
Authors reply on comment of editor

Comment ED: The manuscript hess-2017-226 ”Stochastic generation of
multi-site daily precipitation for the assessment of extreme floods in Switzer-
land” has received two qualified review reports. Your replies seem to account
properly to all Reviewers’ comments. Thus, I would like to invite you to
submit a revised version of the manuscript, which will be put again at the
attention of the two Reviewers.

We thank the editor for his response. Following Reviewers’ comments,
major changes have been made to the manuscript. This document de-
tails these changes (with the line numbers corresponding to the marked-up
manuscript version, with track changes) and provides complete replies to ref-
eree #1 and #2. We hope that the revised manuscript responds to their
concerns.

Authors reply on comments of referee #1

We thank the referee for this thorough review and for the numerous con-
structive suggestions. The general presentation of the manuscript has been
modified following these suggestions.

1. General comments

Comment R1 #1.1: The title of the paper is a bit misleading. The
three models may be used for the spatial assessment of floods and hydro-
logical modelling is mentioned not only in the title, but also throughout the
manuscript. However, the precipitation models are not applied in an impact
assessment in this study and for this reason in my eyes the title should solely
contain the comparison of three precipitation models. It is a bit irritating
that the authors refer to the importance of several aspects of the precipita-
tion model performance whose importance is not really demonstrated.
We agree that the title was misleading. It has been replaced by ’Stochastic
generation of multi-site daily precipitation focusing on extreme events’. We
think that it is important to indicate the emphasis on the reproduction of
very large precipitation events, in terms of intensity, duration, and spatial
extent.
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Comment R1 #1.2: The names of the new precipitation models are a
bit misleading. First, “1D“ and “3D” give the impression of any type of
one- and three-dimensional simulation methodology. However, they repre-
sent days (“D”). I would rename the models into something more suitable.
This is an excellent suggestion and the names for these versions have been
replaced by:

1. Wilks: the model proposed by Wilks (1998),

2. Wilks EGPD: A first direct extension of ’Wilks’, with the E-GPD and
a Markov chain of order 4, as suggested by the referee (see comment
R1 #1.6),

3. GWEX: the current GWEX-1D model,

4. GWEX Disag: the current GWEX-3D model. It clearly indicates the
disaggregation step which follows up the simulation at a 3-day scale.

Comment R1 #1.3: As far as I understand from the paper, the new
GWEX models are actually “Wilks models” but with a new method to sim-
ulate the precipitation amounts (using temporally and spatially correlated
random numbers from an autoregressive process and using a Student copula
for the spatial component). I think this should be stated as such in the paper
as the manuscript presents the new models more as a revolution rather than
an evolution. So one of the first sentences could be that the paper deals with
two modifications of the Wilks approach.
We agree. The fact that GWEX are evolutions of the Wilks model must be
clearly stated. In fact, it was already indicated at p.2/l.25 and p.4/l.10 (first
version of the manuscript) and throughout the presentation of the models.
As suggested by the referee, this point is now indicated directly in the ab-
stract and in the introduction (see p.1/l.3 and p.3/l.15). However, it must
be underlined that GWEX is a significant evolution of the model introduced
by Wilks (1998). First, as indicated by the referee, the methodology applied
to simulate the precipitation amounts is considerably modified. We consider
different temporal and spatial dependences, and we also discuss the choice
of the marginal distribution in details, which is currently overlooked in the
literature of precipitation stochastic models. Second, GWEX-3D (which will
be named GWEX Disag) combines simulations at a 3-day scale and a dis-
aggregation approach, which represents a further step in the complexity of
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the model. In our opinion, GWEX cannot only be considered as a slight
modification/evolution of the Wilks model.

Comment R1 #1.4: The motivation behind the study and for the new
model developments is the impact assessment. However, without the same
the reader will not be able to really understand the sensitivity of certain
statistics in regard to the assessment of extreme floods. I think the impor-
tance of some of the statistical metrics should be explained in more detail
referring to the area of their application, and proof must be given of their
relevance. Other literature in such a study (complex mountain region) is not
very convincing to me.
We thank the referee for this suggestion and additional details regarding the
importance of the statistical metrics have been provided in the revised version
(section 2, p.5, lines 2-4; section 4, p.16, lines 4-9). In particular, Froidevaux
(2014) analyze meteorological events triggering floods in Switzerland. These
studies were very briefly mentioned at the beginning of p.12 in the original
manuscript and these results are now discussed in more details. However
providing a proof of the relevance of these metrics seems complicated with-
out the hydrological application (which is clearly beyond the scope of this
paper, as discussed in comment R1 #2.14.). If the referee has more specific
metrics that could be presented, we would be glad to include them in our
study.

Comment R1 #1.5: The abstract is incomplete and must be much more
detailed and specific. What is an “event”? What is “large”? What are “re-
cent advances”? The abstract should mention the Wilks model, the two new
models (maybe also a short sentence how they work) and the basic outcomes
of the study.
We thank the referee for this constructive suggestion. The abstract has been
substantially modified and extended.

Comment R1 #1.6: The Wilks model could likewise be applied with E-
GPD distributions for precipitation intensities and Markov chains of the order
4. That is, revealed weaknesses of the Wilks model can easily be addressed.
I recommend adapting the Wilks approach for a more objective comparison.
The original Wilks approach is not a given and was just one application for
a specific dataset in the US and in my eyes it should always be revised for
other study areas and climates.
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We thank the referee for this suggestion. An additional version of the Wilks
model, Wilks EGPD, has been added to the comparison of the three previous
models. Wilks EGPD considers a E-GPD instead of a mixture of exponential
distributions for the marginal distributions, and a Markov chain of order 4
instead of order 1.

Comment R1 #1.7: For flood modelling, the lagged cross correlations
(see Wilks 1998, page 183) can be very important as they represent the pro-
gression of weather systems across the study area. Especially at larger scales
the progression of weather events may be important. I strongly recommend
plotting these statistics for all three models.
We thank the referee for this recommendation, which is also proposed by
the referee #2. Lagged and unlagged inter-site correlations of precipitation
amounts are now presented in Figure 10 (p.26) in Section 5.2.

Comment R1 #1.8: The autocorrelation of precipitation is addressed by
MAR(1) models in the GWEX models. I would recommend plots for the
autocorrelation of the precipitation intensities for some sites to see potential
differences in their performance.
We thank the referee for this suggestion. Figure 10 (p.26) also presents an
assessment of the autocorrelation of the precipitation amounts at the stations
(black points), together with the cross-correlations (gray points).

2. Specific comments

Comment R1 #2.1. Line 8. I think there is a language issue.
This sentence has been reformulated in the revised version (see p.1, lines
14-16).

Comment R1 #2.2. Line 10. Not only conceptual models. There are
more recent studies for coupling WGs with impact models.
Thanks for this remark. The authors are not aware of such impact models.
If the reviewer has specific references, they can be included in the final ver-
sion of the manuscript. The word ’conceptual’ has been removed in order to
include other types of hydrological models (e.g. distributed models).
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Comment R1 #2.3. Page 1 bottom/ Page 2 top: In my eyes the clas-
sification is not fully correct. All these models are multi-site models. Also
resampling methods are multi-site models. I recommend a more suitable
classification even though I admit that the variety of the existing multi-site
models makes a clear classification more and more difficult (also the authors
combined parametric and non-parametric techniques).
We agree that the terminology ’multi-site models’ is too vague and does not
describe precisely the references given afterwards. This class of models has
been renamed by ’Statistical multi-site models’. A detailed summary of the
literature for this class of models is now provided, including specific exten-
sions of Wilks model and how the proposed developments differ from them
(p.2, lines 21-34).

Comment R1 #2.4. Page 4, Line 8. Are Thiessen polygons suitable
for such a complex mountainous study region?
The computation of areal precipitation values is a difficult task consider-
ing the spatial and temporal variability of precipitation events, the com-
plex topography of the study area, and the limited number of pluviographs.
In Switzerland, Schäppi (2013) shows that the topography impacts rainfall
amounts differently according to the type of meteorological event. In a pre-
liminary study, the impact of different interpolation methods (inverse dis-
tance, ordinary kriging, kriging with external drift, Thiessen polygons) and
different sets of stations (399, 211, 129, 47 and 22 stations) on extreme areal
precipitation amounts has been analyzed. The main conclusion was that the
number of stations was a much more important factor than the interpolation
method. This was the main motivation for the application of the stochastic
models to a high number (105) of stations. Furthermore, it is important to
notice that applying more complex interpolation methods (e.g. kriging meth-
ods) increase significantly the computational cost, which can be prohibitive
for the production of long meteorological scenarios.

Comment R1 #2.5. Page 7 “Marginal distributions”. Can any proof
be given that the more complex fitting of a combined distribution is really
significantly better for the simulation of the extremes in this region? Also
here, the most prominent argument is other literature.
QQ-plots are provided in the revised version in order to assess the quality of
the fitting of these marginal distributions (p.22, Fig.6). However, it is very
important to note that local applications give limited proof regarding the
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performance of a distribution for the fitting of extreme values. As indicated
in ”Papalexiou, S. M. and Koutsoyiannis, D. (2013) Battle of extreme value
distributions: A global survey on extreme daily rainfall, Water Resources Re-
search, 49, 187201”, most studies of extreme rainfall are inconclusive because
they are too specific to particular areas or stations. The main explanation
for these failures is that fitting and inferring the distribution tails is subject
to high uncertainties in the estimation of the parameters, even for long time
series (this point is also discussed and illustrated in Evin et al., 2016). The
references given in the paper (Papalexiou and Koutsoyiannis, 2013; Serinaldi
and Kilsby, 2014) are conclusive precisely because they are the result of a
very large number of applications, and give strong arguments in favor of
the application of heavy-tailed distributions. Figures 2 and 3 tend to show
that low tail-distributions (like a mixture of exponentials) could lead to an
under-estimation of extreme precipitations in some regions (regions where
ξ is different from 0, in green, yellow and red). In our study area, we ac-
knowledge that the E-GPD does not bring a significant improvement of the
performance compared to the mixture of exponential distributions (see Figure
12). However, as stated in the conclusion (p.33, lines 18-22), with only three
parameters, the E-GPD provides a parsimonious and flexible representation
of the whole of precipitation amounts. Its GPD tail is in agreement with
recent results showing that extreme precipitation amounts must be modeled
by heavy-tailed distributions (Papalexiou and Koutsoyiannis, 2013; Serinaldi
and Kilsby, 2014). The general framework proposed in this paper can be
applied to very distinct precipitation regimes and the possible heavy tail of
the E-GPD might be valuable in other areas.

Comment R1 #2.6. Page 9, top of the page. If the Gaussian copula
is not suitable for simulating spatially dependent extremes but the Student
copula is, this could be demonstrated. I am thinking of readers who want to
build the code but are not experts in copulas and want to understand the
significance.
The revised manuscript includes an additional version of the Wilks model,
Wilks EGPD, with applies a E-GPD instead of a mixture of exponential
distributions for the marginal distributions (see comment R1 #1.6.). The
difference between Wilks EGPD and GWEX models provides a comparison
of Gaussian and Student copulas concerning the reproduction of daily pre-
cipitation extremes (see Section 5.4., p.28).
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Comment R1 #2.7. Page 9 bottom. Why are Markov chains of the order
4 used? Have there been statistical tests or sensitivity studies to underline
this decision? Later on, some remarks are given on the simulation of short
dry spells, but I think this should be addressed in a more structured way.
At p.5/l.10, it was indicated that Srikanthan and Pegram (2009) apply a
4-order Markov chain and show that it improves the reproduction of dry/wet
period lengths. This point is now reminded at p.14, l.8-10.

Comment R1 #2.8. Page 11, Table 11 (and figures). Red and green are
not suitable for figures, please change the colours as some people cannot read
them otherwise (https://www.nature.com/nature/journal/v510/n7505/full/510340e.html).
We thank the referee for this comment. These colors have been modi-
fied and should be suitable for most color-blind people (following the rec-
ommendations given in https://www.nature.com/nmeth/journal/v8/n6/

full/nmeth.1618.html). As we understand this issue, it seems that types
of green (bluish green) and red (vermilion) are more adapted to color-blind
individuals.

Comment R1 #2.9. Page 12, Line 28. I guess it is very difficult to
say if an extreme precipitation amount is unrealistic or not as long as they
are physically possible?
It is true that an extreme precipitation amount cannot be considered as
unrealistic if the amount is physically possible. However, it is difficult to
define what amount can be considered as impossible. Since this constraint
was not used in our applications (we always obtain ξ < 0.25 in our study
area, see dark red areas in Fig. 2 and 3), this remark was removed from the
manuscript.

Comment R1 #2.10. Page 16, Line 18-20. If the order of the Markov
chain is the issue for short dry spells, this can be easily adapted by using
the same order in the original Wilks approach. What was the argument for
using the first order Markov chains in the Wilks model? (see comment above)
As indicated in p.14/l.8-10, the direct extension of the Wilks model, Wilks EGPD,
is used to illustrate the impact of using a Markov chain of order 4 compared
to order 1.

Comment R1 #2.11. Page 21, Line 8-9. Please explain the seasonal
differences with explicit reference to the study area and its climatology for
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better understanding.
Considering the number of additional figures provided in the revised manuscript,
and considering that the assessment of the inter-annual variability is not cen-
tral in this study (see Comment R1 #2.17.), this plot has been removed from
the revised version of the manuscript.

Comment R1 #2.12. Page 22, section 4.4. and figure 10. To me, the
performance looks fair for all three models. The main difference is the sim-
ulation of higher extremes with the GWEX models. The authors mention
the difference but it needs further discussion. Also, how can we know that
the extremes of one method are more realistic than from another? While we
know little about the validity of the simulated extremes, they may have a big
impact on simulated floods, especially in small catchments (but as mentioned
before, this is not examined in the paper).
We agree with the referee, the performance looks fair for all three models
if we look at figure 10 of the original manuscript. However, this figure only
points out differences of behavior between the three models. As mentioned
above (see Comment R1 #2.5.), these illustrative examples cannot be used
to test the performance of the different models in regard to extreme daily
precipitation amounts. The only way to perform such a validation is to apply
some metrics on a large set of applications (here, for example, at all the sta-
tions), which is done at Figures 12 and 13 of the revised manuscript. Figures
10-13 of the original version, which were showing the fitting of the annual
maxima at some stations/basins, have been removed from the manuscript.

Comment R1 #2.13. Page 26 Line 10-13. It is not surprising that the
non-parametric disaggregation leads to a better performance. I understand
its strengths but it may likewise be a limiting factor in generating extremes.
In our opinion, GWEX Disag represents a compromise between a purely
statistical approach and a nonparametric approach. In terms of possible
simulated amounts, it is not limiting factor at a 3-day scale and only is a
constraint concerning the repartition of 3-day amounts across the daily steps.

Comment R1 #2.14. Page 29, first line 2-9. As already mentioned, I
see the motivation behind the study (and it is generally a good one). But
without any proof that the differences in the performance of the three pre-
cipitation models really have a significant impact on the simulation results of
hydrological extremes (also considering all the uncertainties in hydrological
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models), the significance of the research outcomes remain questionable.
We appreciate this criticism. The two following paragraphs motivate the
assessment of these extreme precipitation amounts at different temporal and
spatial scales and explain why the hydrological evaluation is not carried out
in this study.

First, we would like to remind the key motivation of this study. The
proposed stochastic models intend to preserve the most critical properties of
precipitation at different spatial and temporal scales, and especially extreme
precipitation amounts. We believe that a precipitation model which has these
properties has a better chance to reproduce adequately flood properties for
small sub-catchments as well as for large basins. Furthermore, empirical evi-
dences have been provided by Froidevaux (2014) and Froidevaux et al. (2015)
in our study area (i.e. Switzerland). Using 60 years of gridded precipitation
data, Froidevaux et al. (2015) show that, in Switzerland, the generation of
floods is mainly influenced by areal precipitation amounts accumulated on
short periods (e.g. 1 to 3 days). Typically, the 2-day precipitation sum before
floods is the most correlated to the flood frequency and the flood magnitude.
These results are obtained by analyzing a wide variety of catchments, their
areas ranging from 10 km2 to 12,000 km2. This study clearly motivates the
multi-scale evaluation in space and time and the relevance of the precipitation
metrics shown in our manuscript. These studies were very briefly mentioned
at the beginning of p.12 and these results are now discussed in more details
in the revised manuscript (see section 2, p.4, lines 2-4; section 4, p.16, lines
1-9).

Second, we agree that hydrological applications would validate the im-
portance of such properties. Actually, hydrological applications are currently
undertaken by the University of Zürich. A conceptual hydrological model
(HBV) is applied to 87 sub-basins partitioning the whole study area, using
precipitation scenarios produced by GWEX as inputs. Numerous technical
issues still need to be resolved. Some basins are ungauged, or with very short
streamflow series. The hydrological system of the Aare-Rhine river needs to
be treated as a whole since floods at larger spatial scales need also to be
investigated. Rating curves have very high uncertainties in some basins and
need to be re-evaluated. It is also important to note that this hydrological
study (as well as our study) is particularly challenging considering the large
spatial extent of the Aare river catchment. These studies stand out from
similar studies which are usually limited to few precipitation stations and
one “small” catchment (see, e.g., Keller et al., 2015, recently published in
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HESS, with an application to 8 precipitation stations located in a catchment
with a size of 1700 km2, to be compared with our study area of 17,000 km2).
The hydrological evaluation of our weather scenarios can thus not be carried
out at the present time. It should be presented in future publications, con-
sidering the complexity of this work and the amount of results. However, we
agree that the hydrological application would emphasize the significance of
this study, and this point is discussed in the last section (Section 6, end of
page 33, top of page 34).

Comment R1 #2.15. Page 29, Line 21-22. Please explain why, see com-
ments above.
See Comment R1 # 2.11.

Comment R1 #2.16. Page 29, Line 27-28. The issue of larger spatial
scales could be addressed by running more analyses at smaller scales. So
the key motivation of the study is probably to examine large flood events
and their spatial dependences? If so, this should be better explained. But
again, without really simulating the floods throughout different scales the
arguments for a particular precipitation model choice is questionable.
The key motivation is to develop a stochastic model for precipitation which
preserve the most critical properties of precipitation at different spatial and
temporal scales, and especially for extreme precipitation amounts. A meteo-
rological model that does not preserve these metrics is unlikely to reproduce
adequately flood properties for small sub-catchments as well as for large
basins. However, we agree that the assessment of large flood events, in par-
ticular their spatial dependency, is very important. This will be done in
further studies (see comment R1 #2.14.) by other research teams involved
in this project.

Comment R1 #2.17. Page 30. Is the underestimation of the inter-annual
variability such a big issue in Switzerland and for flood modelling? I would
assume it is more an issue in more arid regions and for example agricultural
studies? Some more remarks on the relevance in Switzerland and floods in
general would be useful.
Thanks for this remark. We agree that the inter-annual variability is not cen-
tral in this study, considering that we are interested in flood risk assessment.
Indeed, this issue is more critical for other hydrometeorological applications,
including agricultural and water resource related ones. Consequently, as in-
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dicated in comment R1 # 2.11., this analysis has been removed from the
manuscript.

3. Summary of review

Comment R1 #3.1. The abstract needs revision and must be more de-
tailed (see general comments).
See comment R1 # 1.5.

Comment R1 #3.2. The introduction is not very well structured. The
arguments for the construction of the new precipitation methodologies are
mainly based on other literature and reasoning. The context of the paper
should (i) either be revised (comparison of precipitation models) or (ii) proof
must be given of the advantages using the new models by really coupling
them with a hydrological model and examining the estimated flood events in
the study region. I think it is the key weak point of the paper: reference is
given to an application, which is not really done. Also, the title and abstract
are a bit misleading and the reader may expect a flood modelling study and
thus more than what has been presented.
We agree that the introduction was misleading and it has been modified
in order to clearly indicate that this study aims at comparing precipitation
models, the hydrological context being the motivation for the thorough as-
sessment of areal precipitation extremes.

Comment R1 #3.3. For the three different precipitation models, I would
recommend a flow chart with the Wilks model as the central component and
then the adaptations that have been done. This makes it easier for the reader
to understand all models and what has been changed.
This is an excellent suggestion and a flow chart has been added to the revised
version of the manuscript (see Figure 3).

Comment R1 #3.4. Although the level of English is very good, some (mi-
nor) mistakes can be found in the manuscript and a native speaker should
probably have a final look before resubmission.
A professional native English editor has been hired to proofread the final
version of the revised manuscript.
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Authors reply on comments of referee #2

Summary

The authors propose extensions of a classical multisite daily rainfall generator
initially proposed by Wilks in 1998. The framework of Wilks model is flexible
enough to allow many adaptations, and the authors of this paper propose - to
add more structure in the dynamics of the model by considering higher order
Markov model for the occurrence process and an autoregressive component
for the amounts - to use a hybrid distribution for the marginal distribution
to deal with heavy tail distributions - to use a Student copula for the spatial
structure to catch upper tail dependence. I believe that all these extensions
make sense and are interesting to try.
We thank the referee for this review and for these constructive comments.
Most of the following suggestions have been incorporated in the modified
manuscript.

1. General comments

Comment R1 #1.1. Many extensions of the Wilks model have already
been proposed in the literature. I think that a review of this literature must
be included in the paper and that the authors should explain why the exten-
sion that they propose is original and useful with respect to this literature.
We agree that the differences between GWEX and the existing extensions
of Wilks model must be presented in the introduction. A more complete
presentation of the literature has been included in the introduction (see p.2,
lines 26-34) of the revised version of the manuscript.

Comment R1 #1.2. In my opinion, one weakness of the paper is that
the model is formulated as a simulation tool rather than as a proper statis-
tical model. It is also the case for the original Wilks model, but it has then
been reformulated by other authors as a statistical model, see e.g. Thompson
et al. (2007). I think that the paper would be easier to read for statisticians
like me if a similar formalization was done in the paper. In particular, the
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various assumptions on the occurrence/amount processes should be written
precisely using formulas and the definition of the model should be separated
from the discussion on parameter estimation and simulation.
We thank the reviewer for this excellent suggestion. GWEX is now pre-
sented using a more formal mathematical formulation and the whole section
3. (”Multi-site precipitation model”) has been modified. A specific section
is now devoted to parameter estimation (section 3.3, p.11-13).

Comment R1 #1.3. I believe that the validation part must also be im-
proved. First, some usual validation criteria for rainfall generators, such as
diagnostics based on the marginal distribution (e.g. qqplot) and the second
order structure of the process (autocorrelation and crosscorrelation functions)
are not shown and it makes it difficult to see the benefit of using a hybrid
distribution and the autoregressive component. Also the chosen validation
criteria does not permit to see the interest of using a student Copula (does
it really improve the modeling of extremal dependence?).
These remarks have also been made by the referee #1 (comments R1 #1.8,
R1 #2.5 and R1 #2.6). QQ-plots are now provided to assess (visually)
the quality of the fitting for the marginal distributions (see Figure 6, p.23).
An additional figure provides an assessment of the performance concerning
the autocorrelations and the reproduction of cross-correlations (see Figure
10, p.26). Finally, an additional model version, a direct extension of Wilks
model, with the E-GPD instead of a mixture of exponential distibutions,
”Wilks EGPD”, has been added to the three original models. This addi-
tional version enables the assessment of the impact of the Student copula
(versus a Gaussian spatial structure).

Comment R1 #1.4. Finally, I find the simulation results generally dis-
appointing. If I understand correctly the categorization, we should obtain
about 90% of good if the model was able to reproduce the statistics of the
observed rainfall? Is it satisfactory to obtain percentage around 50%?.
Yes, we should obtain about 90% of good if the model is able to reproduce
the observed statistics, and very few ’poor’ cases. As indicated in the pa-
per, our primary criteria to judge the overall performance of a model is the
number of metrics for which ’poor’ performances are obtained. We agree
that these percentages are subjective (why 90%? Is 50% of good cases good
enough?) but not more subjective, in our opinion, that the visual inspec-
tion of a QQ-plot. Furthermore, the purpose of the CASE framework, as
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presented in Bennett et al. (2017), is to enable a more systematic compari-
son of stochastic models. Our study also tries to promote this approach. A
more systematic comparison of the models, which includes a consistent way
to compute the performance metrics, is important in order to obtain a fair
assessment of the strengths/weaknesses of the different models. For this rea-
son, this study applies the classification proposed by Bennett et al. (2017),
without modifying the classification.

2. Specific comments

Comment R1 #2.1. Keywords are missing?
In HESS, to the extent of our knowledge, keywords do not appear in the
manuscript.

Comment R1 #2.2. End of Page 1/top of page 2. I am not really sat-
isfied by the proposed classification. For example weather type models are
often used as multisite rainfall generators (without conditioning to large scale
information). Also it would be useful to cite the review papers on rainfall
generators here.
We agree that the terminology ’Multi-site models’ is too vague here. A sim-
ilar comment has been done by the referee #1 (see comment R1 #2.3.). We
propose to replace ’multi-site models’ by ’statistical multi-site models’ (see
p.2, lines 21-34). Additional references have been incorporated.

Comment R1 #2.3. Section 2.1. The authors go directly from a Markov
chain of order p=1 to a Markov chain of order p=4. I would expect that the
best value of p is somewhere between these two values. The authors could
try to find the optimal value of p, using for example standard model selection
criteria.
We thank the reviewer for this suggestion. It is true that an optimal value
might be found if there was an easy selection criteria. As this point is not
central in our study, a direct comparison of Markov chains of order p = 1
and p = 4 is deemed sufficient.

Comment R1 #2.4. Equation (5). I am surprised that the authors use a
diagonal matrix for A. I would expect that it is useful to add some spatial
structure here?
Initial versions of GWEX were applying a full covariance matrix for A. How-
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ever, it seems that large covariance matrices are often very close to a non
positive definite matrix. This is not really problematic during the estima-
tion step, but leads to very unstable results during the simulation step. As
applying a diagonal matrix for A does not seem to degrade the performance
of GWEX, this solution was retained.

Comment R1 #2.5. Section 2.3 and 3.3 should be merged.
We thank the reviewer for this suggestion. Following comment R2 #1.2.,
these sections have been re-organized with a specific section devoted to
the estimation step. Previous section 3.3 has been removed in the revised
manuscript.

Comment R1 #2.6. Section 3. Why is it called “Application”? I do
not see any application here.
Following previous comments (comments R2 #1.2. and R2 #2.5.), the whole
section 3 has been reorganized. Section 3.1 ’Split-sampling procedure’ is now
presented at the beginning of section 5 ”Results” (see p.19). Previous sec-
tion 3.2 ’Regionalization of the ξ parameter’ is related to the estimation of
the parameters is now presented in section 3.3, p.11-13. Previous section 3.3
’Generation of scenarios’ has been removed (see previous comment).

Summary of changes

Overall presentation of the manuscript

Most of the referee’s comment are related to the presentation of the method-
ology and the results. These comments are entirely justified and are appre-
ciated, as they greatly enhance the paper. The following paragraphs sum-
marize what modifications have been made to the manuscript (more details
can be found in the response to specific comments):

• Abstract: We agree with the referee #1 (comments #1.5. and #3.1.)
that the abstract was not specific enough. Additional details have been
added (summary of the model developments, key results, etc.)

• Title and introduction misleading: As pointed out by the referee
#1 (comments R1 #1.1. and R1 #3.2.), the title and the introduction
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seemed to indicate that our study shows the results of an hydrolog-
ical application, which is not the case. The title has been replaced
by ’Stochastic generation of multi-site daily precipitation focusing on
extreme events’. Vague references to hydrological applications in the
introduction have been been removed.

• Classification of the precipitation models: Both referees (com-
ment R1 #2.3. and comment R2 #2.2.) rightly indicated that the
terminology ’multi-site models’ was too vague and did not describe
precisely the references given afterwards. This class of models is now
named ’Statistical multi-site models’. A detailed summary of the liter-
ature for this class of models is provided, including specific extensions
of Wilks model and how the proposed developments differ from them.

• Mathematical formulation: As suggested by referee #2 (comment
R2 #1.2.), we now present a more formal mathematical formulation of
GWEX (section 3).

• Names of the models: As indicated by referee #1 (comment R1
#1.2.), the current model names are confusing. New names have been
given to the different model versions.

• Flowchart of the models: As suggested by referee #1 (comment R1
#3.2.), a flow chart has been added in order to clarify the modifications
made to the original Wilks model and to illustrate the different model
versions (see Figure 6).

• Specific section devoted to the parameter estimation: As sug-
gested by referee #2 (comments R2 #1.2., R2 #2.5. and R2 #2.6.), a
specific section is now devoted to the estimation step.

Validation and choice of metrics

Both referees (comments R1 #1.7., R1 #1.8., R1 #2.5. and R2 #1.3.)
suggested additional validation criteria. Following their suggestions, QQ-
plots of the marginal distributions (empirical versus fitted E-GPD or mixture
of exponential distributions) is now presented in the revised manuscript (see
Figure 6). Additional figures have also been added in order to assess the
reproduction of lagged and unlagged cross-correlations (see Figure 10).
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Comment R2 #1.4., as well as comments R1 #2.5 and R1 #2.12., to a
lesser extent, criticize the evaluation framework and the significance of the
results concerning the reproduction of extremes. In this study, validation of
extreme values is mostly performed using metrics computed at all the stations
and for different spatial scales. In our view, it is difficult to dismiss/validate
a particular method using visual inspections of the reproduction of extremes
(e.g. using Gumbel plots as in Figures 10-13 of the original manuscript, or
QQ-plots). Consequently, previous Figures 10-13 have been removed from
the manuscript. These figures were mostly shown to illustrate interesting
aspects in terms of extrapolation but seem to be prone to different interpre-
tations in terms of performance. Finally, we now present relative differences
in Figures 12-13 (instead f absolute differences), in order to highlight poten-
tial under/overestimations at large spatial scales.

In this study, we firmly support the application of the CASE frame-
work (Bennett et al., 2017), which enables a more systematic comparison of
stochastic models. A consistent way to compute the performance metrics is
important in order to obtain a fair assessment of the strengths/weaknesses
of the different models. For this reason, in this study, the classification pro-
posed by Bennett et al. (2017) is not modified. A remark has been added to
the revised version of the manuscript (p.16, lines 16-18).

Parameter estimation of the inter-site correlations, and
autocorrelations

As indicated in Wilks (1998), direct estimates of the spatial and temporal de-
pendence of precipitation amounts cannot be obtained since non-zero precip-
itation amounts Yt(k) is a hidden variable which cannot be observed. In the
previous version of the manuscript, these correlations were directly estimated
from positive precipitation amounts. However, this method leads to a signif-
icant under-estimation of the inter-site correlations of precipitation amounts
(zero and non-zero). In the revised version of the manuscript, we follow the
methodology proposed by Wilks (1998) and Keller et al. (2015). For each
pair of stations, we generate long sequences of precipitation amounts Pt(k)
using the estimated parameters of the occurrence process (Π̂ and ω̂kl), the
parameters of the marginal distributions and a correlation coefficient m0(k, l)
indicating the degree of spatial dependence. Similarly to the occurrence pro-
cess, m̂0(k, l) is then found iteratively by matching the correlation between
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these long random streams with the observed correlation Corr(Pt(k), Pt(l))
(see Wilks, 1998; Keller et al., 2015, for further details). The correlation
matrix M̂0 is then composed of the cross-correlations m̂0(k, l) obtained for
all possible pairs of stations. For each station, the estimates of the lag-1
serial correlation coefficients of the matrix A are obtained using the same
simulation approach (see end of page 12, top of page 13).

These modifications improves greatly the reproduction of extreme pre-
cipitation amounts at large spatial scales, in particular for model GWEX
concerning 3-day precipitation extremes.
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Abstract. Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally

focus on the reproduction of low to high precipitation events. In this paper , a
::::::
amounts

::
at
::::

the
::::::::
concerned

::::::::
stations.

::::
This

:::::
paper

:::::::
proposes

:::::::::
significant

:::::::::
extensions

:::
to

:::
the

:
multi-site daily precipitation model is proposed and aims at

::::::::
introduced

:::
by

:::::
Wilks

:::
in

::
the

::::
aim

:::
of reproducing the statistical features of extremely rare events

::
(in

:::::
terms

:::
of

::::::::
frequency

::::
and

::::::::::
magnitude)

:
at different

temporal and spatial scales. Recent advances and various statistical methods (regionalization, disaggregation) are considered5

::
In

::::::::
particular,

:::
the

::::
first

::::::::
extended

::::::
version

::::::::
integrates

:::::::::::
heavy-tailed

::::::::::
distributions,

::::::
spatial

:::
tail

:::::::::::
dependence,

:::
and

::::::::
temporal

::::::::::
dependence

in order to obtain a robust and appropriate representation of the most extreme precipitation fields. Performances are shown

:
A
:::::::

second
::::::
version

::::::::
enhances

:::
the

::::
first

:::::::
version

:::::
using

:
a
:::::::::::::

disaggregation
:::::::
method.

::::
The

:::::::::::
performance

::
of

:::::
these

::::::
models

::
is
:::::::::
compared

at different temporal and spatial scales on a large region located in Switzerland.
:::::::
covering

::::::::::::
approximately

::::
half

::
of

:::::::::::
Switzerland.

:::::
While

::::
daily

::::::::
extremes

:::
are

:::::::::
adequately

::::::::::
reproduced

:
at
:::
the

:::::::
stations

::
by

:::
all

:::::::
models,

::::::::
including

:::
the

:::::::::
benchmark

:::::
Wilks

:::::::
version,

:::::::
extreme10

::::::::::
precipitation

:::::::
amounts

::
at
::::::
larger

:::::::
temporal

::::::
scales

::::
(e.g.

:::::
3-day

::::::::
amounts)

:::
are

::::::
clearly

::::::::::::
underestimated

:::::
when

::::::::
temporal

::::::::::
dependence

::
is

:::::::
ignored.

1 Introduction

Stochastic precipitation generators are useful tools
::::
often

:::::::::
employed in risk assessment studies , the observed series of streamflows

being too short to estimate the return level
::::::
periods of very rare flooding events (e.g. decamillennial

:::::::::
10,000-year

:
events).

:::
The15

:::::::
observed

:::::
series

:::
of

::::::::::
streamflows

:::
are

:::
too

:::::
short

::
to

:::::::
produce

::::::
reliable

::::::::::
estimations

::
of

::::
very

::::
rare

::::
and

::::
large

::::::
floods.

:
Typically, extreme

hydrological events can be reproduced using long series of simulated precipitations as inputs of conceptual
::::::::::
precipitation

::::
data

::
as

::::
input

::
to

:
hydrological models (Lamb et al., 2016).

In the last two decades, a fair number of precipitation models have been proposed to deal with the temporal and spatial

properties of daily precipitation, for both intermittency and amount, which
:::
and

:
all have different strengths and limitations.20

An important proportion
::::::::::
weaknesses.

:::::
Many

:
of these models use exogenous variables to predict

::
the

:
statistical properties of

precipitation , using generalized linear models (Chandler and Wheater, 2002; Mezghani and Hingray, 2009; Serinaldi and

Kilsby, 2014b), atmospheric analogs (Lafaysse et al., 2014),
:

or modified Markov models (Mehrotra and Sharma, 2010).

Introducing a link between exogenous atmospheric variables can be interesting
::::
used

:
to reconstruct past events, for

:::::
make

*Institute of Engineering Univ. Grenoble Alpes
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predictions, or to downscale GCM-based simulations of future climate. Such models are classically referred to as statisti-

cal downscaling models (see Maraun et al., 2010, for a review). Closely related to this approach, weather ‘types’ or ‘regimes’

(see Ailliot et al., 2015, for a review)
:::::::::::::::::::
(Ailliot et al., 2015) can

:::
be

::::
used

::
to specifically account for different atmospheric circula-

tion patterns. Using Hidden Markov Model
:::::::
(HMM) with transitions between these weather states, stochastic weather generators

can then simulate various aspects of the precipitation process (Rayner et al., 2016).5

Alternatively, purely stochastic precipitation models can be
::::
used.

:::::
These

::::
can

::
be broadly classified into three main types:

– Resampling methods: The stochastic generation of precipitation fields can be performed using resampling techniques

such as the K-nearest
::::::::
K-nearest neighbors (Buishand, 1991; Yates et al., 2003). Un-observed

::::::::::
Unobserved

:
precipitation

amounts can be obtained using perturbation techniques (Sharif and Burn, 2007).

– Random fields: Spatio-temporal precipitation models can simulate precipitation fields over a regular grid. These developments10

are particularly interesting
::::
This

::::::::
approach

:
is
::::::::::
particularly

:::::
useful

:
for hydrological applications, since areal precipitation val-

ues over a catchment are directly obtained
:::::
basin

::
are

::::::::
obtained

::::::
directly. Poisson cluster-based models (Burton et al., 2008, 2010; McRobie et al., 2013; Leonard et al., 2008)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Burton et al., 2008, 2010; Leonard et al., 2008; McRobie et al., 2013) randomly

simulate rain disk cells, with random centers, radius and intensity, over the study area. Meta-Gaussian models (Vischel

et al., 2009; Kleiber et al., 2012; Allard and Bourotte, 2015; Baxevani and Lennartsson, 2015; Bennett et al., 2017) are

based on truncated and transformed random Gaussian fields. Closely related, the turning band method can be used to15

simulate intermittent precipitation fields with different type of advections
::::::::
advection

:
(Leblois and Creutin, 2013). These

model structures are appealing since they are able to simulate realistic precipitation fields at fine spatial scales. However,

their complexity leads to numerous technical issues during parameter estimation and simulation, notably in terms of com-

putational cost. Moreover, they are usually unable to represent large regions , with
:::::::::
comprising very distinct precipitation

regimes.20

– Multi-site
:::::::::
Statistical

::::::::
multi-site

:
models: Since the pioneering work of Wilks (1998), numerous weather generators

have been developed to fit directly the statistical
::
In

:::
this

:::
last

::::
type

::
of

:::::::
weather

:::::::::
generator,

:::
the properties of precipitation

:::
are

::::::
directly

:::::
fitted at a limited number of stations (Bárdossy and Pegram, 2009; Srikanthan and Pegram, 2009; Baigorria and Jones, 2010; Rasmussen, 2013; Chen et al., 2014; Keller et al., 2015).

For both precipitation occurrence and amount, multi-site generators are able to preserve
:::::
using

:::::::
different

::::::::
statistical

::::::::
structures.

::::
This

::::
type

::
of

::::::::
generator

::::::::
preserves the inter-dependency between all pairs of stations, even when the area under study ex-25

hibits very different precipitation regimes(e. g. in mountainous areas).
:
.
:::::::::::::::::::::::::::
Bárdossy and Pegram (2009) and

::::::::::::::::::::::
Rasmussen (2013) combine

:
a
::::::::::
multivariate

::::::::::::
autoregressive

::::::
process

::::
and

:::::::::::::
transformations

:::::::::::
(V-transform,

::::::
power

:::::::::::::
transformation)

::
to

::::::::::::
simultaneously

::::::
model

::::::::::
precipitation

::::::::::
occurrence

:::
and

::::::::
amount.

:::::
More

::::::::
precisely,

:::::
with

:::::
these

:::::::
models,

::::::::::
transformed

:::::::::::
precipitation

::::::::
amounts

::::::
follow

:::::::
truncated

::::::::::::
distributions.

:::::::::::
Alternatively,

:::::::::::::::::::
Wilks (1998) proposes

:
a
:::::::::
multi-site

:::::
model

::
in
::::::

which
:::::::::::
precipitation

:::::::::
occurrence

::::
and

::::::
amount

:::
are

:::::::
handled

::::::::
separately.

:::::::
Several

::::::::
extensions

::
to
::::
this

::::::
popular

::::::::
structure

::::
have

::::
been

::::::::
proposed

:
in
:::
the

::::::::
literature.

:::::::::::::::::::::::::::::
Thompson et al. (2007) reformulate30

::
the

::::::
Wilks

:::::
model

::
as

:
a
::::::
hidden

:::::::
Markov

::::::
model,

:::::::
inferring

::::
three

:::::::::::
precipitation

:::::
states

:::::
(’dry’,

:::::
’light’

::::
and

:::::::
’heavy’).

::::::::::::::::::::::::::::::
Mehrotra and Sharma (2007b) apply

:::::::::::::
semi-parametric

:::::::::
techniques

:::
to

::::
add

::::
more

:::::::::
flexibility

::
to
::::

the
::::::
spatial

::::::::
structure

::
of

:::::::::::
precipitation

::::::::::
occurrence

:::
and

::::::::
amount.

:::::::::::::::::::::::::::::::
Srikanthan and Pegram (2009) propose

::
a
:::::::
modified

:::::::
version

::
in

:::::
which

:::::
daily,

:::::::
monthly

::::
and

::::::
annual

:::::::
amounts

:::
are

::::::
nested

::::
such

:::
that

:::::::::::
precipitation

:::::::
statistics

:::
are

::::::::
preserved

:::
for

:::
all

::::
these

:::::
levels

::
of

:::::::::::
aggregation.
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The context of this work is the risk assessment of extreme flooding events using the “continuous simulation" method. Very

long series of daily precipitation (e.g. 10, 000 years)are generated for the present climate and used as inputs of a conceptual

hydrological model. As the hydrological process and extreme floods are influenced by the hydrological configurations (for

example, different levels of soil saturation), these precipitation scenarios must reproduce low to very extreme daily precipitation

events at different temporal and spatial scales.5

In this paper, we develop a precipitation model, called GWEX, which will be used to generate these long scenarios over a

large area with various precipitation regimes. GWEX is applied to 105 stations of the Aare river catchment in Switzerland. As

multi-site models have
:::::::::::::::::::::::::
Mehrotra et al. (2006) compare

:::::
three

:::::::
different

:::::::::::
precipitation

:::::::
models,

:::
the

:::::
Wilks

::::::
model,

:
a

:::::
HMM

:::
and

::
a

:::::::::
resampling

::::::::
approach,

::::
and

::::::
provide

::::::
strong

:::::::::
arguments

::
in

:::::
favor

::
of

:::
the

:::::
Wilks

::::::
model

::
in

:::::
terms

::
of

:::::::::::
performance,

:::::::::::
computation

:::::
time,

::::::
model,

::::
and

::::
level

:::
of

:::::::::
complexity

::
of

:::
the

::::::
model

::::::::
structure.

:::::::::::
Furthermore,

::
as

::::::::
indicated

::::::
above,

:::
this

::::::
model

:::::
offers

::
a flexible structure10

which can be applied to a large number of stations with very different precipitation regimes , GWEX relies on the structure

proposed by Wilks (1998). The underlying idea is to separate the process representing the precipitation occurrences at the

different stations from the process generating the amountsof the precipitation events.

In this work, we take advantage of recent studies on precipitation extremes. Papalexiou et al. (2013) and Serinaldi and Kilsby (2014a) assess

the distributional behavior of
:::
(like

:::
in

:::::::::::
mountainous

::::::
areas).

::::
This

::::::
paper

:::::::
presents

::::::
several

:::::::::
significant

::::::::::
extensions

::
of

:::
the

::::::
Wilks15

::::::::::
precipitation

::::::
model,

:::::::
referred

:::
to

::
as

:::::::
GWEX

::::::::
versions,

:::::
which

::::
will

:::
be

::::
used

:::
to

:::::::
generate

:::::
long

::::::::
scenarios.

::::::
These

:::::::::
extensions

::::
aim

:
at
::::::

fitting
:::
the

:::::
most

:::::::
extreme

::::::::::
precipitation

::::::::
amounts

::
at

:::::::
different

::::::::
temporal

::::::
(1-day

::::
and

:::::
3-day

::::::::
amounts)

:::
and

::::::
spatial

::::::
scales.

::::::
Novel

::::::::::
components

::
are

::::
thus

:::::::::
introduced

::
in

:::::::
GWEX,

::::::::
including

:::::
robust

:::::::::
estimation

:::::::
methods

:::::::::::::
(regionalization

::::::::
methods)

:::
for

::::::
critical

:::::::::
parameters

::::::::
impacting

:::::::
directly

::
on

:::
the

::::::::
behavior

::
of

:::::::
extreme

:::::::::::
precipitation

::
at
:::::
each

::::::
station.

:::::
Also

:::::::
included

:::
are

::::::
recent

::::::::
advances

::
in

:::
the

::::::
choice

::
of

:::
the

:::::::
marginal

:::::::::::
distributions

:::
for

::::
daily

:::::::::::
precipitation

::::::::
amounts.

:::::
Using 15,029 long daily precipitation records (> 50 years) from20

around the world. They ,
::::::::::::::::::::
Papalexiou et al. (2013) conclude that heavy-tailed distributions are generally in better agreement with

the observed precipitation extremes. Follow-up studies (Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014a) ap-

ply the extreme value theory to annual maxima and “peaks over threshold" (POTs) of a large sub-set
:::::
subset

:
of these records

and confirm that extreme daily precipitations are
::::::::::
precipitation

::
is not adequately represented by light-tailed distributions. Using

:::::
Based

:::
on statistical tests on 90,000 station records of daily precipitation, Cavanaugh et al. (2015) also come to the same25

conclusions
:::::::::
conclusion. These findings have important implications for precipitation models:

– Light-tailed distributions , such as exponential, Gammaor ,
::::
and Weibull distributions, which are applied in the vast major-

ity of the existing precipitation models, often lead to an under-estimation
:::::::::::::
underestimation of extreme daily precipitation

amounts.

– While non-parametric densities with Gaussian kernels (Mehrotra and Sharma, 2007a, 2010) offer a great
:::
the flexibility to30

fit the observed range of precipitation amounts, their tail also belong
:::::::
belongs to the domain of attraction of the Gumbel

distribution and suffer
::::::
suffers from the same drawbacks.

Alternatively, current statistical procedures consisting in fitting a flexible distribution to the bulk of the observations and

use
:::::
using it for extrapolation is

:::
are highly questionable, as major assumptions are usually violated , as it has been extensively
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discussed by Klemeš (2000a, b)
:::::::::::::::
(Klemeš, 2000a, b). Since the tail of the distribution on precipitation amounts at each station

will dictate the generation of the most extreme precipitation events, important features of GWEX are:

– to apply an
:::::::::
application

::
of

::
a
:
heavy-tailed distribution to precipitation amounts at each station (Naveau et al., 2016),

following the conclusions drawn by Papalexiou et al. (2013); Serinaldi and Kilsby (2014a); Cavanaugh et al. (2015),

– to obtain
:::::::::::
determination

::
of

:
robust estimates of the shape parameter of this distribution, which indicates the heaviness of5

the tail, using a regionalization approach, as in Evin et al. (2016).

Furthermore, following Bárdossy and Pegram (2009), GWEX also employs the copula theory to introduce a tail dependence

between the precipitation amounts simulated at the different stations.
:::
The

::::::
second

:::::::
version

::
of

:::
the

:::::::
GWEX

::::::
model

:::::::
includes

::
a

::::::::::::
disaggregation

:::::::
method,

:::
the

:::::::
observed

:::::::::::
precipitation

:::::::
amounts

:::::
being

:::::
fitted

::
at

:
a
:::::
3-day

::::
scale

:::
in

:
a
:::
first

:::::
step.

::::
This

:::::
paper

::::::::
compares

:::
the

::::::::::
performance

::
of

:::
the

::::::::
different

:::::
model

::::::::
versions

:::
and

:::::::
assesses

:::
the

::::::
impact

::
of

:::
the

::::::::
different

::::::::
statistical

::::::::::
components

::::
(e.g.

:::::::::::
heavy-tailed10

::::::::::
distribution,

:::
tail

::::::::::
dependence,

:::::
etc.).

The global methodology is first described in Section ??, with a presentation of the study area, the
::
We

::::
first

::::::::
describe

:::
the

::::
study

::::
area

:::
in

::::::
Section

:::
2.

:::
The

:
features of different multi-site precipitation models , and the

::
are

::::
then

:::::::::
described

::
in

:::::::
Section

::
3.

:::
The

:
evaluation framework, which

:::::::
presented

::
in

:::::::
Section

::
4, aims at assessing the performances of GWEX

::::::::::
performance

::
of

:::::
these

::::::
models at different spatial and temporal scales. Section ?? details the applications

:
5
::::::::

presents
::
an

::::::::::
application

:
of these daily15

precipitation models to 105 stations located in the Aare river catchment. Section 5 synthesizes the results ,
::::::::::
Switzerland,

::::
with

:
a
::::::::
summary

::
of

:::
the

::::::
results

:
focusing on the reproduction of extreme events. Section 6 concludes

::::::
Finally

:::::::
Section

:
6
:::::::
presents

::::
our

:::::::::
conclusions.

2 Material and methods

1.1 Data and study area20

2
::::
Data

::::
and

:::::
study

::::
area

The Aare River basin covers the northern part of the Swiss Alps and has an area of 17,700 km2. Basin elevations approximately

range from 310 m.a.s.l. in Koblenz (entrance to Germany in the north) to 4270 m.a.s.l. at the Finsteraarhorn summit (in the

south of the area
::::
basin). The mean annual precipitation for the basin as a whole is 1300 mm. The basin can be divided into five

main sub-basins with different hydrometeorological regimes highly governed by regional terrain features (Jura mountains in25

the North-West
:::::::::
north-west; Northern Alps in its southern part,

::
the

:::::
south

::
of

:::
the

:::::
basin

:::
and

:
lowlands in the middle).

Figure 1 shows the location of the 105 precipitation stations used for the development and the evaluation of weather genera-

tors. Located within or close to the Aare river Basin
::::
River

:::::
basin, they correspond to the stations for which long daily time series

of observations with less than 3 years of missing data are available during
:::
over

:
the period 1930-2014. The 105 precipitation

stations cover relatively well the Aare river catchment
:::::
River

::::
basin.30
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The weather scenarios are used
:::::::
proposed

:::::::::::
precipitation

::::::
models

:::
are

:::::::
designed

:
to simulate, via a conceptual hydrological model,

flood scenarios for the whole Aare River Basin
::::
basin

:
and for its different sub-basins.

:::
For

:::::::::::
Switzerland,

::::::::::::::::::::::::
Froidevaux et al. (2015) show

:::
that

:::
the

:::::::::
generation

::
of

::::::
floods

::
is

::::::
mainly

:::::::::
influenced

:::
by

::::
areal

:::::::::::
precipitation

:::::::
amounts

:::::::::::
accumulated

::::
over

:::::
short

::::::
periods

::::
(e.g.

::
1
::
to

::
3

:::::
days).

:::::
These

::::::
results

::::
are

:::::::
obtained

:::
by

::::::::
analyzing

::
a
:::::
wide

::::::
variety

::
of

:::::::
basins,

::::
their

:::::
areas

:::::::
ranging

::::
from

:::
10

::::
km2

:::
to

::::::
12,000

:::::
km2.

Therefore, the properties of the weather scenarios must be evaluated at different spatial and temporal scales, from
:::
the high5

resolutions required for simulating
::
to

:::::::
simulate

:
the hydrological behavior of the system (e.g. sub-daily, 100 km2) to lower

resolutions relevant at the scale of the entire basin (e.g. n-days
:::::
n-days, 17,700 km2).

Following Mezghani and Hingray (2009), a multi-scale evaluation in space and time is thus carried out. For instance,
:
In

::::
this

:::::
study, the performance of GWEX are

:::
the

:::::::
different

::::::::::
precipitation

:::::::
models

:
is
:
evaluated at the station scale, at the scale of 5 and 15

:::
and

:
5
:
sub-basins partitioning the Aare river catchment (see Figure 1)

:::::
River

:::::
basin, and at the scale of the entire study area (see10

Section 5). Note that for those evaluations, areal estimates of precipitation are obtained from the precipitation amounts at the

stations using the Thiessen polygon method.

Figure 1. Location of the 105 precipitation stations in Switzerland. Different partitions of the Aare river catchment are considered
::::
River

::::
basin

:::
into

:
5
:
and the names of the five main

::
15

:
sub-basins are indicated

:::::
shown.
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2.1 Multi-site precipitation model

3
::::::::
Multi-site

::::::::::::
precipitation

::::::
model

As indicated above, GWEX is a
:::::
refers

::
to multi-site precipitation model which relies

::::::
models

:::
that

::::
rely strongly on the structure

proposed by Wilks (1998). Precipitation amounts are modeled independently of precipitation occurrences, which act as a mask.

5

3.0.1 Precipitation occurrence process

As proposed by Wilks (1998), the occurrence process
::
At

::::
each

:::::::
location

:::
k,

::
let

::::::
Pt(k)

::
be

::
a
:::::::
random

:::::::
variable

:::::::::::
representing

:::
the

::::::::::
accumulated

:::::::::::
precipitation

::::
over

:::
day

::
t.

::::
The

:::::::
structure

::::::::
proposed

:::
by

:::::
Wilks

::::::::
considers

:
a
::::::
hidden

::::::::::
occurrence

::::::
process

::::::
Xt(k)

:::
that

:
can

be represented by a two-state Markov chain , representing ‘dry’ and ‘wet’ days:

::
as

:::::::
follows:10

Xt(k) =





0, if day t is dry at location k.

1, if day t is wet at location k.
(1)

In practice, these states are obtained using a low precipitation threshold (0.2 mm). In the present case, the seasonality of the

occurrence process is taken into account by estimating model parameters on a monthly basis
::::::::::
Precipitation

:::::::
amount

:::::
Pt(k)

::
is

::::
then

::::::
defined

:::
as:

Pt(k) = Yt(k)Xt(k)
::::::::::::::::

(2)15

:::::
where

:::::
Yt(k)

::
is

::
a

::::::
random

:::::::
variable

:::::::::
describing

::::
the

:::::::
non-zero

:::::::::::
precipitation

::::::::
amounts.

::::::::
Non-zero

:::::::::::
precipitation

:::::::
amounts

::::::
Yt(k)

:::
are

:::
thus

::::::::
modeled

::::::::::::
independently

::
of

::::::::::
precipitation

::::::::::
occurrences

::::::
Xt(k),

::::::
which

:::
act

::
as

:
a
:::::
mask.

At-site occurrence process

3.1
:::::::::::

Precipitation
:::::::::
occurrence

:::::::
process

3.1.1
::::::
At-site

::::::::::
occurrence

::::::
process20

At each location, the temporal persistence of dry and wet events is introduced with a p-order Markov chain model for Xt(k) ,

which means that
::
so

::::
that:

Pr{Xt(k) = 1|Xt−1(k), . . . ,X1(k)}= Pr{Xt(k) = 1|Xt−1(k), . . . ,Xt−p(k)},
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::
i.e.

:
the probability of having a wet day at time t depends only on the p previous states, for days t− 1, . . . , t− p. While many

authors suppose that a first-order Markov is sufficient (e.g. Wilks, 1998; Keller et al., 2015), Srikanthan and Pegram (2009)25
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apply a 4-order Markov chain and show that it improves the reproduction of dry/wet period lengths. In this study, different

orders for this Markov chain are considered.

At each site, the probability of having a wet day at day t is given by the transition probability Pr{Xt(k) = 1|Xt−1(k), . . . ,Xt−p(k)}.

::::::::::::::::::::::::::::::::::::::::
Pr{Xt(k) = 1|Xt−1(k) = i1, . . . ,Xt−p(k) = ip},:::::

where
::::::::
i1, . . . , ip:::

are
:::::
equal

::
to

:
0
::
or
:::

1. This Markov chain is thus fully charac-

terized by a transition matrix Π with dimensions
:::::::::
dimension 2p.5

These transition probabilities are estimated directly by the proportion of wet days Xt(k) = 1 following observed sequences

{Xt−1(k), . . . ,Xt−p(k)}.

3.1.2
::::::
Spatial

::::::::::
occurrence

:::::::
process

:::
The

::::::
spatial

::::::::::
dependence

::
of

::
the

:::::::::::
precipitation

:::::
states

:::::
Xt(k)

::
is

:::::::
modeled

:::::
using

::
an

::::::::::
unobserved

:::::::
Gaussian

:::::::::
stochastic

::::::
process

::::::::::::::::::::::
Ut = {Ut(1), . . . ,Ut(K)},

:::::
where

::
K

::
is

:::
the

:::::::
number

::
of

:::::::
stations.

:::::
Here,

::::::::
Gaussian

::::::
random

::::::::
variables

:::::::::::::::::
Ut(k),k = 1, . . . ,K,

:::
are

:::::::::
temporally

::::::::::
independent

::::
and

:::
Ut10

::::::
follows

:
a
::::::::::
multivariate

:::::::
normal

::::::::::
distribution:

Ut ∼N(0,ΩX),
:::::::::::::

(4)

:::::
where

:::::::::::
ΩX = {ωkl} ::

is
:
a
:::::::::::::
positive-definite

::::::::::
correlation

::::::
matrix.

:::
At

:::
any

:::::::
location

::
k,

:::
the

:::::::::::
precipitation

::::
state

::::::
Xt(k)

::
is

:::::::
assumed

::
to

:::
be

:::::::::
completely

:::::::::
determined

:::
by

:::::
Ut(k)

:::
and

:::
the

:::::::
previous

::
p

:::::
states

:
at
:::
the

:::::
same

:::::::
location.

:::::::::::
Specifically,

:
if
::::::::::::
Xt−1(k) = i1,. . .

::::::::::::
,Xt−p(k) = ip,

:::
and

:::::::::::::::::::::::::::::::::::::::::::::
p1 = Pr{Xt(k) = 1|Xt−1(k) = i1, . . . ,Xt−p(k) = ip}, :::

then
:

15

Xt(k) =





1, if Ut(k)≤ Φ−1(p1).

0, otherwise,
:::::::::::::::::::::::::::::

(5)

:::::
where

:::
Φ[.]

::::::::
indicates

:::
the

:::::::
standard

::::::::
Gaussian

:::::::::
cumulative

::::::::::
distribution

::::::::
function.

Spatial occurrence process

Let ρ= Corr(Xt(k),Xt(l)) ::
Let

:::::::::::::::::::::
ρkl = Corr(Xt(k),Xt(l)):denote the inter-site correlation between the statesXt(k) andXt(l).

Following Srikanthan and Pegram (2009), ρ
::
ρkl:can be expressed as:20

ρkl
:

=
π00(k, l)−π0(k)π0(l)√
π0(k)π1(k)

√
π0(l)π1(l)

, (6)

where π0(s) = Pr{Xt(s) = 0} and π1(s) = Pr{Xt(s) = 1} denote the probabilities of having dry and wet states at location

s, respectively, and π00(k, l) = Pr{Xt(k) = 0,Xt(l) = 0} denotes the joint probability of having dry states at both locations k

and l. ρ̂ estimates can thus be obtained using the empirical (i.e. observed) counterparts of these probabilities.

Following Wilks (1998), for two locations k and l, a bivariate normal distribution with mean 0, variance 1 and a correlation25

parameter ω can be employed to reproduce ρ̂. More precisely, Gaussian variates can be converted to uniform variates using
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the probability integral transform. The correlated uniform variates are then compared to the transition probabilities in order to

generate new states Xt(k) and Xt(l) (see Wilks, 1998, for further details).

The relationship between ω and ρ̂
:::
The

:::::::::::
relationship

:::::::
between

:::
ωkl::::

and
:::
ρkl:is not direct since the at-site occurrence process

also influences ρ̂
:::::::
temporal

:::::::::
persistence

::
of

:::
dry

::::
and

:::
wet

::::::
events

:::::::::
introduced

::
at

::::
each

::::::
station

::::
with

:
a
:::::::
Markov

::::
chain

::::
also

:::::::::
influences

:::
ρkl

(Wilks, 1998). Figure 2 illustrates this relationshipfor ,
::::::::

obtained
:::
for

:::
the

::::::
month

::
of

::::
July

:::
via

:::::::::::
Monte-Carlo

::::::::::
simulations,

:::
for

:
two5

close stations, GOS and ANT. For these two stations
::
In

:
a
::::
first

::::
step, transition probabilities with a Markov chain of order 4 are

computed for the month of January
::::::::
estimated

:::
for

::::
these

::::
two

::::::
stations. Given these transition probabilities, stochastic simulations

::
of

:::::::::
occurrence

:
are then generated for different values of ω

:::
ωkl, leading to different values of ρ

::
ρkl. Since this relationship is

monotonic (see Fig. 2), a value ω corresponding to an empirical estimate ρ̂ can be found iteratively
:
it

:::
can

:::
be

::::
used

::
to

:::::::
identify

::
the

:::::
value

::::
ωkl ::::::

leading
::
to

::
a

::::::
specific

::::
ρ̂kl,::::::

namely
:::
the

::::::::
empirical

:::::
value

::::::::
obtained

::::
from

:::
the

::::::::
observed

::::
time

:::::
series

::
of

::::::::::
occurrence.

::::
The10

:::::::
estimate

::
of

:::
ωkl::

is
:::::
found

::
by

:::::::
iterating

:
until the evaluation of the correlation between the simulated precipitation states, ρ, matches

ρ̂. It must be noticed
:::
ρkl,:::::::

matches
::::
ρ̂kl.::::

Note
:
that a very high value for ρ̂

:::
ρ̂kl:cannot always be reached, even if ω = 1

::::::
ωkl = 1.

This is however a situation which rarely occurs in practice.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6
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8

1.
0

ωkl

ρ k
l

ρ̂kl = 0.81
ρMAX = 0.87

Figure 2. Illustration of the relationship between ω
::
ωkl:

and ρ
::
ρkl:for the month of January,

:::
July and for stations GOS and ANT. A Markov

chain of order 4 is considered in this example. The correlation between the observed states is ρ̂= 0.81
::::::::
ρ̂kl = 0.81 and can be reproduced

using a bivariate Gaussian distribution with a correlation parameter of ω = 0.98
::::::::
ωkl = 0.98. The maximum correlation ρ which can be

obtained if ω = 1
::::::
ωkl = 1 is ρMAX = 0.88

:::::::::::
ρMAX = 0.87.
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The cross-correlations ω are estimated for all possible pairs of stations and the corresponding correlation matrix is denoted by

ΩX . If ΩX is not positive-definite, the closest positive-definite matrix is considered (Rousseeuw and Molenberghs, 1993; Rebonato and Jaeckel, 2011).

3.2
:::::::::::

Precipitation
:::::::
intensity

:::::::
process

3.2.1 Precipitation intensity process5

Given the occurrence of precipitation Xt(k) at different locations k, GWEX generates
::::::
models

:::::::
generate

:
the amounts of precip-

itation Yt(k) using:

– marginal heavy-tail
::::::::::
heavy-tailed distributions,

– a tail-dependent spatial distribution,

– an autocorrelated temporal process.10

Similarly to the occurrence process, the seasonal aspect of the precipitation intensity is taken into account by performing the

parameter estimation for each month, on a 3-month moving window.

Marginal distributions

3.2.1
::::::::
Marginal

:::::::::::
distributions

At a given location k, daily precipitations have
::::::::::
precipitation

::::
has often been modeled by light-tailed distributions: exponential15

and Weibull distributions (Bárdossy and Pegram, 2009); gamma distributions (Srikanthan and Pegram, 2009; Mezghani and

Hingray, 2009); mixture of exponential distributions (Wilks, 1998; Keller et al., 2015); mixture of gamma distributions (Chen

et al., 2014). However, as shown by many recent studies on a very large number of daily precipitation series (Papalexiou et al.,

2013; Serinaldi and Kilsby, 2014a; Cavanaugh et al., 2015), exponentially decaying tails often result in a severe underestimation

of extreme event probabilities. The introduction of an
:
a heavy-tailed distribution is thus crucial for the reproduction of the most20

extreme precipitation events
:::::::::::::::::::
(Hundecha et al., 2009).

In this work, the distribution representing the precipitation intensity at each location
:
,
:::::
Yt(k),

::
is

:::
the

::::::
E-GPD

:::::::::::
distribution.

::::
This

:::::::::
distribution

::::
was

:::
first

::::::::
proposed

::
by

:::::::::::::::::::::::::::::::::
Papastathopoulos and Tawn (2013) who

:::::::
referred

::
to

:
it
::
as

::
an

::::::::
extended

::::::::
GP-Type

::
III

::::::::::
distribution

:::
and

:::
has

:::::
since

::::
been

::::::
shown

::
to

:::::::::
adequately

:::::
model

:::
the

::::::
whole

:::::
range

::
of

::::::::::
precipitation

:::::::::
intensities

::::::::::::::::::
(Naveau et al., 2016).

:::::::::
Compared

::
to

::::
other

::::::::::
heavy-tailed

:::::::::::
distributions

::::::
applied

::
to

::::
daily

:::::::::::
precipitation

:::::::
amounts

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. mixtures of GPD and gamma distribution, see Vrac and Naveau, 2007),25

::
the

:::::::
E-GPD

::
is

:::::::::::
parsimonious

:::
and

:::::::
provides

::
a

::::
very

::::
good

::::::::::
compromise

:::::::
between

:::::::::
flexibility

:::
and

:::::::
stability,

:::::
which

::
is
::
an

::::::::
essential

::::::
feature

::
for

::::::::::::
extrapolation.

::::
This

:::::::::
distribution

:
can be described by a smooth transition between a gamma-like distribution and an

:
a
:
heavy-tailed Gener-

alized Pareto distribution (GPD). This transition is obtained via a transformation function, G(ν), such that the whole range of

9



precipitation intensities is modeled without a threshold selection (Naveau et al., 2016):

FY {Yt(k)}=G
[
Hξ

{
Yt(k)/σ

}]
, (7)

where

Hξ(z) =





1− (1 + ξz)
−1/ξ
+ if ξ 6= 0,

1− e−z if ξ = 0,
(8)

with a+ = max(a,0), is the standard cumulative distribution function of the GPD, σ > 0 is a scale parameter and G(ν) =5

νκ,κ > 0. Thus, a 3-parameter set {σ,κ,ξ} needs to be estimated at each station.

This distribution has been proposed by Papastathopoulos and Tawn (2013) under the name of extended GP-Type III distribution

and has been shown to model adequately precipitation intensities (Naveau et al., 2016). Here, we refer to this distribution under

the name of E-GPD.

Local estimations of the GPD tail exhibiting a lack of robustness, the ξ parameter of the E-GPD is estimated using a10

regionalization method similar to Evin et al. (2016). Neighborhoods around each station are first obtained using homogeneity

tests, following the concept of regions-of influence (RoI) proposed by Burn (1990). The ξ parameters are then estimated using

the precipitation data gathered in this region (see section ?? for details). The two remaining parameters, the scale parameter

σ and the parameter of the transformation κ, are estimated at each station using a method of moments based on probability

weighted moments (see Naveau et al., 2016, for further details).15

Spatial and temporal dependence of precipitation amounts

3.2.2
::::::
Spatial

::::
and

::::::::
temporal

:::::::::::
dependence

::
of

:::::::::::
precipitation

::::::::
amounts

Spatial and temporal dependence of precipitation amounts is represented using a Multivariate Autoregressive model of order 1 ,

:
(MAR(1)). A MAR(1) process has been used by different authors (Bárdossy and Pegram, 2009; Rasmussen, 2013) to represent

simultaneously
::::::::::::
simultaneously

::::::::
represent

:
spatial and temporal dependences. Let Zt denote a vector of K Gaussian variates20

with mean 0. The
:::::::
random

:::::::
variables

::::
with

:::::
mean

::
0

::::::
defined

:::
as:

Zt(k) = Φ−1
[
FY {Yt(k)}

]
.

::::::::::::::::::::::
(9)

:::
The

::::::::
stochastic

::::::::
Gaussian

:::::::
process

::
Zt::

is
::::::::
assumed

::
to

:::::
follow

::
a MAR(1) process can be described

::::::
defined as follows:

Zt = AZt−1 + εt, (10)

where A is a K ×K matrix and εt is
::
an

:::::::::
innovation

::::
term

::::::::
described

:::
by a random K × 1 noise vector. The elements of εt have25

zero means and are independent of the elements of Zt−1. The covariance matrix of εt is denoted by ΩZ . Following Bárdossy

and Pegram (2009), A is taken to be a diagonal matrix whose diagonal elements
:::
with

::::::::
diagonal

:::::::
elements

::::
that are the lag-1 serial

correlation coefficients
:
of
:::
the

::::::::
intensity

::::::
process

:::::
Yt(k). The matrix ΩZ is then obtained as:

10



:::
can

::
be

:::::::::
expressed

::
as:

:

ΩZ = M0−AM′0A, (11)

where M0 is the covariance matrix of Zt, which indicates the degree of spatial dependence between each pair of stations,
::::
and

:::
M′0::

is
::
its

::::::::
transpose.

Elements of Zt are first obtained using the following transformation:5

Zt(k) = Φ−1
[
F̂{Yt(k)}

]
,

where F̂ is the empirical distributionfunction and Φ[.] indicates the standard normal cumulative distribution function.
::::::::::
Innovations

::
εt ::

are
:::::
often

:::::::
assumed

::
to

::::::
follow

:
a
:::::::
standard

::::::::::
multivariate

::::::
normal

::::::::::
distribution.

::::::::
However,

:::
the

:::::
upper

:::
tail

::::::::::
dependence

::
of

::
the

::::::::::
multivariate

::::::
normal

::::::::::
distribution

::
is

::
0,

::::::
which

:::::
means

::::
that

:::::::
extreme

:::::::::::
precipitation

::::::::
amounts

::::::::
simulated

:::
at

:::
the

:::::::
different

:::::
sites

:::
are

:::
not

::::::::
spatially

:::::::::
dependent.

::
To

:::::::::
introduce

:
a
:::
tail

::::::::::
dependence

::::::::
between

:::::
at-site

::::::::
extremes,

::
a
:::::::::
possibility

::
is

::
to

:::
use

::
a
:::::::
Student

::::::
copula

::
to

::::::::
represent

:::
the10

:::::::::
dependence

::::::::
structure

::
of

:::
εt,::::::::

providing
:::
an

::::::::
additional

:::::::::
parameter,

:::
ν,

::::::
related

::
to

:::
the

:::
tail

:::::::::::
dependence.

::::
Both

::::::::::
dependence

:::::::::
structures

:::
will

::
be

::::::::::
considered

::
in

:::
the

::::::::
following.

:

Using the

3.3
:::::::::

Parameter
:::::::::
estimation

3.3.1
::::::::::
Occurrence

:::::::
process15

::::::::
Following

::::::::::::
Wilks (1998),

:::::::::
parameters

::::::
related

::
to

:::
the

:::::::::
occurrence

:::::::
process

:::::
Xt(k)

:::
are

::::::::
estimated

:::::
using

:::
the

:
method of moments, M0

is
::
i.e.

:::::
using

:::
the

::::::::
empirical

:::::::::::
counterparts

::
of

:::
the

:::::::::
parameters.

:::::::::
Observed

:::::
states

::
are

::::
first

:::::::
obtained

:::::
using

::
a
:::
low

:::::::::::
precipitation

::::::::
threshold

::::
(e.g.

::
0.2

:::::
mm).

::::
The

:::::
matrix

::
Π

::
of

::::::::
transition

:::::::::::
probabilities

::
are

::::
then

:
estimated directly by pairwise covariances between the elements

of Zt using the Kendall’s rank correlation τ , which can be directly related to the Pearson correlation coefficient ρP for elliptical

distributions (McNeil et al., 2005, p.97):20

ρP = sin
(π

2
× τ
)
,

including Gaussian and Student multivariate distributions. The Kendall’s τ does not depend on the marginal distributions,

unlike the linear Pearson correlation ρP , and has the advantage to be a robust estimator of the degree of dependence, since

it is calculated from the ranks of the data alone. Since ΩZ is not necessarily
::
the

:::::::::
proportion

:::
of

:::
wet

::::
days

:::::::::
Xt(k) = 1

:::::::::
following

:::::::
observed

:::::::::
sequences

:::::::::
{Xt−1(k),

:::::::::::::
. . . ,Xt−p(k)}.

::::::::::
Concerning

:::
the

::::::
spatial

:::::::::
occurrence

::::::::
process,

:::
ρ̂kl ::::::::

estimates
:::
are

::::::::
obtained

:::::
using25

::
the

:::::::::
empirical

::::::::::
counterparts

::
of

::::
π00,

:::
π0::::

and
::
π1::::

(see
:::
Eq.

:::
6),

::::::
which

:::::::::
correspond

::::::::::
respectively

:::
to

:::
the

:::::::::
proportion

::
of

::::
days

:::
for

::::::
which

:::
dry

:::::
states

:::
are

::::::::
observed

:::::::::::::
simultaneously

::
at

::::
two

:::::::
locations

:::::
(π̂00)

::::
and

::
to

:::
the

::::::::::
proportions

:::
of

:::
dry

::::
days

:::̂
π0::::

and
:::
wet

:::::
days

:::
π̂1.

::::
The

:::::::::
correlation

:::::
matrix

::::
Ω̂X::

is
::::
then

:::::::::
composed

::
of

:::
the

:::::::::::::::
cross-correlations

:::
ω̂kl::::::::

obtained
:::
for

::
all

:::::::
possible

:::::
pairs

::
of

:::::::
stations.

::
If

::::
Ω̂X ::

is
:::
not

:::::::::::::
positive-definite,

:::
the

::::::
closest positive-definite

:::::
matrix

::
is

:::::::::
considered

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rousseeuw and Molenberghs, 1993; Rebonato and Jaeckel, 2011).
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::::::::::
Furthermore,

:::
the

::::::::::
seasonality

::
of

:::
the

:::::::::
occurrence

::::::
process

::
is

:::::
taken

:::
into

:::::::
account

::
by

:::::::::
estimating

:::::
these

:::::::::
parameters

::
on

::
a
:::::::
monthly

:::::
basis.

3.3.2
::::::::
Intensity

::::::
process

::::::
E-GPD

:::::::::::
distributions

:::
are

:::
first

:::::
fitted

::
to
:::::::::::

precipitation
::::::::
amounts

:::::::
available

:::
at

::::
each

:::::::
location

::
k.

::::::
Local

:::::::::
estimations

:::
of

:::
the

::::
GPD

::::
tail

::::::::
exhibiting

:
a
::::
lack

::
of

::::::::::
robustness,

:::
we

::::::
propose

::
to

:::::::
estimate

:::
the

::
ξ

::::::::
parameter

::
of

:::
the

:::::::
E-GPD (see Eq. 11) , the closest positive-definite5

matrix is taken as the covariance matrix of εt if necessary.
::
8)

::::
using

::
a

::::::::::::
regionalization

::::::
method

::::::
similar

::
to

::::
that

::
of

:::::::::::::::
Evin et al. (2016),

:::::
which

:::
can

:::
be

::::::::::
summarized

::
as

:::::::
follows:

Innovations εt are often assumed to follow a standard multivariate normal distribution, which means that their dependence

structure is modeled by a Gaussian copula. However, the upper tail dependence of the Gaussian copula is 0, which means that

extreme precipitation events simulated from10

1.
::::::::
Following

:::::::::::
Burn (1990),

:::
for

::::
each

:::::::
station,

:
a
::::::::::::::::
region-of-influence

:::::
(RoI)

::
is

::::::::
delimited

:::
by

:
a
:::::
circle

::::::
around

:::
the

::::
site,

:::
the

::::::
radius

::::
being

::::::::::
determined

:::::
using

:::::::::::
homogeneity

:::::
tests.

:::
All

:::
the

:::::::
stations

::::::
inside

:::
this

::::
RoI

:::
are

::::
then

:::::::::
considered

::::::::::::
homogeneous

:::
up

::
to

:
a

Gaussian copula are not spatially dependent. This motivates the use of a Student copula to represent the dependence

structure of εt, ::::
scale

::::::
factor.

2.
:::
The

::
ξ

:::::::::
parameters

:::
are

::::
then

::::::::
estimated

::::
with

:::
the

:::::::::
maximum

::::::::
likelihood

:::::::
method

:::::
using

:::
the

::::::::::
precipitation

:::::::::::
observations

::::
from

:::
all15

::
the

:::::::
stations

:::::
inside

:::
the

::::
RoI.

:

::::
This

::::::::::::
regionalization

:::::::
method

::
is
:::::::

applied
::
to

::::
the

::::::::::
precipitation

:::::
data

::::::::
available

::::
from

::::
666

:::::::
stations

::
in

:::::::::::
Switzerland,

:
for which an

additional parameter, ν, is related to the tail dependence. Given ΩZ :
4
:::::::
different

:::::::
seasons:

:

–
:::::::
Winter:

:::::::::
December,

:::::::
January

:::
and

::::::::
February,

:

–
::::::
Spring:

::::::
March,

::::
April

::::
and

::::
May,

:
20

–
::::::::
Summer:

:::::
June,

:::
July

::::
and

:::::::
August,

–
::::::::
Autumn:

:::::::::
September,

:::::::
October

:::
and

::::::::::
November.

::
In

:::
this

::::::
work,

:::
the

:::::::::
estimation

:::
of

:::
the

::
ξ
:::::::::
parameter

::
is
::::::::

bounded
::::::
below

:::
by

::
0.

::::::
When

:::::
ξ < 0,

::::
the

::::::
E-GPD

::::::::::
distribution

::::
has

:::
an

:::::
upper

::::::
bound.

:::
As

::::::
shown

::
by

::::::
many

:::::
recent

::::::
studies

:::::::::::::::::::::::::::::
(e.g. Serinaldi and Kilsby, 2014a),

:::::::
negative

::::::::
estimates

:::
of

:
ξ
::::

are
::::::
usually

::::
due

::
to

::::::::
parameter

::::::::::
uncertainty

:::
and

::::
are

:::
not

:::::::
realistic.

::::
The

::::
two

:::::::::
remaining

:::::::::
parameters

::
of

::::
the

:::::::
E-GPD,

:::
the

::::
scale

:::::::::
parameter

::
σ
::::
and

:::
the25

::::::::
parameter

::
of

::::
the

::::::::::::
transformation

::
κ,

:::
are

:::::::::
estimated

::::
from

::::
the

::::::::::
observations

::::::::
available

::
at
::::

that
:::::::
station.

:::::
Here,

:::
we

:::
use

::
a

::::::
method

:::
of

:::::::
moments

:::::
based

:::
on

:::::::::
probability

::::::::
weighted

::::::::
moments

::::::::::::::::::::::::::::::::::::
(see Naveau et al., 2016, for further details).

:::::::::
Concerning

:::
the

::::::
spatial

:::
and

::::::::
temporal

::::::::::
dependence

::
of

::::::::::
precipitation

::::::::
amounts,

:::::
direct

::::::::
estimates

::
of

::::
M0 :::

and
::
A

::::::
cannot

::
be

::::::::
obtained

::::
since

::::::::
non-zero

::::::::::
precipitation

::::::::
amounts

:::::
Yt(k)

::
are

::::
not

::::::::
observed.

:::::
Here,

::
we

::::::
follow

:::
the

:::::::::::
methodology

::::::::
proposed

::
by

:::::::::::::::
Wilks (1998) and

::::::::::::::::
Keller et al. (2015).

:::
For

::::
each

::::
pair

::
of

:::::::
stations,

:::
we

:::::::
generate

:::::
long

::::::::
sequences

::
of

:::::::::::
precipitation

:::::::
amounts

::::::
Pt(k)

:::::
using

:::
the

::::::::
estimated30
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:::::::::
parameters

::
of

:::
the

::::::::::
occurrence

::::::
process

:::
(Π̂

::::
and

::::
ω̂kl),:::

the
::::::::::
parameters

::
of

:::
the

::::::::
marginal

::::::::::
distributions

::::
and

:
a
::::::::::

correlation
:::::::::
coefficient

:::::::
m0(k, l)

::::::::
indicating

:::
the

::::::
degree

::
of

::::::
spatial

::::::::::
dependence.

::::::::
Similarly

::
to

:::
the

::::::::::
occurrence

:::::::
process,

:::::::
m̂0(k, l)

::
is

::::
then

:::::
found

::::::::
iteratively

:::
by

:::::::
matching

:::
the

:::::::::
correlation

:::::::
between

:::::
these

::::
long

::::::
random

:::::::
streams

::::
with

:::
the

:::::::
observed

:::::::::
correlation

:::::::::::::::
Corr(Pt(k),Pt(l))::::::::::::::::::::::::::::::::::::::::::::::

(see Wilks, 1998; Keller et al., 2015, for further details).

:::
The

:::::::::
correlation

::::::
matrix

::::
M̂0 ::

is
::::
then

::::::::
composed

:::
of

:::
the

::::::::::::::
cross-correlations

::::::::
m̂0(k, l)

:::::::
obtained

:::
for

::
all

::::::::
possible

::::
pairs

::
of

:::::::
stations.

::::
For

::::
each

::::::
station,

:::
the

::::::::
estimates

::
of

:::
the

:::::
lag-1

:::::
serial

:::::::::
correlation

::::::::::
coefficients

::
of

:::
the

::::::
matrix

:::
A

:::
are

:::::::
obtained

:::::
using

:::
the

:::::
same

:::::::::
simulation5

::::::::
approach.

:::
The

::::::
matrix

::::
Ω̂Z ,

:::
i.e.

:::
the

:::::::
estimate

:::
of

:::
the

:::::::::
covariance

::::::
matrix

::
of

:::
the

::::::::::
innovations

:::
εt,::

is
::::
then

::::::::
obtained

:::::
using

:::
Eq.

:::
11.

:::::
Since

::::
Ω̂Z

:
is
::::
not

:::::::::
necessarily

::::::::::::::
positive-definite

:::
(see

::::
Eq.

::::
11),

:::
the

::::::
closest

:::::::::::::
positive-definite

::::::
matrix

::
is

:::::
taken

::
as

:::
the

::::::::::
covariance

:::::
matrix

:::
of

::
εt::

if

::::::::
necessary.

:::::
Given

::::
Ω̂Z , the parameter ν is estimated by maximizing the likelihood, as described in McNeil et al. (2005, Section

5.5.3.).10

3.3.3 Model versions

:::::::
Similarly

:::
to

:::
the

:::::::::
occurrence

:::::::
process,

:::
the

:::::::
seasonal

::::::
aspect

::
of

:::
the

:::::::::::
precipitation

:::::::
intensity

::
is
:::::
taken

::::
into

:::::::
account

::
by

::::::::::
performing

:::
the

::::::::
parameter

:::::::::
estimation

:::
for

::::
each

::::::
month,

::
on

::
a
:::::::
3-month

:::::::
moving

:::::::
window.

3.4
:::::

Model
:::::::
versions

Different versions of the proposed multi-site precipitation model are considered in this paper,
::::
each

::::::::::::
corresponding

::
to

::::::::
different15

::::::::
extensions

:::
of

:::
the

:::::
Wilks

::::::
model.

::
A

::::::::
flowchart

:::::::::::
summarizing

:::
the

:::::::::
increasing

:::::::::
complexity

:::
of

::::
these

:::::::
models

::
is

::::::::
presented

::
in

::::::
Figure

:
3.

The performances of these different versions will then be presented in Section 5.

Wilks

3.4.1
:::::
Wilks

A first benchmark version of the multi-site model,
::::::
referred

::
to

::::
here

:::
as ‘Wilks’, is considered, which .

::
It
:
closely matches the20

multi-site model proposed by Wilks (1998). In particular:

– The at-site occurrence process is a Markov chain of order 1.

– A threshold of 0.2 mm separates dry and wet states.

– The marginal distribution on precipitation amounts is a mixed-exponential
:::::::
mixture

::
of

:::::::::
exponential

:
distribution, for which

the pdf is defined as:25

f(x) =
w

β1
exp

(
− x

β1

)
+

1−w
β2

exp
(
− x

β2

)
. (12)

The parametersw, β1 and β2 are estimated using the Expectation-Maximisation
::::::::::::::::::::::
Expectation-Maximization (EM) method

(Dempster et al., 1977).
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– Precipitation amounts are not considered to be temporally correlated, i.e. the matrix A in equation 10
:::
Eq.

::::
(10)

:
is a

zero matrix. Furthermore, innovations εt follow a standard multivariate normal distribution
:::
and

::::::::
represent

:::
the

::::::
spatial

:::::::::
correlations.

GWEX-1D

A first version of the GWEX model presented in this section, labeled GWEX-1D,5

3.4.2
::::::::::::
Wilks_EGPD

:
A
::::::::
modified

:::::
Wilks

:::::::
version

:
is
::::::::::
considered,

:::
for

:::::
which

:::
the

::::::
at-site

:::::::::
occurrence

::::::
process

::
is
::
a

::::::
Markov

:::::
chain

::
of

:::::
order

::
4

:::
and

:::
the

:::::::
mixture

::
of

::::::::::
exponential

::::::::::
distributions

::
is
::::::::
replaced

::
by

:::
the

:::::::
E-GPD

::::::::::
distribution.

:::
As

::::::::
indicated

::::::
above,

::::::::::::::::::::::::::::::
Srikanthan and Pegram (2009) show

:::
that

:
a
:::::::
4-order

:::::::
Markov

:::::
chain

:::::::
improves

:::
the

:::::::::::
reproduction

::
of

:::::::
dry/wet

::::::
period

:::::::
lengths.

::::
This

:::::
direct

::::::::
extension

::
of

:::
the

:::::
Wilks

::::::
model

::
is

::::
used

::
to

:::::::
illustrate

:::
the

:::::::
impact

::
of

:::::
using

:
a
:::::::
Markov

:::::
chain

::
of

:::::
order

::
4

::::::::
compared

::
to

:::::
order

::
1.

::::::::::
Differences

::
in

:::::::::::
performance

:::::::
between

::
a10

::::::::::
heavy-tailed

::::::::::
distribution

:::::::
(E-GPD)

::::
and

:
a
:::::::::
low-tailed

:::::::::
distribution

::::::::
(mixture

::
of

:::::::::::
exponentials)

::::
will

::
be

::::::::::
highlighted.

:

3.4.3
::::::
GWEX

:::
The

:::::
initial

:::::::
GWEX

:::::
model

:
has the following specifications

:::::::::::
characteristics:

– The at-site occurrence process is a Markov chain of order 4.

– A threshold of 0.2 mm separates dry and wet states.15

– The marginal distribution on
:::
for precipitation amounts is the E-GPD distribution.

– Precipitation amounts follow a MAR(1) process with innovations modelled
:::::::
modeled by a Student copula.

GWEX-3D

As will be shown in Section 5, GWEX-1D model tends to underestimate extreme amounts for different temporal scales (e.g. 3

days). It motivated the investigation of20

3.4.4
::::::::::::
GWEX_Disag

::
In

:::
this

::::::
paper, an alternative version, GWEX-3D. GWEX-3D

:::::::
referred

::
to

::
as

:::::::::::::
GWEX_Disag,

::
is

::::
also

::::::::
proposed.

:::::::::::::
GWEX_Disag

is applied to 3-day precipitation amounts , with the same specifications than GWEX-1D
:::
and

:::
has

::::
the

::::
same

::::::::::::
characteristics

:::
as

::::::
GWEX, except that:

– The at-site occurrence process is a Markov chain of order 1.25

– A threshold of 0.5 mm separates dry and wet states.
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With GWEX-3D
:::::::::::
GWEX_Disag, daily scenarios are first generated at a 3-day scale , and

:::
and

::::
then

:
disaggregated at a daily

scale using a method of fragments (see, e.g., Buishand, 1991)
:::::::::::::::::::::::::::
(e.g. Wójcik and Buishand, 2003). Simulated 3-day amounts are

disaggregated using the temporal structures of the closest observed 3-day amounts, in terms of similarity of the spatial fields.

The details of
::::
same

::::::::
observed

:::::
3-day

::::::::
sequence

::
is

::::
thus

::::
used

:::
to

::::::::::
disaggregate

:::
the

::::::
3-day

:::::::
amounts

:::::::::
simulated

::
at

:::
the

:::
105

::::::::
stations,

:::::
which

:::::::
ensures

:::
the

::::::
spatial

::::::::
coherence

:::
of

:::::
these

:::::::::::
disaggregated

::::::::
amounts.

:::::::
Details

::
of

:
the disaggregation method are provided in5

Appendix A. Compared to GWEX-1D, GWEX-3D model presents
::::::
GWEX,

:::::::::::::
GWEX_Disag

:::::
offers the following advantages:

– 3-day precipitation amounts are directly modeled and have a better chance to be adequately reproduced,

– the disaggregation of 3-day precipitation amounts creates a
::
an inherent link between the occurrence and the intensity

processes. For very extreme precipitation events, we can suspect that these processes are
:::::
expect

:::::
these

::::::::
processes

::
to

:::
be

dependent (higher chance to be in a wet state over the whole Aare river catchment
::::
River

:::::
basin, as well as large and10

persistent precipitation amounts).

3.5 Multi-scale evaluation

Wilks

Wilks_EGPD

GWEX

GWEX_Disag

.Markov chain of order 4 for the 
transitions between dry & wet states
.The E-GPD is the marginal distrib.
of precipitation amounts

Temporal dependence is introduced
with a MAR(1) process. Innovations
are modeled with a Student copula

. GWEX is applied to 3-day prec.
amounts
. Simulated 3-day amounts are
disaggregated at a daily scale

Figure 3.
::::::::
Flowchart

::
of

::
the

:::::::
different

:::::
model

:::::::
versions.

:::
The

::::::::
differences

:::::::
between

::
the

::::::
models

:::
are

:::::::::
summarized

:::::
inside

::::
green

:::::
boxes.
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4
::::::::::
Multi-scale

:::::::::
evaluation

In this study , the performances of the
:::
The

::::::::
proposed

:::::::::
stochastic

:::::::
models

:::::
intend

:::
to

:::::::
preserve

:::
the

:::::
most

::::::
critical

:::::::::
properties

:::
of

::::::::::
precipitation

::
at

:::::::
different

::::::
spatial

::::
and

:::::::
temporal

::::::
scales,

:::::::::
especially

:::::::
extreme

::::::::::
precipitation

::::::::
amounts.

:::
For

:::::::::::
hydrological

:::::::::::
applications,

:
it
:::
can

:::
be

:::::::
assumed

::::
that

::
a

::::::::::
precipitation

::::::
model

:::::::::
preserving

:::::
these

::::::::
properties

:::
has

::
a
:::::
better

::::::
chance

::
of
::::::::::

adequately
::::::::::
reproducing

:::::
flood

::::::::
properties

:::
for

:::::
small

:::::::::
sub-basins

:::
as

::::
well

::
as

:::
for

:::::
large

::::::
basins.

::::
This

:::::::::
statement

::
is

::::::::
supported

:::
by

::::::::
empirical

::::::::
evidence

::::::::
provided

:::
by5

::::::::::::::::::
Froidevaux (2014) and

:::::::::::::::::::::::
Froidevaux et al. (2015) for

:::
our

:::::
study

::::
area

::::
(i.e.

:::::::::::
Switzerland).

::::::
Using

::
60

:::::
years

::
of

:::::::
gridded

:::::::::::
precipitation

::::
data,

::::::::::::::::::::::::
Froidevaux et al. (2015) show

::::
that,

::
in
:::::::::::

Switzerland,
::::
high

::::::::
discharge

::::::
events

:::
are

::::::
usually

::::::::
triggered

:::
by

::::::::::::
meteorological

::::::
events

::::
with

:
a
::::::::
duration

::
of

::::::
several

:::::
days,

:::
in

:::
late

:::::::
summer

::::
and

:::::::
autumn.

:::::::::
Typically,

:::
the

::::::
2-day

::::::::::
precipitation

::::
sum

::::::
before

::::::
floods

::
is

:::::
most

::::::::
correlated

::::
with

:::::
flood

::::::::
frequency

::::
and

::::
flood

::::::::::
magnitude.

:::
The

:::::::::::
performance

::
of

:::
the

:::::::
different

:
multi-site precipitation models are assessed using a multi-scale evaluation, temporally and10

spatially
:
is

::::
thus

:::::::
assessed

:::
for

::::::::
multiple

:::::
spatial

::::
and

:::::::
temporal

::::::
scales. We investigate if

::::::
whether

:::
or

:::
not the statistical properties of

precipitation data are adequately reproduced at the scale of the stations , and for different partitions of the Aare river catchment

::::
River

:::::
basin

:
(see Figure 1). In order to achieve this, 100 daily precipitation scenarios are generated, each scenario having a

length of 100 years.

For the different evaluated statistics, performances are
::::::::::
performance

::
is

:
categorized according to the comprehensive and15

systematic evaluation (CASE) framework proposed by Bennett et al. (2017). More precisely,
:::
The

::::::
CASE

:::::::::
framework

:::::::
enables

:
a
:::::::::
systematic

::::::::::
comparison

::
of

:::::::::
stochastic

::::::
models

::::
and

:::::
offers

::
a
:::::::::
consistent

::::
way

::
of

:::::::::
computing

:::
the

:::::::::::
performance

:::::::
metrics,

::::::
which

::
is

::::::::
important

::
in

:::::
order

::
to
::::::

obtain
::
a
:::
fair

::::::::::
assessment

::
of

::::
the

:::::::::::::::::
strengths/weaknesses

:::
of

:::
the

::::::::
different

:::::
model

::::::::
versions.

:::::
This

::::::::
approach

::::::
consists

:::
in

::::::::
assigning one of three categories: ‘good’, ‘fair’ and ‘poor’ performance, is assigned to each metric,

:
according to

the agreement between the observed metric and the simulated metrics computed from the 100 scenarios. Table 1 summarizes20

the tests leading to each performance category. ‘good’ performances are
::::::
Good’

::::::::::
performance

::
is
:
obtained when the observed

metric is inside
:::
the 90%

:::::::::
probability limits of the 100 simulated metrics (case 1). It indicates that simulated metrics are in

good agreement with the observed one
:::::
metric. However, we can obviously expect that observed metrics

::
an

::::::::
observed

:::::
metric

::::
can

::::::::
obviously

:
lie outside these limits without

:::::::::
necessarily

:
indicating a failure of the model. In this case, ‘fair’ performances are

assigned , according to two different rules
::::::::::
performance

::::
may

:::::::
assigned

::
if
:::::
either

::
of

:::
the

:::::::::
following

:::
two

::::
rules

::
is
:::::::
satisfied:25

1. Case 2: The observed metric is outside
:::
the

:
90%

:::::::::
probability limits but within three standard deviations from

::
of the

simulated mean, which corresponds to the 99.7%
:::::::::
probability

:
limits if we assume that the uncertainty in the statistics is

normally distributed. This case covers the situation where we could expect that the observed metric is outside the 90%

limits due to the sampling uncertainty.

2. Case 3: The absolute relative difference |(Sobs− S̄sim)/Sobs| between the observed metric Sobs and the mean of the30

simulated metrics S̄sim is 5% or less. If the variability of the simulated metrics is very small, it can happen that the

observed metric lie outside the 99.7% limits without being too far from the simulated mean in terms of relative difference.
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Otherwise, we consider that
:::::::::::
performance

::
is ‘poor’performances have been obtained, which indicates ,

:::::::::
indicating

:
that the

model fails to reproduce this particular statistical property.

In summary, ‘good’ performances represent
::::::::::
performance

:::::::::
represents cases for which the observed metric is clearly well

reproduced by the model, whereas ‘fair’ performances indicate
::::::::::
performance

::::::::
indicates a reasonable match between the observed

and the simulated metrics. The number of metrics for which ‘poor’ performances are
::::::::::
performance

::
is obtained is thus the first5

criteria indicating the overall performance of a model.

Table 1. Performance categorization criteria from Bennett et al. (2017).

Performance Clas-

sification
Key Test

‘good’ Observed metric inside 90% limits (case 1)

‘fair’

Observed metric outside 90% limits but within the 99.7%

limits (case 2) OR Absolute
::::::
absolute

:
relative difference be-

tween the observed metric and the average simulated met-

rics is 5% or less (case 3)

‘poor’ Otherwise (case 4)

For illustration purposes, we also present the results of the evaluation for three precipitation stations and sub-catchments

corresponding to different hydrological regimes (see table
:::::
Table 2). Figure 1 shows the 3 (over

::
out

::
of

:
105) selected precipitation

stationsand the 3 (over 5) representative catchments. Station ANT (at Andermatt) is located in a glacial catchment
::::
basin, station

GLA (at Glarus) in a nival catchment
:::::
basin and station MUR (at Muri) in a pluvial catchment

::::
basin.10

Two selected sub-catchments (Reuss and Limmat) include these stations and a third sub-catchment (Neuchâtel) covers the

west part of the study area.

Table 2. Hydrological regimes and characteristics of extreme floods in Switzerland (Froidevaux, 2014).

Mean elevation

[m]
Season

Triggering

events

Glacial > 1900 summer
showers + snow

melt

Nival 1200− 1900 summer, spring
showers, long

rain

Pluvial < 1200 summer long rain

In this work, we focus on daily and 3-day precipitation maxima, high discharge events being usually triggered by meteorological

events with a duration of several days, in late summer and autumn (Froidevaux, 2014).
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5 Application
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5
::::::
Results

::::
This

::::::
section

:::::::
presents

:::
the

::::::
results

:::
of

:::
the

::::::::::
multi-scale

:::::::::
evaluation

:::::::::
framework

::::
(see

:::::::
Section

::
4)

:::
for

::::::
several

:::::::
metrics

::::::
related

:::
to

:::
the

:::::::::
occurrence

::::::
process

::
of

:::
the

:::::::::::
precipitation

::::::
events,

::::
daily

::::::::
amounts,

::::
and

::::::::::
precipitation

::::::::
extremes.

:::::::::
Summary

::::::::::
assessments

:::
are

::::::::
provided,

::::
with

::::::
several

:::::::
statistics

::::::::
provided

::
for

:::
all

:::
the

::::::
spatial

:::::
scales

::
of

:::::::
interest.

5.1 Split-sampling procedure5

The precipitation observations are split into two parts
:::
sets: (1) 45 years randomly chosen among the period 1930-2014 are used

to estimate the parameters
:::
and (2) the 40 remaining years are used to evaluate the performances

:::::::::::
performance of the models.

This separation between an estimation set and a validation set is crucial to test the ability of the model to adequately represent

the statistical properties of events which have not been used during the fitting procedure. In this study, the multi-scale evaluation

is only applied to the validation set of 40 years
::::::
40-year

:::::::::
validation

:::
set.10

The

5.1
:::::::::

Parameter
:::::::::
estimation

::::
and

:::::::::
generation

::
of
:::::::::
scenarios

:::
The

::::::::
different

:::::
model

::::::::::
parameters

:::
are

:::::::::
estimated

::::
with

:::
the

:::::::
45-year

:::::::::
estimation

:::
set

::
of

::::::::::::
observations,

::::::::
following

:::
the

::::::::::::
methodology

::::::::
described

::
in

::::::
section

::::
3.3,

:::::
except

:::
for

:::
the

:
ξ parameter of the E-GPD

:::::
which is estimated using all available precipitation data in

Switzerland, following the regionalization method described below. This approach ensures that robust estimates are obtained15

for this parameter, which is crucial in our context since extreme simulated precipitation amounts are highly sensitive to the ξ

parameter. All the other parameters are estimated with the estimation set of 45 years, following the methodology described in

section 3.

5.2 Regionalization of the ξ parameter

For the different stations, the ξ parameter of the E-GPD (see Eq. 8) is estimated using a regionalization method. This methodology20

is similar to what is proposed by Evin et al. (2016) and can be summarized as follows:

1. For each station, a neighborhood is obtained using homogeneity tests. All the stations inside this region-of influence

(RoI) are then considered homogeneous up to a scale factor.

2. The ξ parameters are then estimated with the maximum likelihood method using the precipitation observations from all

the stations inside the RoI.25

This regionalization method has been applied to the precipitation data from 666 stations available in Switzerland, for 4 different

seasons:

– Winter: December, January and February,

– Spring: March, April and May,

19



– Summer: June, July and August,

– Autumn: September, October and November.

In this work, the
:::
For

:::::::
GWEX,

:::
the

:
estimation of the ξ parameter is bounded between 0 and 0.25. When ξ < 0, the E-GPD

distribution has an upper bound. When ξ > 0.25, extremely fat tails are obtained, which usually lead to unreasonable simulated

precipitations. As shown by many recent studies (see, e.g. Serinaldi and Kilsby, 2014a), negative and high estimates of ξ are5

usually due to the parameter uncertainty and are not realistic.

For GWEX-1D, the estimation of the ξ parameter is performed at a daily scale. In order to highlight spatial patterns of ξ over

Switzerland, we show the maps of the interpolated parameter estimates in Figure 4. Fat tails are obtained in the South and East

:::::::
southern

:::
and

::::::
eastern

:::::
parts of the Aare river catchment

::::
River

:::::
basin, particularly during spring and summer seasons. In the south

of Switzerland, a region with high estimates (ξ ∼ 0.2), highlighted in red, is obtained for the summer and automn
::::::
autumn10

seasons. These high ξ estimates are coherent
::::::::
consistent with the presence of strong convective storms in this mountainous

region during this period of the year (Rudolph and Friedrich, 2012).

For GWEX-3D
:::::::::::
GWEX_Disag, the regionalization method has also been

:
is
:

applied at a 3-day scale (see Figure 5). The

resulting estimates are similar to the ones obtained at a daily scale. However, we can notice
::::
note that the very high estimates

obtained during the summer season at a daily scale are lower at a 3-day scale. This seems to confirm the interpretation of15

these high ξ estimates, i.e. the relationship between summer convective storms and high ξ estimates is not as strong at a 3-

day scale, since this type of storms
::::::
storms

::
of

:::
this

:::::
type usually have a short duration.

:::::
shorter

::::::::
duration.

:::::
Note

:::
that

::::::::
non-zero

::
ξ

:::::::
estimates

:::
in

::::::
Figures

::
4
::::
and

:
5
:::

(in
::::::

green,
::::::
yellow

::::
and

::::
red)

:::::::
indicate

:::
that

:::::::::
low-tailed

:::::::::::
distributions

::::
lead

::
to

:::
an

:::::::::::::
underestimation

:::
of

::::::
extreme

:::::::::::
precipitation

::
in

:::::
these

:::::::
regions.

5.2 Generation of scenarios20

:::::
Figure

::
6

::::::::
compares

::::::::
empirical

:::
and

:::::
fitted

::::::::::
distributions

::::::::
(mixture

::
of

::::::::::
exponentials

::::
and

:::::::
E-GPD)

::
at

:
a
:::::
daily

::::
scale,

:::
for

:::::
three

:::::::::
illustrative

::::::
stations

::::
and

:::
for

:::
the

:::::::
months

::
of

::::::::
January,

:::::
April,

::::
July

::::
and

:::::::
October.

:::::
Both

:::::::::::
distributions

::
fit

:::
the

::::::::
observed

:::::::::::
precipitation

::::::::
amounts

:::::::::
reasonably

::::
well.

::::::::::
Concerning

:::
the

::::::
highest

::::::::::
precipitation

:::::::::
intensities,

::
it

:
is
::::
hard

::
to

:::::
draw

:::::::::
conclusions

:::
on

:
a
:::::::::
significant

::::::::::::::::::
over/underestimation.

::::::
Indeed,

::::
local

:::::::::::
assessments

::
of

:::::::::::
precipitation

::::::::
extremes

:::
are

::::
often

:::::::::::
inconclusive

:::
due

:::
to

:::::::::
insufficient

::::::::::
information

:::
on

:::
the

::::::::::
distribution

:::
tails

::::::::::::::::::::::::::::::::
(Papalexiou and Koutsoyiannis, 2013).25

For each multi-site precipitation model investigated in this paper (Wilks, GWEX-1D and GWEX-3D
:::::::::::
Wilks_EGPD,

:::::::
GWEX

:::
and

::::::::::::
GWEX_Disag), we generate 100 daily precipitation scenarios

::::
with

:::::
these

::::::::
parameter

:::::::::
estimates, each scenario having a

length of 100 years. These scenarios are compared to the precipitation observed during the validation period of 40 years
:::
for

:::
the

::::::
40-year

:::::::::
validation

:::::
period.

6 Results30
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Season 3: JUN, JUL, AUG Season 4: SEP, OCT, NOV
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Figure 4. Regionalization of the
:::::::::
Regionalized

:
ξ parameter

::::::::
parameters at a daily scale, for the different seasons.

::::
Here,

::
we

::::::
present

:::
the

:::::
spatial

:::::::::
interpolation

::
of

:::::
at-site

:::::::
estimates

:::
for

:
a
::::
better

:::::::::
readability

::
of

:::
their

::::::::
variability.

This section presents the results of the multi-scale evaluation framework (see Section ??) for several metrics related to the

occurrence process of the precipitation events, daily amounts, monthly totals and precipitation extremes. As much as possible,

synthetic assessments are provided, with several statistics being provided for all the spatial scales of interest. Illustrative

examples are shown in order to support the conclusions drawn from these synthetic results.

5.1 Occurrence process5

The comparison of the monthly number of wet days obtained from observed and simulated precipitation data are shown

::::::::
compared in Figure 7. The average number of wet days is adequately reproduced by all models, with approximately 30% of

cases with ‘poor’ performances
:::::::::::
performance. These ‘poor’ performances

::::::::::
performance

:::::
cases seem to occur mainly during the

winter and spring seasons. The standard deviation of the monthly number of wet days indicates the inter-annual variability of

this metric. While the magnitudes of the standard deviations from the simulated precipitations
::::::::::
precipitation roughly match the10
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0.00

0.05

0.10

0.15

0.20

0.25
ξ

Figure 5. Regionalization of the
:::::::::
Regionalized

:
ξ parameter

::::::::
parameters

:
at a 3-day scale, for the different seasons.

::::
Here,

::
we

::::::
present

:::
the

:::::
spatial

:::::::::
interpolation

::
of

:::::
at-site

:::::::
estimates

:::
for

:
a
::::
better

:::::::::
readability

::
of

:::
their

::::::::
variability.

corresponding observed standard deviations, it seems that the highest observed variabilities are under-estimated
::::::::::::
underestimated

by all the models, this defect being more apparent for
::::
most

::::::::
markedly

:::
by the Wilks model.

Figures 8 and 9 show the distributions of observed and simulated dry and wet spells, respectively, for the three illustrative

stations. Concerning the distributions of dry spell lengths, GWEX-1D and GWEX-3D models both
::
the

::::::::::::
Wilks_EGPD,

:::::::
GWEX

:::
and

::::::::::::
GWEX_Disag

:::::::
models lead to adequate performances, the performances

:::::::::::
performance,

:::
the

:::::::::::
performance being classified5

as ‘good’ in 48%and 51,
:::::
48%

:::
and

:::
49% of the cases, respectively. The performance of Wilks model are

:::
the

:::::
Wilks

::::::
model

::
is

slightly lower because of an imprecise reproduction of the frequency of the shortest dry spells. This difference of performances

between Wilks and GWEX-1D models
:
in

:::::::::::
performance

:
is explained by the order of the Markov chain used to simulate the

transitions between dry and wet states, which is the only difference between the occurrence processes of these models
:::::
Wilks

:::
and

:::::::::::
Wilks_EGPD

::
or

:::::::
GWEX. The 4-order Markov of the GWEX-1D model seems to be

:::::
chain

::
of

:::
the

:::::::::::
Wilks_EGPD

:::
and

:::::::
GWEX10
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Figure 6.
:::::::
Empirical

::::
and

::::
fitted

:::::::::
distributions

::::::
(dashed

:::::
curves

:::
for

::::::
mixture

::
of

::::::::::
exponentials

:::
and

::::
solid

:::::
curves

::
for

:::::::
E-GPD)

::
at

:
a
::::
daily

::::
scale,

:::
for

:::
the

::::
three

::::::::
illustrative

::::::
stations

:::
and

::
for

:::
the

::::::
months

::
of

::::::
January,

:::::
April,

:::
July

:::
and

:::::::
October.

::::::
models

:::::
seems

:::
to

::::::
provide

:
a more adequate representation of these transitions than the first-order Markov chain of the Wilks

model, confirming previous findings (Srikanthan and Pegram, 2009).

The frequencies of wet spell lengths are adequately reproduced by Wilks and GWEX-1D
::
the

::::::
Wilks,

::::::::::::
Wilks_EGPD

::::
and

::::::
GWEX

:
models, with more than 50% of ‘good’ performances

::::::::::
performance. The lower overall performance of GWEX-3D

::::::::::::
GWEX_Disag for this metric is due to a slight underestimation of the longest wet spells for some stations (which is

:::::::
however5

not the case for the stations shown in Fig. 9).

5.2
:::::::

Inter-site
:::::::::::
correlations

::
of

::::::::::::
precipitation

:::::::
amounts

:::::
Figure

:::
10

::::::::
compares

:::::::
observed

:::
and

:::::::::
simulated

:::::::
inter-site

::::::::::
correlations

:::
for

::
the

::::::::
different

:::::
model

::::::::
versions.

::::::::
Unlagged

:::::::::::::::
cross-correlations,

:::::
which

::::::::
represent

::
the

::::::
spatial

::::::::::
dependence,

:::
are

:::::
close

::
to

:::
the

:::
1:1

:::::::
diagonal

::::
line,

::
as

:::::::
expected

:::::
given

::::
that

::::
these

::::::::::
correlations

:::
are

::::::::
explicitly

::::
taken

::::
into

::::::
account

:::
by

::
all

::::::
model

:::::::
versions.

::::::::
However,

:
a
:::::
slight

::::::::::::::
underestimation

:::
can

::
be

::::::::
observed,

:::::::::
especially

:::::::::
concerning

::::::::::
correlations10

:::::
above

:::
0.8.

::::
This

::::::::::::::
underestimation

::
is

:
a
:::::::::
side-effect

::
of

:::
the

:::::::::::::
transformation

::::::
applied

::
to
::::::
obtain

:
a
::::::::::::::
positive-definite

::::::
matrix

:::
(see

:::::::
section

::::
3.3).

::
An

::::::::
adequate

:::::::::::
reproduction

::
of

:::::
lag-1

:::::::
inter-site

::::::::::
correlations

::
is

::::::::
important

:::
for

:::
the

:::::::::::
reproduction

::
of

::::::::
persistent

:::::::::::
precipitation

::::::
events.

::::::::
Simulated

:::::
lag-1

::::::::::::::
cross-correlations

:::
are

:::::
close

::
to

:
0
:::
for

:::
the

:::::
Wilks

::::
and

:::::::::::
Wilks_EGPD

:::::::
models,

::
as

::::::::
expected

:::::
given

:::
that

:::::
these

:::::::
versions

:::::
ignore

:::
the

:::::::
temporal

:::::::::::
dependence.

:::::::::::
Consequently,

:::::
these

:::
two

::::::
model

:::::::
versions

::::::::::
significantly

::::::::::::
underestimate

:::::::
observed

:::::
lag-1

:::::::::::::::
cross-correlations,15
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Figure 7. At site
:::::
At-site number of wet days for all sites and months: inter-annual mean and standard deviation (sd).

::
The

:
90% probability

limits are shown for the different seasons. The overall
::::::
Overall performance represents a percentage

::
is

::::::::
represented

::
by

:::
the

:::::::
indicated

:::::::::
percentages

of ‘good’, ‘fair’ and ‘poor’ performances
:::::::::
performance

:
for all sites and months (105× 12 = 1260 cases).

:::::
which

:::::
range

:::::::
between

::
0
:::
and

::::
0.4.

::::::::::
Concerning

:::::::
GWEX,

:::::
lag-1

:::::
serial

:::::::::::::
autocorrelations

::
at
:::
the

:::::::
stations

::::::
(black

:::::
points

::
in
:::
the

:::::::
bottom

:::::
plots)

:::
are

::::::::
perfectly

:::::::
aligned

:::::
along

:::
the

::::
1:1

::::
line,

::
as
::::::::

expected
::::::

given
::::
that

::::
they

:::
are

::::::::
explicitly

:::::
fitted

:::
by

::::
the

:::::::
MAR(1)

::::::::
process.

::::::::
Simulated

::::
and

:::::::
observed

:::::
lag-1

:::::::::::::::
cross-correlations

:::
are

:::::::
roughly

::
in

:::::::::
agreement,

::::::
though

:::
the

::::::
largest

::::::::
observed

:::::::::::::::
cross-correlations

:::
are

:::::::::::::
underestimated.

::::
This

::
is

::::
also

:::
the

::::
case

:::
to

:
a
::::::

lesser
:::::
extent

:::
for

:::::::::::::
GWEX_Disag.

:::::::::
However,

:::
the

:::::::::
agreement

:::::::
between

::::::::
observed

::::
and

::::::::
simulated

::::::::::::::
cross-correlations

::
is
:::::
much

::::::::
stronger.5
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Figure 8. Distribution of dry spell lengths at the stations:
:::
The

:
90% probability limits are shown. The overall

:::::
Overall

:
performance represents

a percentage
:

is
::::::::
represented

:::
by

::
the

:::::::
indicated

:::::::::
percentages

:
of

:::::
‘good’,

::::
‘fair’

:::
and

:::::
‘poor’

::::::::::
performance

::
for

:
all sites. Inset plots provide a zoom for

durations of 1 to 5 days.
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Figure 9. Distribution of wet spell lengths at the stations:
::

The
:
90% probability limits are shown. The overall

:::::
Overall

:
performance represents

a percentage
:

is
::::::::
represented

:::
by

::
the

:::::::
indicated

:::::::::
percentages

:
of

:::::
‘good’,

::::
‘fair’

:::
and

:::::
‘poor’

::::::::::
performance

::
for

:
all sites. Inset plots provide a zoom for

durations of 1 to 5 days.
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Figure 10.
:::::::::
Comparison

::
of

:::::::
unlagged

::::::
inter-site

:::::::::
correlations

:::::
(M0)

::
and

:::::
lag-1

::::::
inter-site

:::::::::
correlations

::::
(M1)

::
in

:::::::
observed

:::
and

:::::::
simulated

::::::::::
precipitation

:::::
series,

::
for

:::
the

:::::
winter

:::::
(DJF)

:::
and

:::::::
summer

::::
(JJA)

::::::
seasons

:::
and

:::
for

:::
the

::::::
different

::::::
model

::::::
versions

:::::::::
considered.

:::::
Black

:::::
points

::::::
indicate

::::
lag-1

:::::
serial

::::::::::::
autocorrelations

:
at
:::
the

::::::
stations.
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5.3 Daily amounts

The reproduction of precipitation amounts at a daily scale is assessed in Figure 11, for all spatial scales and months. For all

models, we obtain a reasonable agreement between observed and simulated average daily amounts (90% limits close to the 1:1

line), with more than 40% of ‘good’ cases and less than 30% of ‘poor’ cases. The standard deviations of these daily amounts

is
::
are

:
also adequately reproduced (Fig. 11, bottom plots). However, we can notice that these standard deviations are slightly5

underestimated by models Wilks and GWEX-1D at the scale of the basins, which is not the case of the GWEX-3D model.
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Figure 11. Daily amounts for all spatial scales and months: inter-annual mean
:::
(top)

:
and standard deviation (sd,

::::::
bottom).

:::
The 90% probability

limits are shown. The overall
:::::
Overall

:
performance represents a percentage

:
is

:::::::::
represented

::
by

:::
the

:::::::
indicated

:::::::::
percentages of

:::::
‘good’,

:::::
‘fair’

:::
and

::::
‘poor’

::::::::::
performance

:::
for all spatial scales and months.
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5.4 Inter-annual variability
:::::::
Extreme

:::::::::::
precipitation

::::::::
amounts

The reproduction of the standard deviations of aggregated precipitation amounts at a monthly scale is used to assess the

inter-annual variability (Figure ??),

::::::
Figures

:::
12

::::
and

::
13

::::::
show

:::
the

:::::::
relative

::::::::::
differences,

::::::::
expressed

:::
as

::
a
::::::::::
percentage,

:::::::
between

::::::::
observed

::::
and

:::::::::
simulated

:::::::
10-year

:::
and

:::::::
50-year

:::::
return

:::::::
periods,

::
at
:::::
daily

::::
and

:::::
3-day

::::::
scales,

::::::::::
respectively,

:
for all spatial scalesand months. For the winter months,5

the standard deviations of these monthly totals are underestimated at all spatial scales (Fig. ??, top plots). We can clearly

interpret this deficiency as an under-estimation of the inter-annual variability of these aggregated amounts. This deficiency has

been identified in many stochastic precipitation models (see, e.g. Wilks and Wilby, 1999; Bennett et al., 2017) and different

remedies have been proposed in the literature (Mehrotra and Sharma, 2007a; Mehrotra et al., 2012). However, we can notice

that this underestimation is moderate for GWEX-3D (32% .
::::
The

:::::::::
percentiles

::::::::::::
corresponding

::
to

::::
these

:::::
return

:::::::
periods

:::
are

::::::::
estimated10

:::::::::
empirically

:::::
using

:::
the

:::::::::
Gringorten

:::::::
formula

::::::::::::::::
(Gringorten, 1963).

:::::
These

:::::
figures

:::::::
provide

::
an

::::::::
overview

::
of

:::::
model

:::::::::::
performance

::::::::
regarding

::::::
extreme

:::::::::::
precipitation

::::::::
amounts.

::
At

:::
the

:::::
daily

:::::
scale

::::::
(Figure

::::
12),

:::::
there

::
is
:::
no

:::::
major

:::::::::
difference

:::
in

::::::::::
performance

::::::::
between

:::
the

::::
four

:::::::
models.

::::
For

:::
the

:::
10

:::::
years

:::
and

:::::::
50-year

:::::
return

:::::::
periods,

::::
the

::::::
number

:
of ‘poor’ cases against 79% for Wilks). Furthermore, this under-estimation of the

inter-annual variability is not present for the summer months (Fig. ??, bottom plots) .15

Monthly totals for all spatial scales and months: inter-annual standard deviation (sd) for the winter (DJF) and summer (JJA)

seasons. 90% probability limits are shown. The overall performance represents a percentage of all spatial scales and the months

corresponding to the season.

5.5 Extreme precipitation amounts

Figures ?? and ?? show a comparison of the observed and simulated annual maximum precipitation for the three illustrative20

stations, at a daily and at a 3-day scale, respectively. At a daily scale,
::::::::::
performance

:::::
cases

::
is

:::::
below

::::
20%

:::
for

:::
all

:::::::
models.

::::
The

::::::
relative

:::::::::
differences

:::
are

::::::::
globally

:::::::
centered

::::::
around

:::::
zero,

:::::
which

::::::
means

::::
that

:::
the

:::::::
mixture

::
of

:::::::::::
exponentials

::::::
(Wilks

::::::
model)

::::
and the

three precipitation models exhibit different behaviors for the simulated maxima. Maxima from Wilks are linear on a Gumbel

scale, which is expected as daily intensities are generated from a mixture of exponential distributions. GWEX-1D, with the

E-GDP distribution, generates larger extreme precipitation amounts than Wilks , but also than GWEX-3D. For example, at25

station ANT, the 95% quantile (upper limit of the 90% intervals)
::::::
E-GPD

::::::::::::
(Wilks_EGPD,

:::::::
GWEX

:::
and

:::::::::::::
GWEX_Disag

:::::::
models)

::
all

:::::::
produce

:::::::::
reasonable

:::::::::::
performance

::
at

::::
this

:::::::
temporal

:::::
scale.

:::::::::
However,

::
if

::
we

::::::::
compare

:::
the

:::::::
50-year

:::::
return

:::::::
periods

::::::::
simulated

:::
by

::
the

::::::
Wilks

:::
and

::::::::::::
Wilks_EGPD

::::::
models,

:::
we

::::
note

:::
an

:::::::
increase

::
of

::::
10% of

:::::
‘good’

:::::::::::
performance

::::
cases

:::::
(from

:::::
65%

::
to

:::::
75%),

:::::
which

::::
can

::
be

::::::::
explained

:::
by

:
a
:::::
slight

:::::::::::::
underestimation

:::
of the largest daily annual maxima obtained from the 100-year scenarios exceed 350

mm for GWEX-1D and is below 300 mm for GWEX-3D
::::::
maxima

::::
with

::::::
Wilks,

:::
for

::::
some

:::::::
stations.30

At a 3-day scale, larger discrepancies can be observed between the three models (Fig. ??). In particular, observed maxima

are strongly underestimated by Wilksat stations GLA and ANT, which is not the case (or, at least, not as clearly), for the two

other models. We can thus assume that the temporal dependency
:::::::::
Comparing

::::::::::::
Wilks_EGPD

:::
and

:::::::
GWEX,

:::
the

::::::
scores

:::
are

::::::
almost
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:::::::
identical,

::::::
which

:::::::
suggests

::::
that

::
the

::::
tail

:::::::::
dependence

:
introduced by the MAR(1) process (Eq. 10) leads to a better reproduction of

the largest precipitation amounts cumulated on several days. As expected, GWEX-3D performs well at a 3-day scale, which

justifies the strategy consisting in fitting directly 3-day amounts.

Simulated and observed daily annual maxima at the stations: 50% and 90% probability limits are shown.

Simulated and observed 3-day annual maxima at the stations: 50% and 90% probability limits are shown.5

Observed and simulated annual maximum precipitation at
::::::
Student

::::::
copula

::
in

::::::
GWEX

::::
does

:::
not

:::::::
produce

:
a
:::::::::
significant

:::::::::::
improvement

::
for

:::
the

:::::::::::
reproduction

::
of

::::::::
extremes.

::::::::
However,

::
if

:::
we

:::::
focus

::
on

:::
the largest spatial scales are shown in Figures ?? and ??, at the daily

and 3-day scales, respectively. At a daily scale, a slight under-estimation
::
(at

:::
the

::::::
basins),

::::
and

::
in

::::::::
particular

:::
on

:::
the

:::::
entire

:::::
Aare

::::
River

:::::
basin

:::::::
(orange

:::::
lines),

::
it
::::::
seems

:::
that

:::
the

:::::
slight

::::::::::::::
underestimation

::
of

:::
the

:::::::
50-year

:::::
return

:::::::
periods

:::::::
obtained

::::
with

::::::::::::
Wilks_EGPD

:
is
:::::::
reduced

::::::
thanks

::
to
::::

this
:::
tail

:::::::::::
dependence.

::::::::::::
GWEX_Disag

::::
also

:::::::::
reproduces

::::::::::
adequately

:::
the

::::::
largest

:::::::::::
precipitation

:::::::
amounts

::
at

:::
all10

:::::
spatial

::::::
scales,

::::
even

::
if
::
a

:::::
slight

::::::::::::
overestimation

:
of the maxima by the Wilks and GWEX-1D models

::
at

:::
the

::::::
largest

:::::
spatial

::::::
scales

can be suspected, .
:::::::::::
Nevertheless,

::::
this

::::::::::
performance

::::::
shows

:::
that

:::
the

:::::::::::::
disaggregation

::::::
process

:::::
leads

::
to

::
an

::::::::
adequate

:::::::::::
reproduction

::
of

::
the

:::::
daily

:::::::
maxima.

:

::
At

:
the simulated maxima being larger with GWEX-3D, especially at the scale of the entire Aare river catchment (bottom

plots). At a 3-day scale , a dramatic
::::::
(Figure

:::
13),

:::
the

:
underestimation of the maxima can be observed with Wilks and GWEX-1D.15

The slight underestimation observed at the scale of the stations, especially for the Wilksmodel, is far more severe at larger
::
by

:::::
Wilks

:::
and

::::::::::::
Wilks_EGPD

::
is

::::
clear

::
at
:::

all
:
spatial scales. GWEX-3D

::::::
GWEX

:
does not suffer from such

::
the

:::::
same shortcomings,

which can probably be explained by its direct representation of the spatial dependence at the
:::::
means

::::
that

:::
the

:::::::
MAR(1)

:::::::
process

:::
(Eq.

::::
10)

:::::::
improves

:::
the

::::::::
temporal

:::::::
structure

:::
of

:::
the

:::::
largest

:
3-day scale.

Simulated and observed daily annual maxima at the scale of the basins: 50% and 90% probability limits are shown.20

Simulated and observed 3-day annual maxima at the scale of the basins: 50% and 90% probability limits are shown.

Figures 12 and 13 show the observed and simulated 10-year and 50-year return periods, at a daily and a 3-day scales,

respectively, for all spatial scales. These return periods are estimated empirically using the Gringorten formula (Gringorten, 1963).

These figures summarize the previous illustrations and provide a more synthetic view of the model performances regarding

extreme precipitation amounts. At a daily scale, there is no major difference of performances between the three models. For the25

50-year return periods, the number of ‘poor’ performance cases is below 20% for all models. However, at the
::::::::::::
GWEX_Disag

::::
being

:::::
fitted

::
at

:
a
:

3-day scale, the under-estimation of the maxima by Wilks and GWEX-1D, as previously discussed, is clearly

highlighted.

For GWEX-3D, the
:::
this

:::::
model

::::::::
logically

:::::
leads

::
to

:::
an

::::::::
adequate

::::::::::
reproduction

:::
of

:::::::
extreme

:::::
3-day

:::::::::::
precipitation

::::::::
amounts.

::::
The

strategy consisting in simulating 3-day precipitation amounts, which are then disaggregated at a daily scale, presents several30

advantages:

– The model being fitted at a 3-day scale, 3-day maxima are adequately reproduced.

– As the method of fragments uses observed 3-day distributions
:::::::
temporal

:::::::::
structures to disaggregate 3-day amounts, the

daily amounts resulting from a generated 3-day maxima are physically plausible. In particular, the temporal and spatial

29



structures of large and persistent observed precipitation events are employed, which brings a coherence
::::
used,

::::::
which

::::::
ensures

::::::::::
consistency between the generated extreme events at the daily and 3-day scales.

::::::
GWEX

:::
and

:::::::::::::
GWEX_Disag

::::
both

:::::::::
adequately

:::::::::
reproduce

:::::::
extreme

:::::::::::
precipitation

:::::::
amounts

::
at

:::::
daily

:::
and

:::::
3-day

::::::
scales,

::
as

::::
well

:::
as

:
at
:::

all
::::::
spatial

::::::
scales.

::
As

::::::::
indicated

::::::
above,

:::::
these

::::::
models

::::
will

::
be

::::
used

:::
to

:::::::
generate

::::
long

:::::::::::
precipitation

::::::::
scenarios,

::::::
which

:::
will

::::
feed

::
a

::::::::::
hydrological

::::::
model

::
in

::::
order

::
to
:::::::

produce
:::::
flood

:::::::::
scenarios.

:::::::::
Ultimately,

:::
the

:::::::::::
reproduction

::
of

:::
the

::::
flood

:::::::::
properties

:::::
using

::::::
GWEX

::::
and5

::::::::::::
GWEX_Disag

:::
will

:::::::
indicate

:::::
which

::::::
model

::
is

:::
the

::::
most

::::::::
adequate.

:::::
Since

::::
they

:::::::::
correspond

::
to
:::
the

:::::
same

:::::
model

:::::::
version

::::
fitted

::
at

:::::
daily

:::
and

:::::
3-day

:::::
scale,

::::::::::
respectively,

:::
we

::::
can

:::::
expect

::::
that

:::::::
resulting

::::::
floods

:::
will

::::
have

:::::::
slightly

:::::::
different

:::::::::
properties.
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Figure 12. Daily annual maxima for all spatial scales:
::::::
Relative

::::::::
differences,

::::::::
expressed

::
as

:
a
:::::::::
percentage,

::::::
between

:::::::
observed

:::
and

::::::::
simulated 10-

year (top plots) and 50-year (bottom plots) return periods.
:::
The 90% probability limits are shown. The overall

::::::
Overall performance represents

a percentage
::
is

::::::::
represented

:::
by

::
the

:::::::
indicated

:::::::::
percentages

:
of

:::::
‘good’,

::::
‘fair’

:::
and

:::::
‘poor’

::::::::::
performance

::
for

:
all spatial scales.
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Figure 13. 3-day annual maxima for all spatial scales:
::::::
Relative

::::::::
differences,

::::::::
expressed

::
as

:
a
:::::::::
percentage,

::::::
between

:::::::
observed

:::
and

::::::::
simulated 10-

year (top plots) and 50-year (bottom plots) return periods.
:::
The 90% probability limits are shown. The overall

::::::
Overall performance represents

a percentage
::
is

::::::::
represented

:::
by

::
the

:::::::
indicated

:::::::::
percentages

:
of

:::::
‘good’,

::::
‘fair’

:::
and

:::::
‘poor’

::::::::::
performance

::
for

:
all spatial scales.
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6 Conclusions and outlook

The motivation for the development of precipitation models is usually the risk assessment of natural disasters
::::::::::
Precipitation

::::::
models

:::
are

::::::
usually

:::::::::
developed

:::
for

:::
the

::::::::
purpose

::
of

::::
risk

:::::::::
assessment

::
in
:::::::

relation
:::

to
::::::
natural

:::::::
hazards (e.g. droughts, floods). The

majority of
::::
Most existing precipitation models aims

:::
aim

:
at reproducing a wide range of statistical properties of precipitation,

at different scales, in order to be used as a general tool in different contexts. In this study, our main objective is
:::
was

:
to provide5

a precipitation generator used in combination of an
:::
that

:::::
could

::
be

:::::
used

:::::::
together

::::
with

:
a
:
hydrological model for the evaluation of

extreme flooding events , in a region covering approximately half of Switzerland. As a consequence, we are
::::
were

:
especially

interested in the reproduction of extreme precipitation amounts at medium to large spatial scales. As the daily and 3-day

precipitation amounts are a major determinant of the flood magnitude
::::
flood

::::::::::
magnitudes

:
in large Swiss catchments

:::::
basins

(Froidevaux et al., 2015), an adequate reproduction of precipitation at these time scales is
:::
was

:
also required.10

In this paper, we thus develop a
:::::::::
considered

:::::::
different

:
multi-site precipitation model

::::::
models targeting the reproduction of

extreme amounts at multiple temporal (daily, 3-day) and spatial scales. Two versions are considered, which are both based on

the structure proposed by Wilks (1998). The first model version, GWEX-1D, enhance existing multi-site precipitation models

using
:::::::
Different

::::::::
extended

:::::::
versions

::
of

:::
the

:::::
model

:::::::::
introduced

:::
by

:::::
Wilks

:::::::::::::::
(Wilks, 1998) have

:::::
been

::::::::
proposed.

::
A

:::
first

:::::
direct

:::::::::
extension,

:::::::::::
Wilks_EGPD,

:::::::::
considers

::
a

:::::::
Markov

:::::
chain

::
of
::::::

order
:
4
:::::::

instead
::
of
::::::

order
::
1)

:::
for

::::
the

:::::
at-site

::::::::::
occurrence

:::::::
process.

::::::::::::
Furthermore,15

:::::
taking

:::::::::
advantage

::
of

:
recent advances regarding extreme precipitations. In particular, an

:::::::::::
precipitation,

::
a heavy-tailed distri-

bution
::::::
(instead

::
of

:
a
:::::::

mixture
::
of

::::::::::
exponential

:::::::::::
distributions), the E-GPD, is applied to the precipitation intensities at each station.

Temporal and
:::
Two

::::::::
important

:::::::::
extensions

:::
of

::::::::::::
Wilks_EGPD,

::::::
named

::::::
GWEX

::::
and

::::::::::::
GWEX_Disag,

:::
are

::::
then

::::::::::
considered.

::
In

:::::::
GWEX

::::::
model,

::::::::
temporal

:::
and

:
spatial dependencies of the occurrence and intensity process are introduced using the copula theory and a

multivariate autoregressive process. In the second model version, GWEX-3D, the same structure is applied
::
A

::::::
second

::::::
version,20

::::::::::::
GWEX_Disag,

::::::
applies

::::
the

::::
same

::::::
model,

:
but at a 3-day scale.

:::
The

:
3-day simulated amounts are then disaggregated using an

adaptation of the method of fragments (Buishand, 1991)
::::::::::::::::::::::::
(Wójcik and Buishand, 2003).

GWEX-1D and GWEX-3D are compared to the multi-site precipitation model proposed by Wilks (1998). The application

of a multi-scale evaluation framework leads to the following conclusions:

– A 4-order Markov chain outperforms a first-order Markov chain for the transitions between dry and wet states, notably25

in terms of reproduction of dry spell lengths.

– For winter months, the inter-annual variability of monthly aggregated amounts is clearly under-estimated by all the

models. This under-estimation is not observed for summer months.

– At the scale of the stations, daily amounts (average, standard deviations and extremes) are reasonably well reproduced

by all models.30

– At a 3-day scale, precipitation extremes are severely under-estimated by Wilks and GWEX-1D. This under-estimation is

observed at all spatial scales but is more pronounced at larger spatial scales.
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As the GWEX-3D model outperforms the other precipitation models tested in this study, this is our recommended model for

the evaluation of extreme flood events.

In this study, we support the arguments in favor
::
use

:
of a systematic evaluation framework. The CASE framework proposed

by Bennett et al. (2017) provides useful tools
:
a
:::::
useful

::::
tool in this respect, making possible a fair comparison of performances

:
it

:::::::
possible

::
to

::::
fairly

::::::::
compare

::::::::::
performance

:
between precipitation models. Regarding the reproduction of extreme precipitation, we5

notice that evaluations are usually
:::::::::
evaluations

::::
until

::::
now

::::
have

::::::
usually

::::
been

:
qualitative (e.g.

:::::::::::
interpretations

:::::
based

:::
on one or two

examplesare provided and interpreted) , )
:
and limited in terms of spatial scales (often

::::
only at the stationsonly). The evaluation of

extreme precipitation amounts proposed in this paper is multi-scale in time (daily and 3-day scale) and in space (at the stations,

for two different dissections
:::::::
divisions of the study area

:::
into

:::::::::
sub-basins, and for the entire Aare river catchment).Illustrative

examples of the reproduction of annual maxima are supplemented with synthetic representations of these performances.
:::::
River10

:::::
basin).

A possible enhancement of the GWEX-3D is the
:::
The

::::::::
different

::::::::
multi-site

:::::::::::
precipitation

::::::
models

:::::
have

::::
been

:::::::
applied

::
to

::::
105

::::::
stations

::::::
located

::
in
:::::::::::
Switzerland.

::
A

:::::::::
multi-scale

:::::::::
evaluation

:::
led

::
to

:::
the

::::::::
following

:::::::::::
conclusions:

–
:
A
:::::::::::

fourth-order
:::::::
Markov

:::::
chain

::::::::::
outperforms

::
a
:::::::::
first-order

:::::::
Markov

:::::
chain

:::
for

:::
the

:::::::::
transitions

:::::::
between

::::
dry

:::
and

::::
wet

::::::
states,

::::::
notably

::::
for

:::
the

::::::::::
reproduction

:::
of

:::
dry

::::
spell

:::::::
lengths.15

–
::
At

:::
the

:::::
scale

::
of

:::
the

:::::::
stations,

:::::
daily

:::::::
amounts

::::::::
(average,

:::::::
standard

:::::::::
deviations

:::
and

:::::::::
extremes)

:::
are

:::::::::
reasonably

::::
well

::::::::::
reproduced

::
by

:::
all

:::
the

:::::::
models.

:

–
::::
With

::::
only

::::
three

::::::::::
parameters,

:::
the

::::::
E-GPD

::::::::
provides

:
a
:::::::::::
parsimonious

::::
and

::::::
flexible

::::::::::::
representation

::
of

:::
the

:::::
whole

::
of

:::::::::::
precipitation

:::::::
amounts.

:::
Its

::::
GPD

:::
tail

::
is
::
in
:::::::::

agreement
::::
with

::::::
recent

::::::
results

:::::::
showing

:::
that

:::::::
extreme

:::::::::::
precipitation

:::::::
amounts

:::::
must

::
be

::::::::
modeled

::
by

:::::::::::
heavy-tailed

::::::::::
distributions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014a).

:::::::::::
Furthermore,

::::::
robust20

:::::::
estimates

:::
of

:::
the

::::::::
parameter

:::::::::
controlling

:::
the

:::::::::
heaviness

::
of

:::
the

:::::::::
distribution

::::
tail

:::
are

:::::::
obtained

:::::
using

:
a
:::::::::::::
regionalization

:::::::
method.

::
In

:::
our

:::::
study

::::
area,

:::
the

:::::::
E-GPD

::::
does

:::
not

:::::
bring

::
a

:::::::::
significant improvement of the inter-annual variability produced by the

model. The solution proposed by Mehrotra et al. (2012), which consists in using a predictor based only on the aggregated

number of precipitation occurrences over the previous 365 days, seems promising. Indeed, it avoids the introduction of

atmospheric predictors, and preserve the purely stochastic behavior of the model.
:::::::::::
performance

::::::::
compared

::
to

:::
the

:::::::
mixture25

::
of

::::::::::
exponential

:::::::::::
distributions.

::::::::
However,

:::
the

:::::::
general

::::::::::
framework

::::::::
proposed

::
in

::::
this

:::::
paper

:::
can

:::
be

:::::::
applied

::
to

::::
very

:::::::
distinct

::::::::::
precipitation

:::::::
regimes

:::
and

:::
the

:::::::
possible

::::::
heavy

:::
tail

::
of

:::
the

::::::
E-GPD

:::::
might

:::
be

:::::::
valuable

::
in

:::::
other

:::::
areas.

–
::
At

:
a
::::::

3-day
:::::
scale,

::::::::::
precipitation

::::::::
extremes

:::
are

:::::::
severely

:::::::::
underesti

:::::
mated

::
by

::::::
Wilks

:::
and

::::::::::::
Wilks_EGPD.

::::
This

:::::::::::
underestima

:::
tion

:::
can

::
be

::::::::
explained

:::
by

::
an

::::::::
incorrect

::::::::::::
representation

::
of

:::
the

:::::::::
persistence

:::
by

::::
these

:::::::
models.

:

–
::::::
GWEX

::::
and

::::::::::::
GWEX_Disag

:::::::::
adequately

:::::::::
reproduce

:::::::
extreme

:::::::::::
precipitation

::::::::
amounts

::
at

::::
daily

::::
and

:::::
3-day

::::::
scales,

::::
and

::
at

:::
all30

:::::
spatial

::::::
scales.

:::::
These

:::::::
models

::
are

:::::::
deemed

::::::::
adequate

:::
for

:::
the

::::::::
evaluation

::
of
:::::::
extreme

:::::
flood

::::::
events.

:

Future research will investigate if the floods resulting from
::::::::
simulated

:::
by

:
a
:::::::::::
hydrological

:::::
model

:::::
using

:::
the

:
generated precip-

itation scenarios through an hydrological model have statistical properties in agreement with observed floods.
:::
An

::::::::
extensive
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::::::::::
investigation

::
is

::::::::
currently

::::::::
underway

::::
with

::
a

:::::::::
distributed

::::::
version

::
of

:::
the

:::::
HBV

:::::::::::
hydrological

::::::
model,

::::::
applied

::
to

:::
87

:::::::::
sub-basins

::
of

:::
the

:::::
whole

:::::
study

::::
area

:::
and

:::::
using

::::::::::
precipitation

::::::::
scenarios

::::::::
produced

:::
by

::::::
GWEX

::
as

::::::
inputs.

::::
This

:::::::::::
hydrological

:::::::::
evaluation

::
of

:::
our

:::::::
weather

:::::::
scenarios

::::
will

::
be

:::::::::
presented

::
in

:::::
future

:::::::::::
publications.
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Appendix A: Temporal disaggregation from a 3-day scale to a daily scale

For a 3-day period D = {d,d+ 1,d+ 2} starting on a day d, the observed and simulated precipitation amounts at a station

k are denoted by YD(k) and ỸD(k), respectively. We want to disaggregate the simulated 3-day amount for the period D̃ =

{d̃, d̃+ 1, d̃+ 2}. This disaggregation is achieved with the application of the
::
in

:::
the following steps:

1. A set of observed 3-day amounts
::::::::
sequences are retained as candidate periods D according to two criteria:5

– Season: Periods D̃ and D must belong to the same season, as defined in Section ??
::
3.3.

– Mean intensity: Simulated and observed precipitation fields must have the same order of magnitude. Let q0.5,

q0.75and
:
,
:
q0.9 :::

and
:::::
q0.99 denote the quantiles of the mean observed precipitation intensities over all the stations

associated to
:::
with

:
probabilities 0.5, 0.75and

:
, 0.9,

:::
and

::::
0.99,

:
respectively. Observed and simulated 3-day periods are

classified in 4
:
5
:
groups according to their mean intensity Ȳ = 1

n

∑
k YD(k): dry periods (Ȳ < q0.5), moderately10

wet periods (q0.5 ≤ Ȳ < q0.75), wet periods (q0.75 ≤ Ȳ < q0.9)and
:
, very wet periods (q0.9 ≥ Ȳ)

::::::::::::::
q0.9 ≤ Ȳ < q0.99)

:::
and

::::::::
extremely

::::
wet

::::::
periods

::::::::::
(q0.99 ≥ Ȳ).

This first selection of candidate periods aims at increasing the chance of retaining periods corresponding to similar

meteorological events.

2. For each observed 3-day candidate period D, we compute the following score:15

SCORE(D̃,D) =
∑

k

∣∣∣∣∣
Ỹd̃−1(k)

∑
k Ỹd̃−1(k)

− Yd−1(k)∑
k Yd−1(k)

∣∣∣∣∣+
∣∣∣∣∣
ỸD(k)∑
k ỸD(k)

− YD(k)∑
k YD(k)

∣∣∣∣∣.

This score measures the similarity between the simulated spatial field for the period ỸD(k) and the observed spatial field

for the period D̃ , but also take
:::
and

::::
also

::::
takes

:
into account the similarity between the spatial fields for the previous days

d̃− 1 and d− 1.20

Absolute differences between relative precipitation intensities are computed , which means that
:
(the lowest scores are

:::::::
therefore

:
obtained for spatial fields with similar shapes

:
), among the observed periods corresponding to the same season

and order of magnitude selected at
::
in the previous step.

3. For each simulated period D̃, the observed precipitation fields corresponding to the 10 lowest scores are retained. For

each station k, if a positive precipitation amount has been simulated (ỸD̃(k)> 0), we look at the corresponding observed25

amount YD(k). If YD(k) = 0, this observed period cannot be used to disaggregate ỸD̃(k) and we look at the next best

observed field among the 10 selected fields. If the observed field contains a positive precipitation amount at this station

(YD(k)> 0), then we obtain the simulated daily amount for day d̃
::
as

::::::
follows:

Ỹd̃(k) = Yd(k)× ỸD̃(k)

YD(k)
, (A1)
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with similar expressions for days d̃+ 1 and d̃+ 2. Simulated daily amounts correspond to the observed daily amounts,

rescaled by the ratio between the simulated 3-day amount and observed 3-day amount.
:::::::
amounts.

::::
The

:
3-day simulated

amounts and observed temporal structures are thus preserved.

4. While the 3-day spatio-temporal coherence
:::::::::
consistency

:
is generally conserved by applying the preceding steps, it can

happen that the simulated 3-day amount is positive but
::::
even

::::::
though

:
there is no positive precipitation among the 10 best5

3-day observed fields. In this case, we seek similar observed amounts at this station only , and randomly choose one

3-day period among the 10 best 3-day periods.
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