95 and P5*-1 under (a) RCP8.5 and (b) RCP2.6 3 

scenarios, averaged by latitude, and scatter plot of change for each grid cell under (c) 4 

RCP8.5 and (d) RCP2.6 scenarios. The thick line in the panels a and b show the 5 

ensemble mean value of all 25 GCM-GHM combination datasets and the shading 6 

denotes ±1 st. dev.  7 
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 1 

 2 

Figure 3. Multi-model change in P95 under RCP8.5 (a) and RCP2.6 (b) scenarios, and 3 

change in P5*-1 under RCP8.5 (c) and RCP2.6 (d) scenarios, averaged by latitude. 4 

The thick lines in the plots show the mean change in the indicator, based on the 5 

streamflow routings of each GHM based on inputs from multiple GCMs, and the 6 

shades denote ±1 st. dev.  7 



24 

 1 

 2 

Figure 4. Multi-model change in P95 under RCP8.5 (a) and RCP2.6 scenarios (b), and 3 

change in P5*-1 under RCP8.5 (c) and RCP2.6 scenarios (d), averaged by latitude. 4 

The thick lines in the plots show the mean change in the indicator, based on the 5 

streamflow from each GCM’s simulated climate routed by multiple GHMs, and the 6 

shading denotes ±1 st. dev.  7 
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 1 

 2 

Figure 5. Global map of combined change in high and low extremes (related to change 3 

in flood and drought chance) under (a) RCP8.5 and (b) RCP2.6 scenario. The maps 4 

show the ensemble mean results of all 25 GCM-GHM combination datasets. Grid 5 

cells with increase in both flood and drought chances (Quad. 1) are shown in purple 6 

shade, cells with increased flood chance (Quad. 2) and drought chance (Quad. 3) are 7 

shown in blue and red shades, respectively, and cells with decrease in both flood and 8 

drought chances (Quad. 4) are shown in yellow shade. The saturation of colors are 9 

chosen based on the magnitude of change in high and low extremes of streamflow, as 10 

shown in the legend. Distribution of cells in each of the quadrants are comparable to 11 

the Figures 2.c and d. Grid cells with normalized changes less than 1% (equal to 2% in 12 

relative terms) in each quadrant are considered as no change cells and are shown in 13 

gray. 14 


