
Reply to the review by E. Blyth

We are very grateful to E. Blyth for her review. We include our answers to the com-
ments in blue font right under the unmodified comments from the review.

REVIEW

I think this paper describes a useful product that can be used by the scientific commu-
nity. However I am a little concerned at the lack of analysis particularly of the bias in
the model estimates of potential evaporation (PE). On page 12, lines 9 to 11, you state
that there a “small overestimation” of the PE and claim this this is satisfactory. I think
you might be brushing it off to casually. The bias is 20% which is not “small”. Firstly, I
think you should tell us where this bias is coming from. You mention earlier (Page 12,
line 1) that there is a warm bias in the south in the summer. Presumably this is driving
this 20% overestimate of PE. Secondly, I think you need to quantify what impact this
will have on your drought estimates. Drought isn’t only about rain - it’s about drying
as well. With a 20% overestimate of PE in the very dry area of the UK, you might be
overestimating the drought. Please add a paragraph or so on the drying bias.

Thank you for this comment, which was also raised by referee #2. We agree with
the referee that more discussion is needed on the PE bias. The PE bias can have vari-
ous sources, including (but not limited to) the positive summer temperature bias. Other
possible causes for the PE bias can be through its radiative (e.g., an overestimation of
the net radiation through an underestimation of cloud cover) and aerodynamic (wind)
components. These two additional possible sources of biases are difficult to correct
owing to a lack of observations. Moreover, the uncertainty of the true PE is very large,
as highlighted by the discrepancies from observational datasets (i.e. from datasets other
than CHESS-PE).
To address this point, we have rewritten the discussion around PE biases in the manuscript.
We have explained what the pitfalls of bias-correcting PE are in Section 4.1.2, justi-
fying our decision not to correct these biases. We have also clearly stated at several
places that the users of this dataset should be aware of this bias and, depending on the
application, should account for it in their analysis.

The many plots of results (figs 7, 8, 10, 12, 14 and 15) are hard to read. Firstly they
all look much the same. Secondly, there is no map of where these regions are. You
should have a map so that we know where catchments such as ‘Dee’ and ‘Tweed’ etc
are. Not everyone has a geographical-hydrological map in their heads! In fact what I
recommend (although it would take some time) would be to just do the 4 regions that
we used in the CHESS paper (Robinson et al): Scotland, Wales, England and Lowland
England. The advantage is that you have separated the climate zones of the UK and the
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plots are easier to digest as there are less of them.
This is a good point and indeed a map of the regions is lacking. We agree that a

lower number of regions may be preferable, although we prefer to stick to the UKCP09
water regions as these are river basins. We have selected six representative regions
(Western Highlands, North East Scotland, Tweed, North West England, Anglian and
Thames) and have added a map of these regions (new Figure 7). The plots for all 19
regions are still included for interested readers, but as part of the supplement rather
than in the main part of the paper (see also Supplementary Fig. S3 for a map of all
regions).
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Reply to the review by Anonymous Referee #2

We thank anonymous referee #2 for the positive review, which suggests useful addi-

tions to the manuscripts. These suggestions are highly appreciated. Answers to the

comments are included in blue font right under the unmodified comments from the

review.

REVIEW

Dear Editor,

Comments to authors: Review of “A large set of potential past, present and future

hydro-meteorological time series for the UK ’ (Manuscript number: hess-2017-246)

submitted by BP. Guillod, RG. Jones, SJ. Dadson, G. Goxon, G. Bussi, J. Freer, AJ.

Kay, NR. Massey, SN. Sparrow, DCH. Wallom, MR. Allen, JW Hall to Hydrology and

Earth System Sciences (HESS; May 2017). This paper presents a new set of hydro-

meteorological projections for the United Kingdom, based on a regional climate model

driven by a global atmospheric model, which accounts for uncertainty in the climate

system response by sampling a range of changes in the ocean state from CMIP5 mod-

els. This is really interesting papers, in particular as it describe a new methodology

which could help in accounting better for internal climate variability, which is one of

the main source of uncertainty in the global/regional climate models, and which, at

the local to regional scales, has been describe to be as important as anthropogenic cli-

mate change, even for intervals as long as the next 50 years in the middle and high

latitude (Deser et al., 2012, 2013, 2014, 2016; Wallace et al. 2014, 2015), through the

development of probabilistic scenarios for hydroclimate variables (including extremes

such as drought) which could be used as input in a hydrological, ecological, agricul-

tural models. It is therefore susceptible to interest a lot of researcher, and it is surely

appropriated for publication in HESS. However, I have got some concerns regarding

the absence of statistical analysis to test the significance of changes, and regarding the

choice to only apply bias corrections to precipitation, while there is a clear significant

bias in potential evapotranspiration (and probably in temperature). In addition, I feel

like some results are a little over-interpreted, e.g. the raw (uncorrected) precipitation

output performs better than bias corrected precipitation, as it can only be because the

selected bias correction methods is not appropriated.

So my initial rank is to recommend major revisions.

We appreciate the overall positive tone of the reviewer’s comments as well as the

relevant points raised, for which we mention our intentions for the revised manuscript.

Major comments

1. Throughout the paper the authors are describing changes compared to a his-

torical baseline, discrepancies between scenarios and while using different in-
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put (e.g. raw precipitation vs. bias-corrected precipitation), but none of these

changes/differences are shown to be statistically significant. Although the nov-

elty and the robustness of your approach in developing new hydro-meteorological

projections is unquestionable, your interpretation of potential future changes in

precipitation (including extreme events), potential evapotranspiration and tem-

perature, or of discrepancies between scenarios, should still be supported be sta-

tistical tests (Student’s t-test for changes in mean, F-test for changes in variance

etc...) to make your results more objective or, at least, less subjective. In addi-

tion, as precipitation, temperature and evapotranspiration are likely to be auto-

correlated, you might have to consider a test accounting for serial correlations in

the time series.

To address this point, we have the tested statistical significance of the changes

as follows: for the maps of changes in seasonal mean temperature, precipitation

and potential evaporation, a two-sided T-test based on values from individual

time series was applied, and grid cells where changes are not significant at the

95% level are hatched (Figs. 10,12,14 and corresponding figures in the supple-

ment). For the comparison of our changes to UKCP09 (Figs. 11 and 13), the

same approach cannot be used as UKCP09 only provides changes in the vari-

ables, rather than two sets of samples for baseline and future time slices. Thus,

for these two figures we decided to consider a change as significant if 0 lies

outside of the 5–95% range and to draw the boxes in grey for non-significant

changes. For figures 15 and 16, the same procedure as for the maps was used: a

two-sided T-test was applied to determine the statistical significance between in

the mean of future scenarios and the mean of the baseline. Boxes whose mean

do not significantly differ from the baseline are drawn in grey. Finally, we have

added small edits to the results section where needed to account include for the

statistical significance information. We believe that these changes allow us to

interpret the projected changes in a more objective fashion.

2. In Section 4.1.2 the authors decided not to apply a bias-correction to temperature

and evapotranspiration, as they consider their biases “relatively small”. How-

ever, I don’t think an overestimation of about 20% in evapotranspiration could

be considered as small, and it could have a big impact on drought projections,

as well as in hydrological and agricultural models which both used evapotran-

spiration as input. If this is really a small bias, it should be supported by a

statistical test showing that bias is not significant, and that the results would have

not been statistically different with or without applying bias correction. I agree

there would always be large uncertainties when quantifying evapotranspiration,

but, at least, this could be quantified (e.g. difference between different formulas,

difference between raw and bias-corrected estimates), as it has been proposed in

some studies (Sheffield et al., 2012; Zotarelli et al., 2013; Begueria et al. 2014;
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Raible et al., 2017). Overall, I would recommend to apply a bias correction to

precipitation, temperature and evapotranspiration systematically, and then stati-

cally assess their potential differences.

A similar point was raised by referee #1 and we recognise that some discussion

is needed around the potential evaporation (E

pot

) biases (note that the variable

is potential evaporation, not actual evapotranspiration). However, we would not

like to bias-correct temperature and even less so E

pot

as part of our product, for

the following reasons. First, the E

pot

bias may have various origins, including

temperature biases but also radiation (e.g. owing to biases in cloud cover) and

aerodynamic (wind) components. The latter two are difficult to correct, owing

to the lack of long-term gridded observations at the desired resolution. Sec-

ond, observational estimates of E

pot

from various sources can significantly dif-

fer, depending on the assumptions and datasets used as input, implying that a

bias-corrected E

pot

would be highly dependent on the chosen source of observed

values. Third, the assumption that the same bias correction can be applied to

future scenarios would be even more questionable for E

pot

than for precipita-

tion because of the inter-dependence of variables used to compute E

pot

. Fourth,

the E

pot

provided in our dataset is one possible formulation and set of parame-

ters, and some data users will compute E

pot

themselves using the other variables

provided depending on their need. Therefore, we think that keeping our cur-

rent approach is appropriate, provided that we clarify these points in the paper

and warn potential users about the E

pot

bias and possible implications. We have

added a paragraph justifying our approach in Section 4.1.2 as well as the follow-

ing sentence in the conclusion: “We did not bias-correct potential evaporation

but we strongly recommend data users to carefully assess possible impacts of

these biases on their results, particularly with respect to drought analysis in the

southern part of the UK”.

3. The choice of the bias correction is one of the main source of uncertainties while

developing hydro-meteorological scenarios, and it different choices could lead

to different results, more or less significant. The authors have chosen to use the

simplest possible bias correction method, i.e. a linear bias correction, which is a

fair choice knowing the large uncertainties related to the different bias correction

procedures. However, at the same time, I would not recommend to conclude that

the raw (uncorrected) precipitation output performs better than bias corrected

precipitation, as another more sophisticated methods could have perform better

(cf. Maraun et al., 2015; Maraun, 2016), and those uncertainties could have ma-

jor implications, in developing scenarios for droughts or water resources (Clark

et al., 2016). For instance, using a simple linear bias-correction, you should per-

form quite well in fixing the bias in the mean state, and probably the seasonal

cycle (as it will captured most of the variance), but it might be totally unlikely

to reduce the bias in interannual and/or decadal variability (while it is exactly
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where the climate models show the lowest skills; cf. Ault et al., 2012; 2013).

This could explain why the bias looks proportionally stronger with a prolonged

period of droughts in Figure 6. For instance, in a very recent study, Massei et al.

(2017) proposed another approach which could account better for low-frequency

variability. However, I’m not sure this could applied in your study, and you must

just be careful when interpreting your results, and should discussed more this

issue.

We agree with the referee that our statement that the raw (uncorrected) precip-

itation output performs better than bias-corrected precipitation was misleading.

The reason behind this counter-intuitive finding may indeed lie in the choice of

bias-correction methodology and we have corrected our statement in the conclu-

sion from

“For high precipitation extremes, however, we find that the raw (uncorrected)

precipitation output performs better than bias-corrected precipitation; this high-

lights the need of an evaluation of the relevant metrics to chose the suitable set

of variables to be used for studies using the climate data set, since the choice of

bias correction depends on the intended application”

to

“For high precipitation extremes, the better performance of raw (uncorrected)

precipitation output (compared to bias-corrected precipitation) highlights that

while the choice of a simple linear bias correction might be appropriate with re-

spect to mean, seasonality, and perhaps accumulated totals over a few months,

analysis of short-duration hydrometeorological extremes might require the ap-

plication of a more sophisticated bias-correction methodology. In addition, the

application of a bias-correction technique to climate model output cannot cor-

rect for interannual to decadal climate variability, which is known to be poorly

captured in current state-of-the-art climate models (e.g., Ault et al., 2012). This

issue could potentially lead to an underestimation of the risk of multi-decadal

droughts (Ault et al., 2014). As with any model-based dataset, an evaluation of

metrics relevant to the processes investigated is recommended in order to chose

a suitable set of variables and, where required, to apply a suitable bias-correction

technique”.

In addition, we have reformulated and slightly expanded our description of this

point in Section 4.2.2, where we now recommend the application of another bias-

correction technique for the study of short duration, high precipitation extremes.

Minor comments

• P12-line 3-8: what would have been the bias if you would have used E-OBS

for precipitation, and would have been the bias using E-OBS? Why did you not
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choose to keep the same data set for precipitation and temperature?

We have chosen to use precipitation data from the CHESS-met dataset because it

is a widely used product in the UK. However, we had also computed the precipi-

tation bias relative to the E-OBS dataset and the biases look qualitatively similar

using that dataset (not shown).

• P13-lines 29-30: It’s especially true for the long return period (prolonged periods

of droughts), do you have an explanation for that? It could be because your bias

correction is only performant for the mean state, and for interannual variability

which would expressed most of the variance, while lower-frequency variability

might be important for long return period.

We do not have an exact explanation for this. One possibility for the overes-

timation of low summer precipitation deficit at high return times could be an

over-active soil moisture feedback, whereby an initial drying leads to a strong

further drying owing to too little evaporation. However one can only speculate

on the mechanisms here. Note that it is unclear how the plot (Fig. 6a-d) relates to

low-frequency variability, as the variable shown is only a 3-month accumulation

(the return time referring to the frequency of the values, not to the length of accu-

mulation). Hence the plots show that the biases are larger for rarer events, not for

longer accumulation times (which are shown on panels e-h of the same figure).

Nonetheless, we have added the following sentence at the end of the paragraph:

“The difficulty for climate models to represent low-frequency variability (Ault

et al., 2012), an aspect that is by definition not improved by bias-correction,

could also play a role here.”.

• P-14-lines 3-6: Return time plots of low precipitation amounts in 1–4 consec-

utive hydrological years primarily showing you that as much you increased the

length of the records, as more the model shift from observations, in particular for

return period greater than 10 years. However, this should more accurately tested

by considering more consecutive days, and then comparing the results.

We agree that the discrepancy between model and observations are smallest for

the 1-year accumulation. However, no clear further increase in bias is found for

longer accumulation times (2–4 years). It is somewhat surprising that the model

overestimate drought at these durations, while the opposite is usually found for

long droughts. We add the following sentence there to reflect this feature: “Note-

worthy is a small overestimation of dryness at rare frequencies for long accumu-

lation times (two to four years), not present in the one-year accumulated values,

which suggests that in this case the climate model overestimates long-term pre-

cipitation persistence, unlike what has been shown for longer accumulation times

(Ault et al., 2012)”.

• P-15-lines 20-22: summer precipitation changes are most sensitive to the North

Atlantic SST gradient, but is the North Atlantic SST gradient likely to increase in
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summer in the coming 50 to 100 years? It would be great to discuss it in the pa-

per (even briefly). In addition, the North Atlantic SST gradient is closely related

to atmospheric zonal circulation patterns, such as the North Atlantic Oscillation

(NAO). It would therefore be interesting to discuss the potential implications if

the summer NAO was becoming more positively/negatively persistent in the fu-

ture. It could be an interesting discussion.

We added two sentences as follows, to remind the reader of how the North At-

lantic SSTs are projected to change in our ensembles and to mention the NAO:

“Note that the median scenario (“FF”, called MMM in this figure for Multi-

Model Median) exhibits the CMIP5 median change in this feature, while the

four other scenarios depict extreme cases in both direction and should hence be

considered as sensitivity scenarios. The mechanisms through which SST influ-

ence precipitation may include the North Atlantic Oscillation (NAO), which has

been shown to be influenced by SSTs in the Atlantic and to influence European

weather (e.g., Woollings et al., 2015).”

We agree with the referee that the link between the North Atlantic SST gradient

and NAO is interesting. However, the scope of this paper is foremost to present

the climate time series, while a detailed analysis of the sensitivity of atmospheric

circulation (including the NAO) to future SST changes would be a separate pa-

per.

• P16 lines 14-15: This suggests a change in the annual cycle, which would be

more sensitive to changes in the North Atlantic ocean-atmosphere coupled vari-

ability. I should be discuss more in conclusion, for instance.

Thank you for this comment. It is true that, given that summer and winter

changes in precipitation are different in the different future scenarios (i.e., SST

patterns), the future seasonal cycle will depend on the SST pattern. More gener-

ally, since we realised that a short paragraph on the projected changes in climate

was lacking in the conclusion, we have added such a paragraph and have included

a short mention of this aspect therein.
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Abstract. Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the

economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated

impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires

large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological

time series for recent past and future conditions for the United Kingdom based on weather@home2, a modelling framework5

consisting of a global climate model driven by observed or projected sea surface temperature and sea ice which is downscaled

to 25km over the European domain by a regional climate model. Sets of 100 time series are generated for each of (i) a

historical baseline (1900–2006), (ii) five near future scenarios (2020–2049) and (ii) five far future scenarios (2070–2099).

The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample

the range of sea surface temperature and sea ice changes from CMIP5 models. Validation of the historical baseline highlights10

good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are

corrected using a linear approach. For extremes in low precipitation over a long accumulation period (>3 months) and shorter

duration high precipitation (1–30 days), the time series generally represents past statistics well. Future projections show small

precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the

most recent UK climate projections (UKCP09) but larger in magnitude than the latter. Both drought and high precipitation15

events are projected to increase in frequency and intensity in most regions, highlighting the need for appropriate adaptation

measures. Overall, the presented dataset is a useful tool for assessing the risk associated with drought and more generally with

hydro-meteorological extremes in the UK.
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1 Introduction

Extreme weather events such as droughts can have huge socio-economic consequences, so ensuring that society is well prepared

to face such events will have multiple benefits. Anthropogenic climate change is expected to have an impact on extreme events:

warm temperature extremes and heavy precipitation extremes have been shown to have increased due to human greenhouse

gas emissions and these trends are projected to increase in the future (IPCC, 2013). These changes will increase risks in many5

regions and adequate adaptation will be critical to limit the associated damages.

Despite clear trends and predicted increases in these extremes, understanding the implications for more complex hydrom-

eteorological extremes remains limited. This is the case of drought (e.g., Sheffield et al., 2012), for which the attribution of

observed (projected) trends can only be done with low (medium) confidence (IPCC, 2013) due, among other factors, to ob-

servational uncertainty and confounding effects from decadal-scale variability combined with relatively small samples due to10

the comparatively long duration of droughts versus other extreme events. Nonetheless, some highlighted regions may be ex-

pected to experience more frequent or more intense droughts due to climate change (the Mediterranean region, Central North

America, Central America and Mexico, Northeast Brazil and southern Africa; Seneviratne et al., 2012). Another complication

is that drought can be caused by various factors including precipitation deficit, excessive potential evapotranspiration (due to

enhanced radiation, wind speed or water pressure deficit), and pre-conditioning (pre-event land water storage including soil15

moisture, snow, lake and/or groundwater storage) (Seneviratne et al., 2012). Moreover, it can be defined in multiple ways as

negative anomalies in precipitation (“meteorological drought”), soil moisture (“agricultural drought”) or streamflow, lake or

groundwater levels (“hydrological drought”).

In the United Kingdom (UK), the issue of drought or, more generally, water scarcity, has been highlighted during the 2010–

2012 drought. This drought drew attention to the potentially high economic losses that would result from a severe water20

restriction and prompted recognition that changes in climate and in water demand may increase the risk of such an event in

the future highlighted the need to better assess the risk associated with drought in the UK. The MaRIUS project (Managing

the Risks, Impacts and Uncertainties of drought and water Scarcity, http://www.mariusdroughtproject.org) thus aims at better

understanding the physical mechanisms and the inter-sectoral interactions leading to water scarcity, in order to support a risk-

based approach for drought management.25

Given the long duration, spatial variability and multi-variate nature of droughts, large sets of potential drought events are

required, in order to assess the impacts of these on various sectors and to apply a risk-based approach. Available data such

as the most recent set of UK Climate Projections (UKCP09, Murphy et al., 2009) provide a large range of possible climate

change signals, as well as long time series at any location derived from a weather generator. However, these long time series

are not spatially consistent, i.e., one cannot examine interactions between spatially distributed locations, which is critical to the30

mentioned risk-based assessment, particularly for drought. Other potential sources of data include climate model output from

the Fifth coupled Climate Model Intercomparison Projection (CMIP5, Taylor et al., 2012); however, while these provide a wide

sampling of modelling uncertainty, they do so with a limited number of transient simulations for each model. The implied low
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number of simulated years impedes a proper estimation of the risk associated with rare events and, therefore, the application

of risk-based management approaches, for which a large number of spatially-consistent drought events are required.

Therefore, a new set of climate time series is created using weather@home2 (?)
:::::::::::::::::
(Guillod et al., 2017), an improved atmosphere-

only global climate model which is dynamically downscaled over a limited domain by a regional climate model (RCM) and run

on volunteers’ computers around the globe. Hydro-meteorological variables for hundreds of time series are generated over the5

UK for the recent past and for future time slices (RCP8.5 with climate response uncertainties), from which drought events can

be identified. However, the use of the time series is not restricted to drought studies but can be applied to any type of extreme

event. With about 3000 years of data for each 30-year period and scenario, the created dataset allows to examine the very rare

(and most severe) events with a high statistical confidence, albeit with limitations associated with the use of model-based data.

This paper presents the new hydro-meteorological climate time series. Section 2 describes the weather@home 2 model as10

well as observational datasets used for validation of the time series. The model simulations and the generation of the time series

are detailed in Sect. 3. The time series covering the recent past are validated in Sect. 4, while the main features of the future

projections are shown in Sect. 5.

2 Model and Data

2.1 Weather@home 215

Weather@home (Massey et al., 2015) consists of an atmospheric global climate model (GCM), HadAM3P, and its regional

counterpart, the regional climate model (RCM) HadRM3P, which dynamically downscales the GCM to a higher resolution over

a limited domain. As part of the climateprediction.net project (Allen, 1999), weather@home takes advantage of computing

time donated by volunteers around the world to run very large numbers of climate model simulations, of the order of tens of

thousands.20

The data analysed in this study is based on version 2 of weather@home (hereafter, w@h2, see ?)
::::::::::::::::::::::::::::::::::
(hereafter, w@h2, see Guillod et al., 2017),

which uses the more recent land surface scheme MOSES 2. The regional model covers the European CORDEX domain at a

horizontal resolution of 0.22� (about 25⇥ 25km) on a rotated longitude/latitude grid (e.g., Kotlarski et al., 2014). The model,

including its setup for this domain, is described and validated in detail by ?
::::::::::::::::
Guillod et al. (2017).

2.2 Observational data25

The gridded datasets listed in Table 1 are used for comparison and validation. For temperature, the E-OBS dataset (Hay-

lock et al., 2008) is selected, as it is conveniently available on the same rotated longitude-latitude grid as HadRM3P. For

precipitation, we use the CEH-GEAR dataset (Keller et al., 2015), which provides rainfall on a 1 km grid from 1890–2015.

Observational estimates of potential evaporation are taken from the CHESS
:::::::::
CHESS-PE

:
dataset (Robinson et al., 2015), avail-

able from 1961–2012 and derived with two formulations, with and without correction for interception evaporation. For both30

CEH-GEAR and CHESS
:::::::::
CHESS-PE, data are aggregated onto the 0.22� model grid prior to all analyses.
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3 Methodology

3.1 Model simulations

A total of 11 large ensembles (“batches”) of w@h2 simulations are conducted, producing model output for three distinct time

periods and a range of scenarios (see Table 2). The three time periods cover the past century (“historical baseline”; 1900–2006),

and two 30-year future time slices (near and far future; 2020–2049 and 2070–2099, respectively) assuming the high greenhouse5

gas emission scenario RCP 8.5 (Meinshausen et al., 2011). For each future time slice, uncertainty in transient climate response

is taken into account by sampling a range of five sea surface temperature (SST) warming patterns derived from the fifth phase

of the Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2012), as detailed in Sect. 3.2, while for the historical

baseline only one ensemble is generated, using the observed ocean state, leading to the total of 11 batches (1 batch for each

time period and SST pattern).10

All ensembles are generated using the same overarching design, described in ?
:::::::::::::::::
Guillod et al. (2017) for the historical base-

line. Essentially, simulations are initialised on the 1st of December before each simulated year (e.g., 1st of December from

2019–2048 for near future), using restart files from earlier 12-month spin-up simulations, and are run for 13 months. The aim

is to produce 100 simulations for each year (for each time slice and scenario), but due to the nature of volunteer distributed

computing, not all model simulations are completed at the same time. Therefore, in this case, 200–400 simulations per year15

are sent out and whenever 100 simulations have been returned for each simulated year within a batch, this batch is closed and

no additional simulation output is added to it. In cases when the minimum number of simulation per year did not reach 100

after some time, the batch was closed anyway, leading to a minimum number of simulations per year ranging from 85 to 100

depending on the scenario (Table 2).

Months 2-13 of the simulations being returned from each year are analysed, providing around 100 single-year simulations20

of data for each year (January to December), or a total of 10700 years of data for the historical baseline and 3000 years of data

for each future time slice scenario.

For the historical baseline, the simulations are the same as those analysed by ?
:::::::::::::::::
Guillod et al. (2017). SSTs and sea ice are

prescribed to observed values using version 2 of the HadISST dataset (Rayner et al., 2003; Titchner and Rayner, 2014).

Similarly, other input variables such as greenhouse gas concentrations, volcanoes and solar activity, SO2 concentrations, etc,25

are prescribed to historical values as described in ?
::::::::::::::::
Guillod et al. (2017).

The future scenarios are 30-year time slices that correspond to years 1975–2004 of the historical baseline but with added

climate change. Therefore, natural forcings (volcano and solar activity) are taken from 1975–2004, while greenhouse gases are

taken from RCP8.5 for the simulated years (2020–2049 and 2070–2099). For sea surface temperature and sea ice, a similar

approach is taken as in attribution studies (e.g., Schaller et al., 2016), but the future (rather than past) SST warming is added to30

(rather than subtracted from) observations. More specifically, the climate change signal derived from CMIP5 models (i.e., SST

warming and corresponding changes in sea ice) is added to the 1975–2004 observed values used in the historical baseline. The

details on the creation of future SST and sea ice is given in Sect. 3.2.
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A number of daily and monthly variables are saved in the regional model (Table 3). Of particular relevance to hydro-

meteorology and extremes, the following variables are available at daily time steps from the regional model output: minimum

and maximum temperature (tasmin and tasmax, respectively), precipitation, surface air humidity (mean dewpoint temperature),

mean sea level pressure, and additional variables required to compute potential evaporation (E
pot

) (10m wind speed, and

incoming and net longwave and shortwave radiation fluxes at the land surface) as well as offline-computed E
pot

estimates (see5

Sect. 3.3 for details on the computation). In addition, 5-days averages of soil moisture on the four model levels as well as surface

latent and sensible heat fluxes are available. All these variables, plus cloud cover and individual components of precipitation

(convective versus large-scale, and snowfall versus rainfall) are available as monthly averages. Finally, weather@home is based

on a calendar containing 360 days per year (i.e., 30 days per month), like many GCMs.

3.2 Sea surface temperature projections10

To create the future SSTs and sea ice concentrations (SIC), two datasets are used: every available CMIP5 model simulation

(Taylor et al., 2012), including all physics parameter and initial condition perturbations, and the HadISST2 observed SST and

SIC (Rayner et al., 2003; Titchner and Rayner, 2014). The CMIP5 model data are used to produce the large scale warming

patterns of SST for the two future time slices (2020–2049 and 2070–2099), whereas the HadISST data are used to provide the

small scale variability of the SST (whereby “small scale” refers here to anomalies from 30-year averages).15

For the AMIP (climate model simulations with prescribed SSTs) component of the CMIP5 project, the projected change

in SST and SIC are obtained from a single (per modelling group) coupled ocean / atmosphere model, and the models are

integrated for a single decade from 2026–2035. This approach has two disadvantages. Firstly, using a single model does not

take into account the variation in the ensemble of CMIP5 models, both in the global mean SST (GMSST) and the pattern of

warming produced. Secondly, the small scale variability of the SST patterns do not match those in our observed dataset, which20

makes comparison between the historical scenario and the two future scenarios difficult. To get around these problems we

construct a statistical model of SST warming patterns and impose the small scale variability from the observed dataset, so as

to match the historical scenario.

To construct the statistical model we use the SSTs for every model with data available for the RCP8.5 scenario. The below

analysis is carried out for each month in the datasets, so as to reflect the greater warming in the December-February season25

(DJF) in the CMIP5 ensemble. Firstly the SSTs are converted to anomalies by subtracting the 1986–2005 mean obtained from

the corresponding historical run with the same model, run, initialisation and perturbation number. This gives a time series

of SST anomalies for each CMIP5 ensemble member from 2006–2100. Secondly, to remove the small scale variability and

generate the large scale warming patterns, a 30 year running–gradient filter is applied to every gridbox in the SST anomalies.

The statistical model of SST warming patterns is constructed from these smoothed SST anomalies by first performing an30

empirical orthogonal function (EOF, Wilks, 2011) analysis on the smoothed SST anomalies for the year 2050. This produces a

set of patterns (the EOFs) and principal components (PCs) which explain the variation in the smoothed SST anomalies across

the CMIP5 ensemble members. The number of EOFs and PCs was truncated at 6 as, during the analysis, it was determined

that the first 6 accounted for 98% of the variability. As we are interested in producing transient series of SSTs for two periods,
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the 6 EOFs were projected onto the smoothed SST anomalies for each year between 2020–2049 and 2070–2099 to produce

timeseries of pseudo–PCs for each model and each year in the two scenarios. Next, a linear regression was performed on each

set of pseudo–PCs for each year, to derive a relationship between the pseudo–PCs in that year and the PCs in 2050. These

PC–relationships are used in the reconstruction of the SSTs later.

The core of the statistical model is a multi–variate distribution (MVD) of the truncated PCs in the year 2050, modelled by5

a Gaussian copula (Nelsen, 2007) with skew–normal marginals (Azzalini, 2005) using the “copula” and “sn” packages in the

R statistical analysis software (R Core Team, 2016). A MVD is used as, although the EOFs are orthogonal to each other, the

signs of the PCs within an ensemble member are not independent. Once the copula has been constructed it is sampled 10,000

times, which produces a set of 6 PCs for each sample. The SST warming pattern is then reconstructed from these PCs and

the EOFs for the year 2050, and the GMSST of the warming pattern is calculated and recorded with the PCs. This allows the10

construction of a probabilistic distribution of the GMSST warming in the CMIP5 ensemble which also contains the information

(PCs) of how to construct the GMSST. Note that, for a given percentile, there will be 100 different sets of PCs. This allows

the construction of up to 100 different warming patterns for each GMSST value, where the contributions to the mean warming

occur in different physical locations. For this experiment we choose the 10th, 50th and 90th percentile values of GMSST so as

to incorporate CMIP5 models with both low and high sensitivity in their GMSST response to elevated GHG concentrations.15

Weather in the UK is potentially sensitive to the North Atlantic (NA) SSTs and in particular to gradients thereof (e.g.,

Rodwell et al., 1999; Rodwell and Folland, 2002). To account for this we use a NA SST gradient index to select the two most

different warming patterns, in relation to this metric, from the 100 potential warming patterns for each of the 10th and 90th

percentiles. This gradient is defined as the difference between the area weighted means of two areas in the North Atlantic,

following Schaller et al. (2016): A Southern area bounded by the longitude–latitude coordinates 30–50�N, 40–0�W and a20

Northern area bounded by 50–70�N, 40–0�W.

From the sampling of the output of the copula we form 5 warming patterns for the year 2050, by combining the PCs with

the EOFs: p10n corresponds to the pattern with a GMSST warming at the 10th percentile and the minimum NA SST gradient,

p10x the 10th percentile GMSST and the maximum NA SST gradient, p90n the 90th percentile and the minimum NA SST

gradient and p90x the 90th percentile and maximum NA SST gradient, and MMM a median scenario with the median GMSST25

and middle NA SST gradient. Each of these patterns has an associated set of PCs for the year 2050. To generate a time series of

SST anomalies the linear relationship between the original PCs in the year 2050 and the pseudo–PCs is used to construct time

series of PCs for each of the 5 warming patterns above. These PCs (derived from the linear relationship) are then combined

with the EOFs for the year 2050 to generate a time series of SST anomalies between the years 2020–2049 and 2070–2099 for

each of the 5 warming patterns.30

To generate absolute climatological SST values, the time series of SST anomalies are added to the 1986–2005 mean of

the HadISST 2 dataset (since the above procedure was applied to anomalies from those same years). Since the future time

slices are to be compared to the reference time period 1975–2004 (baseline), the small scale variability from these years is

then also added onto the sum of the SST anomalies and HadISST mean. This small scale variability is also derived from the

HadISST 2 data by applying the 30 year smoother and then subtracting the smoothed data from the original HadISST 2 data.35
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This calculates the residuals of the smoother for 1975–2004 when compared to the original datasource and removes the large

scale variability from HadISST, which was already added by the warming patterns.

To construct the sea–ice we use the 10 best CMIP5 models at representing historical sea–ice between 1979–2005, as ranked

by Shu et al. (2015). For each future period (2020–2049 and 2070–2099), for every grid box we pool the SST anomalies for

the RCP8.5 scenario and the corresponding SIC anomalies. We then derive a linear relationship, for each grid box, between the5

SST anomaly and the SIC anomaly by using a linear regression. Timeseries of SIC absolute values are then constructed for each

grid box by calculating the SIC anomaly from the timeseries of SST anomalies computed above and the linear relationship

between SST anomaly and SIC anomaly. The 1986 to 2005 mean of the HadISST2 SIC is then added to the timeseries of

SIC anomalies and then some post–processing is performed. Firstly, ice holes, which occur where a grid box with no ice is

surrounded by 8 grid boxes with ice, are filled with the mean value of the 8 surrounding grid boxes. Secondly isolated ice,10

where a grid box with ice is surrounded by grid boxes with no ice, are removed by setting the SIC in the grid box to 0. Thirdly,

a longitudinal smoother is applied to the resulting data field.

As a result of this procedure, five SST time series are obtained for each future time slice (near and far future), which have

the same small scale variability as the 1975–2004 HadISST SSTs and sample the inter-model variability in SST warming

from CMIP5 both in terms of GMSST and NA SST gradient. These 5 patterns are hereafter referred to as “scenarios” and are15

summarized in Table 2. Supplementary Figs. S1 and S2 display the resulting warming imposed on observed SSTs for near and

far future scenarios, by season and scenario.

3.3 Potential evaporation estimates

Potential evaporation (Epot) is defined as the amount of water that would evaporate from the land surface (soil, vegetation) into

the atmosphere if soil moisture supply was not limiting. Although a form of Epot is computed in the code of the land surface20

model MOSES 2, it cannot be directly saved as an output and must therefore be computed “offline” from the meteorological

model output. Since E
pot

is an important variable that is used as an input to some impact models (e.g., hydrological models),

this computation is done and the estimated E
pot

time series are included in the dataset along with the other variables. To do so,

we estimate daily Epot (in mmday

�1) from the atmospheric model output based on the Penman-Monteith equation (Monteith,

1965) as follows (modified from Rudd and Kay, 2015):25

Epot =
1

�

�Rn + ⇢aca(es � ed)/ra
�+ �(1+ rs/ra)

, (1)

where the following variables depend on the atmospheric variables: � is the rate of change of saturated vapour pressure with

temperature (kPa �
C

�1), Rn is net radiation at the surface (W m�2), es is the saturation vapour pressure at near surface air

temperature (kPa), ed is the near surface vapour pressure (kPa), ra is the aerodynamic resistance to vapour transfer in the

atmosphere (sm�1) and rs is the bulk surface (canopy or bare soil) resistance (sm�1). The following are constants in Eq. (1):30

� is the latent heat of evaporation (2.45 · 106 J kg�1), ⇢a is the near surface air density (1 kgm

3), ca is the specific heat of air

(1013 J kg

�1 �
C

�1), � is the psychrometric constant (0.066 kPa

�
C

�1).
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The saturation vapour pressure es can generally be computed from temperature T (in �
C) as

es(T ) = 0.611 exp

✓
17.27T

T +237.3

◆
. (2)

Therefore, we can derive

�=

des
dT

= 17.27 · 237.3 es(T )

(T +237.3)2
(3)

where T is approximated by the average of daily minimum and daily maximum temperature (T = (tasmin+ tasmax)/2).5

For the computation of es itself from daily data, however, we use a more accurate approach consisting of averaging es values

estimated from daily minimum and maximum temperature (tasmin and tasmax), i.e.,

es =
es(tasmin)+ es(tasmax)

2

. (4)

The near surface vapour pressure can be directly estimated from daily averaged dewpoint temperature (tdps, in �
C) based on

Eq. (2),10

ed = 0.611 exp

✓
17.27tdps

tdps+237.3

◆
, (5)

and the aerodynamic resistance is computed from the daily mean 10m wind speed (wss, in ms

�1) using

ra =
243.489

wss
, (6)

hence including a logarithmic correction for wind height.

Finally, surface resistance rs is computed as in Rudd and Kay (2015), consistently with MORECS Epot estimates (Hough and15

Jones, 1997) and leading to the monthly surface resistance values shown in Table 4. Epot is not only affected by meteorological

conditions, but also by vegetation. In particular, for future projections an important driver for vegetation is the ambient CO
2

concentration: plant stomata may need to open less widely with higher CO
2

concentrations, thereby conserving water (e.g.,

Keenan et al., 2013). Not accounting for this effect in offline E
pot

estimations has been shown to lead to an overestimation of

continental drying (Milly and Dunne, 2016), which is particularly relevant for drought analyses. Therefore, along with E
pot

20

estimates for future time slices using the same rs value as in the baseline (variable pepm), an additional variable (pepm_adjrs)

is introduced which accounts for the impact of CO
2

on stomatal resistance and, therefore, on E
pot

. To do so, we follow Rudd

and Kay (2015) and use the estimate of change in crop and grass conductance per 1 ppm CO
2

concentration increase of Kruijt

et al. (2008) (�9.3 · 10�2%), and apply these to change in the 30-year averaged CO
2

concentration between each future time

period (469.5 ppm in the near future and 798.6 ppm in the far future) and 1975–2004 values (352.7 ppm). The resulting monthly25

rs values are displayed in Table 4 for pepm, and pepm_adjrs for near and far future.

Both variables (pepm and pepm_adjrs) are computed for each day using the rs value of the corresponding month, and

monthly values are subsequently computed by averaging the daily values.
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3.4 Generation of continuous time series from single years

Unlike other extreme events such as heat waves, heavy precipitation or cold spells, droughts often extend over months to

years. While for short events (i.e., from a day to, say, one month), the direct use of single-year simulations can be suitable,

longer, continuous time series are required to study droughts. However, a limitation of weather@home is that it can generate

simulations of only relatively short durations owing to the relatively slow computation on volunteers’ personal computers. Here,5

we develop a methodology to derive plausible long continuous time series from a large ensemble of single-year simulations,

whereby simulations in a given year are “stitched” to those of the next year using an appropriate criterion.

The criterion based on which simulations are “stitched” ideally ensures that the weather history of a simulation Sy on year y,

which is stitched to a simulation Sy+1

on year y+1, is consistent with the conditions found at the beginning of simulation Sy+1

.

Given the slow nature of the temporal evolution of droughts, emphasis is put on obtaining continuous time series not necessarily10

from one day to the next, but rather at a temporal scale of the order of a week. Additionally, given the use of a large ensemble

of simulations to construct multiple time series, the objective is not to derive time series that are really continuous (a task that

may be considered impossible given the chaotic nature of the atmosphere), but rather to derive a set of time series that can be

considered as continuous in the sense that their statistics can hardly be distinguished from those of continuous simulations.

Therefore, we focus on those components of the climate system that exhibit significant temporal memory (or auto-correlation)15

and that may impact the atmosphere. The ocean (i.e., sea surface temperature and sea ice) is a major component with these

characteristics; however, being prescribed to observations in our simulations, it is continuous by definition and hence it does not

need additional consideration for stitching purposes. Another such component is the land surface, in particular soil moisture.

Soil moisture exhibits a few relevant characteristics: First, it exhibits memory of typically a few weeks to months (e.g., Koster

and Suarez, 2001) and, therefore, one may want to ensure that this memory is not lost in the stitching process – this may be20

particularly critical in the case of droughts. Second, the temporal evolution of soil moisture is mainly driven by precipitation

minus evapotranspiration (P �E), i.e., by the weather in previous weeks to months. In other words, soil moisture can be seen

as an approximate integrator of P �E over time. Ensuring that soil moisture is continuous therefore also likely constrains the

history of the weather, which in turn increases the temporal consistency in atmospheric conditions in the stitched time series

(for example, simulations with wet soils at the end of a year are likely to have exhibited wet conditions in December, while25

simulations with dry soils at the end of the year likely display less rainfall and higher temperature in December). Finally, soil

moisture has been shown to be involved in key feedbacks relevant to droughts and heat waves (Seneviratne et al., 2010), such

as soil moisture–temperature (Hirschi et al., 2011; Miralles et al., 2014) and soil moisture–precipitation (Roundy et al., 2013;

Guillod et al., 2015) feedbacks. Therefore, ensuring continuous soil moisture avoids biases in the statistics of the weather in

the following few weeks. Note that this last characteristic is most relevant in transitional regions between wet and dry climate30

and is probably not critical in the UK in the winter season, when our simulations are stitched. Other variables that could have

been considered include snow; however given that snow is not very frequent at the end of December over the UK, it may be

difficult to distinguish between the large number of simulations which don’t exhibit any snow at all.
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Based on these considerations, we use soil moisture as a basis for stitching. Figure 1 displays an example of time series

that are obtained with our simulation setup for two consecutive years, with the first month of the simulations (grey lines,

implicitly part of a 13-months spin-up) leading to 12-months simulations (coloured). Stitching the 1990 simulations to the 1991

simulations is based on identifying the best match between the 1990 end-of-simulation values (last value for each simulation)

and the value at the same time step in the 1991 simulations, i.e., the last value in the spin-up (in grey) leading to the 19915

simulations. Five-days averages (i.e., pentads) of soil moisture in the upper 1m of the soil (3 out of 4 model levels in this case)

over the British Isles are used for this purpose.

While Fig. 1 is useful to understand the principle of the stitching methodology, the problem is more complex for gridded

data as there are multiple locations (or grid cells), and, thus, multiple time series to consider for each set of simulations. An

appropriate simplification of this problem is to ensure continuity of the main spatial patterns of soil moisture. To do this,10

we concentrate on the main modes of variability by computing the EOFs for the last pentad of December at the end of our

simulations (Fig. 2). The leading EOF pattern is homogeneous in sign and thus characterises the overall soil moisture conditions

within the analysed domain, while the second EOF characterises a Southeast–Northwest contrast. Together, these two leading

EOFs explain 60% of the total variance, while further EOFs account for a much lower fraction of the variability (6% and lower).

Hence we retain these two EOFs and use the reduced two-dimensional space of the principal components (PCs) corresponding15

to these EOFs (hereafter, PC1-2 space) to compare soil moisture fields and find similar conditions, defined by the lowest

possible distance in this two-dimensional space.

The procedure used for stitching is the following:

1. Wait until a minimum of n simulations is available for each year, which will allow the creation of n time series (e.g.,

n= 100 for historical baseline).20

2. Compute the PCs of soil moisture at the last pentad of December in months 1 ("start-of-run") and 13 ("end-of-run") of

each simulation, i.e., obtaining the starting and ending soil moisture conditions.

3. Starting with the year Y with the lowest number of simulations available (= n), all simulations are stitched forward

as follows: the distance in the soil moisture PC1-2 space between each "end-of-run" value from simulations on year

Y and each "start-of-run" value from simulations on year Y +1 is computed. The Hungarian algorithm (R function25

’solve_LSAP’ in package ’clue’, Kuhn, 1955, 1956; Papadimitriou and Steiglitz, 1982; Hornik, 2005, 2016) is then

applied to find the combination that minimises the sum of the squared distances.

4. The year Y +1 simulations that have been selected are used and the previous step is repeated until the last year of the

time series is reached.

5. The same procedure is applied backward, i.e., matching "start-of-run" values on year Y to "end-of-run" values on year30

Y � 1. This is done repeatedly until the first year of the time series is reached.
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The output of this procedure is a table which lists, for each time series, the simulation identifier for each year. The performance

of the stitching methodology is evaluated from the historical baseline (1900-2006) by considering the soil moisture “error”

obtained through stitching, using comparison of stitched and continuous simulations.

Fig. 3(a) shows the distribution of simulations in the PC1-2 space, for the last pentad in December. As detailed above, to

create continuous time series, soil moisture at the end of the simulations on year Y (month 13 of the simulation; last December5

pentad) is compared to soil moisture at the same time step in month 1 of simulations leading to year Y +1. The distribution of

the obtained distances in the PC1-2 space at the time of stitching is shown in black on Fig. 3(b). To evaluate this in the context of

a continuous simulation, we analyse changes between consecutive soil moisture pentads in continuous simulation (continuous

lines on Fig. 3b-d), taken from the last pentad in December to any of the first three pentads in January (i.e., transition at the

beginning of our simulations). We find that the difference at the time of stitching (dashed black line) is substantially smaller10

than typical changes with a lag of one pentad in continuous simulations (continuous green line), both in terms of distance in

PC1-2 space (Fig. 3b) and changes in these PCs considered individually (Fig. 3c,d), i.e., the soil moisture error is smaller than

a temporal lag of one pentad. Furthermore, changes between the last December and first January pentads (i.e., with a lag of

one) are only slightly larger in the stitched ensemble (dashed lines) than in continuous simulations (continuous lines). For a

lag of three pentad (purple), the changes in soil moisture PCs are very similar in stitched and continuous simulations. In these15

panels, these changes can also be compared to what would happen in a randomly stitched ensemble (dotted lines). The changes

in such an ensemble are, as expected, independent of the lag (since no temporal correlation is retained), and are substantially

larger than those found in both the soil-moisture-stitched and continuous ensembles (dotted lines, lying on top of each other

for all lags). These results show that the presented methodology allows to successfully stitch single-year simulations to each

other, thereby ensuring consistency in weather statistics on time scales of weeks.20

4 Validation of the historical baseline

The global and regional models in weather@home 2 have been validated thoroughly in ?
:::::::::::::::::
Guillod et al. (2017) with respect to

the simulated mean climate, trends and extremes, including the British Isles domain averages. Here, we further validate the

100 baseline time series at a more local scale over the UK. Section 4.1 investigates the biases in mean climate and describes

the bias correction taken to alleviate major biases, while Sect. 4.2 focuses on hydro-meteorological extremes, i.e., low and high25

precipitation events.
::
In

:::::::
addition

::
to

:::::
maps,

:::::
some

::
of

:::
the

::::::::
analyses

:::
are

:::::::::
conducted

:::
for

::
19

::::
river

:::::
basin

:::::::
regions

::::::
within

:::::
Great

::::::
Britain

::::
used

::
in

:::
the

::::::::
UKCP09

:::::::
climate

:::::::::
projections

:::::::::::::::::::::
(Murphy et al., 2009) and

::::::
shown

::
in

:::::::::::::
Supplementary

:::
Fig.

:::
S3.

:

4.1 Mean climate and bias correction

4.1.1 Mean biases

Figure 4a–d shows the seasonal biases in surface air temperature with respect to the E-OBS dataset (Haylock et al., 2008).30

Biases are remarkably small for raw climate model output (within 1�C and often below 0.5�), with two main exceptions: a cold
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bias present in all seasons in the Northwest (Argyll region), and a warm bias in summer (June to August, JJA) in the South and

Southeast.

Biases in precipitation with respect to the CEH-GEAR dataset (Fig. 4e–l), on the other hand, are more significant. In par-

ticular, precipitation is strongly underestimated in summer (20–50% or up to 1 mmday

-1) and, to a lower extent, in autumn.

Conversely, winter precipitation tends to be overestimated in the Southeast. Possible mechanisms for these biases are discussed5

in ?
::::::::::::::::
Guillod et al. (2017). These biases have implications, particularly for the investigation of droughts and future drought risk,

and the application of a bias-correction technique is therefore necessary. The next section (4.1.2) describes the approach chosen

to correct precipitation data.

Another important variable for hydro-meteorological extremes is E
pot

, whose biases are shown in Fig. 4m–p with respect

to CHESS-PE (without interception correction) and highlight a small
::
an

:
overestimation in summer (in the order of 20%) . This10

bias is satisfactory, given large uncertainties in
::::::
relative

:::
to

:::
this

:::::::
dataset.

::
A

:::::::
possible

::::::
reason

:::
for

:::
this

:::::::::::::
overestimation

::
is

:::
the

:::::
warm

::::::::::
temperature

:::
bias

:::
in

:::
this

:::::::
season,

:::::::
although

::::::::
possible

:::::
biases

::
in

:::
the

::::::::
radiative

::::
(net

::::::::
radiation)

::
or

:::::::::::
aerodynamic

::::::
(wind)

:::::::::::
components

::::
could

::::
also

:::::
play

:
a
::::
role.

:::::
This

::::
bias

::::::
should

::
be

::::
kept

:::
in

:::::
mind

::
by

:::::
users

::
of

::::
the

::::
data,

::
in
:::::::::

particular
:::::
when

::::::::
analysing

::::::::
droughts

:::::
since

::::
these

::::
may

:::::::
thereby

:::
be

::::::::::::
overestimated.

::::::::
However,

:::
we

:::::
note

:::
that

:::::
large

:::::::::::
uncertainties

:::
are

:::::::::
associated

::::
with

::::
the

:::::::::
estimation

::
of

:
E

pot

quantification, including the formula used
::
in

::::
both

:::::::
models

:::
and

::::::::::::
observations,

::::::::
stemming

:::::::
among

:::::
others

:::::
from

:::
the

:::::::
formula

::::
and15

:::::::::
parameters

::::
used

::::
and,

:::
for

:::::::::::
observations,

::::
from

:::
the

:::::
input

:::
data

:::::::
sources

::::::::::::::::::::
(Milly and Dunne, 2017).

4.1.2 Bias correction

Since biases in temperature and
::::::
Biases

::
in

::::::::::
temperature

::::::
being

::::::::
relatively

:::::
small,

:::::
they

:::
are

:::
not

:::::::::
explicitly

::::::::
corrected.

:::::::::
Although

::::::::
correcting

:::
the

::::::
biases

::
in
:
E

pot

are relatively small, these two variables are not corrected. However,
::::
might

:::::
seem

:::::::::
appealing

:::::
owing

::
to

:::::
their

:::::::::
significant

:::::::::
amplitude,

::::
such

::
a
:::::::::
procedure

::
is

:::
not

::::::::
attractive

:::::
since

::
it
::::::
comes

::::
with

::::::
strong

:::::::::::
assumptions

:::
that

::::::
might20

:::
not

::::
hold.

:::::
First,

:::
the

:::::
origin

::
of

:::::
E

pot :::::
biases

::::
may

::
be

::::::::
multiple,

:::::
from

::::::::::
temperature

:::::
biases

::
to

::::
bias

::
in

:::
the

:::::::
radiation

:::::
(e.g.,

::::::::::::
overestimated

::
net

::::::::
radiation

::::::
owing

::
to

:::::::::::::
underestimated

:::::
cloud

:::::
cover)

::::
and

:::::::::::
aerodynamic

:::::
(wind)

:::::::::::
components

::
of

:::
the

::::
E

pot:::::::::::
computation.

:::::::
Hence,

::
to

:::::::
properly

::::::::::
bias-correct

:::::
E

pot

,
::::::::
variables

::::
used

::
to

::::::::
compute

::
it

::::::
should

::
be

::::::::
corrected

::::::::::
individually

::::::
before

:::::::::
computing

:::::
E

pot

.
:::::::::

However,

::
the

:::::
lack

::
of

:::::::::
long-term

::::::
gridded

:::::::::::
observations

::
at
::

a
:::::::
suitable

:::::::::
resolution

:::
for

:::::
some

::
of

:::::
these

::::::::
variables

:::::::
hampers

:::::
such

:
a
::::::::::

procedure.

::::::
Second,

:::::
E

pot::
is

:::
not

::::::::
observed

:::::::
directly

:::
but

:::::::::
estimated

::::
from

:::::::::::::
meteorological

::::::::
variables,

:::::::
leading

::
to

:::::
large

:::::::::::
discrepancies

::::::::
between25

:::::::
observed

::::::::
estimates

::::::
owing

::
to

::::::
various

:::::::::::
assumptions

:::::::::::
(formulation,

::::::::::
parameters)

:::
and

::::
data

::::
used

::
to

::::::::
compute

:::::
them.

::::
This

::::::
implies

::::
that

:
a
::::::::::::
bias-corrected

::::
E

pot::::::
would

::
be

::::::
highly

::::::::
dependent

:::
on

:::
the

::::::
chosen

::::::
source

::
of

::::::::
observed

:::::
E

pot

.
:::::
Third,

:::
the

::::::::::
assumption

:::
that

:::
the

:::::
same

:::
bias

:::::::::
correction

:::
can

:::
be

:::::::
applied

::
to

:::::
future

::::::::
scenarios

::::::
would

::
be

:::::
even

:::::
more

::::::::::
questionable

:::
for

:::::
E

pot::::
than

:::
for

:::::::::::
precipitation

:::::::
because

::
of

:::
the

::::::::::::::
inter-dependence

::
of

:::
the

::::::::
variables

::::
used

:::
to

:::::::
compute

::
it.

::::::
Based

::
on

:::::
these

:::::::::::::
considerations,

::::
E

pot::
is
:::
not

::::::::::::
bias-corrected

::
in
::::

our

::::::
dataset.

::::::::
However,

:::::
users

:::
are

::::::::::::
recommended

::
to

:::::::::
investigate

:::::::
whether

::::
these

::::::
biases

::::
have

::
an

::::::
impact

:::
on

::::
their

::::::
results

:::
and

::
to

::::
take

:::::
these30

:::
into

:::::::
account,

:::::::::
especially

:::::
when

:::::::::::
investigating

:::::::
summer

:::::::
drought.

:::::
This

::::::::::::::
recommendation

::::
also

::::::
applies

::
to

:::::
users

::::
that

:::::::
compute

:::::
E

pot

:::::::::
themselves

:::::
using

::
an

:::::::::
alternative

::::::::::
formulation.

:

::
By

::::::::
contrast,

:
the substantial precipitation biases may be particularly problematic for drought analysis and correcting for

these is therefore necessary. To do so, a simple linear approach was chosen, using monthly bias correction factors (e.g., Lafon
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et al., 2013). The choice of bias-correction algorithm depends on the nature of the biases present and the uncertainty with

which properties of the observed and modelled precipitation distributions can be estimated (e.g., Teutschbein and Seibert,

2012; Lafon et al., 2013). For example, if biases are present in higher order moments of the simulated precipitation distribution

then more sophisticated bias correction techniques are warranted than if only the mean is biased. Nonetheless, the higher

order moments of the precipitation record can only be corrected if they can be estimated with confidence, which is not always5

possible for short-duration datasets. There is therefore a trade-off between reducing biases and introducing additional (often

unconstrained) uncertainty. As recommended by Lafon et al. (2013), we use the simplest possible method which is able to

correct significant biases in the data. In the present analysis we use a linear bias correction, which we calculate offers adequate

correction of seasonal biases in the mean and which does not adversely affect higher order moments of the rainfall distribution.

It is also noted that for drought studies using climate model outputs the distribution of dry days (i.e., days with precipitation10

< 1 mm) can be important to preserve. In the present case we find that this distribution is maintained without further specific

corrections (Supplementary Fig. S3
::
S4). These were defined based on the overlapping time period between all observational

datasets (CEH-GEAR, CHESS-PE, E-OBS) and our baseline, i.e., years 1961–2006. The mean precipitation for each calendar

month was computed from the 100 baseline time series, and their ratio to the corresponding values in CEH-GEAR were

computed (Supplementary Fig. S4
::
S5). However, in order to avoid sudden discontinuities between grid cells, a spatial smoothing15

was applied to the ratio using a 3-by-3 grid cells moving box and taking weights of 1/2 for the center box and 1/16 for the

surrounding 8 boxes, leading to the precipitation bias correction factors shown in Fig. 5. Note that only the Great Britain

coverage of CEH-GEAR data are used for bias correction, since CEH-GEAR data over Northern Ireland are available as a

separate product and have not been processed.

Subsequently, daily and monthly precipitation values were multiplied by the factor for the corresponding month. The bias-20

corrected precipitation is also made available as part of the dataset as an additional variable (prbc, see Table 3). Unless explicitly

mentioned, analyses in the rest of this study are based on bias-corrected precipitation data.

4.1.3 Inter-member variability

While the previous two subsections only consider the model climatology averaged from all 100 time series, part of the dif-

ference with observation may arise from natural variability, as expressed from the climatology of the individual time series.25

Indeed, although we often consider the observed climatology as the true climatology (albeit with some measuring errors), it is

in fact one possible climatology among many and is determined by the one trajectory through the “weather phase space” that

occurred by chance. This is due to the highly non-linear, chaotic behaviour of the atmosphere (e.g., Lorenz, 1965).

To assess the variability in climatologies in the 100 time series, Supplementary Figs. S5–S8
:::::
S6–S9

:
display the full range,

interquartile range and median of climatologies (out of the 100 modelled climatologies) as well as observations for the 1930

river basin regionsused in UKCP09 (Murphy et al., 2009) within Great Britain. For temperature (Supplementary Fig. S5
::
S6), all

climatologies are relatively similar, but a larger spread is found for precipitation (Supplementary Figs. S6 and S7
:::
and

:::
S8 for raw

and bias-corrected values, respectively). Nonetheless, the observed climatology generally lies outside of all 100 climatologies

for the main biases. It should be noted that some biases persist after bias-correction (e.g., in the Western Highland and Tay
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regions on Fig. S7
::
S8) due to the spatial smoothing applied to the bias correction factors. For E

pot

(Supplementary Fig. S8
:::
S9),

both variants from the CHESS-PE dataset are shown (with and without interception correction) and the main feature
:::::::
features

are captured relatively well, apart from an overestimation in the Southern regions in summer (see also Fig. 4).

4.2 Hydrometeorological extremes

In this section, the ability of the time series to represent the distribution of dry and wet extreme precipitation events is assessed,5

first at the scale of Great-Britain averages for prolonged dry periods (Sect. 4.2.1) and then at the regional scale for prolonged

dry period and for shorter, high precipitation events (Sect. 4.2.2). Comparison to CEH-GEAR is done based on the overlap-

ping years, i.e., 1900–2006, and using only data over Great Britain(CEH-GEAR data over Northern Ireland have not been

processed).

4.2.1 Great Britain-averaged dry events10

Fig. 6a–d show, for averaged values over Great Britain, return time plots of low precipitation (bias-corrected) cumulated over a

whole season. For w@h, return values are displayed for each time series (grey) as well as when pooling all time series together

(black). Overall, observed values lie within the range of the simulated values. However, w@h tends to overestimate winter

low precipitation values (i.e., not dry enough) but underestimate summer low precipitation values (i.e., overestimated summer

droughts). Nonetheless, even in those cases there are individual time series which look similar to the CEH-GEAR dataset,15

suggesting that natural variability could explain some of those apparent biases.
:::
The

::::::::
difficulty

:::
for

::::::
climate

:::::::
models

::
to

::::::::
represent

::::::::::::
low-frequency

::::::::
variability

::::::::::::::::
(Ault et al., 2012),

::
an

::::::
aspect

:::
that

::
is

:::
by

::::::::
definition

:::
not

::::::::
improved

:::
by

:::::::::::::
bias-correction,

:::::
could

:::
also

::::
play

::
a

:::
role

::
in

::::
this

::::::
feature.

:

While short droughts do not usually pose a serious threat to Great Britain, prolonged periods of drought (e.g., multi-annual)

are more problematic. Therefore, we also show return time plots for multiple (one to four) consecutive hydrological years20

(October to September) on panels e–h of Fig. 6. At these longer time scales, the climate time series perform very well compared

to the observed return values, which lie well within the ensemble. These results are encouraging for the MaRIUS project, as

they suggest that the dataset may well represent precipitation accumulation over long time period, which is the most critical

aspect to British droughts.
::::::::::
Noteworthy

:
is
::
a

::::
small

:::::::::::::
overestimation

::
of

::::::
dryness

::
at

:::
rare

::::::::::
frequencies

:::
for

::::
long

:::::::::::
accumulation

:::::
times

::::
(two

::
to

:::
four

::::::
years),

:::
not

::::::
present

::
in
:::
the

::::::::
one-year

::::::::::
accumulated

::::::
values,

::::::
which

:::::::
suggests

:::
that

::
in
::::
this

::::
case

:::
the

::::::
climate

:::::
model

::::::::::::
overestimates25

::::::::
long-term

:::::::::::
precipitation

::::::::::
persistence,

:::::
unlike

:::::
what

:::
has

:::::
been

:::::
shown

:::
for

::::::
longer

::::::::::::
accumulation

::::
times

::::::::::::::::
(Ault et al., 2012).

:
The next

section goes into further details through validation at the regional scale.

4.2.2 Regional extremes

The analysis presented in the previous section was applied to regional averages of bias-corrected precipitation. To summarize

the main findings, we focus on
::
six

:::::::
selected

::::::::
UKCP09

:::::
river

:::::
basin

::::::
regions

:::::
(Fig.

::
7;

::::::
results

:::
for

::
all

:::
19

::::::
regions

::::
are

:::::
shown

:::
in

:::
the30

::::::::::
Supplement)

::::::
which

:::
are

::::::::::::
representative

::
of

::::::
various

:::::::
climate

:::::::::
conditions

::::::
within

:::
the

:::::::
country

:::
and

:::::::
include

:::
two

:::::::
regions

::::::::::
particularly
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:::::
prone

::
to

:::::::
droughts

::::::::
(Thames

::::
and

::::::::
Anglian).

:::
We

:::::
focus

:::
on precipitation totals over multiple hydrological years and display, for

each region, the distribution of 100 return values estimated from the individual time series as boxplots, with the value estimated

from the CEH-GEAR dataset overlaid as a white dot, for a number of return times (Fig. 8;
:::
see

:::::::::::::
Supplementary

::::
Fig.

:::
S10

:::
for

:::
all

::::::
regions). Overall, the observed values lie well within the range of modelled values, with a few exceptions: in some regions (e.g.,

Northern Highland, North East Scotland, Northumbria, South East England and South West England) the time series slightly5

underestimate the values (i.e., overestimate drought intensity), while values are overestimated (i.e., dryness is underestimated)

in the Western Highland region, probably due to the remaining bias after correction (see Sect. 4.1.3). For shorter durations,

a similar plot for low seasonal precipitation is shown in Supplementary Fig. S9
:::
S11

:
and allows dataset users to assess the

performance of the dataset depending on their region and purpose.

Although the dataset was created within a project focusing on droughts, it could be used for other hydro-meteorological10

extremes such as floods. Therefore, we provide validation of high precipitation events at the regional level by focusing on

total precipitation over a defined number N of consecutive days, rxNday for N = 1, 5 and 30 days. Figure 9 show the return

values for these 3 indices in a similar way as Fig. 8, but showing the results for both raw (uncorrected) and bias-corrected

precipitation .
:::
(see

::::
also

:::::::::::::
Supplementary

::::
Fig.

:::
S12

:::
for

:::
all

::::::::
regions). The observed estimates are found to mostly lie within the

spread of values obtained from the climate time series for raw precipitation, but less so for bias-corrected precipitation. This15

suggests that the
::::::
simple

:::::
linear

::::::::
monthly

::::::::::::
bias-correction

::::
that

::::
has

::::
been

:::::::
applied

::::
may

:::
not

:::
be

::::::::::
appropriate

:::
for

::::
such

:::::::
events.

:::
An

::::::::
alternative

::::::::::
hypothesis

::
is

:::
that

:::
the

:
model represents the processes related to high precipitation formation relatively well (e.g.,

representation of UK-scale dynamical systems and thermodynamic processes, Schaller et al., 2016), but has more difficulties

to represent longer-term persistence – a common feature of climate models
:::::::::::::::::::
(e.g., Ault et al., 2012). Therefore, we recommend

the use of uncorrected precipitation values from the time series for studies that focus
:::::::::
application

::
of

:::::::
another

:::::::::::::
bias-correction20

::::::::
technique

::::
(e.g.,

::::::::::::::
quantile-quantile

:::::::::
mapping)

::
for

::::::
studies

:
on high precipitation events.

It should be noted that the analysis of short-term events should be done on individual years separately rather than on the

whole time series, e.g., rx5day should not lie at the transition from one year to the next since the weather is not strictly

continuous (Sect. 3.4). For example, for rx5day, for each year, the first value is from January 1–5 and the last values from

December 25-30 (the 360 days in a year are split into 12 months of 30 days), but it may not be appropriate to use the five25

pentads that range from December 26–January 1 to December 30–January 4, in order to exclude undesirable concatenation of

inconsistent weather systems.

5 Future projections

In this section, we display changes in the five far future scenarios with respect to the 1975–2004 baseline, while corresponding

changes for the near future time slice are shown in the Supplement. First, changes in seasonal averages are displayed for the30

main variables, with a comparison to the UKCP09 projections (Murphy et al., 2009) at the regional level (Sect. 5.1). Indeed,

UKCP09 data provide, among others, projected changes for a number of climate variables, time periods and climate scenarios.
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Second, changes in extremes are investigated at the regional level for prolonged low precipitation period and for short, high

precipitation extremes (Sect. 5.2).

5.1 Changes in mean climate

Fig. 10 shows the changes in mean temperature in all far future scenarios with respect to the baseline (1975–2004) and for each

season.
:::
All

:::::::
changes

:::
are

:::::::::
statistically

:::::::::
significant

::
at

:::
the

::::
95%

:::::
level

::::::::
according

::
to

:
a
:::::::::
two-sided

:::::
T-test

:::::
based

::
on

::::::::::::
climatological

::::::
values5

::::
from

:::::::::
individual

::::
time

:::::
series

:::
for

::::
both

:::::
time

:::::::
periods. Generally, temperature increases are highest in the scenarios with higher

global mean SST increases (FF-p90x and FF-p90n) and lowest in the scenarios with low global mean SST increases (FF-p10n

and FF-p10x). Consistently with UKCP09, temperature increases is largest in the Southeast and in summer in all scenario.

Similar but lower increases in temperature are found in the near future time slice (Supplementary Fig. S10
:::
S13).

Fig. 11 shows the distribution of all possible changes in temperature (i.e., from all combinations of the future time series10

with the baseline time series) and in UKCP09 (high emission scenario A1FI), relative to the years 1961–1990 for consistency

with the UKCP09 data. The spread of UKCP09 values account for a wider range of uncertainty than in our time series, as it

includes various climate models and parameter uncertainty. However, our various future scenarios generally cover the range of

mean changes projected by the latest UK climate change scenarios .
:::
(see

::::
also

::::::::::::
Supplementary

::::
Fig.

::::
S14

::
for

:::
all

:::::::
regions).

:

The patterns of changes in seasonal mean precipitation (Figs. 12) highlight that, while in winter precipitation changes seem15

mostly related to global mean SST increases (as for temperature), summer precipitation changes are most sensitive to the

North Atlantic SST gradient: time series FF-p10n and FF-p90n induce the smallest precipitation decreases, while FF-p10x

and FF-p90x lead to the largest precipitation decrease. Thus, large SST gradients in the North Atlantic (as defined by the

metric described in Sect. 3.2) lead to drier summer conditions.
:::
Note

::::
that

:::
the

:::::::
median

:::::::
scenario

::::::
(“FF”,

::::::
called

::::::
MMM

::
in

::::
this

:::::
figure

:::
for

:::::::::::
Multi-Model

:::::::
Median)

::::::::
exhibits

:::
the

::::::
CMIP5

:::::::
median

:::::::
change

::
in

::::
this

::::::
feature,

::::::
while

:::
the

::::
four

:::::
other

::::::::
scenarios

::::::
depict20

::::::
extreme

:::::
cases

::
in

::::
both

::::::::
direction

:::
and

::::::
should

:::::
hence

:::
be

:::::::::
considered

::
as

:::::::::
sensitivity

::::::::
scenarios.

::::
The

:::::::::::
mechanisms

::::::
through

::::::
which

::::
SST

:::::::
influence

:::::::::::
precipitation

::::
may

::::::
include

:::
the

::::::
North

:::::::
Atlantic

:::::::::
Oscillation

::::::
(NAO),

::::::
which

:::
has

::::
been

::::::
shown

::
to

::
be

:::::::::
influenced

:::
by

:::::
SSTs

::
in

::
the

:::::::
Atlantic

::::
and

::
to

::::::::
influence

::::::::
European

:::::::
weather

::::::::::::::::::::::::
(e.g., Woollings et al., 2015).

:
It should be noted that changes in raw (without

bias correction) precipitation are smaller in JJA, leading to an overall weaker drying in absolute terms.
::::
Most

:::
of

:::
the

:::::::
changes

::
are

::::::::::
statistically

:::::::::
significant,

:::::
apart

::::
from

:::::::::
substantial

:::::
areas

::
in

::::::
MAM

:::
and

:::::
SON

::
in

::::::::
individual

:::::
cases

::::
and

::::
small

:::::
areas

::
in

::::
DJF.

:
Similar25

patterns of change, but smaller in amplitude
:::
and

::::::
thereby

::::
less

:::::::
robustly

::::::::
significant

::::::::::
(especially

::
in

::::
DJF), are identified in the near

future time slices (Supplementary Fig. S11
::::
S15). By definition, relative changes are similar in both raw and bias-corrected

precipitation as the same multiplicative factors are applied to both time periods.

Comparison of precipitation changes to UKCP09 (Fig. 13
:
;
:::
see

::::
also

::::::::::::
Supplementary

::::
Fig.

::::
S16

:::
for

::
all

::::::
regions) reveals that the

simulated time series lies on the dry end of the standard UK climate projections. The changes may thus be more similar to30

UKCP02, the previous UK climate scenarios, which were based on the same models that are used in w@h. This feature is

important to keep in mind, especially when analysing changes in drought. The dataset can thus be seen as an ideal test bed

for dry conditions, but the actual future may potentially not be as dry as suggested by the climate time series presented in this
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paper.
::::
Note

::::
that

::
in

::::
some

:::::
cases

::::
such

:::
as

:::
DJF

::
in
::::::
North

::::
East

::::::::
Scotland,

::::::
changes

:::
are

::::::
mostly

:::
not

::::::::::
statistically

:::::::::
significant

::
in

:::
the

:::::
sense

:::
that

:::
no

:::::::
change

:
is
::::::::
included

::
in

:::
the

::::::
5–95%

:::::
range.

:

Finally, projected changes in seasonal mean E
pot

are displayed in Fig. 14, using the E
pot

formulation where stomatal

resistance is adjusted to CO
2

future concentrations. E
pot

substantially increase in summer, and to a lower extent in autumn

and spring. The changes are mostly driven by the global mean SST increase, similar to temperature and as one may expect5

due to the strong controls exerted by temperature on this variable. We note that not adjusting stomatal resistance to increased

CO
2

concentrations in the future (Supplementary Fig. S12
:::
S17) would result in a significantly stronger increase in E

pot

, and

therefore recommend to use pepm_adjrs for future analyses to prevent overestimating increases in drought. As for temperature

and precipitation, the near future time slice displays changes that are qualitatively similar to those of the far future but smaller

in amplitude (Supplementary Figs. S13 and S14
::::
S18

:::
and

::::
S19).10

5.2 Changes in hydrometeorological extremes

As for the validation of extremes done in Sect. 4.2.2, we concentrate on extremes of low precipitation cumulated over a number

of consecutive hydrological years, and on high precipitation extremes cumulated over a small number of consecutive years.

Fig. 15 displays the 10-year return value (i.e., 3rd highest value in each 30-year time series) of low precipitation accumulated

over two hydrological years .
:::
(see

:::::::::::::
Supplementary

:::
Fig.

::::
S20

:::
for

::
all

::::::::
regions). The distribution of the values estimated from each15

time series is shown for the baseline and for each far future scenario,
::::::::
whereby

:::::
boxes

:::
for

:::::
future

::::::::
scenarios

::::::
whose

:::::
mean

:::::
value

::::
does

:::
not

::::::::::
significantly

:::::
differ

::::
from

:::
the

:::::::
baseline

:::::::::
according

::
to

:
a
::::::::
two-sided

:::::
T-test

::
at

:::
the

::::
95%

::::
level

:::
are

::::::::
displayed

:::
in

::::
grey. Generally,

a strong drying is found, i.e., 10-year dry events are getting more intense. In most regions, most of the difference between the

individual future scenarios (i.e., SST warming patterns) appears to be related to the North Atlantic SST pattern, rather than

to global mean SSTs. This suggests, given the findings of Fig. 12, that the summer response may drive the changes in longer20

droughts (2 hydrological years in this case).

Similary, Fig. 16 displays the change in 10-year return value of rx5day, using uncorrected precipitation data since these

perform better than bias-corrected for high precipitation events as highlighted in Sect. 4.2.2. High precipitation extremes are

expected to increase in intensity in most scenarios,
::::::
(except

::
in

:::::
those

::::
with

::::
low

::::::
global

:::::
mean

:::
sea

::::::
surface

:::::::::::
temperature

:::::::
increase

::::::::
(FF-p10n

:::
and

::::::::
FF-p10x)

:::
in

::::
some

::::::::
regions),

:
despite a smaller signal-to-noise ratio induced by the sampling of 10-year return25

values from 30-year time series. Unlike for drought, global mean SST increases appear to be the main factor leading to the

response in extreme high precipitation, consistently with the Clausius-Clapeyron relationship (higher SST leading to higher

evaporation and higher moisture content) and with the current understanding of atmospheric thermodynamics (e.g., Schaller

et al., 2016).
:::::
Results

:::
for

:::
all

::::::
regions

:::
are

::::::
shown

::
in

::::::::::::
Supplementary

::::
Fig.

::::
S21.

:

In the near future time slice, similar but smaller changes are found for low precipitation (Supplementary Figs. S15
::::
S22),30

i.e., a increase in drought severity may already be expected in this time period. However, for high precipitation events (rx5day,

Supplementary Fig. S16
:::
S23), the increase is very small in this time period and cannot be distinguished from natural variability

::
is

::
in

::::
most

:::::
cases

:::
not

:::::::::
statistically

:::::::::
significant.
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6 Conclusions

This paper presents a new set of climate projections for the United Kingdom, based on a regional climate model driven by a

global atmospheric model which accounts for uncertainty in the climate system response by sampling a range of changes in the

ocean state from CMIP5 models. The dataset includes a large number of spatio-temporally consistent time series for the recent

past (1900–2006) and for the near and far future (30-yr time slices ending in the middle and at the end of the 21st century,5

respectively). Future projections follow the assumption of a high greenhouse gas emission scenario (RCP 8.5), allowing to test

the sensitivity of the system to relatively large changes in climate forcing. The analysis could be repeated for alternative RCP

scenarios.

An advantage of this data set compared to previous UK climate projections is the availability of a large number of spatially

consistent time series, which is important for risk analysis of hydrological phenomena that are sensitive to spatial and tem-10

poral variability.
::::::::
Moreover,

:::
the

::::::::::
availability

::
of

::
a
::::
large

:::::::
number

:::
of

::::
time

:::::
series

::::::
allows

::
to

:::::
better

:::::::
account

:::
for

:::::::
internal

:::::::::
variability

:::::
(albeit

::::
only

::::
the

::::::::::
atmospheric

::::
part

:::
of

:::
it),

:::::
which

::::
has

::::
been

::::::
shown

:::
to

::
be

::
a
:::::
main

::::::
source

::
of

::::::::::
uncertainty

::
in
:::::::

climate
::::::::::
projections

::::::::::::::::::::
(e.g., Deser et al., 2014). This comes at the expense of essentially using only one climate model (global and regional). How-

ever, in an effort to sample as wide a range of conditions as possible, part of the uncertainty in the climate system response is

incorporated by using a range of projected changes in ocean states from CMIP5 models.15

One of the challenges associated with the chosen approach is the generation of continuous time series from a large set of

single-year simulations. A novel methodology has been developed and validated, which is based on identifying simulations

with the best matching soil moisture patterns to ensure continuity in slowly-evolving hydro-meteorological variables, the ocean

state being continuous by definition as it is prescribed. This methodology is shown to be a promising tool for the application

of weather@home to long-lasting extreme events such as drought.20

The created time series are shown to represent mean climate and extreme hydro-meteorological events relatively well, after

correcting for a substantial precipitation bias.
:::
We

:::
did

:::
not

::::::::::
bias-correct

::::::::
potential

::::::::::
evaporation

:::
but

:::
we

:::::::
strongly

::::::::::
recommend

::::
data

::::
users

::
to

::::::::
carefully

:::::
assess

::::::::
possible

::::::
impacts

:::
of

::::
these

::::::
biases

:::
on

::::
their

::::::
results,

::::::::::
particularly

::::
with

::::::
respect

:::
to

::::::
drought

::::::::
analysis

::
in

:::
the

:::::::
southern

:::
part

:::
of

::
the

::::
UK.

:
For high precipitation extremes, however, we find that the

::
the

:::::
better

:::::::::::
performance

::
of

:
raw (uncorrected)

precipitation output performs better than
:::::::::
(compared

::
to

:
bias-corrected precipitation; this highlights

:
)
::::::::
highlights

::::
that

:::::
while

:::
the25

:::::
choice

:::
of

:
a
::::::
simple

:::::
linear

::::
bias

:::::::::
correction

::::::
might

::
be

::::::::::
appropriate

::::
with

:::::::
respect

::
to

:::::
mean,

::::::::::
seasonality,

::::
and

:::::::
perhaps

:::::::::::
accumulated

::::
totals

:::::
over

:
a
::::
few

:::::::
months,

:::::::
analysis

::
of

::::::::::::
short-duration

::::::::::::::::::
hydrometeorological

::::::::
extremes

:::::
might

::::::
require

:::
the

::::::::::
application

::
of

::
a
:::::
more

::::::::::
sophisticated

:::::::::::::
bias-correction

:::::::::::
methodology.

:::
In

:::::::
addition,

:::
the

::::::::::
application

::
of

:
a
:::::::::::::
bias-correction

::::::::
technique

::
to

:::::::
climate

:::::
model

::::::
output

:::::
cannot

::::::
correct

:::
for

::::::::::
interannual

::
to

:::::::
decadal

::::::
climate

:::::::::
variability,

::::::
which

::
is

::::::
known

::
to

:::
be

:::::
poorly

::::::::
captured

::
in

::::::
current

:::::::::::::
state-of-the-art

::::::
climate

::::::
models

::::::::::::::::::::
(e.g., Ault et al., 2012).

::::
This

:::::
issue

:::::
could

:::::::::
potentially

::::
lead

::
to

:::
an

:::::::::::::
underestimation

:::
of

:::
the

::::
risk

::
of

::::::::::::
multi-decadal30

:::::::
droughts

:::::::::::::::
(Ault et al., 2014).

:::
As

::::
with

::::
any

:::::::::::
model-based

::::::
dataset,

:::
an

:::::::::
evaluation

::
of

:::::::
metrics

::::::
relevant

:::
to the need of an evaluation

of the relevant metrics to chose the
::::::::
processes

::::::::::
investigated

::
is

::::::::::::
recommended

::
in

:::::
order

::
to

:::::
chose

:
a
:

suitable set of variables to be

used for studies using the climate data set, since the choice of bias correction depends on the intended application
:::
and,

::::::
where

:::::::
required,

::
to

:::::
apply

::
a

::::::
suitable

:::::::::::::
bias-correction

:::::::::
technique.
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:::
The

::::::::
projected

:::::::
changes

::
in

:::::::
climate,

:::::
using

:
5
::::
SST

::::::::
warming

:::::::
patterns,

::::::
mostly

:::::
cover

:::
the

::::::::::
temperature

:::::
range

::
of

:::::::::
UKCP09,

:::
but

::::
tend

::
to

::
lie

:::
on

::
the

::::
dry

:::
end

::
of

:::
the

:::::::::::
precipitation

:::::::
changes

:::::::
obtained

::
in

::::::::
UKCP09.

:::::::::
Prolonged

:::::::
periods

::
of

:::
low

:::::::::::
precipitation

:::
are

::::::::
projected

::
to

::::::
become

:::::
more

:::::::
frequent

::::
and

::::::
intense,

::
as

:::
are

::::::::::::
short-duration

::::
high

:::::::::::
precipitation

::::::
events.

::::
The

:::::::
analysis

::
of

:::
the

::::::::
projected

:::::::
changes

::::
also

:::::::
provides

:::::
some

:::::
useful

:::::::
insights

:::
into

:::
the

:::::::
oceanic

:::::::
drivers.

:::::
Some

:::::::
variables

:::
are

:::::
most

:::::::
sensitive

::
to

:::
the

::::::
overall

:::::::
(global)

::::
SST

::::::::
warming

::::::::
amplitude

:::::
(e.g.,

::::::::::
temperature,

::::::
winter

::::::::::::
precipitation)

:::::
while

:::::
others

:::
are

:::::
most

:::::::
sensitive

:::
to

:::
the

::::
SST

:::::::
gradient

::
in

:::
the

::::::
North

:::::::
Atlantic5

::::
(e.g.,

:::::::
summer

::::::::::::
precipitation).

:::::
These

::::::
results

::::
also

::::::
suggest

::::
that

:::
the

:::::
future

::::::::
seasonal

::::
cycle

::::
may

:::::::
depend

::
on

:::
the

:::::::
oceanic

::::::::
response

::
to

::::::
climate

:::::::
change,

::
in

::::::::
particular

::::
with

::::::
respect

::
to

:::
the

:::::
North

::::::::
Atlantic,

:::
and

:::::::::::::::
ocean-atmosphere

::::::::::
interactions.

In the context of the MaRIUS project, these time series are being used as input to hydrological, ecological and agricultural

models, among others. Combining these output with, for example, water resource models, will allow for an in-depth investi-

gation of the drivers of water scarcity in the UK and for the identification of suitable adaptation measures. Additionally, the10

availability of a large number of time series, driven by different SST patterns, will allow to identify the oceanic, meteorological,

and hydrological drivers of drought in the UK in subsequent analyses. The spatio-temporal structure of drought in the UK, and

how it may change in the future, will also be investigated as part of MaRIUS.

Data availability. The dataset will be made available on the Centre for Environmental Data Analysis (CEDA) platform after publication of

the paper in HESS discussion. Data, in NetCDF format, will be provided as yearly files for each simulation and with a table indicating the15

simulations corresponding to each time series and year, and will include the variables listed in Table 3 for all the time series for each scenario

(Table 2).
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Figure 1. Illustration of the simulation design and stitching, using soil moisture model data averaged over the Thames catchment. Each panel

shows, for a given year (top: 1990; bottom: 1991), 5-days averages of soil moisture in the upper 1 m of the soil for 20 model simulations.

The first month of the simulations (December of the previous year, part of the spin-up) is indicated by grey lines, followed by the 12 months

(January to December) in colours. End-of-year values of 1990 simulations and the same time steps in the spin-up leading to 1991 values,

highlighted by dark grey boxes, have to be compared to find the combination allowing the best match between simulations. Light grey boxes

indicates the same time steps that will be used to stitch to 1989 (top) and 1992 (bottom).
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Figure 2. Leading EOFs of upper 1m soil moisture over the British Isles in the last pentad in December. The fraction of explained variance

is indicated on each panel.
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Figure 3. Temporal continuity of soil moisture in the stitched ensemble compared to continuous simulations in the historical baseline (1900–

2006). (a) Bivariate distribution of soil moisture PCs 1 and 2 at the last December pentad. (b-d) Empirical cumulative distribution function

of the changes in the PC1-2 space between the last pentad in December and the three subsequent pentads (colors) in continuous simulations

(continuous lines), the stitched ensemble (thick lines) and a randomly stitched ensemble (points). The dashed black line shows the ECDF of

the same distance at the time of stitching, i.e., between the same pentad in stitched simulations. (b) Absolute distance in the PC1-2 space, (c)

Change in PC1 and (d) change in PC2.
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Figure 4. Seasonal biases in (a–d) mean surface air temperature, (e–h) precipitation in mmday�1, (i–l) precipitation in %, and (m–p) E
pot

,

for years 1961–2006. Each column is for a season as indicated in the labels.
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Figure 5. Bias-correction multiplicative factor applied to precipitation. A spatial smoothing was applied to the monthly ratios between

observed (GEAR) and modelled (W@H) 1961–2006 precipitation (see Supplementary Fig. S4
::
S5

:
for the unsmoothed ratio).
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Figure 6. Return time plots of (a–d) low seasonal precipitation and (e–h) low precipitation accumulated in 1–4 consecutive hydrological

years, for Great Britain averages from 1900–2006. (red) CEH-GEAR, (grey) individual w@h time series, (black) all w@h time series pooled

together. For each time series, seasonal or (multi-)year averages of precipitation were computed and spatially aggregated over Great Britain

prior to the computation of return values.
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Figure 7. Return values
:::::
Subset

:
of low precipitation accumulated over 1–4 hydrological years (x-axis)

::
six

::::
river

:::::
basin

::::::
regions in the 100

baseline time series (boxplot) and
::::
Great

::::::
Britain

:::
used

:
in CEH-GEAR (white dot) for each region (panel), for return times of 5–50 years

::
the

::::::
analysis. See

::
All

::
19

:::::::
UKCP09

::::
river

::::
basin

::::::
regions

:::
are

:::::
shown

::
in Supplementary Fig. S9 for the same analysis on seasonal precipitation rather

than hydrological years
::
S3.Whiskers display the range from individual time series.
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:::::
Return
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values
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of

:::
low

::::::::::
precipitation

::::::::::
accumulated

:::
over

:::
1–4

::::::::::
hydrological

::::
years

::::::
(x-axis)

::
in

:::
the

:::
100

::::::
baseline

::::
time

::::
series

::::::::
(boxplot)

:::
and

:
in
::::::::::
CEH-GEAR

:::::
(white

:::
dot)

:::
for
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each

:::::
region

::::::
(panel),

::
for

:::::
return

:::::
times
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of

::::
5–50

::::
years.

:::
See

::::::::::::
Supplementary

:::
Fig.

:::
S10

:::
for

:::
the

::::
plots

::
for

:::
all

::::::
regions,

:::
and

:::::::::::
Supplementary

:::
Fig.

:::
S11

:::
for

:::
the

::::
same

::::::
analysis

::
on

:::::::
seasonal

:::::::::
precipitation

:::::
rather

::::
than

:::::::::
hydrological

:::::
years.

:::::::
Whiskers

::::::
display

::
the

:::::
range

::::
from

:::::::
individual

::::
time

:::::
series.
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Figure 9. Return values of high precipitation indices rx1day, rx5day and rx30day (x-axis) in the 100 baseline time series (boxplot) and in

CEH-GEAR (white dot) for each region (panel), for return times of 5–50 years (colour). Bias-corrected precipitation data is boxed in white

(raw precipitation data in black). Whiskers display the range from individual time series. Note that for these metrics, the raw precipitation

data compares better to observations than bias-corrected values.
:::
See

:::::::::::
Supplementary

::::
Fig.

:::
S12

::
for

:::
the

::::
plots

:::
for

::
all

::::::
regions.
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Figure 10. Difference in near-surface air temperature between far future and baseline (years 1975–2004 therein) for each season (row) and

scenario (column).
:::::::
Hatching

:::::::
indicates

:::::::
grid-cells

::::
with

:::::::::
statistically

:::::::::::
non-significant

::::::
changes

::
at

:::
the

::::
95%

::::
level

:::::::
according

::
to

::
a

:::::::
two-sided

:::::
T-test

:::::
(almost

:::
all

:::
grid

::::
cells

::
are

::::::::
significant

:::::
here). The corresponding figure for the near future time slices is shown in Supplementary Fig. S10

::
S13.34
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Figure 11. Comparison of temperature projections with UKCP09: For each region, boxes show changes (2070–2099 minus 1961–1990) in

JJA (left boxes) and DJF (right boxes) in the 5 sets of MaRIUS time series and in UKCP09 (high emission scenario: SRES A1FI; 10000

values available). Whiskers display the 10–90% range from each group.
:::
See

:::::::::::
Supplementary

:::
Fig.

::::
S14

::
for

:::
the

::::
plots

::
for

:::
all

::::::
regions.
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Figure 12. Same as Fig. 10 but for precipitation (bias-corrected, prbc).
::::::
Hatching

:::::::
indicates

:::::::
grid-cells

::::
with

::::::::
statistically

::::::::::::
non-significant

::::::
changes

:
at
:::

the
::::

95%
::::

level
::::::::

according
::

to
::

a
::::::::
two-sided

:::::
T-test.

:
The corresponding figure for the near future time slices is shown in Supplementary

Fig. S11
:::
S15. 36
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Figure 13. Same as Fig. 11 but for precipitation, in %.
::::
Grey

::::
boxes

::::::
indicate

:::::
cases

:::::
where

:
0
:::
lies

:::::
within

:::
the

:::::
5–95%

:::::
range.

:::
See

::::::::::::
Supplementary

:::
Fig.

:::
S16

:::
for

::
the

::::
plots

:::
for

::
all

::::::
regions.
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Figure 14. Same as Fig. 10 but for E
pot

(with stomatal resistance adjusted to CO
2

concentration; see Supplementary Fig. S12
::
S17

:
for the

changes when stomatal resistance is kept constant).
::::::
Hatching

:::::::
indicates

::::::::
grid-cells

:::
with

:::::::::
statistically

:::::::::::
non-significant

:::::::
changes

:
at
:::
the

::::
95%

::::
level

:::::::
according

::
to

::
a

:::::::
two-sided

:::::
T-test.

:
The corresponding figures for the near future time slices are shown in Supplementary Fig. S13

:::
S18 and

S14
:::
S19.
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Figure 15. Distribution of return values of 10-year event for low precipitation on two consecutive hydrological years (boxplot) for each

region (panel) and scenario (colour). Whiskers display the range from individual time series. The
::::
Grey

::::
boxes

:::
for

:::::
future

:::::::
scenarios

:::::::
indicates

::::::::
statistically

::::::::::::
non-significant

:::::
change

::
in

:::::
mean

::::
return

:::::
value

::::
with

:::::
respect

::
to
:::
the

::::::
baseline

::
at
:::
the

::::
95%

::::
level

::::::::
according

::
to

:
a
::::::::
two-sided

:::::
T-test.

:::
See

:::::::::::
Supplementary

:::
Fig.

:::
S20

:::
for

:::
the

::::
plots

::
for

:::
all

::::::
regions,

:::
and

:::
the corresponding figure for the near future time slices is shown in Supplementary

Fig. S15
:::
S21.
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Figure 16. Distribution of return values of 10-year event for rx5day (boxplot) for each region (panel) and scenario (colour), using raw

precipitation data (i.e., not bias-corrected). Whiskers display the range from individual time series. The
::::
Grey

:::::
boxes

::
for

:::::
future

::::::::
scenarios

::::::
indicates

:::::::::
statistically

::::::::::::
non-significant

:::::
change

::
in
:::::

mean
:::::
return

::::
value

::::
with

::::::
respect

::
to

:::
the

::::::
baseline

::
at

:::
the

::::
95%

::::
level

::::::::
according

::
to

:
a
::::::::
two-sided

::::
T-test.

::::
See

:::::::::::
Supplementary

::::
Fig.

:::
S22

:::
for

:::
the

::::
plots

::
for

:::
all

::::::
regions,

:::
and

:::
the

:
corresponding figure for the near future time slices is shown in

Supplementary Fig. S16
:::
S23.
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Table 1. Observational datasets. For the mean climate validation the common overlapping period 1961–2006 is used, while for precipitation

extremes validation the overlap period between the historical baseline and CEH-GEAR (1900–2006) is used.

Variable Dataset Time period Native resolution Reference

Temperature E-OBS (version 12.0) 1950–2014 0.22� Haylock et al. (2008)

Precipitation CEH-GEAR 1961–2014 1 km Keller et al. (2015); Tanguy et al. (2015)

Potential evapotranspiration CHESS-PE 1961–2012 1 km Robinson et al. (2015)

Table 2. List of the climate time series for various scenarios. GM SST stand for Global Mean SST.

Name Short name Years GM SST SST North # time series Remark

percentile Atlantic index

Historical Baseline bs 1900–2006 Observed (HadISST 2) 100 “Baseline” refers to

years 1975–2004 of the

historical baseline

Near Future nf 2020–2049 50 50 100

Near Future p10n nf-p10n 2020–2049 10 min 91

Near Future p10x nf-p10x 2020–2049 10 max 91

Near Future p90n nf-p90n 2020–2049 90 min 89

Near Future p90x nf-p90x 2020–2049 90 max 85

Far Future ff 2070–2099 50 50 100

Far Future p10n ff-p10n 2070–2099 10 min 89

Far Future p10x ff-p10x 2070–2099 10 max 86

Far Future p90n ff-p90n 2070–2099 90 min 90

Far Future p90x ff-p90x 2070–2099 90 max 86
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Table 3. Output variables available in the dataset at various temporal frequencies.

Temporal resolution Variable name Description unit

daily only
tasmax Maximum air temperature at 1.5 m above ground K

tasmin Minimum air temperature at 1.5 m above ground K

daily & monthly

pr Mean precipitation flux mms-1

prbc Bias-corrected pr (Sect. 4.1.2) mms-1

pepm Penman-Monteith potential evaporation (Sect. 3.3) mmday-1

pepm_adjrs (future only) Future Penman-Monteith potential evaporation with stom-

atal resistance adjusted to atmospheric CO
2

concentration

(Sect. 3.3)

mmday-1

tdps Mean dew point temperature at 1.5 m above ground K

wss Mean wind speed at 10 m above ground ms-1

rsds Mean incoming shortwave radiation at the surface Wm-2

rlds Mean incoming longwave radiation at the surface Wm-2

rss Mean net shortwave radiation at the surface Wm-2

rls Mean net longwave radiation at the surface Wm-2

hfls Mean latent heat flux at the surface Wm-2

psl Mean sea level pressure Pa

5 days averages & monthly
hfss Mean sensible heat flux at the surface Wm-2

moisture_content_of_soil_layer Mean soil moisture content in each layer m

monthly only

tas Mean air temperature at 1.5 m above ground K

prsn Total snowfall flux mms-1

prrc Convective rainfall flux mms-1

prsnc Convective snowfall flux mms-1

clt Fractional cloud cover –
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Table 4. Monthly surface resistance values (rs, in sm�1) used in the computation of E
pot

. The baseline values are shown under pepm, and

are kept constant in future time slices for variable pepm. pepm_adjrs are future values accounting the changes in CO
2

concentration (see

Sect. 3.3 for details).

Months pepm pepm_adjrs (near future) pepm_adjrs (far future)

January 88.7 94.5 115.9

February 88.7 94.5 115.9

March 69.5 75.8 101.6

April 56.8 62.7 88.5

May 44.5 49.5 72.2

June 64.3 71.2 102.1

July 64.3 71.2 102.1

August 73.7 81.5 115.8

September 75.4 82.8 114.2

October 78.0 84.8 112.1

November 87.1 93.7 118.8

December 88.7 94.5 115.9
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