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On the value of water quality data and informative flow states in karst modelling.

According to the remarks of the two referees, Dr Naomi Mazzilli and Dr Arnauld Malard, we added
more information on the solute transport approach of the model, the Kling-Gupta efficiency and the
problem of the varying temporal resolution of the discharge end hydrochemical measurements.

Please find below a detailed point-by-point response to the reviewer comments and a changes-
tracked version of the manuscript.
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significant improvement of our original submission and we hope that the manuscript can now be
considered for publication in Hydrology and Earth System Sciences.

Sincerely,

Andreas Hartmann
Juan Antonio Barbera
Bartolomé Andreo



Reviewer #1 (Naomi Mazzilli)

This study examines the information content of water quality data for a karst simulation model. The
Varkarst model is applied to a spanish watershed. An initial 500.000 random parameters sets is
confined using discharge and water quality data which are either taken separately or together, using
the whole time series of focusing on specific flow stages. The reduction in the 25th to 75th percentiles
range is used to estimate the information content of the data.

The methodology is clear, the results are commented with adequate references to related works, the
illustrations are sufficient and informative. In my opinion, the manuscript deserves to be published
after minor revisions.

Our response: We thank Dr Mazzilli for her positive and valuable review.

General comments

* The model equations are detailed in annex but for more clarity some information about the solute
model should appear in Section 3. The lack of NO3-specific parameter is surprising and should be
commented.

Our response: The model description and an elaboration of the NOs™ dynamics was be improved in
the revised version of the manuscript (subsection 3.2):

“Solute transport simulations within the model follow the assumption of instantaneous and
complete mixing within each storage (soil, epikarst, groundwater) and each of the N model
compartments (Figure 3). In the particular case of NOs’, this implies neglecting plant uptake
and release processes, which were found to be important in more humid regions (Hartmann
et al., 2016) but it was found a valid assumption at Mediterranean regions such as our study
site (Hartmann et al., 2013b, 2014b).”

e Parameter kE seems unsensitive. Is this related to some specificity of the flow processes on the test
site ?

Our response: The parameter KE often interacts with the parameter VE. A discussion of the
consequences of this interaction was added to the revised manuscript (Subsection 5.2):

“Only asw and KE remain with low identifiability, which may be due to structural limitations
of the model structure (Clark et al., 2008) or due to parameter interactions that are not
explicitly considered in our approach. In fact, a lower identifiability of Kt in favour of a high
identifiability of VE was found in a previous study with a similar version of the model
(Hartmann et al., 2015).

» The KGE is nicely defined as a combination of linear correlation and the ratios of the mean and
standard deviations of the simulations and observations. Have you had a look at whether the
parameters have more influence on r, alpha or beta ?

Our response: This is a very interesting remark. An analysis or the influence of r, alpha and beta was
partially done in Hartmann et al. (2013). In the case of this study, we omitted the analysis of the
individual components of the KGE as we already considered three different variables (discharge, NOs3’
and SO4%) and we did not want to confuse the reader by adding more dimensions to this evaluation
(also we believe that the results we get is sufficient to make our point). However, we agree that now
having quantified the information content of the different data types, a follow up study should



analyse in more detail how the model performs for r, alpha and beta individually. We added a
respective statement to the conclusions:

“Also, a further disaggregation of the Kling Gupta efficiency in its components, correlation,
bias and variability, contains high promise for further advance of our approach.”

Technical comments

e p 5114 "wtaer"

e p 7116 "the fore" instead of "therefore"

e p 101 14 "the unsaturated state (VE Kc)" shoud be corrected in ""the saturated
state (VE Kc)"

e p12110"is provide"

e p 12 caption of Figure 6: "the he 25th"

* p 15126 something is missing in the sentence "discharge thresholds from wich different
compartments (...) of the behaviour"

Our response: Corrections were applied to address all technical comments.

Reviewer #2 (Arnauld Malard)

This paper intends to provide an approach for reducing uncertainties in the Varkarst simulation model
(= lumped model divided in compartments). 500°000 parameters sets have been confined using
discharge, NO3- and SO42- measurements, (i) together or in a separate way and (i) applied on the
whole time series or in sub-series corresponding to expected flow processes (floods, recession, mid-
stages). Besides, datasets have been resampled in the range of the 25th to 75th percentiles using soft
rules in order to assess how the observations contribute to describe the parameter. Finally, repeated
simulations using the reduced 250’000 sets of parameters make it possible for the authors to identify
that: - "NO3- provides most information to identify the model parameters controlling soil and epikarst
dynamics for unsaturated -flow state (i.e. flood events" - "SO42- and discharge data provides most
information to identify the model parameters for saturated-flow state (i.e. recession periods).

The approach sounds coherent but authors might provide more information on the model timestep
and the timestep used for applying the Kling-Gupta coefficient. Indeed, measurements are of lower
resolution and it is not mentioned how the authors managed that.

A few other comments - and minor corrections in the attached .pdf
Few more words on the soft rules would also be appreciated

Our response: We thank Dr Malard for his valuable recommendations. In the revised manuscript, we
provided a more detailed model description (as also recommended by Dr Mazzilli in her review)
including more information about the temporal resolution of the model and the observations and
how they were linked within the parameter estimation (subsection 3.3):

“For the calculation of KGE, only time steps, at which observations are available, are
considered. Hence, the KGE values will only express the model performance to reflect the
discharge, NOs™ and SO4% observations that were sampled in a 7-8 days temporal resolution
(Table 1) even though the model runs on a daily time step.”



Also, some more elaboration on the soft rules was provided in the methods section (subsection 3.3):

“The threshold value of 0.2 was found by preliminary analysis. Its rather low value is meant
to take into account that the simulation is exposed to various sources of uncertainty
including uncertainties of the model input (observation of climate variables and their
application to the entire recharge area), model structure uncertainty (representation of karst
processes by conceptual mathematical formulations in a semi-distributed way), and the
uncertainty of observations (discharge measurement and hydrochemical analysis, as well as
their low temporal resolution).”

Both issues, the impact of lower resolution of the measurements, as well as the impact of variations
in the soft rules is now discussed in more detail in the discussion section of the revised manuscript
(subsection 5.3):

“Another limitation of our research is the low resolution of the discharge and hydrochemical
observations (7-8 days). Although our approach took into account this weakness by the soft
rules allowing for remaining uncertainty after the reduction of our 500,000 parameter sets,
we believe that a higher resolution of the observations (preferably 1 day) would have
resulted in a more pronounced reduction of the initial sample and consequently to a lower
remaining uncertainty.”

Specific and technical comments from commented pdf
P5L3: For some event spring's peaks discharge seem to be comcomitant with EC depletion...

The resolution of the flow measurements (1 measure/week) reveals insufficient to ensure the
supposed concomittancy...

Our response: True, we rephrased this statement.

P5L17: From where? Epikarst, Unsaturated zones or drainage of the phreatic zone?
Our response: The phreatic zone. We clarified this in the revised manuscript.
P5L18: "Seepage" from the epikarst should not be disregarded...

Our response: We agree that seepage from the epikarst will still be abundant during this stage. We
clarified this and added some elaboration why we believe that our distinction of flow states still
makes sense (subsection 2.2):

“Even though, there still might be some seepage from the soil and epikarst during this stage,
the hydrochemical signature of the spring, which is dominated by the signal of the phreatic
zone (Barbera and Andreo, 2015), shows that these fractions are not very important.”

P6L10: daily timescale?
Our response: Yes, daily time scale. We provided this information in the revised version of the paper.

P8L15: How did you manage the differences in time step between model (daily) vs. measurements
(biweekli)?

Our response: Simulations and observations are only compared by KGE at times when observations
are available. If the resolution of observations were higher, more parameter sets could have been
discarded by our soft rules and the precision of the simulation with the remaining parameter sets



would have been higher. We added this important information to the methods and discussion
section (please see our response to the general comment of this review).

P9L26: The "combined" state should be explicitly mentioned in Figure 2.
Our response: We updated Figure 2 and its caption accordingly.
P10L14: replace: "saturated"

Our response: The word was be replaced.

P11: marked areas in Fig 5

Our response: Unfortunately, there is no comment explaining the marked areas in Fig 5. For the
revisions, we will assume that they were only included to facilitate the review but do not require any
modification to the manuscript.

P11L10: Use “SO42-“
Our response: Corrected.
P12L10: typo

Our response: Corrected.
P12L10: typo

Our response: Corrected.
P13L8: clarify

Our response: We refer to the entire time period that also includes the periods of river influence.
The statement was clarified accordingly.

P13: Please Make this figure bigger...(Fig 7)

Our response: The figure was enlarged in the new version of the manuscript.
P13L25: typo

Our response: Corrected.

P16L13:...; one being a known period...

Our response: The sentence was changed accordingly.
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Abstract. If properly applied, karst hydrological models are a valuable tool for karst water resources management. If they
are able to reproduce the relevant flow and storage processes of a karst system, they can be used for prediction of water
resources availability when climate or land use are expected to change. A common challenge to apply karst simulation
models is the limited availability of observations to identify their model parameters. In this study, we quantify the value of
information when water quality data (NOz and SO4?) is used in addition to discharge observations to estimate the
parameters of a process-based karst simulation model at a test site in Southern Spain. We use a three-step procedure to (1)
confine an initial sample of 500,000 model parameter sets by discharge and water quality observations, (2) identify
alterations of model parameter distributions through the confinement, and (3) quantify the strength of the confinement for the
model parameters. We repeat this procedure for flow states, at which the system discharge is controlled by the unsaturated
zone, the saturated zone, and the entire time period including times when the spring is influenced by a nearby river. Our
results indicate that NO3™ provides most information to identify the model parameters controlling soil and epikarst dynamics
during the unsaturated flow state. During the saturated flow state, SO42 and discharge observations provide the best
information to identify the model parameters related to groundwater processes. We found reduced parameter identifiability
when the entire time period is used as the river influence disturbs parameter estimation. We finally show that most reliable
simulations are obtained when a combination of discharge and water quality date is used for the combined unsaturated and

saturated flow states.

1 Introduction

It is estimated that around 10-15% of emerged Earth surface is covered by soluble rocks that are susceptible to be karstified
(Ford and Williams, 2013). Today, aquifers developed in such type of rocks roughly supply with groundwater to a quarter of
world’s population. The importance of groundwater resources from karst aquifers is not only limited to satisfy the fresh
water demand of large regions with some millions of inhabitants (e.g. Austria or Slovenia), but also it guarantees the water

supply in small settlements where karst waters are the only source of drinking water.


mailto:andreas.hartmann@hydrology.uni-freiburg.de

10

15

20

25

30

The intrinsic characteristics of karst aquifers such as the development of a secondary porosity through enlarged conduits and
fractures, as well as the duality in the recharge (diffuse vs concentrated), result in a high permeability media (Bakalowicz,
2005; White and White, 2003). The shallower parts of the aquifers, including soil and epikarst (i.e. unsaturated zone), play a
key role for the understanding of system functioning. Epikarst is characterized by slow percolation of air and water into
narrow fissures, inducing water storage, and by a rapid drainage through connected conduit system promoting flow
concentration (Aquilina et al., 2006; Ford and Williams, 2013; Labat et al., 2000). Thus, in the first top meters of aquifer
rock, biogeochemical processes occur in a multiphase environment (gas, liquid and solid) and recharge waters rapidly
acquire their chemical composition, keeping practically unaltered until reach the emergence points. Rapid drainage impedes
that such physical-chemical processes may attenuate naturally a potential contaminant entering into the system. Therefore,
karst aquifers are especially vulnerable to the contamination despite that the unsaturated zone, jointly with soil and epikarst,
acts chemically as reaction layer able to modify the groundwater quality in a substantial way.

Simulation models are a common tool to address water management questions such as the impacts of climate and land use
changes on karst water resources (Hartmann et al., 2014a). In order to provide reliable predictions those models need to
include the most relevant processes of karst systems and various approaches have been developed to include karst processes
in distributed and lumped karst simulation models (Ghasemizadeh et al., 2012; Hartmann et al., 2014a; Hartmann and Baker,
2017; Kovacs and Sauter, 2007; Sauter et al., 2006). The choice of the model approach is usually due to the required
purpose. A key challenge in all of these karst modelling approaches is the identification of the model parameters. Methods to
explore and analyse karst systems can provide prior knowledge on karst system properties (Goldscheider and Drew, 2007)
that can be used to gain prior information of karst model parameters such as hydraulic conductivities or catchment
boundaries. However, capturing the entire heterogeneity of karst systems with those methods is commonly impossible
(Hartmann et al., 2013a) and inverse parameter estimation schemes, for instance automatic calibration by observed
discharge, have to be applied.

Work with automatic calibration approaches early showed that using only discharge observations for model calibration
allows to identify up six model parameters (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997). More
recent work also revealed that including disinformative periods in the calibration, i.e. periods when errors in the observation
can be expected, may significantly bias the results of model calibration and evaluation of hydrological models (Beven et al.,
2011; Beven and Westerberg, 2011; Kauffeldt et al., 2013). Due to the complexity of karst processes, karst models usually
require more than 6 model parameters to reflect the most important hydrological processes. Some studies tried to compensate
for this apparent lack of information by using auxiliary data such as gravimetric information (Mazzilli et al., 2012), artificial
tracer experiments (Hartmann et al., 2012; Oehlmann et al., 2015), or hydrochemical information (Charlier et al., 2012;
Hartmann et al., 2013b, 2016). However, to our knowledge the problem of disinformative observations, either discharge
observations or auxiliary information, has not been addressed explicitly in karst modelling studies.

This study proposes a new approach to quantitatively assess the information content of discharge and hydrochemical

information for karst model calibration including periods with disinformative observations. A process-based model is used to
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simulate the hydrodynamic and hydrochemical (NO3 and SO42) behaviour of a karst system, at which the unsaturated zone
dynamics dominates under recharge conditions, controlling groundwater flow and solute transport processes. During specific
periods, the discharge and chemistry of the system is influenced by the surface flow of a nearby river, which constitutes
disinformative periods for model parameter estimation. A new parameter estimation approach is employed to estimate the
information content of the different types of calibration data during pre-defined flow states that focus on time periods
dominated by unsaturated zone discharge, saturated zone discharge, and periods that include the disinformative observations.
Even though applied to one particular study site this approach can easily be transferred to any hydrological system where
different observation types are available for calibration.

2  Study site description

The experimental area is located in the Eastern Ronda Mountains, at the NW of Malaga province (S Spain). It consists of
steep and rugged NE-SW oriented reliefs (e.g. Sierra Blanquilla), reaching a maximum height of 1,428 m a.s.l. (Viento peak;
Figure 1Figure-1). Geologically, three main stratigraphic groups can be differentiated (Cruz-Sanjulian, 1974; Martin-
Algarra, 1987, Figure 1Figure-1): (i) clays and evaporites of upper Triassic age (the older formation); (ii) a thick (up to 500
m) carbonate sequence of Jurassic dolostones and limestones forming the main aquifer (i.e. Sierra Blanquilla); and (iii)
Cretaceous-Paleogene marls and marly limestones as the uppermost materials. The geological structure of Sierra Blanquilla
is constituted by a NE-SW oriented box-shaped anticline, plunging towards NE (Martin-Algarra, 1987), with a flat and wide
hinge, as well as subvertical flanks. The folded structure is also fractured by two set of faults N50-70E and N150E oriented
(Fernandez, 1980). From the point of view of the karst landscape development, in plateau areas the horizontal bedding
planes of carbonate exposures jointly to the high precipitation rate have favoured the formation of exokarstic features

including karrenfields, dolines, uvalas, shafts and swallets, as result of intense karstification processes.

2.1  Karst hydrogeology

Sierra Blanquilla carbonate aquifer is permeable by fracturation and karstification. Recharge is mostly produced by rainwater
infiltration through the carbonate exposures, although seepage from a losing river and streams also account for groundwater
input (Barbera and Andreo, 2015, 2012). Natural groundwater discharge is preferentially conducted toward the SE border of
the aquifer (Figure 1Figure-1), through several springs that constitute the discharge area towards the Turdn river valley
(Barbera, 2014). Among them, El Burgo (BG, 600 m a.s.l.) and Hierbabuena (HB, 645 m a.s.l.) perennial springs drain most
of the groundwater of the hydrogeological system (Figure 1Figure-1). During high flow periods, when the total flow of the
BG and HB springs exceeds 1.1 m-s?, two overflow springs (Ofsl, 655 m a.s.l.; and Ofsll, 670 m a.s.l.), located upstream of
the permanent ones, activate after heavy rainfall events (Barbera and Andreo, 2015). Low flow is established when the

permanent groundwater flow (from BG and HB springs) is below to 0.2 m3-s™%.



The main hydrological feature in the test site, Turén River, crosses intermittently the carbonate exposures in the southern
border of Blanquilla aquifer (Figure 1Figure—1). The surface flow has been demonstrated to alter the hydrodynamic
functioning of both perennial springs (Barberd and Andreo, 2015), which are partly affected by the existence of two
regulation dams (20-25 m high) built over the Turdn riverbed, just several tens of meters downstream from the springs
(Figure 1Figure—1). In high flow periods, both headwaters and groundwater discharge from Sierra Blanquilla aquifer

maintain the river flow, while during low flow conditions, the Turon river is exclusively fed by karst groundwater.
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Figure 1: Geographic, geological and hydrogeological features of Sierra Blanquilla carbonate aquifer.

2.2 Dominant hydrogeological processes

Electrical conductivity (EC) has been used as global physical-chemical marker for distinguishing the hydrochemical states
that characterize El Burgo spring discharge. Generally, EC peaks are—seem to be concomitant with maximum spring
discharge at event scale, which evidence that more mineralized groundwater is drained immediately after each rainfall
episode (green shaded areas in Figure 2Figure-2). Barbera and Andreo (2015) stated that this high EC groundwater is also
characterized by higher Alkalinity and logPCO, values and higher Ca*? and TOC contents, suggesting predominant
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limestone dissolution in the shallower parts of the aquifer. This spring behaviour reflect a functioning based on a “piston
effect”, by which groundwater stored in the epikarst reservoir is pulled out to the unsaturated and saturated zone until the
discharge zone by a subsequent recharge pulse. Therefore, unsaturated flow dominates under high water conditions in El
Burgo spring (state 1 - unsaturated zone, in Figure 2Figure-2).

Under low flow conditions (no rainfall, grey shaded areas in Figure 2Figure-2), EC levels in groundwater remain quite stable
in the range of 320-330 uS/cm. This provides the chemical baseline of the system (state 2 - saturated zone, in Figure 2Figure
2), which is dependent on the accumulated rainfall on each hydrological year. The lower and less variable EC values of
groundwater compared with those obtained under high wtaerwater conditions can be explained by the loss of aggressiveness
of groundwater (degassed waters respect to CO,) flowing through the system as consequence of the lack of aquifer recharge
(Barberd and Andreo, 2015). Therefore, groundwater drainage under low water conditions consists of a system of slower
flows coming from capacitive compartments of the aquifer (matrixthe phreatic zone). In these circumstances, the functioning
of the hydrogeological system is mainly dominated by the saturated zone (state 2 - saturated zone, in Figure 2Figure-2). Even
though, there still might be some seepage from the soil and epikarst during this stage, the hydrochemical signature of the

spring, which is dominated by the signal of the phreatic zone (Barberd and Andreo, 2015), shows that these fractions are not

very important.
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Figure 2: Decomposition of El Burgo spring flow in selected hydrochemical states from EC and discharge time series: (1)
unsaturated zone dominates discharge; (2) saturated zone dominates discharge; and (3) discharge (and EC) influenced by Turén
river flow; the combination of unsaturated and saturated states represents the combined flow state.

Marked dilutions in groundwater mineralization (below the chemical baseline of the system), which very often occur during
the spring recession after flood events, are also observed in the chemograph of El Burgo spring (preferentially from March to
June, in Figure 2Figure-2). Since Turdn river waters are less mineralized than groundwater and that the temporary storage of
surface water in the nearby river dam favours water mixing, surface water dilutes groundwater from the spring (state 3 —
Turon river, in Figure 2Figure-2). This occurs when the river stage is higher than groundwater level in the discharge zone,

promoting water flow towards the aquifer (Barbera and Andreo, 2015).
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3 Methodology

3.1 Available data

Continuous daily measurements of precipitation and air temperature were recorded at Afioreta weather station (Figure
1Figure-1) and discrete sampling campaigns for meteoric water chemistry (NOs™ and SO42, among other) were performed in
a rain collector installed to the north of Viento peak (Figure lFigure—1), from August 2007 to April 2010. From

meteorological data, potential evapotranspiration was calculated on a daily time scale using Thornthwaite’s approach

(Thornthwaite, 1948). Discontinuous measurements of Turdn river flow in two selected sections (Ty, and Tan ; Figure 1Figure
1), upstream and downstream of the permanent and temporary springs, were conducted during the same study period to
quantify the net groundwater discharge from Sierra Blanquilla aquifer. Simultaneously, a representative sampling of the
chemical composition (NOs and SO42) of karst groundwater was performed (daily to biweekly) at EI Burgo spring.
Additionally, hourly data of EC was recorded at this outlet. Detailed methodological procedures can be found in Barbera and
Andreo (2015). The environmental tracers NOs and SOs2 were chosen as complementary time series for the model
development because they are expected to provide distinctive chemical signatures that characterize flow and transport
processes in the soil and epikarst (nitrogen cycling) and saturated zone (dissolution of evaporites at the aquifer basement) of
Sierra Blanquilla aquifer. Table 1Fable-1 provides a summary of all available data. In addition, the information about the
three differentiated flow states of the system (subsection 2.2) was used to provide an independent consideration of
observations that can be attributed to time periods of state 1 (unsaturated zone), state 2 (saturated zone), and all states
including the period influenced by Turén River dynamics (state 3).

Table 1: Main characteristics of the time series of hydrodynamic and hydrochemical data used in this study.

CV  Average sampling

Sampling site Parameter Unit n Max Min Mean %) frequency Period

Aoreta weather st.  Rainfall (accumulated) mm-day’ 959 71 0 33 - 1 day 16/08/2007 - 31/03/2010
Air temperature (daily mean) °C 959 149 26 8 - 1day 16/08/2007 - 31/03/2010

Viento rain collector NO, mg-" 38 23 0 3 2 15 days * 04/10/2007 - 16/02/2010
50,7 mg-" 38 49 03 12 1 15 days * 04/10/2007 - 16/02/2010

Turdn river Discharge (GW component) m? g™ 132 185 0.06 1,63 169 7 days 16/08/2007 - 30/03/2010

El Burgo spring Electrical conductivity (EC)  pS-cm™ 17,296 384 288 326 3 1 hour 07/11/2007 - 15/04/2010
NO5 mg-" 130 212 08 51 56 8 days 01/08/2007 - 30/03/2010
50,7 mg-" 130 244 42 114 49 8 days 01/08/2007 - 30/03/2010

(*) Sampling frequency was dependent on the occurrence of rainfall episodes

3.2  The model

VarKarst model was previously developed at a neighbour karst system in Southern Spain (Hartmann et al., 2013b) and it was
successfully applied at different karst systems around Europe (Brenner et al., 2016; Hartmann et al., 2013a, 2014b, 2016). It

8



includes the variability of karst system properties by statistical distribution functions (Figure 3Figure-3). Explicitly, it
considers the spatial variability of (i) soil and epikarst depths, (ii) fractions of concentrated and diffuse recharge to the
groundwater, (iii) epikarst hydrodynamics, and (iv) groundwater hydrodynamics by distribution functions that are applied to
a set of N model compartments. This allows the simulation of variably dynamic pathways of water and solutes through the

karst system. Solute transport simulations within the model follow the assumption of instantaneous and complete mixing

within each storage (soil, epikarst, groundwater) and each of the N model compartments (Figure 3). In the particular case of

NOg, this implies neglecting plant uptake and release processes, which were found to be important in more humid regions

(Hartmann et al., 2016) but it was found a valid assumption at Mediterranean regions such as our study site (Hartmann et al.,
2013b, 2014b). The detailed equations of the model in the appendix and a list of all model parameters including their

10 description are provided in Table 2Fable-2.
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Figure 3: Schematic representation of the VarKarst model structure (modified from Hartmann et al., 2013a; modified)

3.3  Parameter estimation for the distinctive flow states and different observation types

The low resolution of observed discharge and hydrochemistry, as well as the complex Karstic setting of the study site creates
a rather uncertain environment for modeling. For that reason, a traditional multi-objective parameter estimation was omitted
as in previous studies (Hartmann et al., 2013b, 2016). Instead, a parameter estimation scheme considering “soft rules” was
used to confine a large uniformly sampled set of model parameters there-fore explicitly allowing for some uncertainty to
remain but to be quantified. A similar approach was already applied successfully fer-cases-with-similarhy-complex-medelling

andin the frame of a large-scale karst groundwater

recharge study (Hartmann et al., 2015, 2017).
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As a measure of performance, the Kling-Gupta efficiency KGE (Gupta et al., 2009) is used. It is defined to show numbers

approaching 1 for the best simulations:

KGE =1—+/(r —1)% + (e —1)* + (8 —1)? (1)
with o = s and g = #s . )
Oo Ho

r expresses the linear correlation coefficient between simulations and observations, while us/ w4 and oyl o, are defined
as the mean and standard deviation of simulations and observations, respectively. Consequently, « expresses the similarity of

simulated and observed variability, while £ quantifies the bias between them. For the calculation of KGE, only time steps, at

which observations are available, are considered. Hence, the KGE values will only express the model performance to reflect

the discharge, NOs and SO4* observations that were sampled in a 7-8 days temporal resolution (Table 1) even though the

model runs on a daily time step.

Table 2: Description of model parameters, ranges for parameters estimation and average values found for the combined
unsaturated and saturated flow states, and the entire time period including the disinformative period of river influence.

Parameter ranges Combined unsat. and sat. states All states
Parameter  Description Unit

lower upper mean* mean*
A Recharge area [km?] 30 80 55.5 57.5
Vs Mean soil storage capacity [mm] 0 250 159.9 174.1
Ve Mean epikarst storage capacity [mm] 0 250 23.5 75.8
ase Soil/epikarst depth variability constant [-] 0 3 0.6 1.8
Ke Epikarst mean storage coefficient [d?] 15 65 49.4 434
as Recharge separation variability constant [-] 0 3 1.4 1.3
Kc Conduit storage coefficient [dY] 1 25 5.7 12.4
asw Groundwater variability constant [-] 0 3 1.8 1.3
Cso4 Mean equilibrium concentration of SOs* [mg I"Y] 0 100 16.6 22.0
Qsos SO4? variability constant [-] 0 3 0.6 1.4
KGEq performance concerning discharge [-] 0 1 0.37 0.36
KGEnos performance concerning NOs [-] 0 1 0.47 0.32
KGEsos performance concerning SOs> [-] 0 1 0.58 0.40

* variability of model parameters shown in Figure 5Figure 5

For parameter estimation, an initial sample of 2500,000 parameter sets was created from predefined ranges (Table
2Fable-2) that were chosen by prior knowledge and previous model experiences in the same region (Hartmann et al., 2013b,
2014b). A 4-year warm up period was set up and the model was run 2500,000 times with the initial parameter sample. Using

the observed time series, the Kling Gupta Efficiency was calculated for each of the simulation runs: KGEq (groundwater
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discharge), KGEnos (NO3™ concentrations) and KGEsos (SO42 concentrations). Similar to Choi and Beven (2007) “soft rules”

were used to reduce the initial sample of parameters in four steps:

1. All parameters sets from the initial sample with KGEq < 0.2 were discarded

2. All parameters sets from the initial sample with KGEnos< 0.2 were discarded

3. All parameters sets from the initial sample with KGEsos < 0.2 were discarded

4. All parameters sets from the initial sample with KGEq, KGEnos, and KGEsos < 0.2 at the same time were discarded

The threshold value of 0.2 was found by preliminary analysis. Its rather low value is meant to take into account that

the simulation is exposed to various sources of uncertainty including uncertainties of the model input (observation of climate

variables and their application to the entire recharge area), model structure uncertainty (representation of karst processes by

conceptual mathematical formulations in a semi-distributed way), and the uncertainty of observations (discharge

measurement and hydrochemical analysis, as well as their low temporal resolution).

The same-procedureapplication of the soft rules is repeated four times for observations falling into the unsaturated

flow state, the saturated flow state, the combined unsaturated and saturated flow state and into the entire time period
including the hydrodynamic state defined by influence of Turon river flow on groundwater discharge. For each of these time
periods the four soft rules will result in a reduction of the initial sample and the prior ranges of the model parameters will

experience a confinement (Hartmann et al., 2015).

3.4  Evaluation of information content and simulation uncertainty for the different flow states and different

observation types

In this study, the strength of this confinement is used to assess the information content of the set of observations
during the different flow states. The strength of the confinement is quantified by the reduction of the distance between the
25" and 75™ percentile of each model parameter after the confinement through the soft rules. For instance, parameter Csos
(Table 2Fable-2) has the prior range of 0 — 100 mg-It. Consequently, the uniform sampling strategy for the initial sample
will result in values close to 25 and 75 mg-I-*for the 25" and the 75™ percentile, respectively. Applying one of the soft rules
may now result in values of 10 and 30 mg-I* for the 25" and the 75" percentile, respectively. Hence, the reduction of the
distance between the 25™ and 75" percentile is 50-20 mg-I, i.e. a reduction of 60% took place. In this example case we
would find that the observations applied through the selected soft rule provided useful information to estimate this
parameter. Applying this procedure for each of the four soft rules and the four time series defined by the flow states, we can
assess how (1) the different types of observations (discharge, NO3  and SO42) contribute to parameter identification, and (2)
the focus on particular time periods and flow stages strengthens or weakens the confinement of the model parameters.

Particular attention is given to the comparison of the entire time period, including the times when the spring is
influenced by the river, with the time periods when only the unsaturated zone and the saturated zone control the discharge of

the spring. It is expected that this time period contains disinformative information for parameter estimation as the VarKarst
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does not take into account the river’s influence. The reduction of the 25" and 75™ percentile of the model parameters is used
after applying the fourth soft rule (subsection 3.3) of the combined unsaturated and saturated flow state, and the entire time
period including the period that is influenced by the river to understand the impact of the disinformative information on
parameter identification. In a last step, the simulation uncertainty is quantified for the two time periods by plotting the
simulations of the parameters sets that remained after the fourth soft rule was applied to the two observation time series.

After including the disinformative time period, a greater simulation uncertainty is expected.

4 Results

4.1  Parameter estimation for the different flow states and different observation types

Different reductions of the initial sample are found by the different soft rules and during the different flow states (Figure
4Figure-4). The reduction by discharge (KGEq > 0.2) varies among the different flow states but remains rather limited. The
same is seen for the individual use of the hydrochemical information (KGEnos > 0.2 or KGEsos > 0.2). However, using the
combination of all soft rules (all KGE > 0.2), a significant reduction of the initial sample is obtained for all flow states. This
is most evident for the combined unsaturated and saturated state. The weakest reduction of the initial sample for all soft rules

is found for the consideration of all stages including the disinformative time period influenced by the river.

[4)]

N

I initial sample
I KGE, > 02
[IKGE, , = 0.2
I GE, > 02
T all KGE = 0.2

number of parameter sets [10%]

unsat. stage sat. stage combined all stages
reduction of parameter sets

Figure 4: Reduction of the initial sample by the four soft rules for the unsaturated state, saturated state, combined saturated and
saturated states, and all system states

The influence of the soft rules during the different flow states varies for all model parameters (Figure 5Figure-5). The
reduction of the initial sample by discharge (KGEgq > 0.2) alters the uniform distribution of the initial sample for the different
flow states, mostly for the parameters A, Ve and Kc. These changes are most prominent in the unsaturated state (A), the
unsaturated state (Ve and Kc) and the combined unsaturated and saturated states (A, Ve and K¢). Using NOs™ for the reduction

(KGEnos > 0.2), the parameters Vs, Ve and ase experience the strongest change of their initial distribution. This change is
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most pronounced at the unsaturated state and the combined unsaturated and saturated states. The reduction by the
observations of SO42 concentrations (KGEsos > 0.2) mostly affects the model parameters csos and asos, but also find a strong
impact on asg, mainly at the saturated state and the combined unsaturated and saturated state. Finally applying all
information in the fourth soft rule (all KGE > 0.2), we find again an alteration of the model parameters that were affected by

5 soft rules 1-3 (A, Vg, Vs, ase, Kc, Csos and asos) and, additionally, a moderate alteration of Kg and as. This is most notable at
the combined unsaturated and saturated states; using all states including the disinformative period that is influenced by the
river, the alterations are generally less pronounced.

unsaturated state
1 T T T T T T T

N
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mms=all KGE > 0.2
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—KGEQ >0.2
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— initial sample
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Figure 5: Distribution of model parameters (normalised by their ranges) after applying the four soft rules for the unsaturated,
10 saturated, and combined unsaturated and saturated, and all stages.
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4.2  Evaluation of information content and simulation uncertainty for the distinctive flow states and different

observation types

Using the change of distance between the 25 and 75™ percentile of each model parameter for the different soft rules and the
different flow states we are able to quantify the information content of the available observations (Figure 6Figure-6). We find
that discharge (KGEq > 0.2) and SO4% (KGEso4 > 0.2) provide most information during the saturated flow state, while NOs-
reduces the distance between the two percentiles most during the unsaturated stage. The state that uses all information
including the disinformative time period of river influence shows generally the weakest reduction between the 25 and 75t
percentile as already indicated by Figure 4Figure4.

Again the most evident changes of model parameter distributions are found for the combined unsaturated and saturated
states: here, we see that observed discharge (KGEq > 0.2) provides most information on the parameter Kc, but the change of
distance for the parameters A and Ve is still considerable. This is most evident in the combined unsaturated and saturated
states. We find a more balanced distribution of information on the altered parameters when regarding the reduction obtained
by NOs (KGEnos > 0.2). Here, the change of distances is considerable (but similar) for Vs, Ve and ase. For SOs2 (KGEsos >
0.2), the alteration mostly affects csos, followed by a considerable alteration of asos and a moderate change of ase. Using all
information to confine the initial sample (all KGE > 0.2) shows that the combined use of discharge, NO3 and SOg4?
observations provided most information on Vg, asg, K¢, Csos, and asos. Still considerable information is provided for A, Vs
and ar. However, no reduction of the distance between the 25" and 75™ percentile is found for Kg, and even a widening takes

place for agw.
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Figure 6: Change of distance between the-he 25" and 75™ percentile of each model parameter when the different soft rules are
applied (top to bottom) for the four flow states.

The proceeding analysis indicates that most information to identify the largest number of model parameters is provided by
the combined unsaturated and saturated flow states using discharge, NO3™ and SO42 observations. It further reveals that using
the entire time period, using discharge, NO3z and SO42 observations and including the period that is influenced by the river,
provided the fewest information; only 5 (A, Vs, VE, ase and csos) of the 10 model parameters show a detectable reduction of
the two flow percentiles (Figure 6Figure-8, bottom).

The final averages of the estimated parameters (after applying 4™ soft rule; Table 2Fable-2-) of the combined unsaturated and
saturated flow states, and the state the uses the entire set of observations are similar for the parameters A, Vsand csos, While
there is a strong difference for Ve and ase. Comparing furthermore the resulting simulation uncertainty (Figure 7Figure—7),
we find that the final parameters sets that were found using the entire observed time seriesused-al-flow-states, including the

disinformative, river influences time period, results in a larger simulations uncertainty than the final parameter sample that

used only the combined unsaturated and saturated flow states for parameter estimation.
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Figure 7: Observed discharge and the simulation uncertainty of the final parameter sample (all KGE > 0.2) of the combined

unsaturated and saturated flow states and the all flow states including the disinformative period of river influence. Background
colours representing flow states match to that of the Figure 2Figure-2.

5 Discussion

5.1  Application of the soft rules during the different flow states

The application of the 4 soft rules results in a general reduction of the initial sample for all flow states (Figure 4Figure-4). A
weak reduction for all of the four flow states takes place when only discharge observations are applied to confine the sample.
Previous research with lumped model calibration showed that the information content of discharge observations usually
suffices to calibrate 5-6 parameters (Jakeman and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997); more parameters
often lead to over-parametrization (Perrin et al., 2003) and equifinality (Beven, 2006). Hence, the small reduction of the
VarKarst initial parameter sample may be due to the large number of model parameters (Table 2Fable-2) with-in the
VarKarst model. The same behaviour of a weak decrease of the initial parameter sample is found when the hydrochemical
observations are used individually (soft rule 2 and 3). The weakest reduction of the initial parameter sample among all four
flow states is found for the entire time period that includes the periods of river influence (see discussion in subsection 5.2).

When soft rule 4 (all KGE > 0.2) is applied, we find the strongest reduction of the initial sample across all of the four flow
states. This means, the combined information of discharge, NOs and SO4? observations provides the most information to
reduce the initial sample of model parameters. Previous research already showed that hydrochemical information can reduce
parameter uncertainty (Kuczera and Mroczkowski, 1998; Rimmer and Hartmann, 2014; Son and Sivapalan, 2007). In this

study, a similar reduction of parameter uncertainty could be observed (Figure SFigure-5). Depending on the applied soft rule
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and the considered flow states the initially uniform distributions of the model parameters are altered differently. Some model
parameters distributions change their mean without much change in the shape of their distribution (same distance between

25% and 75 percentile); some of the show a more confined distribution when the soft rules are applied.

5.2 Information provided by discharge and hydrochemistry during the different flow states

The differences of the reduction across the model parameters reveals the influence of different types of observations that
were used for parameter estimation. We find that the reductions of the distance between the 25" and 75™ percentile is most
pronounced during the saturated stage for the discharge observations (Figure 6Figure—6). This indicates that discharge
provides most information during the recession period. Information about hydrodynamic parameters A, Ve and Kc is derived
directly from the discharge observations. This makes sense because hydrodynamic changes in the main discharge area of
Sierra Blanquilla aquifer reflect the hydraulic pressure transference from the unsaturated zone to the saturated zone of the
system. Similar results were found by Wagener et al. (2003) when they applied Dynamic ldentifiability Analysis to a lumped
rainfall runoff model using only discharge data.

They also found that the parameters, which control the unsaturated zone and fast flow components of their model, are most
identifiable during and just after the rainfall-runoff events. Our results indicates a similar behaviour by showing the strongest
reduction of the distance between the 25" and 75" percentile for the unsaturated zone parameters during the unsaturated flow
state using the NOs observations (parameters Vs, Ve and asg). This is in accordance with Reusser and Zehe (2011) who
showed that model parameters that control the recession period are most sensitive during the recession period with a time
dynamic resection and cluster analysis using discharge information. NOs  has been used almost as an ideal tracer to
determine infiltration processes through the soil and epikarst in the shallower aquifer zones (Hunkeler and Mudry, 2007;
Mudarra et al., 2014). Thus, NOs™ observations contribute stronger to the identification of surface and evapotranspiration
processes during the unsaturated flow state. This can be explained by the relative stability of NO3 dynamics within the karst
system under oxidizing conditions (Mudarra et al., 2014), which favours its preservation from surface to the spring.

S04 provided most information on the parameters csos, asos, and ase during the saturated state. This makes sense as SO47? is
stored within saturated zone of the system where groundwater is in touch with gypsum-bearing geological formations
(Triassic clays with evaporites), which are found in contact with deeper aquifer compartments. SO42 time series provide
more information about the unsaturated zone / epikarst drainage during the saturated flow stage. Such findings mean that the
high chemical contrast observed in SO42 concentrations of fresh (recently infiltrated) and old (stored) groundwater is useful
to assess the relative importance of unsaturated flow and saturated flow during saturated flow stage (Barber& and Andreo,
2015; Mudarra et al., 2011).

The highest number of identifiable parameters is found when all information (discharge, NOs and SO42 observations) are
combined and estimated during the combined unsaturated and saturated flow stages (Figure 6Figure-6). In addition to the

parameters that showed an increase of identifiability at the individual stages (A, Ve, K¢, Vs, Ve, asg, Csos, and asos), we also
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see an increased identifiability of the parameter a;, most probably due to parameter interactions (Pianosi et al., 2016). Only

acw_and KE remain with low identifiability, which may be due to structural limitations of the model structure (Clark et al.,

2008)_or due to parameter interactions that are not explicitly considered in our approach. In fact, a lower identifiability of Ke

in favour of a high identifiability of VE was found in a previous study with a similar version of the model (Hartmann et al.,

2015). Compared to that, using all information during the entire time period, including the disinformative period, only five of
the model parameters show a visible decrease of the distance between the 25" and 75" percentile of their distribution. Hence,
the inclusion of the disinformative period led to an increase of posterior parameter uncertainty compared to using only the
informative time periods represented by the unsaturated and saturated states. This was also shown by Beven and Westerberg
(2011) or Beven et al. (2011), when they considered the impact disinformative discharge events.

The impact of the disinformative time period on the precision of the observations is clearly visible in Figure 7Figure-7. Since
the model has to compensate for structural errors, i.e. the missing representation of the influence of the river on the discharge
of the karst spring, it is forced to allow for a wider range of parameter combinations to account for the simulation errors.
Using only the unsaturated and saturated states allows for a much better confinement of model parameters and therefore a
much smaller simulation uncertainty, although showing some deviations during the periods when the fiver affects the flow
system of the spring (blue shaded areas in Figure 7Figure-7#). Hence, similar to Kauffeldt et al. (2013), our study shows that a
proper pre-analysis of the information content observations for model parameters estimation (subsection 2.2) allows for

excluding disinformative information to reduce model parameter and simulation uncertainty.

5.3  Limits and transferability of the approach

The analysis of variations of the groundwater component in the Turén River flow has permitted to determine the timing,

duration and magnitude of the global hydrodynamic aquifer responses under influenced hydrological conditions, as well as

to assess the discharge thresholds from which different compartments (-e—flooding—ofrelictconduitnetworks)—of the

behawviour-system activate (i.e. flooding of relict conduit networks; {Barber4 and Andreo, 2015). However, a more accurate

decomposition of flow components from the study of spring hydrographs has not been possible due to the relatively low
resolution of discharge time series (Table 1Fable-1). Even though the chemical signature of groundwater that drains the
different aquifer zones (unsaturated zone and saturated zone), and that is affected by the Turdn river, can be estimated using
electric conductivity (Figure 2Figure-2), it is rather based on subjective interpretation. However, it can be argued that the
previous knowledge based on the accurate interpretation of EI Burgo spring chemographs has permitted a realistic flow
decomposition from EC time series as our results show a clear difference of estimated parameter distributions and resulting
simulation uncertainty using the unsaturated and saturated flow states and the entire time period including the disinformative
data. A more precise distinction between the states is only possible if specific chemical indicators are available better
constrain the differentiation of flow states contributing to El Burgo spring discharge, which was not possible within the

frame of this study. But even though due to subjectivity, the identification of time periods or data sets that disinformative
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contributions to parameter estimation is a useful way to reduce the simulation uncertainty of hydrological models. Building
on previous research on disinformative data that focussed on disinformative discharge information, our approach provides a
systematic procedure that also includes hydrochemical observations to identify disinformative periods and to improve

parameter estimation of models for complex hydrological systems. Another limitation of our research is the low resolution of

the discharge and hydrochemical observations (7-8 days). Although our approach took into account this weakness by the soft

rules allowing for remaining uncertainty after the reduction of our 500,000 parameter sets, we believe that a higher

resolution of the observations (preferably 1 day) would have resulted in a more pronounced reduction of the initial sample

and consequently to a lower remaining uncertainty.

6  Conclusions

In this research, a new approach to estimate the information content of water quality data and the value of identifying most
informative periods for model parameter estimation has been proposed. Using soft rules to include discharge, NO3™ and SO42
observations into the parameter estimation procedure, we were able to reduce an initial sample of 500,000 parameter sets
during pre-defined flow states; one ofthe-includingbeing a known period of disinformative data. Comparing the distributions
of the initial and reduced parameter sets, we were able to quantify the information contained in our observations to identify
the parameters of our simulation model.

We found that the information content of the observations varies for the different states that we considered. NOs™ provided
most of its information when the unsaturated zone processes dominate the discharge behaviour of the spring. During the time
when the saturated zone controls the outflow behaviour, SO42 and discharge observations provide the best information to
identify the model parameters. Including the disinformative period, the information content of all data generally decreases,
as well as the uncertainty of simulations increases. We finally show that the combination of saturated and unsaturated flow
states provides the most precise information about the model parameters. Due to parameter interactions, even model
parameters that were not identifiable during the unsaturated or saturated flow state alone became identifiable. As a result, the
simulation uncertainty is significantly reduced compared to the simulations obtained by the entire time series of observations
that include the disinformative data.

Even though exemplified at a particular karst spring in Southern Spain, our approach is easily transferrable to other
modelling studies that want to use water quality data for the identification of disinformative periods and for the estimation of
model parameters. Our results add to previous findings on the value of removing disinformative data from model parameter
estimation to reduce simulation uncertainty. Furthermore our results can help building a better communication between
experimental hydrologists and modellers (Hartmann, 2016; Seibert and McDonnell, 2002) as hydrochemical data is often
used for system characterization. Our study showed that NO3™ and SO42 that often are used for understanding the unsaturated
and saturated zone processes also help to identify the corresponding process parameters in our model. Further research
should therefore include the evaluation of other hydrochemical variables that can be attributed to particular hydrological

processes to and their value to identify the corresponding processes in process-based simulation models._Also, a further
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disaggregation of the Kling Gupta efficiency in its components, correlation, bias and variability, contains high promise for

further advance of our approach.
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8  Appendix
The parameter Vimeans [Mm] and the distribution coefficient ase [-] control the variability of soil depths over the N model

compartments. Using them, the soil storage capacity Vs,; [mm] for every compartment i is defined by:

i asg
VS,i :Vmax,s (_j (3)

Vmaxs [mm] represents the maximum soil storage capacity and is derived from Vs:

2 N
) : 4)

N X ase
iy/2 X ase IVWXS(N) dx |1/2 ase
( j dx== ;VS :Vmax,s ~

Vmax,S = Vs ’ Zia;a:ilj

Where the compartment at which the volumes on the left equal the volumes on the right is found at ii2. The same
distribution coefficient ase is used to derive the epikarst storage distribution by the mean epikarst depth Ve [mm] (derivation

of Vimax e likewise t0 Vimaxs in Eq (4)):

i asg
VE,i :Vmax,E (_) ©)]

Actual evapotranspiration from each soil compartment E.c; is calculated by:

Ecii (t)= Epn (1) minb/s(:n,i (t)+ P(\t/): Qsuracei (t), Vs,

(6)

Potential evapotranspiration Eye: [Mm] is found by the Thornthwaite equation (Thornthwaite, 1948) and Qsurface,i [MmM] is the
surface inflow that originates from compartment i-1 (see Eq. (11)). Vsoiii [mm] is the volume of water stored in the soil at

time step t. Recharge from the soil to the epikarst Rggii [mm] is found by water balance:
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Repii (t) = Qe (t)+ maX[VSoil,i (t)+ P(t)+ Qsurfacei (t)_ Bt (t)_vs,i , 0] @)
with Qin(t) being the river infiltration (Eq. (5)). The epikarst storage coefficients Kg; [d] controls the outflow from the

epikarst:
min|Vg,;; (t)+ R (t) Ve,
QEpi'i(t): B/Epl,l( )K Epl,l() E, ] At (8)
E,i
KE,i = Kmax,E (%) 9

Here, Vepii [mm] is the water stored in the epikarst at time step t. Kmaxe is found by the mean epikarst storage coefficient Ke

and by applying the same distribution coefficient ase:

N - KE = TKmﬁ,E(l]aSE dx
5 N
) (10)

K Ke - (ag +1)

max, E =

Surface flow to the next model compartment Qsuri,i+1 [Mm] initiates when soil and epikarst storage capacities are exceeded:

Qsm,m(t) = maXB/Epi,i (t)"' REpi,i (t)_VE,i1 0] (11)
The vertical percolation from the epikarst is split into diffuse (Raitri [mm]) and concentrated groundwater recharge (Rconc,i

[mm]) again by a variable separation factor fci [-] and a distribution coefficient as [-]:
Rconc,i(t) = fC,i ' QEpi,i (t) (12)
Rdiff,i(t): (1_ fc,i)'QEpi,i(t) (13)

i )"
fe, = (Wj (14)

The diffuse recharge reaches the groundwater compartments (i = 1...N-1) directly below, while concentrated recharge is
routed laterally to the conduit system (compartment i = N, :). Similar to epikarst storage coefficients, variable groundwater
storage coefficients Kew,i [d] are calculated. The, groundwater contributions of the matrix system Qew,i [mm] in therefore

found by:

Vewilt)+ Ry i (t
QGWyi(t): GW,I(}2+ dlff,l( )’ | :1N _1 (15)
GW.,i

with
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The conduit system discharges from compartment N:

Voun0)+ 3 R )

;i1=N 17
K. (17)

where conduit storage coefficient is given by K¢ [d]. The discharge of the main spring Qmain [I %] is comprised by the sum of

KGW,i =Kc (Lj_ B (16)

QGW,i(t):

the matrix and the conduit system discharge rescaled to [I s*] the recharge area A [km2]:

A N
Qmain (t) = N ’ ;QGWJ (t) (18)

Solute transport within the VarKarst model follows the assumption of complete mixing for every model compartment.
Hence, enrichment only takes place due to evaporation and by geogene dissolution (only SO4%), for which varying
equilibrium concentrations are defined according to:

N —i HTM

19
N (19)

where asoq is a variability constant and Cmaxsoa is derived from csos [mg ] (similar to eq. (10)).

Cso4,i = Crrax s04 [
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