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Abstract. Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally

focus on the reproduction of low to high precipitation amounts at the concerned stations. This paper proposes significant

extensions to the multi-site daily precipitation model introduced by Wilks in the aim of reproducing the statistical features of

extremely rare events (in terms of frequency and magnitude) at different temporal and spatial scales. In particular, the first

extended version integrates heavy-tailed distributions, spatial tail dependence, and temporal dependence in order to obtain a5

robust and appropriate representation of the most extreme precipitation fields. A second version enhances the first version

using a disaggregation method. The performance of these models is compared at different temporal and spatial scales on a

large region covering approximately half of Switzerland. While daily extremes are adequately reproduced at the stations by all

models, including the benchmark Wilks version, extreme precipitation amounts at larger temporal scales (e.g. 3-day amounts)

are clearly underestimated when temporal dependence is ignored.10

1 Introduction

Stochastic precipitation generators are often employed in risk assessment studies to estimate the return periods of very rare

flooding events (e.g. 10,000-year events). The observed series of streamflows are too short to produce reliable estimations of

very rare and large floods. Typically, extreme hydrological events can be reproduced using long series of simulated precipitation

data as input to hydrological models (Lamb et al., 2016).15

In the last two decades, a number of precipitation models have been proposed to deal with the temporal and spatial properties

of daily precipitation, for both intermittency and amount, and all have different strengths and weaknesses. Many of these

models use exogenous variables to predict the statistical properties of precipitation using generalized linear models (Chandler

and Wheater, 2002; Mezghani and Hingray, 2009; Serinaldi and Kilsby, 2014b), atmospheric analogs (Lafaysse et al., 2014),

or modified Markov models (Mehrotra and Sharma, 2010). Introducing a link between exogenous atmospheric variables can20

be used to reconstruct past events, make predictions, or downscale GCM-based simulations of future climate. Such models

are classically referred to as statistical downscaling models (see Maraun et al., 2010, for a review). Closely related to this

approach, weather ‘types’ or ‘regimes’ (Ailliot et al., 2015) can be used to specifically account for different atmospheric
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circulation patterns. Using Hidden Markov Model (HMM) with transitions between these weather states, stochastic weather

generators can then simulate various aspects of the precipitation process (Rayner et al., 2016).

Alternatively, purely stochastic precipitation models can be used. These can be broadly classified into three main types:

– Resampling methods: The stochastic generation of precipitation fields can be performed using resampling techniques

such as theK-nearest neighbors (Buishand, 1991; Yates et al., 2003). Unobserved precipitation amounts can be obtained5

using perturbation techniques (Sharif and Burn, 2007).

– Random fields: Spatio-temporal precipitation models can simulate precipitation fields over a regular grid. This approach

is particularly useful for hydrological applications, since areal precipitation values over a basin are obtained directly.

Poisson cluster-based models (Burton et al., 2008, 2010; Leonard et al., 2008; McRobie et al., 2013) randomly simulate

rain disk cells, with random centers, radius and intensity, over the study area. Meta-Gaussian models (Vischel et al.,10

2009; Kleiber et al., 2012; Allard and Bourotte, 2015; Baxevani and Lennartsson, 2015; Bennett et al., 2017) are based

on truncated and transformed random Gaussian fields. Closely related, the turning band method can be used to simulate

intermittent precipitation fields with different type of advection (Leblois and Creutin, 2013). These model structures are

appealing since they are able to simulate realistic precipitation fields at fine spatial scales. However, their complexity

leads to numerous technical issues during parameter estimation and simulation, notably in terms of computational cost.15

Moreover, they are usually unable to represent large regions comprising very distinct precipitation regimes.

– Statistical multi-site models: In this last type of weather generator, the properties of precipitation are directly fitted at a

limited number of stations using different statistical structures. This type of generator preserves the inter-dependency be-

tween all pairs of stations, even when the area under study exhibits different precipitation regimes. Bárdossy and Pegram

(2009) and Rasmussen (2013) combine a multivariate autoregressive process and transformations (V-transform, power20

transformation) to simultaneously model precipitation occurrence and amount. More precisely, with these models, trans-

formed precipitation amounts follow truncated distributions. Alternatively, Wilks (1998) proposes a multi-site model

in which precipitation occurrence and amount are handled separately. Several extensions to this popular structure have

been proposed in the literature. Thompson et al. (2007) reformulate the Wilks model as a hidden Markov model, inferring

three precipitation states (’dry’, ’light’ and ’heavy’). Mehrotra and Sharma (2007b) apply semi-parametric techniques25

to add more flexibility to the spatial structure of precipitation occurrence and amount. Srikanthan and Pegram (2009)

propose a modified version in which daily, monthly and annual amounts are nested such that precipitation statistics are

preserved for all these levels of aggregation.

Mehrotra et al. (2006) compare three different precipitation models, the Wilks model, a HMM and a resampling approach,

and provide strong arguments in favor of the Wilks model in terms of performance, computation time, model, and level of30

complexity of the model structure. Furthermore, as indicated above, this model offers a flexible structure which can be applied

to a large number of stations with very different precipitation regimes (like in mountainous areas). This paper presents several

significant extensions of the Wilks precipitation model, referred to as GWEX versions, which will be used to generate long sce-

narios. These extensions aim at fitting the most extreme precipitation amounts at different temporal (1-day and 3-day amounts)
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and spatial scales. Novel components are thus introduced in GWEX, including robust estimation methods (regionalization

methods) for critical parameters impacting directly on the behavior of extreme precipitation at each station. Also included are

recent advances in the choice of the marginal distributions for daily precipitation amounts. Using 15,029 long daily precipita-

tion records (> 50 years) from around the world, Papalexiou et al. (2013) conclude that heavy-tailed distributions are generally

in better agreement with observed precipitation extremes. Follow-up studies (Papalexiou and Koutsoyiannis, 2013; Serinaldi5

and Kilsby, 2014a) apply extreme value theory to annual maxima and “peaks over threshold" (POTs) of a large subset of these

records and confirm that extreme daily precipitation is not adequately represented by light-tailed distributions. Based on sta-

tistical tests on 90,000 station records of daily precipitation, Cavanaugh et al. (2015) also come to the same conclusion. These

findings have important implications for precipitation models:

– Light-tailed distributions such as exponential, Gamma, and Weibull distributions, which are applied in the vast majority10

of the existing precipitation models, often lead to an underestimation of extreme daily precipitation amounts.

– While non-parametric densities with Gaussian kernels (Mehrotra and Sharma, 2007a, 2010) offer the flexibility to fit the

observed range of precipitation amounts, their tail also belongs to the domain of attraction of the Gumbel distribution

and suffers from the same drawbacks.

Alternatively, current statistical procedures consisting in fitting a flexible distribution to the bulk of the observations and15

using it for extrapolation are highly questionable, as major assumptions are usually violated (Klemeš, 2000a, b). Since the tail

of the distribution on precipitation amounts at each station will dictate the generation of the most extreme precipitation events,

important features of GWEX are:

– application of a heavy-tailed distribution to precipitation amounts at each station (Naveau et al., 2016),

– determination of robust estimates of the shape parameter of this distribution, which indicates the heaviness of the tail,20

using a regionalization approach, as in Evin et al. (2016).

Furthermore, following Bárdossy and Pegram (2009), GWEX also employs the copula theory to introduce a tail dependence

between the precipitation amounts simulated at the different stations. The second version of the GWEX model includes a

disaggregation method, the observed precipitation amounts being fitted at a 3-day scale in a first step. This paper compares the

performance of the different model versions and assesses the impact of the different statistical components (e.g. heavy-tailed25

distribution, tail dependence, etc.).

We first describe the study area in Section 2. The features of different multi-site precipitation models are then described in

Section 3. The evaluation framework, presented in Section 4, aims at assessing the performance of these models at different

spatial and temporal scales. Section 5 presents an application of these daily precipitation models to 105 stations located in

Switzerland, with a summary of the results focusing on the reproduction of extreme events. Finally Section 6 presents our30

conclusions.
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2 Data and study area

The Aare River basin covers the northern part of the Swiss Alps and has an area of 17,700 km2. Basin elevations approximately

range from 310 m.a.s.l. in Koblenz (entrance to Germany in the north) to 4270 m.a.s.l. at the Finsteraarhorn summit (in the

south of the basin). The mean annual precipitation for the basin as a whole is 1300 mm. The basin can be divided into five

main sub-basins with different hydrometeorological regimes highly governed by regional terrain features (Jura mountains in5

the north-west; Northern Alps in the south of the basin and lowlands in the middle).

Figure 1 shows the location of the 105 precipitation stations used for the development and evaluation of weather generators.

Located within or close to the Aare River basin, they correspond to the stations for which long daily time series of observations

with less than 3 years of missing data are available over the period 1930-2014. The 105 precipitation stations cover relatively

well the Aare River basin.10

The proposed precipitation models are designed to simulate, via a conceptual hydrological model, flood scenarios for the

whole Aare River basin and for its different sub-basins. For Switzerland, Froidevaux et al. (2015) show that the generation of

floods is mainly influenced by areal precipitation amounts accumulated over short periods (e.g. 1 to 3 days). These results are

obtained by analyzing a wide variety of basins, their areas ranging from 10 km2 to 12,000 km2. Therefore, the properties of the

weather scenarios must be evaluated at different spatial and temporal scales, from the high resolutions required to simulate the15

hydrological behavior of the system (e.g. sub-daily, 100 km2) to lower resolutions relevant at the scale of the entire basin (e.g.

n-days, 17,700 km2). In this study, the performance of the different precipitation models is evaluated at the station scale, at the

scale of 15 and 5 sub-basins partitioning the Aare River basin, and at the scale of the entire study area (see Section 5). Note

that for those evaluations, areal estimates of precipitation are obtained from the precipitation amounts at the stations using the

Thiessen polygon method.20

3 Multi-site precipitation model

As indicated above, GWEX refers to multi-site precipitation models that rely strongly on the structure proposed by Wilks

(1998). At each location k, let Pt(k) be a random variable representing the accumulated precipitation over day t. The structure

proposed by Wilks considers a hidden occurrence process Xt(k) that can be represented by a two-state Markov chain as

follows:25

Xt(k) =

0, if day t is dry at location k.

1, if day t is wet at location k.
(1)

Precipitation amount Pt(k) is then defined as:

Pt(k) = Yt(k)Xt(k) (2)

where Yt(k) is a random variable describing the non-zero precipitation amounts. Non-zero precipitation amounts Yt(k) are

thus modeled independently of precipitation occurrences Xt(k), which act as a mask.30
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Figure 1. Location of the 105 precipitation stations in Switzerland. Different partitions of the Aare River basin into 5 and 15 sub-basins are

shown.

3.1 Precipitation occurrence process

3.1.1 At-site occurrence process

At each location, the temporal persistence of dry and wet events is introduced with a p-order Markov chain model for Xt(k)

so that:

Pr{Xt(k) = 1|Xt−1(k), . . . ,X1(k)}= Pr{Xt(k) = 1|Xt−1(k), . . . ,Xt−p(k)}, (3)5

i.e. the probability of having a wet day at time t depends only on the p previous states, for days t− 1, . . . , t− p. While many

authors suppose that a first-order Markov is sufficient (e.g. Wilks, 1998; Keller et al., 2015), Srikanthan and Pegram (2009)

apply a 4-order Markov chain and show that it improves the reproduction of dry/wet period lengths. In this study, different

orders for this Markov chain are considered.

5



At each site, the probability of having a wet day at day t is given by the transition probability Pr{Xt(k) = 1|Xt−1(k) =

i1, . . . ,Xt−p(k) = ip}, where i1, . . . , ip are equal to 0 or 1. This Markov chain is thus fully characterized by a transition matrix

Π with dimension 2p.

3.1.2 Spatial occurrence process

The spatial dependence of the precipitation states Xt(k) is modeled using an unobserved Gaussian stochastic process Ut =5

{Ut(1), . . . ,Ut(K)}, where K is the number of stations. Here, Gaussian random variables Ut(k),k = 1, . . . ,K, are temporally

independent and Ut follows a multivariate normal distribution:

Ut ∼N(0,ΩX), (4)

where ΩX = {ωkl} is a positive-definite correlation matrix. At any location k, the precipitation state Xt(k) is assumed to be

completely determined by Ut(k) and the previous p states at the same location. Specifically, ifXt−1(k) = i1,. . . ,Xt−p(k) = ip,10

and p1 = Pr{Xt(k) = 1|Xt−1(k) = i1, . . . ,Xt−p(k) = ip}, then

Xt(k) =

1, if Ut(k)≤ Φ−1(p1).

0, otherwise,
(5)

where Φ[.] indicates the standard Gaussian cumulative distribution function.

Let ρkl = Corr(Xt(k),Xt(l)) denote the inter-site correlation between the states Xt(k) and Xt(l). Following Srikanthan

and Pegram (2009), ρkl can be expressed as:15

ρkl =
π00(k, l)−π0(k)π0(l)√
π0(k)π1(k)

√
π0(l)π1(l)

, (6)

where π0(s) = Pr{Xt(s) = 0} and π1(s) = Pr{Xt(s) = 1} denote the probabilities of having dry and wet states at location

s, respectively, and π00(k, l) = Pr{Xt(k) = 0,Xt(l) = 0} denotes the joint probability of having dry states at both locations k

and l.

The relationship between ωkl and ρkl is not direct since the temporal persistence of dry and wet events introduced at each20

station with a Markov chain also influences ρkl (Wilks, 1998). Figure 2 illustrates this relationship, obtained for the month of

July via Monte-Carlo simulations, for two close stations, GOS and ANT. In a first step, transition probabilities with a Markov

chain of order 4 are estimated for these two stations. Given these transition probabilities, stochastic simulations of occurrence

are then generated for different values of ωkl, leading to different values of ρkl. Since this relationship is monotonic (see Fig.

2), it can be used to identify the value ωkl leading to a specific ρ̂kl, namely the empirical value obtained from the observed25

time series of occurrence. The estimate of ωkl is found by iterating until the evaluation of the correlation between the simulated

precipitation states, ρkl, matches ρ̂kl. Note that a very high value for ρ̂kl cannot always be reached, even if ωkl = 1. This is

however a situation which rarely occurs in practice.
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Figure 2. Illustration of the relationship between ωkl and ρkl for the month of July and for stations GOS and ANT. A Markov chain of order

4 is considered in this example. The correlation between the observed states is ρ̂kl = 0.81 and can be reproduced using a bivariate Gaussian

distribution with a correlation parameter of ωkl = 0.98. The maximum correlation ρ which can be obtained if ωkl = 1 is ρMAX = 0.87.

3.2 Precipitation intensity process

Given the occurrence of precipitation Xt(k) at different locations k, GWEX models generate the amounts of precipitation

Yt(k) using:

– marginal heavy-tailed distributions,

– a tail-dependent spatial distribution,5

– an autocorrelated temporal process.

3.2.1 Marginal distributions

At a given location k, daily precipitation has often been modeled by light-tailed distributions: exponential and Weibull dis-

tributions (Bárdossy and Pegram, 2009); gamma distributions (Srikanthan and Pegram, 2009; Mezghani and Hingray, 2009);

mixture of exponential distributions (Wilks, 1998; Keller et al., 2015); mixture of gamma distributions (Chen et al., 2014).10
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However, as shown by many recent studies on a very large number of daily precipitation series (Papalexiou et al., 2013; Seri-

naldi and Kilsby, 2014a; Cavanaugh et al., 2015), exponentially decaying tails often result in a severe underestimation of

extreme event probabilities. The introduction of a heavy-tailed distribution is thus crucial for the reproduction of the most

extreme precipitation events (Hundecha et al., 2009).

In this work, the distribution representing the precipitation intensity at each location, Yt(k), is the E-GPD distribution. This5

distribution was first proposed by Papastathopoulos and Tawn (2013) who referred to it as an extended GP-Type III distribution

and has since been shown to adequately model the whole range of precipitation intensities (Naveau et al., 2016). Compared to

other heavy-tailed distributions applied to daily precipitation amounts (e.g. mixtures of GPD and gamma distribution, see Vrac

and Naveau, 2007), the E-GPD is parsimonious and provides a very good compromise between flexibility and stability, which

is an essential feature for extrapolation.10

This distribution can be described by a smooth transition between a gamma-like distribution and a heavy-tailed General-

ized Pareto distribution (GPD). This transition is obtained via a transformation function, G(ν), such that the whole range of

precipitation intensities is modeled without a threshold selection (Naveau et al., 2016):

FY {Yt(k)}=G
[
Hξ

{
Yt(k)/σ

}]
, (7)

where15

Hξ(z) =

1− (1 + ξz)
−1/ξ
+ if ξ 6= 0,

1− e−z if ξ = 0,
(8)

with a+ = max(a,0), is the standard cumulative distribution function of the GPD, σ > 0 is a scale parameter and G(ν) =

νκ,κ > 0. Thus, a 3-parameter set {σ,κ,ξ} needs to be estimated at each station.

3.2.2 Spatial and temporal dependence of precipitation amounts

Spatial and temporal dependence of precipitation amounts is represented using a Multivariate Autoregressive model of order 120

(MAR(1)). A MAR(1) process has been used by different authors (Bárdossy and Pegram, 2009; Rasmussen, 2013) to simul-

taneously represent spatial and temporal dependences. Let Zt denote a vector of K Gaussian random variables with mean 0

defined as:

Zt(k) = Φ−1
[
FY {Yt(k)}

]
. (9)

The stochastic Gaussian process Zt is assumed to follow a MAR(1) process defined as follows:25

Zt = AZt−1 + εt, (10)

where A is a K ×K matrix and εt is an innovation term described by a random K × 1 noise vector. The elements of εt have

zero means and are independent of the elements of Zt−1. The covariance matrix of εt is denoted by ΩZ . Following Bárdossy
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and Pegram (2009), A is taken to be a diagonal matrix with diagonal elements that are the lag-1 serial correlation coefficients

of the intensity process Yt(k). The matrix ΩZ can be expressed as:

ΩZ = M0−AM′0A, (11)

where M0 is the covariance matrix of Zt, which indicates the degree of spatial dependence between each pair of stations, and

M′0 is its transpose.5

Innovations εt are often assumed to follow a standard multivariate normal distribution. However, the upper tail dependence

of the multivariate normal distribution is 0, which means that extreme precipitation amounts simulated at the different sites are

not spatially dependent. To introduce a tail dependence between at-site extremes, a possibility is to use a Student copula to

represent the dependence structure of εt, providing an additional parameter, ν, related to the tail dependence. Both dependence

structures will be considered in the following.10

3.3 Parameter estimation

3.3.1 Occurrence process

Following Wilks (1998), parameters related to the occurrence process Xt(k) are estimated using the method of moments,

i.e. using the empirical counterparts of the parameters. Observed states are first obtained using a low precipitation threshold

(e.g. 0.2 mm). The matrix Π of transition probabilities are then estimated directly by the proportion of wet days Xt(k) = 115

following observed sequences {Xt−1(k), . . . ,Xt−p(k)}. Concerning the spatial occurrence process, ρ̂kl estimates are obtained

using the empirical counterparts of π00, π0 and π1 (see Eq. 6), which correspond respectively to the proportion of days for

which dry states are observed simultaneously at two locations (π̂00) and to the proportions of dry days π̂0 and wet days π̂1.

The correlation matrix Ω̂X is then composed of the cross-correlations ω̂kl obtained for all possible pairs of stations. If Ω̂X

is not positive-definite, the closest positive-definite matrix is considered (Rousseeuw and Molenberghs, 1993; Rebonato and20

Jaeckel, 2011). Furthermore, the seasonality of the occurrence process is taken into account by estimating these parameters on

a monthly basis.

3.3.2 Intensity process

E-GPD distributions are first fitted to precipitation amounts available at each location k. Local estimations of the GPD tail

exhibiting a lack of robustness, we propose to estimate the ξ parameter of the E-GPD (see Eq. 8) using a regionalization25

method similar to that of Evin et al. (2016), which can be summarized as follows:

1. Following Burn (1990), for each station, a region-of-influence (RoI) is delimited by a circle around the site, the radius

being determined using homogeneity tests. All the stations inside this RoI are then considered homogeneous up to a

scale factor.

2. The ξ parameters are then estimated with the maximum likelihood method using the precipitation observations from all30

the stations inside the RoI.
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This regionalization method is applied to the precipitation data available from 666 stations in Switzerland, for 4 different

seasons:

– Winter: December, January and February,

– Spring: March, April and May,

– Summer: June, July and August,5

– Autumn: September, October and November.

In this work, the estimation of the ξ parameter is bounded below by 0. When ξ < 0, the E-GPD distribution has an upper

bound. As shown by many recent studies (e.g. Serinaldi and Kilsby, 2014a), negative estimates of ξ are usually due to parameter

uncertainty and are not realistic. The two remaining parameters of the E-GPD, the scale parameter σ and the parameter of the

transformation κ, are estimated from the observations available at that station. Here, we use a method of moments based on10

probability weighted moments (see Naveau et al., 2016, for further details).

Concerning the spatial and temporal dependence of precipitation amounts, direct estimates of M0 and A cannot be obtained

since non-zero precipitation amounts Yt(k) are not observed. Here, we follow the methodology proposed by Wilks (1998) and

Keller et al. (2015). For each pair of stations, we generate long sequences of precipitation amounts Pt(k) using the estimated

parameters of the occurrence process (Π̂ and ω̂kl), the parameters of the marginal distributions and a correlation coefficient15

m0(k, l) indicating the degree of spatial dependence. Similarly to the occurrence process, m̂0(k, l) is then found iteratively

by matching the correlation between these long random streams with the observed correlation Corr(Pt(k),Pt(l)) (see Wilks,

1998; Keller et al., 2015, for further details). The correlation matrix M̂0 is then composed of the cross-correlations m̂0(k, l)

obtained for all possible pairs of stations. For each station, the estimates of the lag-1 serial correlation coefficients of the matrix

A are obtained using the same simulation approach.20

The matrix Ω̂Z , i.e. the estimate of the covariance matrix of the innovations εt, is then obtained using Eq. 11. Since Ω̂Z

is not necessarily positive-definite (see Eq. 11), the closest positive-definite matrix is taken as the covariance matrix of εt if

necessary. Given Ω̂Z , the parameter ν is estimated by maximizing the likelihood, as described in McNeil et al. (2005, Section

5.5.3.).

Similarly to the occurrence process, the seasonal aspect of the precipitation intensity is taken into account by performing the25

parameter estimation for each month, on a 3-month moving window.

3.4 Model versions

Different versions of the proposed multi-site precipitation model are considered in this paper, each corresponding to different

extensions of the Wilks model. A flowchart summarizing the increasing complexity of these models is presented in Figure 3.
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3.4.1 Wilks

A first benchmark version of the multi-site model, referred to here as ‘Wilks’, is considered. It closely matches the multi-site

model proposed by Wilks (1998). In particular:

– The at-site occurrence process is a Markov chain of order 1.

– The marginal distribution on precipitation amounts is a mixture of exponential distribution, for which the pdf is defined5

as:

f(x) =
w

β1
exp

(
− x

β1

)
+

1−w
β2

exp
(
− x

β2

)
. (12)

The parameters w, β1 and β2 are estimated using the Expectation-Maximization (EM) method (Dempster et al., 1977).

– Precipitation amounts are not considered to be temporally correlated, i.e. the matrix A in Eq. (10) is a zero matrix.

Furthermore, innovations εt follow a standard multivariate normal distribution and represent the spatial correlations.10

3.4.2 Wilks_EGPD

A modified Wilks version is considered, for which the at-site occurrence process is a Markov chain of order 4 and the mixture

of exponential distributions is replaced by the E-GPD distribution. As indicated above, Srikanthan and Pegram (2009) show

that a 4-order Markov chain improves the reproduction of dry/wet period lengths. This direct extension of the Wilks model is

used to illustrate the impact of using a Markov chain of order 4 compared to order 1. Differences in performance between a15

heavy-tailed distribution (E-GPD) and a low-tailed distribution (mixture of exponentials) will be highlighted.

3.4.3 GWEX

The initial GWEX model has the following characteristics:

– The at-site occurrence process is a Markov chain of order 4.

– The marginal distribution for precipitation amounts is the E-GPD distribution.20

– Precipitation amounts follow a MAR(1) process with innovations modeled by a Student copula.

3.4.4 GWEX_Disag

In this paper, an alternative version, referred to as GWEX_Disag, is also proposed. GWEX_Disag is applied to 3-day precipi-

tation amounts and has the same characteristics as GWEX, except that:

– The at-site occurrence process is a Markov chain of order 1.25

– A threshold of 0.5 mm separates dry and wet states.
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With GWEX_Disag, daily scenarios are first generated at a 3-day scale and then disaggregated at a daily scale using a method

of fragments (e.g. Wójcik and Buishand, 2003). Simulated 3-day amounts are disaggregated using the temporal structures of

the closest observed 3-day amounts, in terms of similarity of the spatial fields. The same observed 3-day sequence is thus used

to disaggregate the 3-day amounts simulated at the 105 stations, which ensures the spatial coherence of these disaggregated

amounts. Details of the disaggregation method are provided in Appendix A. Compared to GWEX, GWEX_Disag offers the5

following advantages:

– 3-day precipitation amounts are directly modeled and have a better chance to be adequately reproduced,

– the disaggregation of 3-day precipitation amounts creates an inherent link between the occurrence and the intensity

processes. For very extreme precipitation events, we can expect these processes to be dependent (higher chance to be in

a wet state over the whole Aare River basin, as well as large and persistent precipitation amounts).10

Wilks

Wilks_EGPD

GWEX

GWEX_Disag

.Markov chain of order 4 for the 
transitions between dry & wet states
.The E-GPD is the marginal distrib.
of precipitation amounts

Temporal dependence is introduced
with a MAR(1) process. Innovations
are modeled with a Student copula

. GWEX is applied to 3-day prec.
amounts
. Simulated 3-day amounts are
disaggregated at a daily scale

Figure 3. Flowchart of the different model versions. The differences between the models are summarized inside green boxes.
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4 Multi-scale evaluation

The proposed stochastic models intend to preserve the most critical properties of precipitation at different spatial and temporal

scales, especially extreme precipitation amounts. For hydrological applications, it can be assumed that a precipitation model

preserving these properties has a better chance of adequately reproducing flood properties for small sub-basins as well as

for large basins. This statement is supported by empirical evidence provided by Froidevaux (2014) and Froidevaux et al.5

(2015) for our study area (i.e. Switzerland). Using 60 years of gridded precipitation data, Froidevaux et al. (2015) show that,

in Switzerland, high discharge events are usually triggered by meteorological events with a duration of several days, in late

summer and autumn. Typically, the 2-day precipitation sum before floods is most correlated with flood frequency and flood

magnitude.

The performance of the different multi-site precipitation models is thus assessed for multiple spatial and temporal scales. We10

investigate whether or not the statistical properties of precipitation data are adequately reproduced at the scale of the stations

and for different partitions of the Aare River basin (see Figure 1). In order to achieve this, 100 daily precipitation scenarios are

generated, each scenario having a length of 100 years.

For the different evaluated statistics, performance is categorized according to the comprehensive and systematic evaluation

(CASE) framework proposed by Bennett et al. (2017). The CASE framework enables a systematic comparison of stochastic15

models and offers a consistent way of computing the performance metrics, which is important in order to obtain a fair assess-

ment of the strengths/weaknesses of the different model versions. This approach consists in assigning one of three categories:

‘good’, ‘fair’ and ‘poor’ performance, to each metric, according to the agreement between the observed metric and the sim-

ulated metrics computed from the 100 scenarios. Table 1 summarizes the tests leading to each performance category. ‘Good’

performance is obtained when the observed metric is inside the 90% probability limits of the 100 simulated metrics (case 1). It20

indicates that simulated metrics are in good agreement with the observed metric. However, an observed metric can obviously

lie outside these limits without necessarily indicating a failure of the model. In this case, ‘fair’ performance may assigned if

either of the following two rules is satisfied:

1. Case 2: The observed metric is outside the 90% probability limits but within three standard deviations of the simulated

mean, which corresponds to the 99.7% probability limits if we assume that the uncertainty in the statistics is normally25

distributed. This case covers the situation where we could expect that the observed metric is outside the 90% limits due

to sampling uncertainty.

2. Case 3: The absolute relative difference |(Sobs− S̄sim)/Sobs| between the observed metric Sobs and the mean of the

simulated metrics S̄sim is 5% or less. If the variability of the simulated metrics is very small, it can happen that the

observed metric lie outside the 99.7% limits without being too far from the simulated mean in terms of relative difference.30

Otherwise, we consider that performance is ‘poor’, indicating that the model fails to reproduce this particular statistical

property.
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In summary, ‘good’ performance represents cases for which the observed metric is clearly well reproduced by the model,

whereas ‘fair’ performance indicates a reasonable match between the observed and the simulated metrics. The number of

metrics for which ‘poor’ performance is obtained is thus the first criteria indicating the overall performance of a model.

Table 1. Performance categorization criteria from Bennett et al. (2017).

Performance Clas-

sification
Key Test

‘good’ Observed metric inside 90% limits (case 1)

‘fair’

Observed metric outside 90% limits but within the 99.7%

limits (case 2) OR absolute relative difference between the

observed metric and the average simulated metrics is 5% or

less (case 3)

‘poor’ Otherwise (case 4)

For illustration purposes, we also present the results of the evaluation for three precipitation stations corresponding to

different hydrological regimes (see Table 2). Figure 1 shows the 3 (out of 105) selected precipitation stations. Station ANT (at5

Andermatt) is located in a glacial basin, station GLA (at Glarus) in a nival basin and station MUR (at Muri) in a pluvial basin.

Table 2. Hydrological regimes and characteristics of extreme floods in Switzerland (Froidevaux, 2014).

Mean elevation

[m]
Season

Triggering

events

Glacial > 1900 summer
showers + snow

melt

Nival 1200− 1900 summer, spring
showers, long

rain

Pluvial < 1200 summer long rain
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5 Results

This section presents the results of the multi-scale evaluation framework (see Section 4) for several metrics related to the

occurrence process of the precipitation events, daily amounts, and precipitation extremes. Summary assessments are provided,

with several statistics provided for all the spatial scales of interest.

The precipitation observations are split into two sets: (1) 45 years randomly chosen among the period 1930-2014 are used5

to estimate the parameters and (2) the 40 remaining years are used to evaluate the performance of the models. This separation

between an estimation set and a validation set is crucial to test the ability of the model to adequately represent the statistical

properties of events which have not been used during the fitting procedure. In this study, the multi-scale evaluation is only

applied to the 40-year validation set.

5.1 Parameter estimation and generation of scenarios10

The different model parameters are estimated with the 45-year estimation set of observations, following the methodology

described in section 3.3, except for the ξ parameter of the E-GPD which is estimated using all available precipitation data in

Switzerland. This approach ensures that robust estimates are obtained for this parameter, which is crucial in our context since

extreme simulated precipitation amounts are highly sensitive to the ξ parameter.

For GWEX, the estimation of the ξ parameter is performed at a daily scale. In order to highlight spatial patterns of ξ over15

Switzerland, we show the maps of the interpolated parameter estimates in Figure 4. Fat tails are obtained in the southern and

eastern parts of the Aare River basin, particularly during spring and summer seasons. In the south of Switzerland, a region

with high estimates (ξ ∼ 0.2), highlighted in red, is obtained for the summer and autumn seasons. These high ξ estimates are

consistent with the presence of strong convective storms in this mountainous region during this period of the year (Rudolph

and Friedrich, 2012).20

For GWEX_Disag, the regionalization method is applied at a 3-day scale (see Figure 5). The resulting estimates are similar

to the ones obtained at a daily scale. However, note that the very high estimates obtained during the summer season at a daily

scale are lower at a 3-day scale. This seems to confirm the interpretation of these high ξ estimates, i.e. the relationship between

summer convective storms and high ξ estimates is not as strong at a 3-day scale, since storms of this type usually have a shorter

duration. Note that non-zero ξ estimates in Figures 4 and 5 (in green, yellow and red) indicate that low-tailed distributions lead25

to an underestimation of extreme precipitation in these regions.

Figure 6 compares empirical and fitted distributions (mixture of exponentials and E-GPD) at a daily scale, for three il-

lustrative stations and for the months of January, April, July and October. Both distributions fit the observed precipitation

amounts reasonably well. Concerning the highest precipitation intensities, it is hard to draw conclusions on a significant

over/underestimation. Indeed, local assessments of precipitation extremes are often inconclusive due to insufficient information30

on the distribution tails (Papalexiou and Koutsoyiannis, 2013).
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Figure 4. Regionalized ξ parameters at a daily scale, for the different seasons. Here, we present the spatial interpolation of at-site estimates

for a better readability of their variability.

For each multi-site precipitation model investigated in this paper (Wilks, Wilks_EGPD, GWEX and GWEX_Disag), we

generate 100 daily precipitation scenarios with these parameter estimates, each scenario having a length of 100 years. These

scenarios are compared to the precipitation observed for the 40-year validation period.

5.2 Occurrence process

The monthly number of wet days obtained from observed and simulated precipitation data are compared in Figure 7. The5

average number of wet days is adequately reproduced by all models, with approximately 30% of cases with ‘poor’ perfor-

mance. These ‘poor’ performance cases seem to occur mainly during the winter and spring seasons. The standard deviation

of the monthly number of wet days indicates the inter-annual variability of this metric. While the magnitudes of the standard

deviations from the simulated precipitation roughly match the corresponding observed standard deviations, it seems that the

highest observed variabilities are underestimated by all the models, most markedly by the Wilks model.10
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Figure 5. Regionalized ξ parameters at a 3-day scale, for the different seasons. Here, we present the spatial interpolation of at-site estimates

for a better readability of their variability.

Figures 8 and 9 show the distributions of observed and simulated dry and wet spells, respectively, for the three illustra-

tive stations. Concerning the distributions of dry spell lengths, the Wilks_EGPD, GWEX and GWEX_Disag models lead to

adequate performance, the performance being classified as ‘good’ in 48%, 48% and 49% of the cases, respectively. The per-

formance of the Wilks model is slightly lower because of an imprecise reproduction of the frequency of the shortest dry spells.

This difference in performance is explained by the order of the Markov chain used to simulate the transitions between dry and5

wet states, which is the only difference between the occurrence processes of Wilks and Wilks_EGPD or GWEX. The 4-order

Markov chain of the Wilks_EGPD and GWEX models seems to provide a more adequate representation of these transitions

than the first-order Markov chain of the Wilks model, confirming previous findings (Srikanthan and Pegram, 2009).

The frequencies of wet spell lengths are adequately reproduced by the Wilks, Wilks_EGPD and GWEX models, with more

than 50% of ‘good’ performance. The lower overall performance of GWEX_Disag for this metric is due to a slight underesti-10

mation of the longest wet spells for some stations (which is however not the case for the stations shown in Fig. 9).
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Figure 6. Empirical and fitted distributions (dashed curves for mixture of exponentials and solid curves for E-GPD) at a daily scale, for the

three illustrative stations and for the months of January, April, July and October.

5.3 Inter-site correlations of precipitation amounts

Figure 10 compares observed and simulated inter-site correlations for the different model versions. Unlagged cross-correlations,

which represent the spatial dependence, are close to the 1:1 diagonal line, as expected given that these correlations are explicitly

taken into account by all model versions. However, a slight underestimation can be observed, especially concerning correla-

tions above 0.8. This underestimation is a side-effect of the transformation applied to obtain a positive-definite matrix (see5

section 3.3).

An adequate reproduction of lag-1 inter-site correlations is important for the reproduction of persistent precipitation events.

Simulated lag-1 cross-correlations are close to 0 for the Wilks and Wilks_EGPD models, as expected given that these versions

ignore the temporal dependence. Consequently, these two model versions significantly underestimate observed lag-1 cross-

correlations, which range between 0 and 0.4. Concerning GWEX, lag-1 serial autocorrelations at the stations (black points in10

the bottom plots) are perfectly aligned along the 1:1 line, as expected given that they are explicitly fitted by the MAR(1) process.

Simulated and observed lag-1 cross-correlations are roughly in agreement, though the largest observed cross-correlations are

underestimated. This is also the case to a lesser extent for GWEX_Disag. However, the agreement between observed and

simulated cross-correlations is much stronger.
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Figure 7. At-site number of wet days for all sites and months: inter-annual mean and standard deviation (sd). The 90% probability limits are

shown for the different seasons. Overall performance is represented by the indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for

all sites and months (105× 12 = 1260 cases).
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Figure 8. Distribution of dry spell lengths at the stations: The 90% probability limits are shown. Overall performance is represented by the

indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for all sites. Inset plots provide a zoom for durations of 1 to 5 days.
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Figure 9. Distribution of wet spell lengths at the stations: The 90% probability limits are shown. Overall performance is represented by the

indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for all sites. Inset plots provide a zoom for durations of 1 to 5 days.
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Figure 10. Comparison of unlagged inter-site correlations (M0) and lag-1 inter-site correlations (M1) in observed and simulated precipitation

series, for the winter (DJF) and summer (JJA) seasons and for the different model versions considered. Black points indicate lag-1 serial

autocorrelations at the stations.
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5.4 Daily amounts

The reproduction of precipitation amounts at a daily scale is assessed in Figure 11, for all spatial scales and months. For all

models, we obtain a reasonable agreement between observed and simulated average daily amounts (90% limits close to the 1:1

line), with more than 40% of ‘good’ cases and less than 30% of ‘poor’ cases. The standard deviations of these daily amounts

are also adequately reproduced (Fig. 11, bottom plots).
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Figure 11. Daily amounts for all spatial scales and months: inter-annual mean (top) and standard deviation (sd, bottom). The 90% probability

limits are shown. Overall performance is represented by the indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for all spatial

scales and months.
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5.5 Extreme precipitation amounts

Figures 12 and 13 show the relative differences, expressed as a percentage, between observed and simulated 10-year and

50-year return periods, at daily and 3-day scales, respectively, for all spatial scales. The percentiles corresponding to these

return periods are estimated empirically using the Gringorten formula (Gringorten, 1963). These figures provide an overview

of model performance regarding extreme precipitation amounts.5

At the daily scale (Figure 12), there is no major difference in performance between the four models. For the 10 years and 50-

year return periods, the number of ‘poor’ performance cases is below 20% for all models. The relative differences are globally

centered around zero, which means that the mixture of exponentials (Wilks model) and the E-GPD (Wilks_EGPD, GWEX and

GWEX_Disag models) all produce reasonable performance at this temporal scale. However, if we compare the 50-year return

periods simulated by the Wilks and Wilks_EGPD models, we note an increase of 10% of ‘good’ performance cases (from 65%10

to 75%), which can be explained by a slight underestimation of the largest maxima with Wilks, for some stations.

Comparing Wilks_EGPD and GWEX, the scores are almost identical, which suggests that the tail dependence introduced

by the Student copula in GWEX does not produce a significant improvement for the reproduction of extremes. However, if we

focus on the largest spatial scales (at the basins), and in particular on the entire Aare River basin (orange lines), it seems that

the slight underestimation of the 50-year return periods obtained with Wilks_EGPD is reduced thanks to this tail dependence.15

GWEX_Disag also reproduces adequately the largest precipitation amounts at all spatial scales, even if a slight overestimation

of the maxima at the largest spatial scales can be suspected. Nevertheless, this performance shows that the disaggregation

process leads to an adequate reproduction of the daily maxima.

At the 3-day scale (Figure 13), the underestimation of the maxima by Wilks and Wilks_EGPD is clear at all spatial scales.

GWEX does not suffer from the same shortcomings, which means that the MAR(1) process (Eq. 10) improves the temporal20

structure of the largest 3-day precipitation amounts. GWEX_Disag being fitted at a 3-day scale, this model logically leads to

an adequate reproduction of extreme 3-day precipitation amounts. The strategy consisting in simulating 3-day precipitation

amounts, which are then disaggregated at a daily scale, presents several advantages:

– The model being fitted at a 3-day scale, 3-day maxima are adequately reproduced.

– As the method of fragments uses observed 3-day temporal structures to disaggregate 3-day amounts, the daily amounts25

resulting from a generated 3-day maxima are physically plausible. In particular, the temporal and spatial structures of

large and persistent observed precipitation events are used, which ensures consistency between the generated extreme

events at the daily and 3-day scales.

GWEX and GWEX_Disag both adequately reproduce extreme precipitation amounts at daily and 3-day scales, as well as

at all spatial scales. As indicated above, these models will be used to generate long precipitation scenarios, which will feed a30

hydrological model in order to produce flood scenarios. Ultimately, the reproduction of the flood properties using GWEX and

GWEX_Disag will indicate which model is the most adequate. Since they correspond to the same model version fitted at daily

and 3-day scale, respectively, we can expect that resulting floods will have slightly different properties.
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Figure 12. Daily annual maxima for all spatial scales: Relative differences, expressed as a percentage, between observed and simulated

10-year (top plots) and 50-year (bottom plots) return periods. The 90% probability limits are shown. Overall performance is represented by

the indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for all spatial scales.
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Figure 13. 3-day annual maxima for all spatial scales: Relative differences, expressed as a percentage, between observed and simulated

10-year (top plots) and 50-year (bottom plots) return periods. The 90% probability limits are shown. Overall performance is represented by

the indicated percentages of ‘good’, ‘fair’ and ‘poor’ performance for all spatial scales.
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6 Conclusions and outlook

Precipitation models are usually developed for the purpose of risk assessment in relation to natural hazards (e.g. droughts,

floods). Most existing precipitation models aim at reproducing a wide range of statistical properties of precipitation, at different

scales, in order to be used as a general tool in different contexts. In this study, our main objective was to provide a precipitation

generator that could be used together with a hydrological model for the evaluation of extreme flooding events in a region5

covering approximately half of Switzerland. As a consequence, we were especially interested in the reproduction of extreme

precipitation amounts at medium to large spatial scales. As the daily and 3-day precipitation amounts are a major determinant

of flood magnitudes in large Swiss basins (Froidevaux et al., 2015), an adequate reproduction of precipitation at these time

scales was also required.

In this paper, we considered different multi-site precipitation models targeting the reproduction of extreme amounts at10

multiple temporal (daily, 3-day) and spatial scales. Different extended versions of the model introduced by Wilks (Wilks,

1998) have been proposed. A first direct extension, Wilks_EGPD, considers a Markov chain of order 4 instead of order 1)

for the at-site occurrence process. Furthermore, taking advantage of recent advances regarding extreme precipitation, a heavy-

tailed distribution (instead of a mixture of exponential distributions), the E-GPD, is applied to the precipitation intensities at

each station. Two important extensions of Wilks_EGPD, named GWEX and GWEX_Disag, are then considered. In GWEX15

model, temporal and spatial dependencies of the occurrence and intensity process are introduced using the copula theory and a

multivariate autoregressive process. A second version, GWEX_Disag, applies the same model, but at a 3-day scale. The 3-day

simulated amounts are then disaggregated using an adaptation of the method of fragments (Wójcik and Buishand, 2003).

In this study, we support the use of a systematic evaluation framework. The CASE framework proposed by Bennett et al.

(2017) provides a useful tool in this respect, making it possible to fairly compare performance between precipitation models.20

Regarding the reproduction of extreme precipitation, evaluations until now have usually been qualitative (e.g. interpretations

based on one or two examples) and limited in terms of spatial scales (often only at the stations). The evaluation of extreme

precipitation amounts proposed in this paper is multi-scale in time (daily and 3-day scale) and space (at the stations, for two

different divisions of the study area into sub-basins, and for the entire Aare River basin).

The different multi-site precipitation models have been applied to 105 stations located in Switzerland. A multi-scale evalua-25

tion led to the following conclusions:

– A fourth-order Markov chain outperforms a first-order Markov chain for the transitions between dry and wet states,

notably for the reproduction of dry spell lengths.

– At the scale of the stations, daily amounts (average, standard deviations and extremes) are reasonably well reproduced

by all the models.30

– With only three parameters, the E-GPD provides a parsimonious and flexible representation of the whole of precipitation

amounts. Its GPD tail is in agreement with recent results showing that extreme precipitation amounts must be modeled

by heavy-tailed distributions (Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014a). Furthermore, robust
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estimates of the parameter controlling the heaviness of the distribution tail are obtained using a regionalization method.

In our study area, the E-GPD does not bring a significant improvement of the performance compared to the mixture

of exponential distributions. However, the general framework proposed in this paper can be applied to very distinct

precipitation regimes and the possible heavy tail of the E-GPD might be valuable in other areas.

– At a 3-day scale, precipitation extremes are severely underestimated by Wilks and Wilks_EGPD. This underestimation5

can be explained by an incorrect representation of the persistence by these models.

– GWEX and GWEX_Disag adequately reproduce extreme precipitation amounts at daily and 3-day scales, and at all

spatial scales. These models are deemed adequate for the evaluation of extreme flood events.

Future research will investigate if the floods simulated by a hydrological model using the generated precipitation scenarios

have statistical properties in agreement with observed floods. An extensive investigation is currently underway with a dis-10

tributed version of the HBV hydrological model, applied to 87 sub-basins of the whole study area and using precipitation

scenarios produced by GWEX as inputs. This hydrological evaluation of our weather scenarios will be presented in future

publications.
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Appendix A: Temporal disaggregation from a 3-day scale to a daily scale

For a 3-day period D = {d,d+ 1,d+ 2} starting on a day d, the observed and simulated precipitation amounts at a station

k are denoted by YD(k) and ỸD(k), respectively. We want to disaggregate the simulated 3-day amount for the period D̃ =

{d̃, d̃+ 1, d̃+ 2}. This disaggregation is achieved in the following steps:

1. A set of observed 3-day sequences are retained as candidate periods D according to two criteria:5

– Season: Periods D̃ and D must belong to the same season, as defined in Section 3.3.

– Mean intensity: Simulated and observed precipitation fields must have the same order of magnitude. Let q0.5, q0.75,

q0.9 and q0.99 denote the quantiles of the mean observed precipitation intensities over all the stations associated

with probabilities 0.5, 0.75, 0.9, and 0.99, respectively. Observed and simulated 3-day periods are classified in

5 groups according to their mean intensity Ȳ = 1
n

∑
k YD(k): dry periods (Ȳ < q0.5), moderately wet periods10

(q0.5 ≤ Ȳ < q0.75), wet periods (q0.75 ≤ Ȳ < q0.9), very wet periods (q0.9 ≤ Ȳ < q0.99) and extremely wet periods

(q0.99 ≥ Ȳ).

This first selection of candidate periods aims at increasing the chance of retaining periods corresponding to similar

meteorological events.

2. For each observed 3-day candidate period D, we compute the following score:15

SCORE(D̃,D) =
∑
k

∣∣∣∣∣ Ỹd̃−1(k)∑
k Ỹd̃−1(k)

− Yd−1(k)∑
k Yd−1(k)

∣∣∣∣∣+∣∣∣∣∣ ỸD(k)∑
k ỸD(k)

− YD(k)∑
k YD(k)

∣∣∣∣∣.
This score measures the similarity between the simulated spatial field for the period ỸD(k) and the observed spatial field

for the period D̃ and also takes into account the similarity between the spatial fields for the previous days d̃−1 and d−1.

Absolute differences between relative precipitation intensities are computed (the lowest scores are therefore obtained for20

spatial fields with similar shapes), among the observed periods corresponding to the same season and order of magnitude

selected in the previous step.

3. For each simulated period D̃, the observed precipitation fields corresponding to the 10 lowest scores are retained. For

each station k, if a positive precipitation amount has been simulated (ỸD̃(k)> 0), we look at the corresponding observed

amount YD(k). If YD(k) = 0, this observed period cannot be used to disaggregate ỸD̃(k) and we look at the next best25

observed field among the 10 selected fields. If the observed field contains a positive precipitation amount at this station

(YD(k)> 0), then we obtain the simulated daily amount for day d̃ as follows:

Ỹd̃(k) = Yd(k)×
ỸD̃(k)

YD(k)
, (A1)
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with similar expressions for days d̃+ 1 and d̃+ 2. Simulated daily amounts correspond to the observed daily amounts,

rescaled by the ratio between the simulated and observed 3-day amounts. The 3-day simulated amounts and observed

temporal structures are thus preserved.

4. While the 3-day spatio-temporal consistency is generally conserved by applying the preceding steps, it can happen that

the simulated 3-day amount is positive even though there is no positive precipitation among the 10 best 3-day observed5

fields. In this case, we seek similar observed amounts at this station only and randomly choose one 3-day period among

the 10 best 3-day periods.
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