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Reviewer #1 (Naomi Mazzilli) 

This study examines the information content of water quality data for a karst simulation model.  The 

Varkarst model is applied to a spanish watershed. An initial 500.000 random parameters sets is 

confined using discharge and water quality data which are either taken separately or together, using 

the whole time series of focusing on specific flow stages. The reduction in the 25th to 75th percentiles 

range is used to estimate the information content of the data.  

The methodology is clear, the results are commented with adequate references to related works, the 

illustrations are sufficient and informative. In my opinion, the manuscript deserves to be published 

after minor revisions. 

Our response: We thank Dr Mazzilli for her positive and valuable review. 

 

General comments 

• The model equations are detailed in annex but for more clarity some information about the solute 

model should appear in Section 3.  The lack of NO3-specific parameter is surprising and should be 

commented.  

Our response: The model description and an elaboration of the NO3
- dynamics was be improved in 

the revised version of the manuscript (subsection 3.2): 

“Solute transport simulations within the model follow the assumption of instantaneous and 

complete mixing within each storage (soil, epikarst, groundwater) and each of the N model 

compartments (Figure 3). In the particular case of NO3
-, this implies neglecting plant uptake 

and release processes, which were found to be important in more humid regions (Hartmann 

et al., 2016) but it was found a valid assumption at Mediterranean regions such as our study 

site (Hartmann et al., 2013b, 2014b).” 

• Parameter kE seems unsensitive. Is this related to some specificity of the flow processes on the test 

site ? 

Our response: The parameter KE often interacts with the parameter VE. A discussion of the 

consequences of this interaction was added to the revised manuscript (Subsection 5.2): 

“Only aGW and KE remain with low identifiability, which may be due to structural limitations 

of the model structure (Clark et al., 2008) or due to parameter interactions that are not 

explicitly considered in our approach. In fact, a lower identifiability of KE in favour of a high 

identifiability of VE was found in a previous study with a similar version of the model 

(Hartmann et al., 2015). 

• The KGE is nicely defined as a combination of linear correlation and the ratios of the mean and 

standard deviations of the simulations and observations. Have you had a look at whether the 

parameters have more influence on r, alpha or beta ? 

Our response: This is a very interesting remark. An analysis or the influence of r, alpha and beta was 

partially done in Hartmann et al. (2013). In the case of this study, we omitted the analysis of the 

individual components of the KGE as we already considered three different variables (discharge, NO3
- 

and SO4
2-) and we did not want to confuse the reader by adding more dimensions to this evaluation 

(also we believe that the results we get is sufficient to make our point). However, we agree that now 

having quantified the information content of the different data types, a follow up study should 



analyse in more detail how the model performs for r, alpha and beta individually. We added a 

respective statement to the conclusions: 

“Also, a further disaggregation of the Kling Gupta efficiency in its components, correlation, 

bias and variability, contains high promise for further advance of our approach.” 

Technical comments 

• p 5 l 14 "wtaer" 

• p 7 l 16 "the fore" instead of "therefore" 

• p 10 l 14 "the unsaturated state (VE Kc)" shoud be corrected in ""the saturated 

state (VE Kc)" 

• p12 l 10 "is provide" 

• p 12 caption of Figure 6: "the he 25th" 

• p 15 l 26 something is missing in the sentence "discharge thresholds from wich different 

compartments (...) of the behaviour" 

Our response: Corrections were applied to address all technical comments. 

 

Reviewer #2 (Arnauld Malard) 

This paper intends to provide an approach for reducing uncertainties in the Varkarst simulation model 

(= lumped model divided in compartments). 500’000 parameters sets have been confined using 

discharge, NO3- and SO42- measurements, (i) together or in a separate way and (i) applied on the 

whole time series or in sub-series corresponding to expected flow processes (floods, recession, mid-

stages). Besides, datasets have been resampled in the range of the 25th to 75th percentiles using soft 

rules in order to assess how the observations contribute to describe the parameter. Finally, repeated 

simulations using the reduced 250’000 sets of parameters make it possible for the authors to identify 

that: - "NO3- provides most information to identify the model parameters controlling soil and epikarst 

dynamics for unsaturated -flow state (i.e. flood events" - "SO42- and discharge data provides most 

information to identify the model parameters for saturated-flow state (i.e. recession periods). 

The approach sounds coherent but authors might provide more information on the model timestep 

and the timestep used for applying the Kling-Gupta coefficient. Indeed, measurements are of lower 

resolution and it is not mentioned how the authors managed that. 

A few other comments - and minor corrections in the attached .pdf 

Few more words on the soft rules would also be appreciated 

Our response: We thank Dr Malard for his valuable recommendations. In the revised manuscript, we 

provided a more detailed model description (as also recommended by Dr Mazzilli in her review) 

including more information about the temporal resolution of the model and the observations and 

how they were linked within the parameter estimation (subsection 3.3): 

“For the calculation of KGE, only time steps, at which observations are available, are 

considered. Hence, the KGE values will only express the model performance to reflect the 

discharge, NO3
- and SO4

2- observations that were sampled in a 7-8 days temporal resolution 

(Table 1) even though the model runs on a daily time step.” 



Also, some more elaboration on the soft rules was provided in the methods section (subsection 3.3):  

“The threshold value of 0.2 was found by preliminary analysis. Its rather low value is meant 

to take into account that the simulation is exposed to various sources of uncertainty 

including uncertainties of the model input (observation of climate variables and their 

application to the entire recharge area), model structure uncertainty (representation of karst 

processes by conceptual mathematical formulations in a semi-distributed way), and the 

uncertainty of observations (discharge measurement and hydrochemical analysis, as well as 

their low temporal resolution).” 

Both issues, the impact of lower resolution of the measurements, as well as the impact of variations 

in the soft rules is now discussed in more detail in the discussion section of the revised manuscript 

(subsection 5.3): 

“Another limitation of our research is the low resolution of the discharge and hydrochemical 

observations (7-8 days). Although our approach took into account this weakness by the soft 

rules allowing for remaining uncertainty after the reduction of our 500,000 parameter sets, 

we believe that a higher resolution of the observations (preferably 1 day) would have 

resulted in a more pronounced reduction of the initial sample and consequently to a lower 

remaining uncertainty.” 

 

Specific and technical comments from commented pdf 

P5L3: For some event spring's peaks discharge seem to be comcomitant with EC depletion... 

The resolution of the flow measurements (1 measure/week) reveals insufficient to ensure the 

supposed concomittancy... 

Our response: True, we rephrased this statement. 

P5L17: From where? Epikarst, Unsaturated zones or drainage of the phreatic zone? 

Our response: The phreatic zone. We clarified this in the revised manuscript. 

P5L18: "Seepage" from the epikarst should not be disregarded... 

Our response: We agree that seepage from the epikarst will still be abundant during this stage. We 

clarified this and added some elaboration why we believe that our distinction of flow states still 

makes sense (subsection 2.2): 

“Even though, there still might be some seepage from the soil and epikarst during this stage, 

the hydrochemical signature of the spring, which is dominated by the signal of the phreatic 

zone (Barberá and Andreo, 2015), shows that these fractions are not very important.” 

P6L10: daily timescale? 

Our response: Yes, daily time scale. We provided this information in the revised version of the paper. 

P8L15: How did you manage the differences in time step between model (daily) vs. measurements 

(biweekli)? 

Our response: Simulations and observations are only compared by KGE at times when observations 

are available. If the resolution of observations were higher, more parameter sets could have been 

discarded by our soft rules and the precision of the simulation with the remaining parameter sets 



would have been higher. We added this important information to the methods and discussion 

section (please see our response to the general comment of this review). 

P9L26: The "combined" state should be explicitly mentioned in Figure 2. 

Our response: We updated Figure 2 and its caption accordingly. 

P10L14: replace: "saturated" 

Our response: The word was be replaced. 

P11: marked areas in Fig 5 

Our response: Unfortunately, there is no comment explaining the marked areas in Fig 5. For the 

revisions, we will assume that they were only included to facilitate the review but do not require any 

modification to the manuscript. 

P11L10: Use “SO42-“ 

Our response: Corrected.  

P12L10: typo  

Our response: Corrected. 

P12L10: typo 

Our response: Corrected. 

P13L8: clarify  

Our response: We refer to the entire time period that also includes the periods of river influence. 

The statement was clarified accordingly. 

P13: Please Make this figure bigger...(Fig 7) 

Our response: The figure was enlarged in the new version of the manuscript. 

P13L25: typo 

Our response: Corrected. 

P16L13: ...; one being a known period... 

Our response: The sentence was changed accordingly. 
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Abstract. If properly applied, karst hydrological models are a valuable tool for karst water resources management. If they 10 

are able to reproduce the relevant flow and storage processes of a karst system, they can be used for prediction of water 

resources availability when climate or land use are expected to change. A common challenge to apply karst simulation 

models is the limited availability of observations to identify their model parameters. In this study, we quantify the value of 

information when water quality data (NO3
- and SO4

-2) is used in addition to discharge observations to estimate the 

parameters of a process-based karst simulation model at a test site in Southern Spain. We use a three-step procedure to (1) 15 

confine an initial sample of 500,000 model parameter sets by discharge and water quality observations, (2) identify 

alterations of model parameter distributions through the confinement, and (3) quantify the strength of the confinement for the 

model parameters. We repeat this procedure for flow states, at which the system discharge is controlled by the unsaturated 

zone, the saturated zone, and the entire time period including times when the spring is influenced by a nearby river. Our 

results indicate that NO3
- provides most information to identify the model parameters controlling soil and epikarst dynamics 20 

during the unsaturated flow state. During the saturated flow state, SO4
-2 and discharge observations provide the best 

information to identify the model parameters related to groundwater processes. We found reduced parameter identifiability 

when the entire time period is used as the river influence disturbs parameter estimation. We finally show that most reliable 

simulations are obtained when a combination of discharge and water quality date is used for the combined unsaturated and 

saturated flow states.  25 

 

1 Introduction 

It is estimated that around 10-15% of emerged Earth surface is covered by soluble rocks that are susceptible to be karstified 

(Ford and Williams, 2013). Today, aquifers developed in such type of rocks roughly supply with groundwater to a quarter of 

world´s population. The importance of groundwater resources from karst aquifers is not only limited to satisfy the fresh 30 

water demand of large regions with some millions of inhabitants (e.g. Austria or Slovenia), but also it guarantees the water 

supply in small settlements where karst waters are the only source of drinking water.  

mailto:andreas.hartmann@hydrology.uni-freiburg.de
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The intrinsic characteristics of karst aquifers such as the development of a secondary porosity through enlarged conduits and 

fractures, as well as the duality in the recharge (diffuse vs concentrated), result in a high permeability media (Bakalowicz, 

2005; White and White, 2003). The shallower parts of the aquifers, including soil and epikarst (i.e. unsaturated zone), play a 

key role for the understanding of system functioning. Epikarst is characterized by slow percolation of air and water into 

narrow fissures, inducing water storage, and by a rapid drainage through connected conduit system promoting flow 5 

concentration (Aquilina et al., 2006; Ford and Williams, 2013; Labat et al., 2000). Thus, in the first top meters of aquifer 

rock, biogeochemical processes occur in a multiphase environment (gas, liquid and solid) and recharge waters rapidly 

acquire their chemical composition, keeping practically unaltered until reach the emergence points. Rapid drainage impedes 

that such physical-chemical processes may attenuate naturally a potential contaminant entering into the system. Therefore, 

karst aquifers are especially vulnerable to the contamination despite that the unsaturated zone, jointly with soil and epikarst, 10 

acts chemically as reaction layer able to modify the groundwater quality in a substantial way.  

Simulation models are a common tool to address water management questions such as the impacts of climate and land use 

changes on karst water resources (Hartmann et al., 2014a). In order to provide reliable predictions those models need to 

include the most relevant processes of karst systems and various approaches have been developed to include karst processes 

in distributed and lumped karst simulation models (Ghasemizadeh et al., 2012; Hartmann et al., 2014a; Hartmann and Baker, 15 

2017; Kovacs and Sauter, 2007; Sauter et al., 2006). The choice of the model approach is usually due to the required 

purpose. A key challenge in all of these karst modelling approaches is the identification of the model parameters. Methods to 

explore and analyse karst systems can provide prior knowledge on karst system properties (Goldscheider and Drew, 2007) 

that can be used to gain prior information of karst model parameters such as hydraulic conductivities or catchment 

boundaries. However, capturing the entire heterogeneity of karst systems with those methods is commonly impossible 20 

(Hartmann et al., 2013a) and inverse parameter estimation schemes, for instance automatic calibration by observed 

discharge, have to be applied. 

Work with automatic calibration approaches early showed that using only discharge observations for model calibration 

allows to identify up six model parameters (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997). More 

recent work also revealed that including disinformative periods in the calibration, i.e. periods when errors in the observation 25 

can be expected, may significantly bias the results of model calibration and evaluation of hydrological models (Beven et al., 

2011; Beven and Westerberg, 2011; Kauffeldt et al., 2013). Due to the complexity of karst processes, karst models usually 

require more than 6 model parameters to reflect the most important hydrological processes. Some studies tried to compensate 

for this apparent lack of information by using auxiliary data such as gravimetric information (Mazzilli et al., 2012), artificial 

tracer experiments (Hartmann et al., 2012; Oehlmann et al., 2015), or hydrochemical information (Charlier et al., 2012; 30 

Hartmann et al., 2013b, 2016). However, to our knowledge the problem of disinformative observations, either discharge 

observations or auxiliary information, has not been addressed explicitly in karst modelling studies.  

This study proposes a new approach to quantitatively assess the information content of discharge and hydrochemical 

information for karst model calibration including periods with disinformative observations. A process-based model is used to 
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simulate the hydrodynamic and hydrochemical (NO3
- and SO4

-2) behaviour of a karst system, at which the unsaturated zone 

dynamics dominates under recharge conditions, controlling groundwater flow and solute transport processes. During specific 

periods, the discharge and chemistry of the system is influenced by the surface flow of a nearby river, which constitutes 

disinformative periods for model parameter estimation. A new parameter estimation approach is employed to estimate the 

information content of the different types of calibration data during pre-defined flow states that focus on time periods 5 

dominated by unsaturated zone discharge, saturated zone discharge, and periods that include the disinformative observations. 

Even though applied to one particular study site this approach can easily be transferred to any hydrological system where 

different observation types are available for calibration. 

2 Study site description 

The experimental area is located in the Eastern Ronda Mountains, at the NW of Málaga province (S Spain). It consists of 10 

steep and rugged NE-SW oriented reliefs (e.g. Sierra Blanquilla), reaching a maximum height of 1,428 m a.s.l. (Viento peak; 

Figure 1Figure 1). Geologically, three main stratigraphic groups can be differentiated (Cruz-Sanjulián, 1974; Martín-

Algarra, 1987, Figure 1Figure 1): (i) clays and evaporites of upper Triassic age (the older formation); (ii) a thick (up to 500 

m) carbonate sequence of Jurassic dolostones and limestones forming the main aquifer (i.e. Sierra Blanquilla); and (iii) 

Cretaceous-Paleogene marls and marly limestones as the uppermost materials. The geological structure of Sierra Blanquilla 15 

is constituted by a NE-SW oriented box-shaped anticline, plunging towards NE (Martín-Algarra, 1987), with a flat and wide 

hinge, as well as subvertical flanks. The folded structure is also fractured by two set of faults N50-70E and N150E oriented 

(Fernández, 1980). From the point of view of the karst landscape development, in plateau areas the horizontal bedding 

planes of carbonate exposures jointly to the high precipitation rate have favoured the formation of exokarstic features 

including karrenfields, dolines, uvalas, shafts and swallets, as result of intense karstification processes. 20 

2.1 Karst hydrogeology 

Sierra Blanquilla carbonate aquifer is permeable by fracturation and karstification. Recharge is mostly produced by rainwater 

infiltration through the carbonate exposures, although seepage from a losing river and streams also account for groundwater 

input (Barberá and Andreo, 2015, 2012). Natural groundwater discharge is preferentially conducted toward the SE border of 

the aquifer (Figure 1Figure 1), through several springs that constitute the discharge area towards the Turón river valley 25 

(Barberá, 2014). Among them, El Burgo (BG, 600 m a.s.l.) and Hierbabuena (HB, 645 m a.s.l.) perennial springs drain most 

of the groundwater of the hydrogeological system (Figure 1Figure 1). During high flow periods, when the total flow of the 

BG and HB springs exceeds 1.1 m3·s-1, two overflow springs (OfsI, 655 m a.s.l.; and OfsII, 670 m a.s.l.), located upstream of 

the permanent ones, activate after heavy rainfall events (Barberá and Andreo, 2015). Low flow is established when the 

permanent groundwater flow (from BG and HB springs) is below to 0.2 m3·s-1.  30 
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The main hydrological feature in the test site, Turón River, crosses intermittently the carbonate exposures in the southern 

border of Blanquilla aquifer (Figure 1Figure 1). The surface flow has been demonstrated to alter the hydrodynamic 

functioning of both perennial springs (Barberá and Andreo, 2015), which are partly affected by the existence of two 

regulation dams (20-25 m high) built over the Turón riverbed, just several tens of meters downstream from the springs 5 

(Figure 1Figure 1). In high flow periods, both headwaters and groundwater discharge from Sierra Blanquilla aquifer 

maintain the river flow, while during low flow conditions, the Turón river is exclusively fed by karst groundwater.  
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Figure 1: Geographic, geological and hydrogeological features of Sierra Blanquilla carbonate aquifer.  

2.2 Dominant hydrogeological processes  

Electrical conductivity (EC) has been used as global physical-chemical marker for distinguishing the hydrochemical states 

that characterize El Burgo spring discharge. Generally, EC peaks are seem to be concomitant with maximum spring 5 

discharge at event scale, which evidence that more mineralized groundwater is drained immediately after each rainfall 

episode (green shaded areas in Figure 2Figure 2). Barberá and Andreo (2015) stated that this high EC groundwater is also 

characterized by higher Alkalinity and logPCO2 values and higher Ca+2 and TOC contents, suggesting predominant 
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limestone dissolution in the shallower parts of the aquifer. This spring behaviour reflect a functioning based on a “piston 

effect”, by which groundwater stored in the epikarst reservoir is pulled out to the unsaturated and saturated zone until the 

discharge zone by a subsequent recharge pulse. Therefore, unsaturated flow dominates under high water conditions in El 

Burgo spring (state 1 - unsaturated zone, in Figure 2Figure 2). 

Under low flow conditions (no rainfall, grey shaded areas in Figure 2Figure 2), EC levels in groundwater remain quite stable 5 

in the range of 320-330 µS/cm. This provides the chemical baseline of the system (state 2 - saturated zone, in Figure 2Figure 

2), which is dependent on the accumulated rainfall on each hydrological year. The lower and less variable EC values of 

groundwater compared with those obtained under high wtaerwater conditions can be explained by the loss of aggressiveness 

of groundwater (degassed waters respect to CO2) flowing through the system as consequence of the lack of aquifer recharge 

(Barberá and Andreo, 2015). Therefore, groundwater drainage under low water conditions consists of a system of slower 10 

flows coming from capacitive compartments of the aquifer (matrixthe phreatic zone). In these circumstances, the functioning 

of the hydrogeological system is mainly dominated by the saturated zone (state 2 - saturated zone, in Figure 2Figure 2). Even 

though, there still might be some seepage from the soil and epikarst during this stage, the hydrochemical signature of the 

spring, which is dominated by the signal of the phreatic zone (Barberá and Andreo, 2015), shows that these fractions are not 

very important.  15 
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Figure 2: Decomposition of El Burgo spring flow in selected hydrochemical states from EC and discharge time series: (1) 

unsaturated zone dominates discharge; (2) saturated zone dominates discharge; and (3) discharge (and EC) influenced by Turón 

river flow; the combination of unsaturated and saturated states represents the combined flow state. 5 

Marked dilutions in groundwater mineralization (below the chemical baseline of the system), which very often occur during 

the spring recession after flood events, are also observed in the chemograph of El Burgo spring (preferentially from March to 

June, in Figure 2Figure 2). Since Turón river waters are less mineralized than groundwater and that the temporary storage of 

surface water in the nearby river dam favours water mixing, surface water dilutes groundwater from the spring (state 3 – 

Turón river, in Figure 2Figure 2). This occurs when the river stage is higher than groundwater level in the discharge zone, 10 

promoting water flow towards the aquifer (Barberá and Andreo, 2015).  
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3 Methodology 

3.1 Available data 

Continuous daily measurements of precipitation and air temperature were recorded at Añoreta weather station (Figure 

1Figure 1) and discrete sampling campaigns for meteoric water chemistry (NO3
- and SO4

-2, among other) were performed in 

a rain collector installed to the north of Viento peak (Figure 1Figure 1), from August 2007 to April 2010. From 5 

meteorological data, potential evapotranspiration was calculated on a daily time scale using Thornthwaite’s approach 

(Thornthwaite, 1948). Discontinuous measurements of Turón river flow in two selected sections (Tup and Tdn ; Figure 1Figure 

1), upstream and downstream of the permanent and temporary springs, were conducted during the same study period to 

quantify the net groundwater discharge from Sierra Blanquilla aquifer. Simultaneously, a representative sampling of the 

chemical composition (NO3
- and SO4

-2) of karst groundwater was performed (daily to biweekly) at El Burgo spring. 10 

Additionally, hourly data of EC was recorded at this outlet. Detailed methodological procedures can be found in Barberá and 

Andreo (2015). The environmental tracers NO3
- and SO4

-2 were chosen as complementary time series for the model 

development because they are expected to provide distinctive chemical signatures that characterize flow and transport 

processes in the soil and epikarst (nitrogen cycling) and saturated zone (dissolution of evaporites at the aquifer basement) of 

Sierra Blanquilla aquifer. Table 1Table 1 provides a summary of all available data. In addition, the information about the 15 

three differentiated flow states of the system (subsection 2.2) was used to provide an independent consideration of 

observations that can be attributed to time periods of state 1 (unsaturated zone), state 2 (saturated zone), and all states 

including the period influenced by Turón River dynamics (state 3). 

Table 1: Main characteristics of the time series of hydrodynamic and hydrochemical data used in this study.  

 20 

(*) Sampling frequency was dependent on the occurrence of rainfall episodes 

3.2 The model 

VarKarst model was previously developed at a neighbour karst system in Southern Spain (Hartmann et al., 2013b) and it was 

successfully applied at different karst systems around Europe (Brenner et al., 2016; Hartmann et al., 2013a, 2014b, 2016). It 

Sampling site Parameter Unit n Max Min Mean
CV

(%)

Average sampling 

frequency
Period

Rainfall (accumulated) mm·day
-1 959 71 0 3.3 - 1 day 16/08/2007 - 31/03/2010

Air temperature (daily mean) ºC 959 14.9 2.6 8 - 1 day 16/08/2007 - 31/03/2010

NO3
-

mg·l
-1 38 23 0 3 2 15 days * 04/10/2007 - 16/02/2010

SO4
-2

mg·l
-1 38 4.9 0.3 1.2 1 15 days * 04/10/2007 - 16/02/2010

Turón river Discharge (GW component) m
3
· s

-1 132 18,5 0.06 1,63 169 7 days 16/08/2007 - 30/03/2010

Electrical conductivity (EC) µS·cm
-1 17,296 384 288 326 3 1 hour 07/11/2007 - 15/04/2010

NO3
-

mg·l
-1 130 21.2 0.8 5.1 56 8 days 01/08/2007 - 30/03/2010

SO4
-2

mg·l
-1 130 24.4 4.2 11.4 49 8 days 01/08/2007 - 30/03/2010

Añoreta weather st.

Viento rain collector

El Burgo spring



9 

 

includes the variability of karst system properties by statistical distribution functions (Figure 3Figure 3). Explicitly, it 

considers the spatial variability of (i) soil and epikarst depths, (ii) fractions of concentrated and diffuse recharge to the 

groundwater, (iii) epikarst hydrodynamics, and (iv) groundwater hydrodynamics by distribution functions that are applied to 

a set of N model compartments. This allows the simulation of variably dynamic pathways of water and solutes through the 

karst system. Solute transport simulations within the model follow the assumption of instantaneous and complete mixing 5 

within each storage (soil, epikarst, groundwater) and each of the N model compartments (Figure 3). In the particular case of 

NO3
-, this implies neglecting plant uptake and release processes, which were found to be important in more humid regions 

(Hartmann et al., 2016) but it was found a valid assumption at Mediterranean regions such as our study site (Hartmann et al., 

2013b, 2014b). The detailed equations of the model in the appendix and a list of all model parameters including their 

description are provided in Table 2Table 2. 10 

 

Figure 3: Schematic representation of the VarKarst model structure (modified from Hartmann et al., 2013a; modified) 

3.3 Parameter estimation for the distinctive flow states and different observation types 

The low resolution of observed discharge and hydrochemistry, as well as the complex karstic setting of the study site creates 

a rather uncertain environment for modeling. For that reason, a traditional multi-objective parameter estimation was omitted 15 

as in previous studies (Hartmann et al., 2013b, 2016). Instead, a parameter estimation scheme considering “soft rules” was 

used to confine a large uniformly sampled set of model parameters there fore explicitly allowing for some uncertainty to 

remain but to be quantified. A similar approach was already applied successfully for cases with similarly complex modelling 

domains: another karst system in Southern Spain (Mudarra et al., n.d.) andin the frame of a large-scale karst groundwater 

recharge study (Hartmann et al., 2015, 2017). 20 
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As a measure of performance, the Kling-Gupta efficiency KGE (Gupta et al., 2009) is used. It is defined to show numbers 

approaching 1 for the best simulations: 

     222
1111  rKGE        (1) 

with 

O

S




   and 

O

S




   .        (2) 

r expresses the linear correlation coefficient between simulations and observations, while s/o and s/o are defined 5 

as the mean and standard deviation of simulations and observations, respectively. Consequently,  expresses the similarity of 

simulated and observed variability, while  quantifies the bias between them. For the calculation of KGE, only time steps, at 

which observations are available, are considered. Hence, the KGE values will only express the model performance to reflect 

the discharge, NO3
- and SO4

2- observations that were sampled in a 7-8 days temporal resolution (Table 1) even though the 

model runs on a daily time step.  10 

 

Table 2: Description of model parameters, ranges for parameters estimation and average values found for the combined 

unsaturated and saturated flow states, and the entire time period including the disinformative period of river influence. 

Parameter Description Unit 
Parameter ranges Combined unsat. and sat. states All states 

lower upper mean* mean* 

A Recharge area [km²] 30 80 55.5 57.5 

VS Mean soil storage capacity [mm] 0 250 159.9 174.1 

VE Mean epikarst storage capacity [mm] 0 250 23.5 75.8 

aSE Soil/epikarst depth variability constant [-] 0 3 0.6 1.8 

KE Epikarst mean storage coefficient [d-1] 15 65 49.4 43.4 

af Recharge separation variability constant [-] 0 3 1.4 1.3 

KC Conduit storage coefficient [d-1] 1 25 5.7 12.4 

aGW Groundwater variability constant [-] 0 3 1.8 1.3 

cSO4 Mean equilibrium concentration of SO4
2- [mg l-1] 0 100 16.6 22.0 

aSO4 SO4
2- variability constant [-] 0 3 0.6 1.4 

KGEQ performance concerning discharge [-] 0 1 0.37 0.36 

KGENO3 performance concerning NO3 [-] 0 1 0.47 0.32 

KGESO4 performance concerning SO4
2- [-] 0 1 0.58 0.40 

* variability of model parameters shown in Figure 5Figure 5 
  

For parameter estimation, an initial sample of 2500,000 parameter sets was created from predefined ranges (Table 15 

2Table 2) that were chosen by prior knowledge and previous model experiences in the same region (Hartmann et al., 2013b, 

2014b). A 4-year warm up period was set up and the model was run 2500,000 times with the initial parameter sample. Using 

the observed time series, the Kling Gupta Efficiency was calculated for each of the simulation runs: KGEQ (groundwater 
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discharge), KGENO3 (NO3
- concentrations) and KGESO4 (SO4

-2 concentrations). Similar to Choi and Beven (2007) “soft rules” 

were used to reduce the initial sample of parameters in four steps: 

1. All parameters sets from the initial sample with KGEQ < 0.2 were discarded 

2. All parameters sets from the initial sample with KGENO3< 0.2 were discarded 

3. All parameters sets from the initial sample with KGESO4 < 0.2 were discarded 5 

4. All parameters sets from the initial sample with KGEQ, KGENO3, and KGESO4 < 0.2 at the same time were discarded 

The threshold value of 0.2 was found by preliminary analysis. Its rather low value is meant to take into account that 

the simulation is exposed to various sources of uncertainty including uncertainties of the model input (observation of climate 

variables and their application to the entire recharge area), model structure uncertainty (representation of karst processes by 

conceptual mathematical formulations in a semi-distributed way), and the uncertainty of observations (discharge 10 

measurement and hydrochemical analysis, as well as their low temporal resolution).  

The same procedureapplication of the soft rules is repeated four times for observations falling into the unsaturated 

flow state, the saturated flow state, the combined unsaturated and saturated flow state and into the entire time period 

including the hydrodynamic state defined by influence of Turón river flow on groundwater discharge. For each of these time 

periods the four soft rules will result in a reduction of the initial sample and the prior ranges of the model parameters will 15 

experience a confinement (Hartmann et al., 2015).  

3.4 Evaluation of information content and simulation uncertainty for the different flow states and different 

observation types 

In this study, the strength of this confinement is used to assess the information content of the set of observations 

during the different flow states. The strength of the confinement is quantified by the reduction of the distance between the 20 

25th and 75th percentile of each model parameter after the confinement through the soft rules. For instance, parameter cSO4 

(Table 2Table 2) has the prior range of 0 – 100 mg·l-1. Consequently, the uniform sampling strategy for the initial sample 

will result in values close to 25 and 75 mg·l-1for the 25th and the 75th percentile, respectively. Applying one of the soft rules 

may now result in values of 10 and 30 mg·l-1 for the 25th and the 75th percentile, respectively. Hence, the reduction of the 

distance between the 25th and 75th percentile is 50-20 mg·l-1, i.e. a reduction of 60% took place. In this example case we 25 

would find that the observations applied through the selected soft rule provided useful information to estimate this 

parameter. Applying this procedure for each of the four soft rules and the four time series defined by the flow states, we can 

assess how (1) the different types of observations (discharge, NO3
- and SO4

-2) contribute to parameter identification, and (2) 

the focus on particular time periods and flow stages strengthens or weakens the confinement of the model parameters. 

Particular attention is given to the comparison of the entire time period, including the times when the spring is 30 

influenced by the river, with the time periods when only the unsaturated zone and the saturated zone control the discharge of 

the spring. It is expected that this time period contains disinformative information for parameter estimation as the VarKarst 
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does not take into account the river’s influence. The reduction of the 25th and 75th percentile of the model parameters is used 

after applying the fourth soft rule (subsection 3.3) of the combined unsaturated and saturated flow state, and the entire time 

period including the period that is influenced by the river to understand the impact of the disinformative information on 

parameter identification. In a last step, the simulation uncertainty is quantified for the two time periods by plotting the 

simulations of the parameters sets that remained after the fourth soft rule was applied to the two observation time series. 5 

After including the disinformative time period, a greater simulation uncertainty is expected. 

4 Results  

4.1 Parameter estimation for the different flow states and different observation types 

Different reductions of the initial sample are found by the different soft rules and during the different flow states (Figure 

4Figure 4). The reduction by discharge (KGEQ ≥ 0.2) varies among the different flow states but remains rather limited. The 10 

same is seen for the individual use of the hydrochemical information (KGENO3 ≥ 0.2 or KGESO4 ≥ 0.2). However, using the 

combination of all soft rules (all KGE ≥ 0.2), a significant reduction of the initial sample is obtained for all flow states. This 

is most evident for the combined unsaturated and saturated state. The weakest reduction of the initial sample for all soft rules 

is found for the consideration of all stages including the disinformative time period influenced by the river. 

 15 

Figure 4: Reduction of the initial sample by the four soft rules for the unsaturated state, saturated state, combined saturated and 

saturated states, and all system states  

The influence of the soft rules during the different flow states varies for all model parameters (Figure 5Figure 5). The 

reduction of the initial sample by discharge (KGEQ ≥ 0.2) alters the uniform distribution of the initial sample for the different 

flow states, mostly for the parameters A, VE and KC. These changes are most prominent in the unsaturated state (A), the  20 

unsaturated state (VE and KC) and the combined unsaturated and saturated states (A, VE and KC). Using NO3
- for the reduction 

(KGENO3 ≥ 0.2), the parameters VS, VE and aSE experience the strongest change of their initial distribution. This change is 
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most pronounced at the unsaturated state and the combined unsaturated and saturated states. The reduction by the 

observations of SO4
-2 concentrations (KGESO4 ≥ 0.2) mostly affects the model parameters cSO4 and aSO4, but also find a strong 

impact on aSE, mainly at the saturated state and the combined unsaturated and saturated state. Finally applying all 

information in the fourth soft rule (all KGE ≥ 0.2), we find again an alteration of the model parameters that were affected by 

soft rules 1-3 (A, VE, VS, aSE, KC, cSO4 and aSO4) and, additionally, a moderate alteration of KE and af. This is most notable at 5 

the combined unsaturated and saturated states; using all states including the disinformative period that is influenced by the 

river, the alterations are generally less pronounced.  

 

Figure 5: Distribution of model parameters (normalised by their ranges) after applying the four soft rules for the unsaturated, 

saturated, and combined unsaturated and saturated, and all stages. 10 
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4.2 Evaluation of information content and simulation uncertainty for the distinctive flow states and different 

observation types 

Using the change of distance between the 25th and 75th percentile of each model parameter for the different soft rules and the 

different flow states we are able to quantify the information content of the available observations (Figure 6Figure 6). We find 

that discharge (KGEQ ≥ 0.2) and SO4
2- (KGESO4 ≥ 0.2) provide most information during the saturated flow state, while NO3

- 5 

reduces the distance between the two percentiles most during the unsaturated stage. The state that uses all information 

including the disinformative time period of river influence shows generally the weakest reduction between the 25th and 75th 

percentile as already indicated by Figure 4Figure 4.  

Again the most evident changes of model parameter distributions are found for the combined unsaturated and saturated 

states: here, we see that observed discharge (KGEQ ≥ 0.2) provides most information on the parameter KC, but the change of 10 

distance for the parameters A and VE is still considerable. This is most evident in the combined unsaturated and saturated 

states. We find a more balanced distribution of information on the altered parameters when regarding the reduction obtained 

by NO3
- (KGENO3 ≥ 0.2). Here, the change of distances is considerable (but similar) for VS, VE and aSE. For SO4

-2 (KGESO4 ≥ 

0.2), the alteration mostly affects cSO4, followed by a considerable alteration of aSO4 and a moderate change of aSE. Using all 

information to confine the initial sample (all KGE ≥ 0.2) shows that the combined use of discharge, NO3
- and SO4

-2 15 

observations provided most information on VE, aSE, KC, cSO4, and aSO4. Still considerable information is provided for A, VS 

and af. However, no reduction of the distance between the 25th and 75th percentile is found for KE, and even a widening takes 

place for aGW. 
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Figure 6: Change of distance between the he 25th and 75th percentile of each model parameter when the different soft rules are 

applied (top to bottom) for the four flow states. 

 

The proceeding analysis indicates that most information to identify the largest number of model parameters is provided by 5 

the combined unsaturated and saturated flow states using discharge, NO3
- and SO4

-2 observations. It further reveals that using 

the entire time period, using discharge, NO3
- and SO4

-2 observations and including the period that is influenced by the river, 

provided the fewest information; only 5 (A, VS, VE, aSE and cSO4) of the 10 model parameters show a detectable reduction of 

the two flow percentiles (Figure 6Figure 6, bottom).  

The final averages of the estimated parameters (after applying 4th soft rule; Table 2Table 2 ) of the combined unsaturated and 10 

saturated flow states, and the state the uses the entire set of observations are similar for the parameters A, VS and cSO4, while 

there is a strong difference for VE and aSE. Comparing furthermore the resulting simulation uncertainty (Figure 7Figure 7), 

we find that the final parameters sets that were found using the entire observed time seriesused all flow states, including the 

disinformative, river influences time period, results in a larger simulations uncertainty than the final parameter sample that 

used only the combined unsaturated and saturated flow states for parameter estimation. 15 



16 

 

 

 

Figure 7: Observed discharge and the simulation uncertainty of the final parameter sample (all KGE ≥ 0.2) of the combined 

unsaturated and saturated flow states and the all flow states including the disinformative period of river influence. Background 

colours representing flow states match to that of the Figure 2Figure 2. 5 

5 Discussion 

5.1 Application of the soft rules during the different flow states 

The application of the 4 soft rules results in a general reduction of the initial sample for all flow states (Figure 4Figure 4). A 

weak reduction for all of the four flow states takes place when only discharge observations are applied to confine the sample. 

Previous research with lumped model calibration showed that the information content of discharge observations usually 10 

suffices to calibrate 5-6 parameters (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997); more parameters 

often lead to over-parametrization (Perrin et al., 2003) and equifinality (Beven, 2006). Hence, the small reduction of the 

VarKarst initial parameter sample may be due to the large number of model parameters (Table 2Table 2) with in the 

VarKarst model. The same behaviour of a weak decrease of the initial parameter sample is found when the hydrochemical 

observations are used individually (soft rule 2 and 3). The weakest reduction of the initial parameter sample among all four 15 

flow states is found for the entire time period that includes the periods of river influence (see discussion in subsection 5.2). 

When soft rule 4 (all KGE ≥ 0.2) is applied, we find the strongest reduction of the initial sample across all of the four flow 

states. This means, the combined information of discharge, NO3
- and SO4

-2 observations provides the most information to 

reduce the initial sample of model parameters. Previous research already showed that hydrochemical information can reduce 

parameter uncertainty (Kuczera and Mroczkowski, 1998; Rimmer and Hartmann, 2014; Son and Sivapalan, 2007). In this 20 

study, a similar reduction of parameter uncertainty could be observed (Figure 5Figure 5). Depending on the applied soft rule 
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and the considered flow states the initially uniform distributions of the model parameters are altered differently. Some model 

parameters distributions change their mean without much change in the shape of their distribution (same distance between 

25th and 75th percentile); some of the show a more confined distribution when the soft rules are applied.   

5.2 Information provided by discharge and hydrochemistry during the different flow states 

The differences of the reduction across the model parameters reveals the influence of different types of observations that 5 

were used for parameter estimation. We find that the reductions of the distance between the 25th and 75th percentile is most 

pronounced during the saturated stage for the discharge observations (Figure 6Figure 6). This indicates that discharge 

provides most information during the recession period. Information about hydrodynamic parameters A, VE and KC is derived 

directly from the discharge observations. This makes sense because hydrodynamic changes in the main discharge area of 

Sierra Blanquilla aquifer reflect the hydraulic pressure transference from the unsaturated zone to the saturated zone of the 10 

system. Similar results were found by Wagener et al. (2003) when they applied Dynamic Identifiability Analysis to a lumped 

rainfall runoff model using only discharge data.  

They also found that the parameters, which control the unsaturated zone and fast flow components of their model, are most 

identifiable during and just after the rainfall-runoff events. Our results indicates a similar behaviour by showing the strongest 

reduction of the distance between the 25th and 75th percentile for the unsaturated zone parameters during the unsaturated flow 15 

state using the NO3
- observations (parameters VS, VE and aSE). This is in accordance with Reusser and Zehe (2011) who 

showed that model parameters that control the recession period are most sensitive during the recession period with a time 

dynamic resection and cluster analysis using discharge information. NO3
- has been used almost as an ideal tracer to 

determine infiltration processes through the soil and epikarst in the shallower aquifer zones (Hunkeler and Mudry, 2007; 

Mudarra et al., 2014). Thus, NO3
- observations contribute stronger to the identification of surface and evapotranspiration 20 

processes during the unsaturated flow state. This can be explained by the relative stability of NO3
- dynamics within the karst 

system under oxidizing conditions (Mudarra et al., 2014), which favours its preservation from surface to the spring. 

SO4
-2 provided most information on the parameters cSO4, aSO4, and aSE during the saturated state. This makes sense as SO4

-2 is 

stored within saturated zone of the system where groundwater is in touch with gypsum-bearing geological formations 

(Triassic clays with evaporites), which are found in contact with deeper aquifer compartments. SO4
-2 time series provide 25 

more information about the unsaturated zone / epikarst drainage during the saturated flow stage. Such findings mean that the 

high chemical contrast observed in SO4
-2 concentrations of fresh (recently infiltrated) and old (stored) groundwater is useful 

to assess the relative importance of unsaturated flow and saturated flow during saturated flow stage (Barberá and Andreo, 

2015; Mudarra et al., 2011). 

The highest number of identifiable parameters is found when all information (discharge, NO3
- and SO4

-2 observations) are 30 

combined and estimated during the combined unsaturated and saturated flow stages (Figure 6Figure 6). In addition to the 

parameters that showed an increase of identifiability at the individual stages (A, VE, KC, VS, VE , aSE, cSO4, and aSO4), we also 
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see an increased identifiability of the parameter af, most probably due to parameter interactions (Pianosi et al., 2016). Only 

aGW and KE remain with low identifiability, which may be due to structural limitations of the model structure (Clark et al., 

2008) or due to parameter interactions that are not explicitly considered in our approach. In fact, a lower identifiability of KE 

in favour of a high identifiability of VE was found in a previous study with a similar version of the model (Hartmann et al., 

2015). Compared to that, using all information during the entire time period, including the disinformative period, only five of 5 

the model parameters show a visible decrease of the distance between the 25th and 75th percentile of their distribution. Hence, 

the inclusion of the disinformative period led to an increase of posterior parameter uncertainty compared to using only the 

informative time periods represented by the unsaturated and saturated states. This was also shown by Beven and Westerberg 

(2011) or Beven et al. (2011), when they considered the impact disinformative discharge events.  

The impact of the disinformative time period on the precision of the observations is clearly visible in Figure 7Figure 7. Since 10 

the model has to compensate for structural errors, i.e. the missing representation of the influence of the river on the discharge 

of the karst spring, it is forced to allow for a wider range of parameter combinations to account for the simulation errors. 

Using only the unsaturated and saturated states allows for a much better confinement of model parameters and therefore a 

much smaller simulation uncertainty, although showing some deviations during the periods when the fiver affects the flow 

system of the spring (blue shaded areas in Figure 7Figure 7). Hence, similar to Kauffeldt et al. (2013), our study shows that a 15 

proper pre-analysis of the information content observations for model parameters estimation (subsection 2.2) allows for 

excluding disinformative information to reduce model parameter and simulation uncertainty. 

5.3 Limits and transferability of the approach 

The analysis of variations of the groundwater component in the Turón River flow has permitted to determine the timing, 

duration and magnitude of the global hydrodynamic aquifer responses under influenced hydrological conditions, as well as 20 

to assess the discharge thresholds from which different compartments (i.e. flooding of relict conduit networks) of the 

behaviour system activate (i.e. flooding of relict conduit networks; (Barberá and Andreo, 2015). However, a more accurate 

decomposition of flow components from the study of spring hydrographs has not been possible due to the relatively low 

resolution of discharge time series (Table 1Table 1). Even though the chemical signature of groundwater that drains the 

different aquifer zones (unsaturated zone and saturated zone), and that is affected by the Turón river, can be estimated using 25 

electric conductivity (Figure 2Figure 2), it is rather based on subjective interpretation. However, it can be argued that the 

previous knowledge based on the accurate interpretation of El Burgo spring chemographs has permitted a realistic flow 

decomposition from EC time series as our results show a clear difference of estimated parameter distributions and resulting 

simulation uncertainty using the unsaturated and saturated flow states and the entire time period including the disinformative 

data. A more precise distinction between the states is only possible if specific chemical indicators are available better 30 

constrain the differentiation of flow states contributing to El Burgo spring discharge, which was not possible within the 

frame of this study. But even though due to subjectivity, the identification of time periods or data sets that disinformative 
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contributions to parameter estimation is a useful way to reduce the simulation uncertainty of hydrological models. Building 

on previous research on disinformative data that focussed on disinformative discharge information, our approach provides a 

systematic procedure that also includes hydrochemical observations to identify disinformative periods and to improve 

parameter estimation of models for complex hydrological systems. Another limitation of our research is the low resolution of 

the discharge and hydrochemical observations (7-8 days). Although our approach took into account this weakness by the soft 5 

rules allowing for remaining uncertainty after the reduction of our 500,000 parameter sets, we believe that a higher 

resolution of the observations (preferably 1 day) would have resulted in a more pronounced reduction of the initial sample 

and consequently to a lower remaining uncertainty.  

6 Conclusions 

In this research, a new approach to estimate the information content of water quality data and the value of identifying most 10 

informative periods for model parameter estimation has been proposed. Using soft rules to include discharge, NO3
- and SO4

-2 

observations into the parameter estimation procedure, we were able to reduce an initial sample of 500,000 parameter sets 

during pre-defined flow states; one of the includingbeing a known period of disinformative data. Comparing the distributions 

of the initial and reduced parameter sets, we were able to quantify the information contained in our observations to identify 

the parameters of our simulation model. 15 

We found that the information content of the observations varies for the different states that we considered. NO3
- provided 

most of its information when the unsaturated zone processes dominate the discharge behaviour of the spring. During the time 

when the saturated zone controls the outflow behaviour, SO4
-2 and discharge observations provide the best information to 

identify the model parameters. Including the disinformative period, the information content of all data generally decreases, 

as well as the uncertainty of simulations increases. We finally show that the combination of saturated and unsaturated flow 20 

states provides the most precise information about the model parameters. Due to parameter interactions, even model 

parameters that were not identifiable during the unsaturated or saturated flow state alone became identifiable. As a result, the 

simulation uncertainty is significantly reduced compared to the simulations obtained by the entire time series of observations 

that include the disinformative data.  

Even though exemplified at a particular karst spring in Southern Spain, our approach is easily transferrable to other 25 

modelling studies that want to use water quality data for the identification of disinformative periods and for the estimation of 

model parameters. Our results add to previous findings on the value of removing disinformative data from model parameter 

estimation to reduce simulation uncertainty. Furthermore our results can help building a better communication between 

experimental hydrologists and modellers (Hartmann, 2016; Seibert and McDonnell, 2002) as hydrochemical data is often 

used for system characterization. Our study showed that NO3
- and SO4

-2 that often are used for understanding the unsaturated 30 

and saturated zone processes also help to identify the corresponding process parameters in our model. Further research 

should therefore include the evaluation of other hydrochemical variables that can be attributed to particular hydrological 

processes to and their value to identify the corresponding processes in process-based simulation models. Also, a further 
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disaggregation of the Kling Gupta efficiency in its components, correlation, bias and variability, contains high promise for 

further advance of our approach.  
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8 Appendix  

The parameter Vmean,S [mm] and the distribution coefficient aSE [-] control the variability of soil depths over the N model 

compartments. Using them, the soil storage capacity VS,i [mm] for every compartment i is defined by: 10 
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Vmax,S [mm] represents the maximum soil storage capacity and is derived from VS: 
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Where the compartment at which the volumes on the left equal the volumes on the right is found at i1/2. The same 

distribution coefficient aSE is used to derive the epikarst storage distribution by the mean epikarst depth VE [mm] (derivation 15 

of Vmax,E likewise to Vmax,S in Eq (4)): 
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Actual evapotranspiration from each soil compartment Eact,i is calculated by: 
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Potential evapotranspiration Epot [mm] is found by the Thornthwaite equation (Thornthwaite, 1948) and Qsurface,i [mm] is the 20 

surface inflow that originates from compartment i-1 (see Eq. (11)). VSoil,i [mm] is the volume of water stored in the soil at 

time step t. Recharge from the soil to the epikarst REpi,i [mm] is found by water balance: 
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            0,max ,,,,inf, iSiactiSurfaceiSoiliEpi VtEtQtPtVtQtR    (7) 

with Qinf(t) being the river infiltration (Eq. (5)). The epikarst storage coefficients KE,i [d] controls the outflow from the 

epikarst: 
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Here, VEpi,i [mm] is the water stored in the epikarst at time step t. Kmax,E is found by the mean epikarst storage coefficient KE 

and by applying the same distribution coefficient aSE:  
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Surface flow to the next model compartment QSurf,i+1 [mm] initiates when soil and epikarst storage capacities are exceeded: 

      0,max ,,,1, iEiEpiiEpiiSurf VtRtVtQ 
      (11) 10 

The vertical percolation from the epikarst is split into diffuse (Rdiff,i [mm]) and concentrated groundwater recharge (Rconc,i 

[mm]) again by a variable separation factor fC,i [-] and a distribution coefficient af [-]: 
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The diffuse recharge reaches the groundwater compartments (i = 1…N-1) directly below, while concentrated recharge is 

routed laterally to the conduit system (compartment i = N, :). Similar to epikarst storage coefficients, variable groundwater 

storage coefficients KGW,i [d] are calculated. The, groundwater contributions of the matrix system QGW,i [mm] in therefore 

found by: 
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The conduit system discharges from compartment N: 
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where conduit storage coefficient is given by KC [d]. The discharge of the main spring Qmain [l s-1] is comprised by the sum of 

the matrix and the conduit system discharge rescaled to [l s-1] the recharge area A [km²]: 5 
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Solute transport within the VarKarst model follows the assumption of complete mixing for every model compartment. 

Hence, enrichment only takes place due to evaporation and by geogene dissolution (only SO4
2-), for which varying 

equilibrium concentrations are defined according to: 
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where aSO4 is a variability constant and cmax,SO4 is derived from cSO4 [mg l-1] (similar to eq. (10)).  
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