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Abstract. Over recent decades, the global population has been rapidly increasing and human activities have altered 

terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly 

modified hydrological processes in various ways (e.g., irrigation, artificial dams, and water diversion) and at various scales 

(from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the 

first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial 5 

water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage 

few models considered the interaction between terrestrial water fluxes and human activities, including water use and 

reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since 

the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the 

representation of human activities in hydrological models remain challenging. In this paper we provide a synthesis of 10 

progress in the development and application of human impact modeling in LHMs. We highlight a number of key challenges 

and discuss possible improvements in order to better represent the human-water interface in hydrological models. 

1 Introduction 

The Earth’s surface has undergone drastic changes due to the human-driven alteration of land use and vegetation patterns 

and the management of surface water and groundwater systems (Bondeau et al., 2007; Gerten et al., 2007; Rost et al., 2008). 15 

Over the last century, the global population has quadrupled and currently exceeds 7 billion, half of which live in urban areas. 

The rapidly growing population and rising food demands have caused a drastic six-fold expansion of global irrigated areas 

during the 20th century (Siebert et al., 2015). Human needs for water are ever-increasing, dominated currently by 

agricultural irrigation for food production worldwide (>70%). However, rapid urbanization and economic development are 

likely to be the main drivers for increasing water demands worldwide (Wada et al., 2016c). Humans extract vast amounts of 20 

water from surface water and groundwater resources (Siebert et al., 2010; Siebert and Döll, 2010; Wisser et al., 2010; 

Konikow, 2011), and these amounts have increased from ~500 to ~4000 km3 yr-1 over the last 100 years (Oki and Kanae, 

2006; Hoekstra and Chapagain, 2007; Hanasaki et al., 2008a,b; Wada et al., 2014). Tens of thousands of artificial dams have 

been built in major river systems with total storage capacities exceeding 8000 km3 worldwide (Nilsson et al., 2005; Lehner et 

al., 2011). These are used to boost water supply, to provide flood control, and to serve as a source of hydropower generation 25 

to supply the energy needs for industries (Liu et al., 2015, 2016). However, regional and seasonal variations of water supply 

and demand are large, causing water scarcity in various regions of the world (Gleick, 2000, 2003; Vörösmarty et al., 2000; 

Oki and Kanae, 2006; Kummu et al., 2010). In such regions, groundwater is often intensively used to supplement the excess 

demand, often leading to groundwater depletion (Rodell et al., 2009; Famiglietti et al., 2011; Konikow, 2011; Gleeson et al., 

2012; Scanlon et al., 2012; Taylor et al., 2013). Climate change adds further pressure on the Earth’s water resources and is 30 

likely to amplify human water demands due to increasing temperatures over agricultural lands (Dirmeyer et al., 2006, 2009, 

2014; Wada et al., 2013a,b; Haddeland et al., 2014; Schewe et al., 2014). 
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Terrestrial water fluxes have been affected by humans tp an unprecedented extent and the fingerprints that humans have left 

on the Earth’s water resources are increasingly discernible in a diverse range of records that can be seen in both surface 

freshwater and groundwater resources. The United Nations alerts us that in water scarce regions the shortage of water is 

beginning to limit economic growth and create large uncertainties for the sustainability of future water supply (World Water 5 

Assessment Programme, 2003). Given rising levels of human footprint, and the heavy dependence of the world economy and 

livelihoods on water, human impacts on land and water systems are pervasive (World Water Assessment Programme, 2016). 

Agriculture and urbanization affect the delivery  and quality of water to river and groundwater systems (Siebert et al., 2010); 

many river flows are regulated (Lehner et al., 2011) and threatening ecological flows (Poff et al., 2010); water use, in 

particular for irrigation, can be a dominant factor in the hydrological cycle, including effects on land-atmosphere feedbacks 10 

and precipitation (Wada et al., 2016a) that can have substantial non-local impacts (Dirmeyer et al. 2009; Tuinenburg 2012; 

Wei et al. 2013; Lo and Famiglietti, 2013). In an era now designated as the Anthropocene (Steffan et al., 2011; Montanari et 

al., 2013; Savenije et al., 2014), global hydrology must therefore be treated as a coupled human-natural system. 

 

During the early 1990s, awareness of the potential for global water scarcity led to the first detailed global water resource 15 

assessments comparing water availability with water use based on national statistics and observed climate information 

(Falkenmark, 1989; Falkenmark et al., 1997). Shortly thereafter, in order to analyse the human perturbation on water 

resources, the first generation of large-scale hydrological models (LHMs) appeared (Bierkens, 2015). These models solve the 

local water balance consistently across large scales and calculate river discharge by accumulating gridded runoff over a river 

network constructed from topographic information (Vörösmarty et al., 1989). However, at this early stage few models 20 

considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, 

and even fewer models distinguished water use from surface water and groundwater resources (Nazemi and Wheater, 

2015a,b). The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways 

(e.g., land use, artificial dams, and water diversion) and at various scales (from a watershed to the globe) (Sivapalan et al., 

2012; Sivapalan, 2015). The increasing number of recent global and regional studies show that human activities can no 25 

longer be neglected in hydrological models, since otherwise the resulting assessments will be biased towards the natural 

conditions in many parts of the world. Since the early 2000s, a growing number of LHMs are incorporating human impacts 

on the hydrological cycle; however, human representations in hydrological models are still rather simplistic.  

 

In this paper, we review the evolution of modeling human impacts on global water resources. The paper provides a synthesis 30 

of progress in the development and application of LHMs that include an explicit treatment of human-water interactions, the 

lessons learned, challenges faced, and perspectives on future extensions. In this review, a number of key challenges are 

identified and possible improvements are discussed. This synthesis paper is an outcome of the Symposium in Honor of Eric 

Wood: Observations and Modeling across Scales, held June 2-3, 2016 in Princeton, New Jersey, USA. The primary objective 
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of this contribution is to discuss the integration of human activities into process based hydrological modeling and to provide 

future directions. 

2 Evolution of representing human impacts in hydrological models 

To analyse the impacts of human-induced changes on water resources consistently across large scales, a number of LHMs 

have been developed since the late 1990s. In the early stages, the surface water balance (e.g., runoff and evaporation) was 5 

primarily simulated in LHMs and runoff was routed down the simulated river systems (Vörösmarty et al., 1989). These 

calculations were then compared to population and water use data to derive the degree of human water exploitation or water 

scarcity primarily at an annual temporal scale (e.g., Alcamo et al., 1997, 2003a,b; Arnell et al. 1999; Vörösmarty et al. 2000; 

Oki et al. 2001). LHMs typically simulate the dynamics of soil moisture due to precipitation and evapotranspiration, the 

generation of runoff and the discharge through the river network on a coarse grid (~50-100km). Most LHMs are based on the 10 

water balance concept and track the flows of water through a number of storage including canopy, soil and groundwater. 

Most LHMs are not fully calibrated, but in some cases they are tuned with regional parameters (Widén-Nilsson et al., 2007).  

 

Conceptual models are often chosen as they are deemed to be robust and parsimonious in their data requirements. In fact, for 

water budget calculations supporting water resource assessments, these more parsimonious models can be shown to yield 15 

similar annual and sub-annual estimates as more complex models, especially in the context of the lack of comprehensive and 

high quality forcing data sets (Federer et al., 1996, 2003). In recent developments, however, LHMs are becoming more 

physically based and process oriented with large-scale data more readily available and  there is increasing incorporation of 

better hydrological representations for various processes including runoff generation, soil physics and groundwater 

representation. For example, water flows and water storages are calculated for individual hydrological components such as 20 

rivers, lakes, reservoirs, and groundwater, among others (e.g., Döll et al. 2003; Hanasaki et al. 2008a,b; Rost et al. 2008; 

Wada et al. 2011a,b; Pokhrel et al. 2012). More sophisticated hydrological schemes to consider seasonal difference such as 

in runoff, snowmelt, soil moisture, and lake and dam regulation have been implemented. Water use is now often subdivided 

among these different water sources into specific sectors such as irrigation, livestock, manufacturing, thermal power cooling, 

municipalities, and the aquatic environment (Hanasaki 2008a,b; Wada et al. 2011a,b; Flörke et al. 2013; Pastor et al. 2014). 25 

Irrigation schemes to calculate the water demand have also been improved from simply using the difference between 

potential and actual evapotranspiration to using a soil moisture deficit that is dynamically coupled with hydrology. 

Nowadays, many LHMs consider the dynamic feedback between hydrology and human water management via irrigation-soil 

moisture dynamics, reservoir-streamflow interaction, and water allocation-return flow (withdrawals minus consumption) 

dynamics (Döll et al. 2012; Wada et al., 2014; Pokhrel et al., 2015). Regional hydrological models (RHMs) consider even 30 

more complex feedback and co-evolution of coupled human–water systems (Liu et al., 2014). Many human activities, such 

as human induced changes in the surface and subsurface of a watershed, are not for the purpose to change the water cycle but 
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they indeed alter the water cycle and water resources. These impacts are increasingly accounted for in the current generation 

of LHMs and RHMs. 

 

LHMs have been developed primarily to assess water resource availability and use under human land-water management 

practices (Arnell, 1999; Alcamo et al., 2003a,b; Döll et al., 2009, 2012; Gosling and Arnell, 2016; van Beek et al., 2011; 5 

Wada et al., 2011a,b, 2014; Wisser et al., 2010), but they are typically water balance models that do not solve the land 

surface energy balance (Nazemi and Wheater, 2015b; Overgaard et al., 2006), even though there were some attempts to 

couple land surface models (LSMs), that consider surface energy balance, with global river routing model (Oki and Sud, 

1998) to estimate the availability of water resources globally (Oki et al., 2001; Hanasaki et al., 2008a,b). The primary focus 

in their development remains the accurate simulation of river discharge at relevant scales. To achieve this, most LHMs 10 

typically employ a few parameters that can be tuned to match the simulated discharge with observations (e.g., Döll et al., 

2003; Wisser et al., 2010). The underlying assumption is commonly that since the models are tuned to capture the observed 

discharge, other fluxes, such as ET are automatically simulated with reasonable accuracy. However, it is well known that 

focussing on a single criterion such as discharge does not guarantee good performance for other fluxes (Hogue et al., 2006). 

LHMs are designed to be used in an offline mode with given climate information provided as an external input, and are not 15 

generally coupled with climate models (GCMs).  

 

However, some early LHMs were developed to be incorporated as LSMs in global climate models (GCMs) or Earth System 

Models (ESMs) (Yates, 1997), or as stand-alone hydrological models such as VIC (Wood et al. 1992; Nijssen et al., 2001a,b) 

(see Table 1 for classifications). In contrast to LHMs, LSMs have been developed as the integral components of GCMs. The 20 

development of LSMs can be traced back to early work by Thornthwaite and Mather (1957) and Manabe (1969), who 

developed a simple “bucket model” based on the concepts of Budyko (1965). Early LSMs used simple parameterizations for 

solving surface energy and water balances without explicitly simulating the influence of land use change and human water 

management on surface hydrological processes (Deardorff, 1978; Bonan, 1995). They are used to estimate the exchange of 

energy, heat, and momentum between the land surface and atmosphere in GCMs, and to close budgets. Since terrestrial 25 

hydrological processes exert profound influence on the overlying atmosphere (Shukla and Mintz, 1982; Koster et al., 2004), 

LSMs have advanced through intensive improvements in the representation of vegetation, soil moisture, and groundwater 

processes (e.g., Lawrence et al., 2011) by both the atmospheric and hydrologic research communities (Sellers et al., 1997).   

 

As a growing body of literature highlights the need to represent human activities in GCMs, studies have begun to incorporate 30 

human factors in a number of LSMs. For example, Pokhrel et al. (2012, 2015) incorporated a number of human land-water 

management schemes including reservoir operation (Hanasaki et al., 2006), irrigation, and groundwater pumping into the 

MATSIRO LSM (Takata et al., 2003), and examined the human alteration of land surface water and energy balances. A 

number of other studies have incorporated similar schemes in a variety of global land surface models including the 
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Community Land Model (CLM; Leng et al., 2014, 2015), the Organizing Carbon and Hydrology in Dynamic Ecosystems 

(ORCHIDEE) model (de Rosnay et al., 2003), and the Noah LSM (Ozdogan et al., 2010). Apart from these global studies, 

various regional-scale studies have also developed human impacts schemes to be incorporated in GCMs (e.g., Voisin et al., 

2013; Ferguson and Maxwell, 2012; Condon and Maxwell, 2014). 

 5 

In addition to simulating land surface hydrology, LSMs provide the lower boundary conditions for atmospheric simulations 

in GCMs. They typically employ sub-hourly time steps and solve the energy balance on land, which is vital to the simulation 

of the diurnal patterns of surface and soil temperature variations required by their parent climate models to facilitate a 

dynamic linkage between land and atmosphere through continuous exchange of moisture, energy, and momentum. 

Considering energy balances in LSMs is crucial not only to provide the boundary fluxes to the atmospheric models, but also 10 

to simulate alteration of land surface energy partitioning due to human activities such as irrigation (Ozdogan et al., 2010; 

Pokhrel et al., 2012), and consequently to understand its climate impact (e.g., Boucher et al., 2004; Lo and Famiglietti, 2013; 

Sacks et al., 2009; Sorooshian et al., 2014). Furthermore, consideration of energy balance also makes these models suitable 

for coupling with agronomy-based crop models to dynamically simulate the changes in crop growth and productivity, 

including stage-dependent heat stress change under climate change (e.g., Osborne et al., 2015). 15 

 

Some large-scale dynamic vegetation models (DVMs) include land surface hydrology and human water management, such 

as the LPJmL model and JULES, as an integrated component of land use and vegetation dynamics including CO2 

fertilization effects (Gerten.et al., 2007; Clark et al., 2011; Konzmann et al., 2013). Notwithstanding such growing 

sophistication, most current-generation of LHMs, LSMs, and DVMs still fall short of simulating the direct human influence 20 

on the terrestrial freshwater systems (Nazemi and Wheater, 2015a,b; Pokhrel et al., 2016), leaving the task of representing 

human land-water management activities within these models, and consequently in GCMs and ESMs, as one of the grand 

challenges for the hydrologic research community (Wood et al., 2011). 

3 Current challenges of modeling coupled human-water interactions 

3.1 Modeling human impacts on extremes 25 

Hydrological extremes (i.e., drought and flood events) and water scarcity have become more severe over the last decades in 

multiple regions across the world (Hisdal et al., 2001; Lins et al., 1999; Stahl et al., 2010; Jongman et al., 2012; Di 

Baldassarre et al., 2017), which has led to substantial societal and economic impacts (Stahl et al., 2016; Wilhite et al., 2007). 

Many large-scale studies focus on drought and flood induced by climate extremes (e.g., Milly et al., 2005; Hirabayashi et al., 

2013; Orlowski and Seneviratne, 2013; Dankers et al., 2014; Jongman et al., 2014; Prudhomme et al. 2014; Sheffield and 30 

Wood, 2008; van Huijgevoort et al., 2014; Wanders and van Lanen, 2015; Wanders and Wada, 2015b); however, human 

water management is found to be an important factor affecting regional water supply and hydrological variability (Wada et 
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al., 2013a,b; van Loon et al., 2016; Di Baldassarre et al., 2017). Recent studies explicitly model human interventions (e.g., 

human water use and reservoir regulation), which enables attribution of the impact of droughts, floods and water scarcity to 

natural and human processes (Di Baldassarre et al., 2013a,b; Forzieri et al., 2014; Haddeland et al., 2014; van Dijk et al., 

2013; van Loon and van Lanen, 2013; Veldkamp et al., 2015; Wada et al., 2013a,b; Wanders and Wada, 2015a; He et al., 

2017). 5 

 

With that said, commonly used drought indicators such as the Standardized Precipitation Index (SPI) and Standardized 

Precipitation and Evapotranspiration Index (SPEI) are not able to capture the human impacts that affect drought in 

streamflow and groundwater. For example, we argue that, instead of potential, actual evapotranspiration should be used, 

which allows better quantification of the impact of agricultural irrigation under increasing temperatures. Figure 1 10 

demonstrates a significant difference in the duration of droughts in California based on SPEI with potential and actual 

evapotranspiration under natural conditions (Natural) and human water management (Human). Furthermore, the influence of 

artificial water storage such as reservoirs on hydrological extremes including drought and flood events is obvious in 

intensively managed agricultural regions. Without considering human water management, modeling recent severe droughts, 

such as the California drought, would yield a very different picture, which may be misleading for developing adaptation 15 

measures. In California, drought impacts were alleviated due to extra water available from reservoirs, at least on the short 

term. Irrigation return flow to groundwater storage also works in a similar manner (Figure 1). However, water use dominated 

by groundwater pumping led to a significant lowering of groundwater levels (Figure 1, middle right panel), emphasizing that 

these processes should be incorporated in state-of-the-art hydrological models. Modeling flood events without human water 

management would also yield a very different picture particularly in developed countries where regional water storage and 20 

dikes are prevalent for flood mitigation (Lauri et al., 2012; Mateo et al., 2014). Without considering these regional measures, 

flood events could be largely overestimated in hydrological model simulations. 

3.2 Human impact indicators 

Over the last few decades numerous water resources assessment indicators have been developed alongside the improvement 

in human impact modeling frameworks. As overuse of water resources emerged in various regions of the world, Falkenmark 25 

(1989) pioneered the concept of the Water Crowding Index (WCI) using a threshold value to describe different degrees of 

water scarcity. This indicator defines per country water stress based on the per capita annual renewable freshwater resources 

(~blue water). Annual renewable freshwater resources of 1,700 m3 yr-1 per capita are taken as the threshold below which 

water scarcity occurs with different levels of severity, and that 1,000 m3 yr-1 per capita as a general indication of a limitation 

to economic development (Falkenmark et al., 1997). While this is still one of the most commonly used indicators, this water 30 

scarcity metric has evolved into a more comprehensive, spatially-explicit and sector-specific indices including agricultural 

(irrigation and livestock) and industrial water needs (Alcamo et al., 1997, 2003a,b; Arnell, 1999; Vörösmarty et al., 2000; 

Oki et al., 2001). Many recent studies compare total water withdrawals or consumption (agriculture, industry and 



8 
 

households) to water availability to express the fraction of the available water taken up by demand at the finer grid level, 

since country-based estimates hide substantial within-country variation of water availability and demand (Hanasaki et al., 

2008a,b; Wada et al., 2011a,b). Focusing on the African continent, Vörösmarty et al. (2005) emphasized the essential nature 

of the topology of river networks to differentiate between climatic and hydrologic water stress in macro-scale water resource 

assessments. In the current operational European water management and policy, the Water Exploitation Index (WEI) is used, 5 

reflecting both water consumption and withdrawals divided by water availability (De Roo et al., 2012). Water availability is 

local renewable freshwater with incoming streamflow from upstream parts of a river basin. 

 

In general, a region is considered to experience water scarcity when the ratio of water withdrawal to availability is higher 

than 0.4 (0.2 in case of water consumption), considering the sustainability of renewable water resources. In order to track the 10 

volume of water used to produce a commodity, good or service along the various steps of production and in the international 

trade, Hoekstra (2009) and Hoekstra and Mekonnen (2012) pioneered the water footprint concept, which classifies and 

quantifies the water source, but does not assess the impact of human water use on natural stocks and flows, because it 

generally focuses on the volumes of water required without quantifying the volume of water available in the region. A few 

studies (Oki and Kanae, 2004; Oki et al., 2017) demonstrated how importing water intensive commodities such as crops and 15 

meat virtually reduces water scarcity in water crowded nations and their relationship with the economic situation of the 

nations. There are recent attempts to integrate both water quantity and quality in water scarcity assessment (e.g., Liu et al, 

2016; Zeng et al., 2013), and water quality including water temperature is closely linked to human interactions with water 

systems. In recent years, various new water resources assessment indicators have been developed including the Blue Water 

Sustainability Indicator (BlWSI; Wada and Bierkens, 2015) that considers both renewable and non-renewable groundwater 20 

resources, and environmental flow requirements. Soil moisture (~green water) stress is still rarely assessed in the context of 

human water needs (Schyns et al., 2015), even though soil moisture is the major water source for global food production 

(~80%) (Kummu et al., 2014). 

 

When considering water resource assessment indicators for water scarcity and drought, classical non-transient thresholds for 25 

a baseline period (e.g., 1980-2010) are often assumed for future assessments. This may not be meaningful for considering the 

coming decades, when humans and nature may gradually adapt to a new hydrological state arising from either climate 

(Wanders et al., 2015) or other more direct drivers (Vörösmarty et al., 2010). This indicates an urgent need to develop more 

socially and ecologically relevant indicators that connect water science to the international society. This development should 

be addressed within the hydrological community. 30 

3.3 Modeling human impacts on groundwater resources 

The first assessments of global water resources (Falkenmark, 1989; Falkenmark et al., 1997; Alcamo et al., 2003a,b, 2007; 

Vörösmarty et al., 2000) were mostly focused on blue water demand and availability, where the latter was assumed to be 
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equal to streamflow. No distinction was made between groundwater and surface water use. This distinction was unnecessary 

because these analyses were limited to renewable water resources and long-term averages, where streamflow also includes 

baseflow and it makes no difference for the budget calculations whether water is withdrawn directly from the river or from 

shallow groundwater pools that are in dynamic equilibrium with climate forcings. In later analyses, groundwater use was 

estimated implicitly (e.g. Wisser et al., 2008; Rost et al., 2008). These and subsequent assessments of groundwater use have 5 

evolved from assessments of groundwater use without hydrological feedbacks into those with feedbacks between the 

groundwater and surface water system: for example, via agricultural irrigation where groundwater is supplied over irrigated 

areas thereby affecting the surface water balance. 

 

In the early developments, water demand is estimated first. Next, total water demand is attributed to available surface water 10 

and groundwater resources, leading to estimates of groundwater and surface water consumption, after subtracting return 

flows. As stated above, no specific feedbacks to the hydrological system are included. Instead, in order to obtain cell-specific 

blue water availability, for each model cell total upstream water consumption (groundwater plus surface water) is abstracted 

from the natural streamflow in post-process. Note that between these studies, very different assumptions were made about 

the allocation of water demand to surface water and groundwater. For example, in H08 (Hanasaki, 2008a,b, 2010), surface 15 

water is preferentially abstracted over groundwater, whereas in WBMplus (Wisser et al., 2008), water from reservoirs and 

groundwater is preferentially abstracted. In LPJmL (Rost et al., 2008), irrigation demand is attributed to surface water and 

groundwater resources using temporally invariant fractions, while in WaterGAP (Döll et al., 2012) groundwater abstractions 

are calculated with temporally invariant but sector- and country-specific fractions of total water demand. In PCR-GLOBWB 

(van Beek et al., 2011; Wada et al.,2011a,b) where local (cell-specific) groundwater abstractions are calculated by 20 

downscaling country-specific reported abstraction rates with local water demand and surface water availability. 

  

Irrespective of the attribution approach used, these models have to deal with regions where both surface water and 

groundwater are insufficient to satisfy demand. The resulting water gap is either reported or is assumed to be satisfied from 

non-local or non-renewable water sources (Rost et al., 2008; Hanasaki et al., 2010; Vörösmarty et al., 2010), i.e., 25 

groundwater depletion or water diversions respectively. Wada et al. (2010) explicitly calculated groundwater depletion (non-

renewable groundwater abstraction) using downscaled abstraction data from the International Groundwater Resources 

Assessment Centre (IGRAC; www.un-igrac.org) and simulated recharge. The problem with this approach, however, is that it 

does not correct for increased capture when calculating depletion, resulting in an overestimation of depletion rates 

(Konikow, 2011). De Graaf et al (2014) attempted to dynamically include groundwater abstraction into a global hydrological 30 

model. Here, attribution of groundwater abstraction is dynamic and based on the ratio of recharge to river discharge 

(groundwater to surface water availability). Abstractions are actually taken from groundwater reservoirs and affect surface 

water-groundwater interaction through baseflow and river infiltration. Return flows from irrigation, domestic and industrial 

water abstractions are included as well. Similar schemes were developed by Wada et al. (2014) and Döll et al (2014). 
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Although these schemes are able to mimic the interaction between groundwater pumping and hydrology, they lack the 

groundwater dynamics needed to represent the non-linear relationship between groundwater pumping and groundwater-

surface water interaction. Building on a previously developed global hydrogeological schematization (De Graaf et al., 2015) 

De Graaf et al. (2017) recently calculated groundwater depletion with a two-layer transient global groundwater model 

coupled to the global hydrological model PCR-GLOBWB. In this study, they were able to account for increased capture 5 

leading to global depletion rates that are smaller than previously calculated by Wada et al. (2010) and are slightly larger than 

estimated by Konikow (2011). 

  

Recently, groundwater use has also been incorporated in LSMs within climate models. A notable example is from a study by 

Wada et al (2016a) where the contribution of groundwater depletion to sea-level change was assessed by including 10 

groundwater withdrawal and consumption in the Community Earth System Model (CESM). Pokhrel et al. (2015) 

incorporated a water table dynamics scheme and a pumping scheme into the LSM called the Minimal Advanced Treatment 

of Surface Interaction and Runoff (MATSIRO; Takata et al., 2003) to explicitly quantify the natural and human-induced 

groundwater storage change. These developments provide evidence that groundwater dynamics and groundwater use are 

slowly but surely being incorporated in the global modeling of human impacts on the terrestrial hydrological cycle. 15 

However, it should also be recognised that available global hydrogeological schematisations (e.g., Gleeson et al., 2014; De 

Graaf et al., 2015, 2017) are grossly over-simplified and a joint effort is urgently needed from the hydrogeological and land 

surface modeling communities to improve these relatively simplistic models. Otherwise, further progress on groundwater use 

modeling will be seriously hampered. 

3.4 Incorporating regional water management 20 

It is important to note that although the influence may not be large at the global scale, urban and rural water supply 

infrastructure is much more diverse and regulated in many developed countries, which is not realistically accounted for in 

existing modeling frameworks. Seawater desalination, water diversions, and reclaimed water infrastructure are often 

developed to expand water supply in water scacre regions, but these human interventions in water systems are weakly 

integrated in LHMs. For example, given ever-increasing water scarcity, desalination is becoming a practical and established 25 

technique to produce freshwater from saline water in coastal arid regions in the world, typically countries in the Middle East 

(Voutchkov, 2013). All major coastal Australian cities now also have desalination options to intermittently or permanently 

supplement insufficient conventional supplies. It is reported that seawater desalination contributes almost 100% of the water 

supply for some cities including Makkah in Saudi Arabia (KICP, 2009). Due to the rapid development of seawater 

desalination plants in recent years, total capacity has been expanded from 3.52 km3 yr-1 in 1990 to 19.16 km3 yr-1 in 2014 30 

(DesalData; http://www.desaldata.com).  
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Seawater desalination was seldom included in earlier simulation-based global water resource assessments, as it involves the 

production of fresh water that is unlimited by precipitation. In order to improve the accuracy of water use amounts globally, 

Oki et al. (2001) subtracted the equivalent volume of desalination water reported in FAO AQUASTAT from water uses 

(withdrawals) in their assessments. Wada et al. (2011) spatially distributed national statistics of desalination water along the 

grid cells nearby seashore. Recently, Hanasaki et al. (2016) proposed a novel method to include desalination in LHMs. They 5 

first identified the geographical distribution of areas utilizing seawater desalination (AUSD) from empirical rules utilizing 

global maps of aridity, GDP per capita, and distance from the coast. They then estimated the volume of desalination water 

production by combining the map of AUSD and simulated water deficit (i.e., difference between water requirement and 

water availability of conventional sources). They succeeded in reproducing the spatial extent of where major seawater 

desalination plants exist and the volumes of past production for major countries. Their future projections report that the 10 

production of desalination water in 2041-2070 would expand to 6.7-17.3 times current rates under various socio-economic 

scenarios. Numerous challenges remain for better representation of seawater desalination. For example, recently major 

desalination plants have been installed in semi-arid and humid climates, which is not well explained by the model of 

Hanasaki et al. (2016). 

 15 

Another example is long-distance and cross-basin water diversions that provides additional water supplies. Some 

information is available, e.g. the Periyar Project (maximum capacity: 40 m3 s−1) and Kurnool Cudappah Canal (maximum 

capacity: 85 m3 s−1) in India, and the Irtysh-Karaganda Canal (maximum capacity: 75 m3 s−1 in Central Asia (World Bank; 

http://www.worldbank.org/; UNDP; http://www.undp.org). Recently, the world largest inter-basin transfer scheme, the 

South-to-North Water Diversion (SNWD) project, became operational and Beijing began to receive fresh water from the 20 

Yangtze River in China's south, which covers a distance of more than 1,000 kilometres (Barnett et al., 2015). These water 

diversions play a role in mitigating regional water scarcity, but also influence water balances in sourcing and destination 

basins (Zhao et al., 2015). However, artificial diversion networks and the actual amount of water transferred are difficult to 

parameterize, and are not represented in the current generation of modeling frameworks. Extensive urban water supplies and 

waste water networks are also important aspects given that half the world population currently lives in urban areas. Further 25 

efforts are needed not only for modeling but also for comprehensive data collection of global seawater desalination, water 

diversion, and urban water network development. 

 

Although desalination and inter-basin water transfer are emerging examples and likely more important in the near future, 

regional water management is much more complicated. Current LHMs also lack dynamic trade-offs among irrigation water 30 

supply, flooding control and hydropower production, water competitions between upstream and downstream users (Munia et 

al., 2016; Veldkamp et al., 2017), and deficit irrigation and rainwater harvest (Döll et al., 2014). These processes are 

increasingly important for regional hydrological model simulation. For example, considering regional deficit irrigation 

practice can reduce the water demand by 30% (Döll et al., 2014), while current LHMs predominantly use optimal irrigation 
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practice in their model simulation. This is similar to the need to account for return flows from industry and households after 

water withdrawals. Water recycling and waste water treatments are becoming important mitigation measures for regional 

water scarcity. Modeling water recyeling and waste water treatments should be combined with local water quality 

information, which can provide more accurate information of absolute availability of usable water for different purposes 

such as drinking water, industry, and agriculture. 5 

3.5 Representing land use change and rapid urbanization 

Humans have transformed natural vegetation to anthropogenic land cover such as agricultural lands and pasture over 40% of 

the global land area (Klein Goldewijk et al., 2011; Sterling et al., 2013). Human induced land use change has profound 

impacts on global and regional hydrological cycle by changing the rate of evapotranspiration, runoff, and groundwater 

recharge, which in turn affects regional precipitation patterns and inflows to oceans (Gordon et al., 2005; Halder et al., 2016; 10 

Puma and Cook, 2010; Renner et al., 2014). Human transformation of global land cover (excluding irrigated agriculture) 

generally decreases evapotranspiration and increases runoff (Gordon et al., 2005). Many LHMs include the impacts of land 

use change, however, the land use representation in the model tend to be statically prescribed as an input parameter, while 

dynamic change in historical land use is a lesser focus. Compared to LHMs or LSMs, DVMs have better representation of 

land cover change, while land surface hydrology is treated rather simply.  15 

 

Among different land use changes, urbanization is of specific interest in recent impact studies, e.g., with the focus of flood 

risks, hazards and vulnerability (Güneralp et al., 2015; Muis et al., 2015; Sampson et al., 2015; Tanoue et al., 2016; 

Winsemius et al., 2013). At present, more than half of the world’s population lives in urban areas and rapid urbanization is 

taking place over many developed and developing regions of the world (Klein Goldewijk et al., 2011). Nevertheless, urban 20 

areas and their impact on the hydrological cycle (e.g., Jacobson, 2011) are not well represented in LHMs, mostly due to their 

small proportion of the global land area (Wood et al., 2011). Although the impact of urban areas to the water cycle may be 

local, the distribution of such areas is of high importance, e.g., for heat island and urban flood modeling (Yang et al., 2011). 

Among LHMs, WaterGAP uses a static input map with the percentage of impervious areas at a grid and assumes that 50% of 

precipitation over those areas directly reaches the surface water bodies (Müller Schmied et al., 2014). The LISFLOOD water 25 

resources model (De Roo et al., 2000) uses sub-grid fractions of urban, forest, open water, and several other land usages 

within the 0.1 degree (global) or 5km by 5km grid scale (for Europe) to represent the effects of land use. Several (soil) 

hydrological processes are consequently simulated separately (De Roo et al., 2012). Figure 2 shows the percentage of urban 

area at 0.5o grid based on MODIS urban land cover classification for the year 2003. However, scale issues arise for urban 

land cover due to the fact that the effect of limited urban areas on the water cycle can be diminished at a large grid cell 30 

(Warburton et al., 2012) and coherent scaling relationships are missing (Reyes et al., 2016). However, satellite mapping of 

urban or impervious areas is improving recently (Lopez and Maxwell, 2016; Wohlfart et al., 2016; Yang et al., 2003) using 

the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images (Schneider et al., 2009). 
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A recent study shows the challenges of including small scale urban hydrological modeling (Reyes et al., 2016). However, 

representing urban areas as sub-grid variability and upscaling the effect of urban areas to the larger hydrological cycle may 

be possible (Krebs et al., 2014). For example, model simulation with and without urban areas and associated hydrological 

balance can be compared in urbanized catchments to see the impacts and their validation with available observations (e.g., 5 

runoff and evapotranspiration). Here, the percentage of runoff that is generated over the impervious areas may be validated 

and tuned to generalize the concept. 

 

In order to better represent urban impacts on the regional hydrological cycle, more accurate assessments of urban water 

withdrawals and consumption are vital (Flörke et al., 2013; Wada et al., 2016b,c). Finer spatial scale population and socio-10 

economic data are required worldwide; however, these data are typically provided at a country scale or a 0.5o grid. This leads 

urban water demands and supply to be geographically mismatched in current large-scale water resources assessments, and 

associated water scarcity and groundwater depletion are not well represented (e.g., Döll et al., 2014; Wada et al., 2014). 

McDonald et al. (2014) included the source of urban water supply, which led to improved water scarcity assessments. 

Considering rapidly increasing urban population, the model representation of urban hydrology and water management needs 15 

to be urgently considered. 

4 A look forward 

4.1 Modeling human activities at multiple spatial scales 

Local human behaviour is an important part of the hydrological system as humans are not just external drivers or boundary 

conditions in hydrological systems (Sivapalan, 2012, 2015; Montanari et al., 2013; Troy et al., 2015a; van Loon et al. 2016). 20 

The field of socio-hydrology is focused on understanding the processes that link humans and water in a coupled 

hydrological-social system (Sivapalan et al., 2012, 2014). Socio-hydrology has emerged relatively recently as a discipline 

that addresses the intersection between human and natural systems (e.g., Sivapalan et al., 2012; Gober and Wheater, 2015). 

The basic concepts of socio-hydrology align well with the mainstream of coupled human and natural large-scale modeling 

efforts that have rapidly developed since the late 1990s, as discussed earlier in this manuscript (e.g., Alcamo et al., 1997, 25 

Vörösmarty et al., 2000; Oki et al., 2001; Döll et al., 2003). However, a main difference of socio-hydrology from the large-

scale human impact modeling is to link bi-directional feedbacks between hydrological processes and local human behaviour, 

similar to agent-based modeling (ABM). Thus, socio-hydrology can be seen as a new development in human impact 

modeling but, so far, primarily focused on a local to regional scale, and still requires more detailed parameterizations of 

human behaviour and process-oriented modeling frameworks.  30 
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Socio-hydrological studies can be divided into (1) historical studies, (2) comparative studies, and (3) process-based studies. 

For example, as a historical study, Pande and Ertsen (2014) investigated complex cooperative agreements from ancient 

societies, and found that it was in fact water scarcity that triggered cooperation. For a more recent example, Kandasamy et al. 

(2014) revealed a “pendulum” swing in the Murrumbidgee River Basin, where population first increased, driven by 

agricultural development, and later decreased, driven by environmental restoration being more favoured over agriculture. In 5 

recent years several socio-hydrological models have been developed (Blair and Buytaert, 2015; Troy et al., 2015a). Di 

Baldassarre et al. (2013a,b) and Viglione et al. (2014) developed a conceptual “toy model” that explores the dynamics of a 

floodplain as a coupled human-water system. They demonstrated the relationships between the hydrological and social 

cycles, as human settlements in floodplains are threatened by flooding. Based on this it was revealed how societal memory 

of historical floods determines the (re)settling rate, and whether a society is economically growing or recessing. Several 10 

large river basins have been studied extensively, such as the Murrumbigee River Basin (van Emmerik et al., 2014), the 

Kissimmee River Basin (Chen et al., 2016), and the Tarim basin (Liu et al., 2014), yielding new insights into the governing 

hydro-social processes and relations that operate in these coupled systems. To go beyond single case studies, Elshafei et al. 

(2014) developed a generic framework for socio-hydrological modeling of agricultural catchments. Although the application 

to two Australian catchments was insightful, it remains challenging to link human and hydrological processes across 15 

multiple spatial scales over different geographies. The launch of socio-hydrology offers a new paradigm that enables us to 

evaluate the co-evolution of human activities and hydrology, driven by two-way feedbacks between humans and water 

systems over long time horizons, which was not fully addressed in the large-scale human impact modeling efforts. 

 

Besides new opportunities and new insights, socio-hydrology can also be seen as a wicked problem (Levy et al., 2016). 20 

Human reactions to hydrological extremes can be contrasting (Loucks, 2015), and there are no widely accepted laws yet for 

human behavior in coupled systems (Sivapalan and Blöschl, 2015; Garcia et al., 2016). This leads to model developers 

deriving relations and identifying governing processes individually for each case study. Many socio-hydrological models 

consist of coupled differential equations that capture the dynamics of the studied system. However, it is unclear whether this 

is because of over-parameterization or mathematical correctness (Troy et al., 2015a; Mount et al., 2016). Either way, it is 25 

time for socio-hydrology to move beyond individual case studies, and find generalized, but locally relevant descriptions of 

changes in the (large-scale) human-water system (McMillan et al., 2016). Importantly, a recent study has presented a 

generalized socio-hydrology model of water resources and trade (Dang et al. 2016), which also highlights the opposite 

challenge in socio-hydrology model development, e.g. no explicit spatial representation in many economics models. 

 30 

Ways forward for socio-hydrology include testing model structures and frameworks on multiple case studies, or upscaling 

their model boundaries and increasing the modeled system scale, and using new data, information sources, and modeling 

environments. Here lies the confluence where socio-hydrology models and global (hyper-)resolution models (Wood et al., 

2011) might benefit from each other. Many LHMs nowadays incorporate human water management, but as discussed earlier 
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large uncertainties remain in model simulations (Döll et al., 2016). However, it should be noted that many recent studies 

report that including human influences in regional hydrology improves model performance in simulating river discharge or 

groundwater storage (Wada et al., 2015; Wanders and Wada, 2015a,b). For example, Ying et al. (2017) applied an ensemble 

of global model outputs with regional water management practices in the Yellow River basin, which yielded better surface 

water availability among the sub-river basins. This type of offline coupling of global models with regional water 5 

management information will facilitate the use of global models for regional application. In addition, further improvement in 

modeling human impact processes is crucial for realistic hydrological predictions. 

 

Implementing local socio-hydrology models in large-scale hydrological models should be done with care, as it is important 

to be mindful of the temporal and spatial scales used. Human-decision making is generally modeled on a yearly basis, or 10 

lumped together as collective social structures. Integrated assessment models (IAM) such as Global Change Assessment 

Model (GCAM) which combine economy, energy, agriculture, climate and water resources assessment with long-term 

policy development can also provide a good opportunity for studying the intersection between human and natural systems at 

a large scale system (Hejazi et al., 2013a,b, 2014). Socio-hydrological modeling should be either done on the smallest scale 

(Pande and Ertsen, 2014), or on the largest societal and environmental scale (society and climate) (Ertsen et al., 2014). This 15 

is also crucial for later calibration and validation, as these should keep pace with the increase in spatial model resolution to 

resolve the relevant processes (Melsen et al., 2016). There should be a coordinated way forward for socio-hydrology and 

global (hyper-)resolution modeling efforts. Incorporating human activities globally as an endogenous factor will provide 

material for comparative studies for the socio-hydrological communities, increased model realism in LHMs, and better 

predictions of the co-evolution of the coupled human-water system. 20 

4.2 Global models for regional use 

Global models are specially designed for application on the global domain. They use boundary conditions and parameters 

that can be derived only from globally available data sets and use a limited number of robust parameters that can be used 

without formal parameter calibration. However, global models have recently been used for many regional applications, 

which requires careful attentions to how to set up global models for specific regional case studies. A straightforward 25 

approach is to run a global model for the global domain with a standard setting, and focus on analysis of the results for some 

specific regions. Biemans et al. (2013) used the LPJmL model (Biemans et al., 2011; Rost et al., 2008) to study future 

irrigation and food production in the Indian subcontinent under climate change. In their simulations, basic settings were 

identical to the global simulation (e.g., the spatial resolution was 0.5° by 0.5° or 50 by 50km at the equator). Earlier work by 

Vörösmarty et al. (1998), highlighted problems of re-scaling global water balance models to sub-global domains, using the 30 

data-rich United States as an example, revealing the numerical “penalties” of data incongruities and model formulations that 

would eventually be encountered in fully global scale analysis. 
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An advanced approach is to increase the spatial resolution of global models to better represent the regional details. Wada et 

al. (2016b) applied the PCR-GLOBWB model at the spatial resolution of 0.1° by 0.1°. Some models allow users to set the 

spatial domain and resolution freely. Mateo et al. (2014) applied the H08 model (Hanasaki et al., 2008a,b) to the Chao 

Phraya River in Thailand at the spatial resolution of 5’ by 5’. Unlike the above mentioned global studies, they tuned several 

important hydrological parameters at major river gauging stations by collecting historical meteorological and hydrological 5 

data. They succeeded in reproducing the historical long-term river discharge of the basin, including the operation of two 

major reservoirs and the areal expansion of inundation for a large flood event in 2011. Hanasaki et al. (2014) extended their 

model to quasi-real time simulation for possible application for flood monitoring in the Chao Phraya River. Masood et al. 

(2015) applied the model to the Ganges, Brahmaputra, and Megna Rivers in South Asia. The Australian Water Resources 

Assessment (AWRA) system (van Dijk and Renzullo, 2011) couples daily time-step catchment and groundwater balance 10 

models at 0.05° resolution with a (regulated) river and reservoir model. It is used operationally by the Bureau of 

Meteorology to produce regular water resource assessments and water accounts (www.bom.gov.au/water/). Gosling et al. 

(2016) compared the simulated results of river runoff for eight large river basins in the world by using an ensemble of global 

to continental LHMs and an ensemble of regional catchment-scale hydrological models. The two types of model at different 

spatial scales showed similar trends for the effects of global warming, indicating the possible application of LHMs for 15 

regional use. Either way, i.e. increasing spatial resolution of global models or applying global models for a specific region or 

catchment with fine resolution) potentially removes the barriers between regional and global models (Hattermann et al., 

2017). However, ongoing efforts towards better representation of regional details are required, which would eventually 

improve both global models and fine scale simulation. 

4.3 Need for model intercomparison 20 

Modeling human behaviour is highly uncertain, but the use of a single hydrological model is still valuable to test a 

hypothesis, provided it is succeeded by a multi-model analysis to examine the full range of possible human impacts and 

model uncertainties (Tallaksen and Stahl, 2014; van Huijgevoort et al., 2013, 2014). A number of model inter-comparison 

projects on large-scale models have been performed (e.g., GSWP1, GSWP2, WaterMIP, and ISIMIP), and the strengths, 

weaknesses, and characteristics of individual models have been compared. The focus has been on the historical energy and 25 

water balances over land (Dirmeyer et al., 2006; Douglas et al., 2006), water balance and river discharge of the past (Oki et 

al., 1999; Haddeland et al., 2011), and future (Hagemann et al., 2013; Schewe et al., 2014), as well as water use (Wada et al., 

2013a,b, 2016c).  

 

One of the model components that inter-comparisons have not addressed is the operation of dams. About 50,000 dams have 30 

been constructed globally (Lehner et al., 2011) and some models explicitly simulate the operation of major dams in the 

world (Hanasaki et al., 2006; Biemans et al., 2011; Wada et al., 2011). Masaki et al. (2017) was the first to compare the 

simulation results of reservoir operations of five large-scale hydrological models. They used the retrospective multi-model 
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simulation dataset of the ISIMIP 2a project (https://www.isimip.org/) and focused on the reservoirs of the Missouri and the 

Colorado Rivers in the USA. Although all of the models adopted similar algorithms of reservoir operation and used 

harmonized meteorological and geographical data, there were considerable differences among them. They analysed the 

results of only two rivers in the USA; a more systematic inter-comparison is needed that covers other regions of the world. It 

should be also noted that for validation of reservoir operations, data including inflow, outflow, and actual reservoir volume 5 

are not readily available worldwide, often due to political sensitivity. 

4.4 Observing and sharing information on human water management 

As mentioned several times throughout this manuscript and elsewhere (Lawford et al. 2013; Harding et al. 2014; Fekete et al. 

2015), there is a serious lack of comprehensive data required to adequately constrain and evaluate hydrological models over 

continental to global scales. The data gaps limit our ability to fully assess model accuracy for the past, and hence to develop 10 

reliable models to predict the future. While relatively more reliable data for some hydrologic variables, such as precipitation, 

air temperature, and river discharge are available for many regions, data on groundwater and human water use are 

particularly lacking. Regional groundwater datasets are now becoming increasingly available (e.g., Scanlon et al., 2006; Fan 

et al., 2013) but significant challenges still remain in collecting and synthesizing data with global coverage because even the 

available data for most regions are not easily accessible (e.g., Hannah et al., 2011). Vast amounts of soil and aquifer 15 

analyses, including hydrogeological frameworks and measurements have been made, but the data remain dispersed and 

unstructured in the scientific literature, government archives, and online repositories. It is therefore essential to make 

community-driven efforts to compile these scattered data sets into a comprehensive Hydrogeological Information System 

easily accessible to the modeling community (Fan et al., 2015). Some of the available global data sets include FAO 

AQUASTAT for water use database, IGRAC groundwater data, the Global Runoff Data Centre (GRDC) for river flow, and 20 

the International Commission on Large Dams (ICOLD) reservoir data, but data often require substantial re-vetting and 

interpretation to be used for modeling studies (Lehner et al., 2011), and commonly lack information on operating rules. The 

hydrologic modeling community has benefited considerably from coordinated data collection and distribution efforts in the 

past, but it is time to revise these datasets to meet the growing need for more comprehensive, spatially explicit, time-varying 

data on human interactions with the hydrological cycle (Gleick et al., 2013). 25 

 

Recently, use of remote sensing has provided an unprecedented opportunity to fill the spatial and temporal gaps in ground-

based observations for large-scale modeling. For example, the data obtained from the Advanced Very High Resolution 

Radiometer (AVHRR), the Landsat mission, and the Moderate-Resolution Imaging Spectroradiometer (MODIS) have 

provided a unique opportunity to derive human transformed land use information. For example, MODIS data have been 30 

utilized to derive global ET at very high spatial resolution (Mu et al., 2011 Tang et al., 2009; Zhang et al., 2010), which can 

be used for the evaluation of global and regional irrigation impacts. The Shuttle Radar Topography Mission (SRTM) 

provides high resolution topography data useful for global and regional water transport and groundwater modeling. Satellite 
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radar altimetry and laser altimetry have provided measurements that can be used to derive water surface elevation of lakes 

and man-made reservoirs (Gao, 2015). The Tropical Rainfall Monitoring Mission (TRMM) delivers high resolution rainfall 

data for mid- and low-latitude regions for climate forcing. 

 

In recent decades, satellite observations, such as by the Gravity Recovery and Climate Experiment (GRACE) satellite 5 

mission (Tapley et al., 2004) have further advanced our ability to better monitor the continually evolving surface and 

groundwater systems especially in relation to the changing climate and growing human interventions (Famiglietti et al., 

2015; Lettenmaier and Famiglietti, 2006). GRACE data have been used to infer the changes in terrestrial water storage over 

large regions and have been widely used to study human-induced changes in surface and groundwater storages (Rodell et al., 

2009; Strassberg et al., 2009; Scanlon et al., 2012; Longuevergne et al., 2010; Famiglietti et al., 2011; van Dijk et al., 2014). 10 

The Global Precipitation Measurement (GPM), Soil Moisture Active Passive (SMAP), and Surface Water and Ocean 

Topography (SWOT) mission are expected to provide better information of how human activities affection terrestrial water 

fluxes.  

 

Satellite observations have enabled us to better constrain and evaluate human activities in hydrological models (Famiglietti 15 

et al., 2015). This is of particular interest for less-gauged basins where conventional data are scarce. Several studies have 

demonstrated the use of combinations of available remote sensing products to force, calibrate and or validate hydrological 

models to increase the understanding of the hydrological behaviour, and the influence of human activities (e.g., Winsemius 

et al., 2009). However, there are inherent uncertainties and limitations in satellite-derived products (Fekete et al., 2015). 

Satellite data usually provide global coverage filling the spatial gap in ground-based observations, but their temporal 20 

coverage may be limited. In addition, satellite-derived products can contain significant uncertainties because certain 

algorithms have to be used to derive the desired geophysical product since satellites typically measure the surface 

characteristics of the Earth rather than the geophysical variables themselves. Therefore, it is important to maintain ground-

based observational networks in parallel with the advancements in remote sensing technology because the satellite-derived 

products need to be verified with independent observations (Famiglietti et al., 2015). In fact, the TRMM Multi-satellite 25 

Precipitation Analysis (TMPA) combines products from multiple satellite and ground observations from the Global 

Precipitation Climatology Centre (GPCC) (Huffman et al. 2007). Recent studies also evaluated the consistency between the 

pure satellite-based measurements (TRMM) and TMPA at regional scale (e.g., Villarini 2010) and global scales (e.g., Zhou 

et al. 2014). 

 30 

4.5 Linking human impact modeling into policy development 

Given that human impacts on land and water systems are pervasive, a basic requirement for hydrological science to support 

local, regional and global policy is to deliver ‘real-world’ ESMs that incorporate the more important physical controls 
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associated with human influences, e.g. land use, dams, irrigation (Wheater and Gober, 2015). These are needed to support 

decision making at multiple scales, from local scale impacts of agricultural land management and urbanization to global-

scale analysis and prediction of Earth system change, including land-atmosphere feedbacks and land-ocean freshwater 

delivery. Human impacts are most readily understood and represented in local-scale models, where for example process 

based models have access to local information on physical infrastructure, water demands and allocation rules. However, 5 

important challenges remain at that scale, for example representation of impacts of agriculture on runoff and water quality 

(e.g., nutrition, salinity, and pesticide). At larger spatial domains, including large river basins and transboundary waters, 

representing even these basic effects of human activities becomes challenging (De Lange et al., 2014). For example, data on 

physical infrastructure are limited at these scales, operational rules are often unknown, and while information on water 

allocations may or may not be available, actual water use generally has to be estimated. Nazemi and Wheater (2015 a,b) 10 

discuss the needs for new data, satellite observational tools, models and comparative analyses, as well as enhanced global 

coordination, to address these issues. It is evident, however, that the representation of human impacts includes not only data 

on physical infrastructure but also societal and cultural behaviour. 

 

To take a simple example, operational policies for water infrastructure may not be known to downstream users, yet may have 15 

a large impact on downstream flows, and water use (as opposed to allocations), will depend on governance structures and 

user decisions. It therefore follows that there is a set of more complex needs for management and policy, which includes 

societal behaviour. It is perhaps obvious that societal behavior is an integral aspect of both policy and operational water 

management, but it is also important to recognize that, just as geomorphological processes influence the long term evolution 

of the water environment, so do human actions. As described earlier in the case of the Murrumbidgee River Basin, co-20 

evolution of human-water system led to a government action that bought back water rights for the environment, invested in 

improved water use efficiency and increased environmental protection, so that environmental health is returning and water 

use is retreating downstream. The authors ask – could this have been predicted, and state that ‘prediction of water cycle 

dynamics over long timescales is not feasible without including the interactions and feedbacks with human systems’ 

(Wheater and Gober, 2015). So, for example, as society attempts to manage uncertain risks from environmental change, 25 

recognizing the non-stationarity of climate (Milly et al., 2008), it is equally important to address the non-stationarities 

associated with land and water management.   

 

As we expand to larger spatial scales, many water scarce regions start to rely on external water transfers, including water 

diverted from other basins and virtual water from other regions via international trade, to alleviate local water problems 30 

(Hejazi et al., 2014; Zhao et al., 2015). Globalization, water diversion and virtual water also have far-reaching effects on 

regional water use, and hydrological cycles (Pande and Sivapalan, 2016). Hydrological models do not thus far have a 

capacity to capture the role of these tele-coupling water management systems. Coupled hydro-economic models are therefore 

needed to understand the effects of human behaviour in one place on the water systems in another place. 
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As a final point in this discussion of the importance of human impact modeling for policy, we suggest that a further 

dimension of coupled human and water systems (Gober and Wheater, 2015) concerns communication and stakeholder 

engagements. In commenting on the flood-plain example, Gober and Wheater (2015) note that ‘The concept of social 

memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy 5 

action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of 

policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, 

and different societal approaches to managing flood risk that derive from cultural values and economic interests.’ This 

limited example illustrates that there is a rich agenda to better understand human-water interactions as a guide to policy 

development and implementation. More generally, Gober and Wheater (2015) note the general failure to link science with 10 

policy and associated needs for two-way iterative engagement between producers and users of scientific information to build 

trust and better understand the needs of policy makers and other users, and what scientists can provide to assist policy 

making. This could include public engagement; for example, public attitudes can be an important factor in political decisions 

relating to societal values associated with water management, such as the trade-offs between human water use and 

environmental flows. 15 

5 Conclusions 

This paper builds upon contributions from previous modeling efforts aimed at incorporating human activities in hydrology 

and in large-scale water resources assessments, and has tried to highlight the need for further improvements, including a 

number of key unsolved questions. To further advance the current generation of hydrological models, we have explored the 

possibility of including different modeling aspects of coupling human-water systems to hydrological models. The 20 

outstanding issues and shortcomings of previous large-scale water resources assessments can be grouped into five major 

themes: (1) issues related to current human impact modeling and associated indicators, (2) issues related to the limitations 

representing regional water management, (3) issues related to the need for modeling the co-evolution of human-water system, 

including land use and climate interaction, (4) issues related to the need for a nested approach integrating human behavior 

(bottom-up) into large-scale modeling (top-down), and (5) issues related to the lack of human water management 25 

information,. These five themes make up the current major challenges for the human-water interface in hydrological 

modeling that need substantial progress in the coming years. Despite the various limitations identified, current modeling 

frameworks have advanced significantly beyond earlier modeling work by accounting more realistically for human activities 

and the associated impacts on the terrestrial water system. Further progress in the modeling of coupled human-water system 

at a range of spatial scales will be important milestones not only for the hydrological science community but also for the 30 

climate and Earth system science communities. The future of human impact modeling as outlined in this paper offers a 

valuable opportunity for the hydrologic research community to become a truly interdisciplinary and influential Earth science 

than ever before. 
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Table 1: Type of models used to simulate global hydrology 

 

Large-scale Hydrological Models (LHMs) 

- A detailed representation of terrestrial hydrological processes at long temporal (e.g., decades) but fine spatial resolutions 

(e.g., 10-50km) 

- Inclusion of human-induced change (e.g., human water use and reservoir regulation) 

e.g., H08 (Hanasaki et al., 2008a,b), PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 2014, 2016), WADMOD-M 

(Widén-Nilsson et al., 2007), WaterGAP (Alcamo et al., 2003a,b; Döll et al., 2003), WBMplus (Vörösmarty et al., 2000; 

Wisser et al., 2010) 

 

 

Land Surface Models (LSMs) 

- A simplified treatment of the surface hydrology associated with human-induced change 

- A focus on the interactions of the land-atmosphere for climatic simulations in global climate models (GCMs) 

e.g., VIC (Wood et a., 1992), NOAH (Ek et al., 2003), MATSIRO (Pokhrel et al., 2012), JULES (Clark et al., 2011), DBH 

(Tang et al., 2007) 

 

Dynamic Vegetation Models (DVMs) 

- A simplified treatment of the surface hydrology and human land use change 

- A special treatment on biosphere that enables quantitative assessment of transient changes in 

vegetation and land surface hydrology in response to variations in climate and anthropogenic CO2 increase 

e.g., LPJmL (Gerten et al., 2007; Konzmann et al., 2013), JULES (Clark et al., 2011)  
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Figure 1: Area In Drought (AID) in California (CA), USA, for the period 2010-2015. The global hydrological model PCR-
GLOBWB (Wada et al., 2013a,b, 2014) has been used to simulate actual evapotranspiration, soil moisture, groundwater and river 
discharge at a grid of 10km by 10 km resolution. Groundwater is represented with a linear reservoir model only. We refer to 
Wada et al. (2014) for the detailed descriptions of model parameters and simulation. The monthly Standardized Precipitation 10 
Index (SPI), monthly Standardized Precipitation Evaporation Index with Potential Evapotranspiration (SPEI-PET), SPEI with 
Actual Evapotranspiration under natural and human influenced conditions (SPEI-AET natural, SPEI-AET human) were 
determined at the state-level. The model simulations were used to derive locally the 90th percentile variable threshold, which has 
been used to calculate the AID aggregated to the state-level for each hydrological variable of soil moisture, groundwater and river 
discharge. The 90th percentile threshold has been commonly used in drought identification (Wada et al., 2013a,b; Wanders et al., 15 
2015) and this threshold was calculated separately for the natural situation and for the human-affected simulation shown in the 
right panels. All thresholds are standardised by the annual mean threshold of the natural situation. 
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Figure 2: MODIS urban land cover as percentages of 0.5o grid cell for the year 2003 (IGBP-classification system, class 13). The 

calculation was done with resampled land cover type of 0.025o tiles (2.7 x 2.7 km at the equator) due to technical reasons. Hence, 

urban land cover has to be dominant in a sub-grid in order to be taken into account for 0.5o grid urban percentage. The 10 

assessment of the whole time series of MODIS land cover data (yearly data 2003-2013) shows a very robust classification, implying 

that during that decade and using the resampled information, not much change is detected (maximum difference is 1.2% among 

the years). 
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