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Abstract. Distributed hydrological modelaretraditionally evaluated gainstdischarge stationgmphasizing the temporal

and neglecting the spatial component of a model. The present study widenslittm#daparadigm by highlighting spatial
patterns of evapotranspiration (ET), a key variable at thedamdsphere interface, obtained from two different approaches

at the national scalef Denmark The first approach is based omational wateresoures model (DK-Model)), using the
MIKE-SHE model code, and the second approach utilizes a two source energy balance modeb(iVSEBjainly by
satelliteremote sensing datédeally thehydrologicalmodelsimulaion and remote sensing based approach shogdent

similar spatial patterns and driving mechanism of ET. However, the spatial comparison showed that the differences are
significantand indicating insufficient spatial pattern performance of the hydrological model.

The differencesn spatial pattersican partly beexplaired bythe fact that the hydrological modeldenfiguredto run in6
domains that are calibrated independently from each othét,ia®ften the case for large scale miltisin calibratioa
Furthermore, the model incorporateegefinedtemporal dynamic®f leaf areaindex (LAI), root depth (RD) andcrop
coefficient (Kc) for each landover type This zonal approach of model parametrization ignores the sigatiporal
complexity of the natural system. To overcome this limitattbis, study features a modified version of th&-Model in

which LAI, RD, and KCare empirically derived using remote sensing datal detailed soil property majs order to
generatea higher degree of spatiemporal variability andpatial consistencydtween thes domains. Theeffects of these
changes ar@nalyzed by using the empirical orthogonal functions (EOF) analysis to evaluate spatial patterns. The EOF
analysis showthat including remote sensing derived LAI, RD and KC in the distributed hydcalognodel add spatial

features found in the spatial patterrr@fote sensing baséd .

1 Introduction

The application of spatially distributed hydrological models has become common practice for a wide range of water
resources assessments. Such modelsauable tools to manage terrestrial water resources and to provide insights into the
overall water balance as well as the internal distribution of multiple hydrological states and fluxes. The spatial fiyedictabi

of these models is however severelynipgred by the general lack of suitable spatial pattern oriented model evaluation
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frameworks since evaluation remains focused on spatially aggregated objective functions such as discharge. As stated &
Conradtetal. 28)il n conjunction with distributed hydrological
mult-si te calibrationo. The neglect of a specific focus ol
increasing acknowledgnent of the role of patterns in the functioning of hydrological sysi&feseecken et al., 2016)
Moreover it is against the ratiomabehinddeveloping and applying distributed mosl@freeze and Harlan, 1969;Refsgaard,
1997) If the spatial variability of a hydrological system is not of importance to the modeler it seems not worth the effort to
apply a distributed model, since numerous studies indicate that equalfideligl can be achieved with a lumped approach
when evaluated solely at the catchment o(8&sen et al., 2011;Vansteenkiste et al., 2014)

The concept of spatial pattern comparisons in catchment hydrologpiomesered byGrayson and Bldschl (2000yvho
developed the theoretical framework and terminology. Since then significant progress has been made i a®asosiat

code developmer{Clark et al., 2015;Maxwell and Kollet, 2008;Samaniego et al., 20&0)ote sensinfl_ettenmaier et al.,

2015) and data assimilatiofizhang et al., 2016;Ridler et al., 201Nevertheless, explicit spatial pattern evaluation of
distributed hydrological models remains a rarity.

In order to perform qualified assessments of simulated spatial patterns reliable observatiopseaeguasite. For this
purpose satellite remote sensing comes into play as an independent data source with the required spatial resolution ar
coverage for many catchment scale applications. Satellite imagery has been used for estimation of humerand states
fluxes of interest to hydrological modelling, such as snow c@vemerzeel et al.,, 2009pround waterstorage change

(Chen et al., 2016;Rodell et al., 2009;Sutanudjaja et al., 2013;Richey et al,, llllBjoisture (SM{Wanders et al., 2014)
vegetation water conterfMendiguren et al., 2015)land surface temperatuil@ST) (Corbari et al., 2015)pr actual
evapotranspiratioET) (Guzinski et al., 2015)The conversions of the remotely sensed signal to hydrologicablesis

far from trivial, and usually require in situ measurements and observations for model evaluation. However, in spite of their
overall uncertaintysatellite based estimatesntain valuable pattern informatigiascaro et al., 2015More precisely, we
propose to utilize remote sensing data solely for the purpose of pattern validation, using bias insensitivamteleage

the task to validate water balance closure to the more trusted discharge observations.

Several studies have explored the obvious potential in utilizing satellite estimates for hydrological model evaluation and
calibration. Some utilize time ges of a basin average observation from remote sensing to guide model califiRafibret

al., 2016;Rientjes et al., 2018hd therefore rely heavily on the accuracy of the remote sensing estimate while rggfhectin
spatial pattern information. Others utilize the satellite based estimates to perform a pixel to pixel calibration of ithe mode
(Corbari and Mancini, 2014)he latter approach might explore the full information content of the observations. Hpwever
there isarisk of a highly parameterized solution prablend possibly unrealistic spatial parameter distributaseachgrid

cell is parameterizedndependentlySuch a highly parametrized approach will be weak in lighthefuncertainty of the

remote sensing estimates at the pixel levebtead we advooatapproaches that seek to utilize the general pattern

information of remote sensing data with less focus on specific pixels/grids and the general bias.
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Relatively few studies utilize the actual pattern of remote sensing estimates in distributed hydrolodiaevaluation.
Interesting examples ar@.i et al., 2009)who used remote sensing derived patterns of actual evapotranspiration, and
Hendricks Franssen al. (2008)who utilized satellite based recharge patterns to constrain the calibration of groundwater
models. Immerzeel and Droogers (2008)cluded actual evapotranspiration estimates in the calibration of the Krishna basin
in southern India and obtained a good correlation acrossuli Hasinavhile Githui et al. (2012)uccessfully applied a
multi-objective calibration by combining river discharge and remotely sensed acapaitenspiration of 59 sutmsins in
Victoria, Australia. Other pattern oriented model evaluations without calibration were condudBedtdigi et al.(2010)

Wang et al. (2009andKoch et al. (206); the latter applied different spatial performance metrics in the evaluation of three
land surface models over the continental United States based on remotely sensed land surface temperature maps.

The aim ofthis studyis to evaluate the spatial patteperformanceof the national hydrological model of DenmaiBK-
Model). In order to achieve this, a secondary goal iddeelop athermalremote sensing based actual evapotranspiration
(AET) dataset suitable for validation and calibration tife large sda distributed hydrological model The ideais to
thoroughly investigate the observed differences in spatial patterns between observations and sinlatides to
understanihg the underlying processes that generate pattarastualevapotranspirabin. The model evaluatiois based on

a diagnostic approach inspired by the studySehuurmans et al. (2003yho utilized satellite estimates to identify
conceptual model errors in a small sdsin of the MetaSWAP model in the Netherlaridss approach aismat identifying

which parts of the modelgrametrizatiorgeneragsthese differences in the spatial pattetrater, in an attempt to increase

the similarity between the observed and simulated pattern of ET some newangdypsirameter distribution schense
generated andhcludedin a modifiedversion of the DKModel. The response dhese modificationsn the modified Dk

Model are later evaluatedgainst bottspatial patternsof evapotranspiratign streamdischarge and ground water heads.
Results show that newly gained insights can guideetlilevelopment of a new parameterization scheme and calibration

framework that can facilitate an improvement in the spatial model performance

2 Methods

In this study two approachesre undertaken to estimate spatial patterns of evapotranspiration (Efgtiahal scale
(Denmark (Fig. 1); the first is based onBwo Source Energy Balance (TSEB) driven by remote sensing sat#o(2.1);
and the second isased on a distributed hydrological modeK¢Model) (described in section 2). We acknowledge that
both approaches are subjectulacertaintieshowever, the aim othis studyis to evaluate the dominatingpatial pattern
across Denmark and to gain insights into which processes and variables generate these patteaisafitie will focus on
the spéal pattern itself by neglectingjfferences in the absolute valugfsevapotranspiratian

In the last step dhis studythe current version of theK-Model is modified by replacinghe originalroot depth(RD), crop
coefficient(Kc) and leaf areindex (LAI) based orookup tables and land cover map by remote sensbageddata which

features detailed spattemporal information
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2.1 TSEB setup

2.1.1 TSEB theory

The Two Source Energy Balance Model (TSEB) proposeddiynan et al. (1995% used to retrieve mean monthly maps of

ET across DenmarKor the period 2002014 Although several global remote sensing based data sets dfl actu
evapotranspiration, such B8ODIS ET (Mu et al., 2007jand GLEAM (Miralles et al., 2011)are available, the TSEB model

was selected as the most appropriate remote sensing algorithm for the current study. The main reason is that TSEB is main

driven by land srface temperater which is akey indicator of evaporative state at the surfé@¢alma et al., 2008)This

makesLST based ET algorithms more appropriate than purely vegetation adlgeedhms such aéviu et al., 2007)Other

models such as GLEAM(also not including LST)can be considered fusion of models and remote sensing data (e.g.

including a soil moisture model and plant watieess model) and as such becalifécult to regard as anliservation.

In our study we have incorporated

the

code

which

is

provided

by

the

pyTSEB

package

(https://github.com/hectornieto/pyTSEB last accessed 30/0Zy20he appliednodel is a two layer model that treats soil

and vegetatiorseparatelyand estimates fluxes on the basisr@fotely sensetlST, albedo and vegetation parameters in

combination withthe climate variableair temperature (d;), wind speedshortwave and logwave radiationAs presented

in Norman et al. (1995)and presented hene & simplifiedway, themodel is based on the energy balaegeation:

0aQoa Y

'O 0 0O 0O

Y

0

Y
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)

Where H is the sensible heat flux, G is the ground heat 8yx0.35R,s, Y is the net radiation and LE is the latent heat flux

all in Wm?, with subscripts C and S represents canopy and soil respectively.

The sensible heat flux (H) is calculated as:

Owa o 0 "6 —

116

)

WhereO and O are the sensible heat flux for the canopy and soil respectivélsgnd”Y are the canopy and soil

temperatures (K), 6 is the volumetric heat capacity of air (3s), 'Y is the resistance to heat (§)nflow in the boundary

layer above the soil surface aids the aerodynamic resistance (3)raxpressed as:

Y ia ——

®3)

with ¢ = 0.0025 and k= 0.012 and y being the wind speed at a height above the soil surface where the effect of the soll

surface roughness is minimal.

Y ia 3

(4)

whered andd are the height of the wind speed (U) and air temperature in meteemduw are the adiabatic correction

factors for momentum and he#tjs the displacement heigh®( m#® UQ, andQ is the height of the canopy (m}), is the

displacement height for momentur

Ty .
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The unknowns oEq. 2 are E and T, which are related to the observed directional L IbY:

by o=y p o o—y T (5)

Wheref is the fraction of vievof the radiometer occupied by vegetation, ands the viewing angle.
O— p Qok— (6)
In order to solve for £ and Ts a second expression is required, whiththe TSEB approactriginates from the Priestley

Taylor approximation(Priestley and Taylor, 1972)sed here for an initi@stimate of the latent heat flux for the greert pér
the canopy pr=4a.26sarrespomding @ poténtial transpiration. The initial transpiration is given toition:

0 Owa 1 Q—Y @

Where Qrepresents the fraction of LAI that isegn, Yis the slope of the saturation vapour versus temperature curyeisind
the psychrometric constant and where the net radiation in the caMopyig calculatechased on the separate components
of direct and diffuse shortwave and longwaadiation for the canopgsdescribed byfCampbell and Norman, 1998;Kustas

and Norman, 1999accounting for albedo, extinction coefficient, LA

By combiningEqg. 1 and7, Hc can bederived

O wa Y bo Y p | Q— (8)

After calculating the initial i (Eg. 8) andthe resulting T (Eq. 2), Eq.5is used to calculatirst Ts, thenthe sensible and

latent heat fluxes for soil ((Hand LEs) based orEq. 2 and1. The initial estimatesf fluxesdo howeer not guarantee that

the energy balances are satisfied. If the calculategiLE | ess t han zer o, TSEB pi. Whe r n a |
LEs< 0 is encountered, the c agXimoEy.y) isitgativelg reduced whtilcdutions vith Lt r e s
> 0 are obtained. The model iteration continues until the energy balance equations are satisfied for both soil andeanopy. Th
readers are referred korman et al. (1995nd thegithub pyTSEBpackageo find a full description of the model

2.1.2Derived remote sensing inputs

Several inputdo TSEB aredirecly obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sghsor

at 1km spatial resolutionday time LST and day time VZA/iew Zenith Angle)obtained from MOD11A1 and MYD11A1
productson board ofon TERRA and AQUAsatellitesrespectiely. Thedecisionof whether to use LST from TERRA or
AQUA is basedon the percentage of high quality pixels availabderering Denmarkn each scene. The quality flags
included in the productare used to select only those pixels with the best observatissible no cloud present, no cloud
shadow etc.In addition only satellite observations obtained betwk®®0 to 13:00ocal solar time are utilized to ensure
minimum effect of acquisition time.

This study focuse on the growing seasofrom April to September. From a water resources perspective the spatial patterns
of ET areregarded asiielevantfor the remainingmonthsof the year due to energy limited conditions and very low potential

evapotranspiratiork-irst the Nadir BRDHBIdirectional Reflectace Distribution Functionpdjusted Reflectance (NBAR)
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from the MCD43B4 product for that time period was used to calculate the \iRse efl., 1973)using the following
equation(Eq. 9):

novi[-]= B2 B (7)(9)
B, +B

whereB1 and B2 is the reflectance from bands 1 and 2 from MODIS (645.5 nm and 856.5 .nm respectively).

Later, the SavitzkyGolay filter (Savitzky and Golay, 1964available in the TIMESAT cod¢Jonsson and Eklundh,
2002;J6nsson and Eklundh, 200gselected to smooth the NDVI time series as it preseh@snaximum and minimum
values of the original datasahd guarantees consistency of time sefiesitu meaurement®f LAl are usually expensive
and time consumingherefore eference LAl was based on the tables used for the Danish National Waterdessaodel
(Stisen et al., 2012hich are based on previous works Réfsgaard et al. (20L1Boegh et al. (2004ferived LAl
variability in Denmark using NDVI with an exponential functidn.this study a similar approach where coefficients are

adjusted to match thaput LAI dataused inthe National Water Resources model resultingdn10:
, P qaf? (10)

Whered andd are specific parameters fthis study casend thatis adjustedto maximizethe fit between thecalculated

NDVI andthereference LAlfrom the DK-Model leading toEq. 11:
, 1} 8t cie ° (12)

Another parameter that is needed to run the TSEB i¥#getation Height (VH)This is derived assuming a simple linear
regression as iBtisen et al. (201%pllowing Eq.12:

6 (& quEgE%qAEQE@T (12)
Where Heigh}.x is a value that changes for each land use clasd ; v« indicates the maximum LAI value far particular
pixel. This relationships appliedon all land uselasse excepforest whichis set to a year round constant VH of 15m. The
input albedo data was obtained from the MOBI8ay MCD43B3 productusing only good quality pixel according to the
quality flag (MCD43B2). Inorder tofurtherreduce noisemean albedo apsaregeneratedy creatingd6 mean mapat 8
day intervalsusing all the scenes available for e&ethay interval acrosddifferent yearsThe albedomeanmapsfor each 8
dayperiodarelaterusedto calculate the net radiatiom TSEB.

Climate brcingdata to run the TSEBreobtained from the ERAnterim reanalysiddata se{Berrisford et al., 2011;Dee et
al., 2011)provided by the European Centre for Medittange Weather Forecast (ECMWF). We haeorporatedlO m
horizontal wind speed, 2 m air temperafsarface solar radiation and longwave incoming radiation.

Fraction of Green vegetation was derived from f&llowing Eq. 13:

&C T (13
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Where Fgindicates the Fraction of green for a certain pixelLAl; indicates the LAI value for a pixeland, ) is

the maximum LAl value for an specific land cover typlée approach is a sirified form of the vegetation index based
methodby Gutman and Ignatov (1998)his equathin was applied to needle leaf forest land cover type.

For the other land cover types¢ps grasslandsdeciduoudorest etc.)Eg.13was modified adding another term. These land
cover types show a stronger seasonality and a clear distinction betweemiagymhase and a senescence phase. In order to
represent the strong difference in fraction of green vegetation between the period before and after senescence we introduc
a different equation for the period between crop emergence and senescence, wasmignee higher values of Fg to non

needle leaf forest land covers, FR) For these types of vegetation Fg will be allowed to increase rapidly just after crop
emergence by substituting|EL3 by Eq. 14.

&¢ —bOL _0op A ® (14

Where, ) indicates thenaximum LAI value for a pixel.i

This substitution is only conducted during part of the phenological year, more specifically for the period starting at the
greenup date, corresponding to the point defined by an increase in 20% in LAl compared to the wirikekliguy) (Cong

et al., 2012)and continuinguntil the time at which LAl reaches its maximum !) ; (Fig. 2). This approach will
mediate the shortcomings of the vegetation inbieased methods, which has been shown to underestimate fraction of green
during the greening phase while corresponding well to field observations during sené&aemigski et al., 2013)

Finally, instantaneouestimatesof ET areconverted to daily ET values based on the assumption of a constant value of the
evaporative fraction throughout the d8ugita and Brutsaert, 1991;Brutsaert and Sugita, fe@gying Eq.15:

dET @& =EFAdRn (15)

where dETrepresentshe daily ET and EF is thécvaporativeFraction anddRn represents the dailyet radiationand where

EF is calculated as Eq.16:

EF =ET/Rn (16)

Where ET is thenstantaneousactualevapotranspiration andn is theinstantaneouslet Radiation at the sanaequisition

time. The assumption of constant EF over the course of a day is ofteomepletely trueand also affects thestimates of

daily ET (Gentine et al., 200Hut in the current applicatias not crucial since only the spatial pattern of the remote sensing
estimates is utilized.

Later, the daily mapsare aggregatedo monthly meanmaps by using only those days in which thetional coverage
exceeded0%. Thefinal monthly mearmapscomprisesall available ET estimates for a given month across all years {2001
2014) resulting in jussix climatologicalmaps (ApritSept) This temporalaggregatiorprocesss conducedin the sameavay

with simulations fromthe DK-Model consideringonly the samecloud free pixel&rids as from the TSEBestimateand

ensuring the comparability of the ngap
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2.1.3Optimization of vegetation parameters

Data fom threeeddy covariance (EC) flux toweisused as a reference to perforraamsitivity analysis andalibration of
some of the vegetation f@anetersof the TSEB A detailed description of the instrumentation and data processing of each of
theflux sites can be found iRinggaard et al. (2011).atent heat (LEpr evaptranspration measurementareobtained at a
frequency of 30 min and the mean value of the observations from 11:00 to 13:00 were used as reference in ithe @flibrat
TSEB for the cloud free days where the TSEB estimates are availBEideobserved eddy covariance data are subject to
energy balance closure problems, typically in the order €528, which is usual for this type of measureméhisndricks
Franssen et al2008)

The evaluation of the TSEB was conducted using as reference the data of the EC systems from the 3 different land cove
types that were corrected for the energy closure using the Bowempatioach Bowen, 1926) The associated uncertainty

is thespanbetween altlosure error being assigneddithersensible heatr to latent heat.

In order to identify the input and parameters that assert the main Icohtiee TSEB modela sensitivity analysisis
conducted with the help of PEST (http://www.pesthomepage.org/Home.php), aindefendent parameter estimation and
uncertaintyanalysistool. PEST evaluates the sensitivity of each parameter by perturbingltieeof each of thparameters

one at a time and subsequently analyse the response pettoemed perturbationwith respect to a change in model
performanceAt last,the sensitivities are normalized using the most sensitive parameter as reference.

Later anoptimization of selectedegetation parameters performed. Tie objective function is set to reduce thifferences

in meanmonthly ET estimates athree EC measurements sites that represent the three main land cover typemarkD
(Agriculture, Forest and Meadow).

Only 4 parameterarecalibrated using PEST. These parameteesPriestley Taylor parameter for forested areasgRJ,

and the LAl axclassfor the three land covers used to estimate the Fg § b)) ).

2.2 Hydrological model

The National Water Resources ModBK(-Model) (Hgjberg et al., 2013;Stisen et al., 2042)s developed at the Geological
Survey of Denmark and Greenlaimd 1996 and updaté several timegHenriksen et al., 2003;Hgjberg et al., 201Bje
model isconstructedwithin the hydrological model system MIKEHE (Abbott et al., 1986)The model works at 500 m
resolution and due to computationafi@éncy and differences in geologthe DK-Model was divided into 7 different
domains that cover the entire country; howevethis studyonly 6 of the 7 domains were selected covering approximately
98% of the country with and extension of@@7 knf. Domains used are presentedFiig. 1. The modeis based on a full 3

D finite difference groundwater module that is connected to a simplifiedlayer unsaturated zone moduMéan and
Smith, 1994) Furthermorethe model wapreviouslycalibrated using 191 discharge statianslapproximately 17.500 data
entries ofground water hea@lGWH) (Stisen et al., 2012 YheDK-Model has been extensively used in different applications

with different objectives; assessment of climati@ege(Karlsson et al.2016), water resources manageme@denriksen et
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al., 2008) large scale nitrogen modellif@Vvindolf et al., 2011;Hansen et al., 2009;van der Keur et al., 20@)lighting

the importance of the spatial componefthe modehnd its reliability.

2.2.1Remote sasing derived hydrologicalmodelinput data

Part of the current study is to identify model inadequacies and test possible directions of model parametrization
improvements. In an attempt to improve the inib&-Model, gpatially and temporally distributedot depth (RD) mapare
generated using remote sensing data usiegatation index baseapproach(Koch et al. (2017)where RD is calculated by
Eq.17:

2%a 2% —— a7

where RDiis root depthin pixel i, NDVI; is theNDVI in that cell, andNDVI na is theand RDy.«indicate the maximum
values ai in metersThis equation was usddr forested land cover types, pbowvegetated areas and urban areas. D

be consideredin effective parameteén the DK-Model which partly compensates for the lack of a specific vegetation
component in the evapotranspiration calculaticarsd therefore variability in LAl and phenolagior instance Eq. 17
equips forest cells with a temporal varying RD whighontrary to our physical understanding, but it compensates for mixed
land-use cellsand undergrowthRD of croplands and grasslands, denoted ag,RWasestimated by implementing s
modifications toEq. 17. For Danish agricultural land coverhe effective maximum root deptiRDy) is known tobe
lower for the very sandy soils in western DenméRefsgaard et al., 2011;Breuning Madsen &dtou, 1983) This
dependency of maximum root depth on soil type is accounted fadibgar relation between thelay fraction (CF) in the

soil and RD.ax Thisrelationis then included as a substitute of R In order to allow RD to reach zefor croplands the

second term ifEg. 17 is normalized by including NDV}, in theEq. 18,
2$ a ] 01 O—m—m—— (18)

Where CFindicates the clay fraction at pixgl NDVI; indicatesthe NDVI value of pixeli, and NDV}, and NDV lyax
represent the minimum and maximum values of NDVI for the same pixels.

The constarst gplh N Ghp afeconsidered calibration parameters that should be tuned to the best overall water balance and
spatial paern in AET. For the initial run of the modified DModel valuesof Usp = 1 2 gr@=r0@ ar® assignedrhese

values arederived by matching thaverageroot depthacross all gridobtained througheqg. 18with the corresponding
averageoot depth otheoriginal DK-Model.

In addition, the crop coefficient (Kc), which is a correction factor for the reference evapotranspiratigh B3
recalculated. The Ed, describes the climatologically basactual evapotranspiration for theference crop (a shiograss

without water stress) and is here provided at a coarse spatial resolution of 20 km.-Vdadéccouns for the difference
between a given crop or land surface and the referencebgrepaling the EL; to the potential evapotranspiratiamsed n

the hydrological modelin the original Dkmodel setup, Kc was based on lookup tables for different land covers. In the
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modified parameterisatiofc is derived fromremotely sensetAl using the approach presentediilten et al. (1998and
used byStisen et al. (2008)

+A 4 A +&% +A Op AP v ™z p A ¥ (19
Where thet A and+ A are set to 0.95 and 1.15 respctively.

2.3 Spatial pattern analysis; Empirical Orthogonal Functions (EOF)

The Emyrical-OrthogonalFunctions (EOF) analysis is a statistical technique commonly used to evaluate large spatio
temporal datasets of hydrological states and flksscaro et al., 2015;Perry and Niemann, 2007;Graf.e2014) It can

be applied on either the spatial or the temporal anomalies and this should be reflected by how the data matrix is preparec
Most commonly, and also applicable for our study, the EOF analysis is applied focusing on the spatialwdfiabitiis

purpose the rows in the data matrix represent the locations and the columns, each having a sum of zero, the timesteps. Wh
being applied, th&eOF analysisdecomposes the variability olfie spatiotemporaldata matrixin two main components.

First, a set of orthogonal spatial patterns (EOFs) which are time invariant and define statistically significant patterns of
covariation. Second, a set of loadings that are time variant and specifying the impoftaach EOF over timesraf et al.
(2014)andPerry and Némann (2007lescribed briefly the mathematical background of the EOF analysis. Most commonly,
the EOF analysis is applied on either observati onal or
tool for spatial validabn of distributed hydrological models at catchment s¢gkng et al., 2015;Koch et al., 2016pch

et al. (20155kuggested performing a joint EOF analysis on an integral data matrix that contains both, observed and simulated
datawhich areconcatenated along the temporal axis doubling the numbmlwins In this way, the resulting EOF maps
honaur the spatietemporal variability of both datasets and the weighted difference between the loadings at specific times
can be utilized to derive a quantitative pattern similarity score. The weighting issaegebecause the amount of
covariation that lies in each EOF differs, where the first EOF is oriented in the direction of maximum covariation. Therefore
the EOF based similarity score (SEOF) between an observed and a predicted ET map at time xmoatabedfasq. 20:

3 B x I TAA 11AA (20)

where w, the covariation contribution of the i6th EOF, i s
loading (load™) and the observed loading IG&% of the i 6th EOF at ti me x.

The EOFanalysis applie in this study evaluaté the differences in spatial patterns betweenDkemodel outputs inthe

original configuration and a modified version where three infRf3, LAl and Kg of the model were repladeby those

derived fromremote sensing data.

10
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3 Resillts and discussion

The resultsand discussiorare presented in two sections; the first focusasthe sensitivity analysis angarameter
optimizationof the TSEB model and the second features the spatial pattern evaluation of-tledekusing the maps
obtained from the TSEB model

3.1 Sensitivity analysis and TSEB calibration

The normalized sensitivity values of the @8orporatedvariables angarameters ar#lustratedin Fig. 3. The results are
presented in three groups depending on dheup they bedng to: remote sensinglatg forcing data and vegetation
parameters.

The results show that the most sensitragiablefor the estimation of AET is LSTinterpretingthe sensitivity values for
each groupindividually stress thatfor the remote sensing inp parameters that are directly related to LST such as
emissivity of vegetation (Emi¥9 and soil (EmisS) arecharacterizedby a high sensitivity as well. The next group, forcing
data, exhibited high sensitivitfor all variables except forwind speed Overall Air temperature (Terdpr) is the most
sensitive forcing variablé heseresultsindicate that the algorithm is largely controlled by the LST, LAl and climate forcing
data. Thisfinding is considereddeal, since the actual parameters of the aligoritto not dominate the final spatial pattern.
In general, he remote sensing and forcing data inmats beconsidered observatiomghich are not subject to calibration
Thesensitivity analysis was utilized for illustrating the main controlling variablése TSEB algorithm, not for selection of
calibration parameters. Subjectivetgur vegetation related parameters were seleictedtalibraion to optimize the match

to each of the three land cover typE#st, the PTg, st parameter was selected base the Priestitaylor coefficient of

forests is believed to be below the standard value2#f dssigned for agriculture and meadomatsu, 2005)Secondly,

the LAlyaxgasvalues ( ! ) A I .) which control the fraction of green vegetation (Fg) through Eq.
13and14 are selected for calibration.

The resultof monthly ET estimateare presentetbr all three sites in Figh. The barson the observed values indicate the
uncertainty associated with the energy balance closure istheae the pper bound of the uncertainty bar represent the
situation in which the residual energy issigned to the latent heat (LE), whilst the lower bound represent the opposite
situation in which all the residual energy is assigned to the sensible heat (H

Generally the estimated ET values agree well with tharte@surements especially consideringuheertainties associated
with energy balance closure atite spatial salemismatch between the EC footprint and the remote sensing estimétions
order b minimize the effect of scale issut#e EC values of ETat the three siteare compared to the avegeET of the
surrounding pixelsestimatel by TSEB. For this comparisgnpixels that are consideredas purely representative of the
specificland cover type rad therefore not contaminated by other land cover tgpesised The selection of the pixels

carried out manually with the help of a high resolution image of the study area.
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The comparison is meant as an illustration of the ability of the TSEB to describe the general annual variation and
differentiate between land coweiThe main aim of the TSEBpplicationis to get robust national maps of growing season

ET and he resultsshow agreement on boththe seasonal variation and absolute levels of @M the other hanthe
separation between land coveysomewhaharderto evaluate because all thrgiges exhibit a similar level of ET.

ET in the forestedareas remasmostly constant during thgrowing seasorwith a tendency to increase at the end.
Agricultural areason the other hand presented much higheetability with a rapid increase at thediening of the growing

season (Mayune) and a decrease at the end (Au§egttember). The Wetland shew similar shape as the fordsit with

slightly higher ET values, and pressatbig increase in the month of August tisatot capture in the TSEB.

Mean monthly maps of E@regenerated from dailf SEB estimationsacross all years to ensure consistent spatial patterns

for robust spatial model evaluatiavith theaimto evaluateand improve the model performan@&uch an improvement can

be facilitatedthrough optimal parametrization, and we therefore focus on the consistent spatial patterns rather than the
temporal dynamicef ET variability. Thisis also reflected in the way the TSEB ET estimateevaluated.

Results indicate thahe TSEB ET estimasarewithin the measuremenincertaintyof the EC at the three statioffhe aly
pronounced disagreemeistobserved in the wetland during the month of AugRéhggaard et al. (20135howed how the

water level of the Skjern Reér raisedduring that timeof the yearand therefore increasing the values of ET in the EC
measurementshich is located at the bank of the river

3.2 Spatial patterns

The mearmonthly mapsof cloud free ETgenerated with the TSEB model ab#-Model are pesented irFig. 5 andFig. 6.

For a better visualization of the spatial patterns the maps were normalized in this case by dividing each map by the meal
value of the map itselThe TSEBET (Fig. 5) exhibitsa cleardifference betweekastern and WesterneDmark with lower

ET values in the sandy Western Denmark especially in the peak of the growing seasaluiis)aiyhe clear EW pattern
identified by the TSEB modelis remarkable considering that it is opposite the general precipitation gradient (Figisl). T
highlights the strong influence of soil properties on the ET pattern across Dedmatker feature is thdbrest areatave
lower ET for the selected cloud free days where canopy interception is not included.

Regarding the results frothe DK model(Fig. 6) it canbe observed that the W trendis not noticeablden the maps and the
difference between forest and agricultisdess distinguishabléVioreover theeffects of the zonal calibratioare causing
differences in model domain (Fig. 1) which havemuch higher ET in comparison to the other domadéispecially inMay
andJune. Fronfigs.5 and6 it canbe extracted thahereis almost no resemblance between the spatial patigensgfied in

the TSEB ET and the DKModel simulations on the natiah scale. This seesnsubstantialsince the model has been
calibrated extensivelyHowever, the applied dischargebasedcalibrationis dominated by the winter peak runoffihich
conves little information withrespect tahe spatial patterns of summer EThigfinding actually highlights the need for
spatial pattern evaluation of distributed hydrological mode@ise traditional discharge and groundwater head calibration

does nonhecessarily lead to reasonat#d patterns.
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In a first attempt to improve th@mulated spatial patterns of the Bodel, new parameterizations &D, LAl and Kcare
prepared basedhdully distributed remote sensing and soil data as explained in s&fdh Thesecontaina higher degree

of spatietemporaldetail than the origial model inputbased on predefined tablsem Refsgaard et al. (201Bnd should

reflect distributions that are more realistied spatiallyconsistentFig. 7 showsthe modifiedDK-Model mean maps of ET.

The patterns of these mapee more similar to those observed with the TSEB in which th& [patternis quite evident
although this pattern seems toédeaggerated

Fig. 8 shows the spatial differencein growing sason average EDbetween theDK-Model in its original (r = 0.07)
configuration and the modified versi¢n= 0.33)based on remoteensingnput. It is important to highlightt this pointthat

the modified DK-Model is not recalibratedwith the new inputs @ithis goesbeyond the scope of this study recalibration

may modify the water balancén comparison to theriginal setup.However he performed modifications show some
relevant features; thaostnoticeablevisual improvemenis the much largegradien in the EastWest pattern obtained in

the modified DkModel, which emphasize the more distinct resemblante the pattern,estimated with TSEBvhich also
translated in an improvement in the Pearson coeffidient 0.07to 0.33. Visually this improvemermtan be attributed to a

more clear EasiVest pattern and smoother transition in the values of domains 1,2 and 3 in the modified version compared to
the original DkModel. Similarly, Fig.9 underlines that the changes in the original setup of thévidKel and the modified

version are large when compared using scatter plots using the mean normalized map of TSEB as reference. Even th

dispersion in the scatter plots is large, the results reveal an improvement in the Pearson correlation coefficienhand also t

20
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points move closer to the 1:1 line.

Toanalyset he dri vi ng mechani s mB pattdins and the dinaulatéd EMosled patteend e clay S E
fractionused as input to theot depthcalculation of the modifie@K-Model, the observed average LSmput to the TSEB
model and the growing season average BAd illustrated irFig. 10. The similarities between LST and clay fraction maps
with TSEB are quite evident (9.50 and r=0.44 respectively) whilst the similarity with LAladsv (r =-0.15).

These mapseveal interestindindings first the presence of the EdMtest pattern in thelay fractionmap coincides visually
quite well with the TSEB model mean outputsg( 8) in spite of the fact that no soil information has been included in the
TSEB ET estimation.This indicateghat the general perceptioof lower ET for thesandy soils in the West due soil
moisturestress in the summer peridad,captured well by the TSEB EThe EastWest patterrs not captured by the DK
Model simulation even thugh the modeiks based orsoil type informationon field capacity and wilting poin©On the other
hand the modified DKModel captures much more of the E&¥est pattern because the clay fraction information is utilized
to stretch theoot depthdistribution. Moreovet the TSEB pattern is mainly controlled by the LST input combined with a
fine scale variabilityntroducedby the LAI patterngFig. 10).

The EOFanalysis(Fig. 11) extracs the spatiotemporalsimilarities anddissimilaritiesbetween the twalifferentDK-Model
configurationsThe analysis is basexh monthlymeanmaps generated using the daily simulatidri®e integral data matrix,

containing both DKModels, ha88188 rows reflecting the number of cells daidl columns containind 442 observe and
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simulated maps concatenated along the temporal @rlg.the first three EOFsvhich, in combinationgxplain71% of the

total varianceare presentedrhe first EOFcapture 45.2% varianceand the EOF loadirgpresent very small differencesd

are uipped with positive sign throughout the entire period. Hencartbeinterpretedthat EOF 1 addresses the major
similarities between the two model configuratiolihe EOF1 map captured the component of the ET pattern which is driven
by the soil propeits, as it relates nicely with the mapped clay conterfign 9. The loadings of the second EOF in
combination with its map add 15.7% to the explained variance. The apparent disagreement in values and sign between tf
loadings stressed that EOF2 capsutee major dissimilarities between the two model configurations. The EOF2 pattern
resemble the one found in EOF1, however it was characterized by less contrast and overall, it reflreszaded spatial
detail of RD whichis defined as a function of clagontent and vegetation. The evident\Etrend is strongest in the first
three months of the growing seasomdafterwards the loadings drop ¢tose tozero for the modifiedK-Model. The third

EOF explainsaround 10% of variance and furthercordsdissimilarities between the two models. Examining the loadings
stresseghat the modifiedDK-Model plays a minor role in EOF3, as loadings are close to zero. However the first three
months of the origindDK-Model seems well represented and the magerlineghe granularity of the original setup, which

is strongly driven by the discrete lande map. Also, the model boundary between area 5 and 6 sppE&F3, which was
caused by the zonal calibration of RD in the origib&\-Model. The overall similarity sa@s derived by the EOF analysis
presented the maximum value for a pattern comparison in &@nglj and the minimum corresponded to a day in April
(40.02)

The resultshighlight a soil properties driven spatial pattewhich is expected due to laeg water holding capacitiy clay
dominated areas. This relationsligpclearly evident in the TSEB data, although stétado not drive the TSEB algorithm

but this information iembeddedn the LST as LST can be used to map soil text(Méang et al., 2015)n contrast the
original DK-Model includes soil type information, but clearly the soil partsination does not have sufficient effect on the
simulated patternsef ET. The spatial patterns caprobably be improved through calibration, by increasing the contrast in
soil parametrizations or by modifying the model formulationghansoil stress furtion. In the current study, a new root
depth parametrizatiois applied where the spatie@mporal variation in the effective root depthestimated based on a
combination of the clay fraction map and remotely sensed NDVI time series. The simulated E€subing from the new
remote sensingpasedDK-Model (including root depth Kc and LAI) are clearly much more simitathe TSEB (Fig. 10)
althoughsignificant differences still occur in some regions. In order to achieve a better performance theftraciséer of

the root depth and Kc parametrizations have to be calibrated against the spatial patterns of the TSEB (in combination witt
discharge and groundwater head). Unfortunatehgatibration of the NationaDK-Model goesbeyond the scope of the
current study since a single model run of the enf’&-Model requires around 40 hours (walock time) butre-calibration

will be part of futureimprovementf the model. This will ensure both spatially consistent parameterizations by utilizing
transfer finctions inspired by the parameterization schemiéh@mesoscale Hydrologic Model (mHMPBamaniego et al.,

2010)and an optimatradeoff between discharge, groundwater head and spatial patterns of ET.
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The applied EOF analysiglentifies the spatietemporal similarities and dissimilarities between the t-Model
configuraions. It allows pointing out driving mechanisms behind the simulated spatial patterns, such as the effect of the
effective RD in the modifiedK-Model in EOF2 or the sharp boundary of simulated ET caused by the zonal calibration of
the originalDK-Model (EOF3). These findings strengthened the EOF analysis as a suitable tool to meaningfully compare
spatial patterns and to diagnose spatial model deficiencies. Recently, the proposed approach was afitecttbgl.

(2017) and Ruiz-Pérez et al. (2016n a spatial sensitivity analysis and in a spatial pattern oriented model calibration,
respectively. In the future the EOF analysis Wwél considered as a metric tea@ibrate theDK-Model with focus on spatial

patterns of ET.

3.2.1Key differences between the models

The wo differentapproacheso retrieve ETare comparedbased onhe ideathat both models, TSEB and the DKlodel

shauld present similar spatial patteoi ET. Results showedhat the differences in the outputs wemneticeable These

differences can be divided in three groups.

91 Differences due to model setuphe DK-Model is an aggregate of 6 domains. Each afstdomairs is calibrated
individually, which leads to inconsistent spatial distributions of hydrological properties across dorhénscreases
the accuracy and performance of the model when evalaadgdising discharge stations and ground water heads, but
ignores the spatiatomponenfas it is anaggregateevaluation. On the contrary, when the ET maps are obtained with
TSEB these problems are not present as all the study area is treated the same way and with the same parameterization.

1 Spatial differences du® the land cover parameterizatiomm® also important and acgearly evidenin the case of the
TSEB maps whesomparing érest andagricultureareasin this studythree different EC datasetseused to calibrate
the vegetation parameteand thesesitesareassumed to be representatdfecach land coveait a nationascale In some
caseghis assumptiomight not beadequates soil typéforest typeand other variables might affect the plant response
to ET. The TSEB wasdjustedto show this patterrwhich might in some cases be overestimated tedefore
enhancinghe contrast of the TSEB between two land cover types.

1 Differences due to the modelstimations of ET inite DK-Model are mainly driverby precipitation, root depthnd
soil propertiesand represena residual in the water balance equation. On the other hand the TSEB relies mostly on
forcing data and LST testimateET as a residual in the energy balance equation and does not take into account any soil
information or rainfall. The similafeatures found between the mean annual maps of TSERIlapdraction may
indicate that thd.ST, and thereby TSEBs sensitive to some soil properties. On the other hand these similarities
between LST and soil properpatternscan also be explainetby the fact that areas witkandy soils and lowlay
fractionare coincident wittareas with lower agricultural production and higher risk of summer drought and vegetation

under soil water stress
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3.3 Stream discharge and groundwater heacperformance

Besidescomparing the spatial patterns of the original and modiigdModel, the streamdischarge and groundwater head
performance is also compared. In this comparison it is important to acknowledge that the origimabd¥ has been
calibrated against theseriables, whereas the evaluation of the modifidd-Model has to be considered as a validation.
Results showing th@nnualand summer (JudulAug) runoff volume error (WBE) as well as NSE (NaSutcliffe
Efficiency) for 181 discharge statiorage presentkin Fig. 12. The first noticeable thing that can be concluded is that the
average water balance error changes from a slight overestimation to a moderate underestimation (Median WBE change
from -5.5 % to 5.5% for the original and modified models respelfjy Regarding, the summer water balance which is
expected to be influenced the most by the model modifications; the picture is similar although the performance get worse
with a larger positive bias. The NSE showed a decrease in performance, from N@E#s the original DK model to
NSE=0.67 in the modified version.

Ground water heads were also evaludted?5365 wells across the countayd results are shown kig. 13. The results in

this case are very similar between the original version andntuified one. Statistics showed a RMSE of 5.5 m in both
cases, with the RMSEBeing dominated byrelatively few very large errors while 78 % of the wells have absolute errors
below 5 m.The similarity in simulated groundwater heads between the two modsbne indicates that the changes in
evapotranspiration patterns have little effect. However, it has to be considered that the simulated groundwater head i
controlled by mainly hydraulic conductivity (which does not change between the two versions) raad @charge
upstream of the point of comparison. Since the changes in evapotranspiration patterns mainly effects the summer perioc
where recharge is low, the effect on annual recharge is limited. In addition, the changes in evapotranspirationilpatterns w
redistribute recharge patterns, but the combined effect of that at some deeper well filter location will be a mixed signal
causing limited changes in groundwater head.

The results of this comparison are promising considering that the model wascatbrated with the new inputs. In the

future, the model will be recalibrated including a spatial metric as an objective function during the calibration, and it is

believed that especialthe model bias on discharge can be minimized.

Conclusions

In this study the potential of remote sensingtputsto evaluate spatial patterog hydrological models has been shown. The
information derived from remote sensidgta carbe used as diagnostic tool for revealing model structural insufficiencies

and inconsistecies Additionally, remote sensing derived variables can be used in hydrological models and hence adding
spatial information that is finally translated to the outputs of the modelsu§enefspatial metricss beneficial to identify

spatial model defieincies. Furtherpre such metrics are required for a spatial pattern oriented model calibration in order to

meaningfully comparéhe changes in thepatial patterns
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Hydrological model evaluations hatraditionally focussed othe temporal dynamics of tlmitputs and not so muam the
spatial componentThis study shows that rare attentionmust be given to the spatial patterevaluationas traditional
calibration does not ensure a realisatiallyrepresentatin. If the spatial component of the modehisglected, the use of
distributed hydrological models not always meaningfuland therefore the use of more simple moaslsld be more
appropriate

Model recalibration should focus on a combination of improved parameter regionalization inctlalrftaction andother
derived variables using remote sensifaga, spatially countrywide consistency in parametrization and inclusion of dedicated
spatial pattermrientedobjective functionsn combination with discharge and groundwater head observations

This studywasconducted overraenergy limitedregion and over a specific time of the year wherepBifs a more important

role in the water cycle. Extendinbis study to other areasith different ecosystems that combieeergy and water limited

ecosystermwill provide a wider overvieven the factors controlling the ET spatial patterns.
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Figure 3. Sensitivity of 28 TSEB model inputs obtained with PEST. Results are normalized using the most sensitive as reference.
Acronims used: LST (Land Suface Temperature), LAl (Leaf Area Index), VZA (View Zenithal Angle), Emiss, (Emissivity of
Vegetation), Emisg (Emissivity of Soil), Tpo (Air Temperature), EA (Water Vapor pressure above canopy P (Atmospheric
pressure), SW, (Short wave incoming radiation for vegetation), SW,(Short wave incoming radiation for soil), LW, (Long wave
incoming radiation), PTr (Pristley Taylor parameter for Forest), PTy, (Pristley Taylor parameter for meadow), PT, (Pristley
Taylor parameter for Agriculture), Fg  (Fraction of green vegetation for forest), Fg, (Fraction of green vegetation for meador),
Fga (Fraction of green vegetation for Agriculture), CanopyH (Canopy height for forest), CanopyHy, (Canopy height for
meadow), CanopyH, (Canopy height for Agriculture).
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Figure 4. Comparison of TSEB ET estimates in different land cover types. Uncertaintpars limits represent two situations, the
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flux.
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Figure 5. Mean normalized monthly TSEB ET maps|-] in which urban areas have been masked out.
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