

1 **Grey water footprint reduction in irrigated crop production: effect of nitrogen application**
2 **rate, nitrogen form, tillage practice and irrigation strategy**

4 Abebe D. Chukalla¹, Maarten S. Krol¹ and Arjen Y. Hoekstra^{1,2}

5 ¹ Twente Water Centre, University of Twente, Enschede, The Netherlands

6 ² Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore

7 Correspondence to: Abebe D. Chukalla (a.d.chukalla@utwente.nl)

9 **Abstract**

10 Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food
11 production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly
12 to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study
13 is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha⁻¹), nitrogen form (inorganic-N or
14 manure-N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the
15 nitrogen load to groundwater and surface water, crop yield and the N-related grey water footprint of crop
16 production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain
17 on loam soil in a semi-arid environment, whereby we simulate the twenty-years period 1993-2012. The water
18 and nitrogen balances of the soil and plant growth at field scale were simulated with the APEX model. As a
19 reference management package, we assume the use of inorganic-N (nitrate), conventional tillage and full
20 irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha⁻¹ (with crop yield of 11.1 t
21 ha⁻¹) is 1100 m³ t⁻¹, which can be reduced by 91% towards 95 m³ t⁻¹ when the N application rate is reduced to 50
22 kg N ha⁻¹ (with a yield of 3.7 t ha⁻¹). The grey WF can be further reduced to 75 m³ t⁻¹ by shifting the management
23 package to manure-N and deficit irrigation (with crop yield of 3.5 t ha⁻¹). Although water pollution can thus be
24 reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity
25 (larger green plus blue WF) as well. The overall (green, blue plus grey) WF per tonne is found to be minimal at an
26 N application rate of 150 kg N ha⁻¹, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha⁻¹). The
27 paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing
28 water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic-N
29 and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with
30 a 16% loss in yield.

32 **Key words:** grey water footprint, nitrogen balance, water balance, deficit irrigation, tillage, crop growth, APEX

34 **1. Introduction**

36 Crop yields depend on anthropogenic addition of nitrogen (N). But using N fertilizer inevitably result in some N
37 leaching and runoff, which result in the pollution of groundwater and surface water. Freshwater dilutes pollutant

38 loads entering a water body, which can be interpreted as an appropriation of fresh water (Postel et al.,
39 1996;Falkenmark and Lindh, 1974;Chapagain et al., 2006;Hoekstra, 2008). The amount of freshwater
40 appropriated to assimilate the load of pollutants in order to meet ambient water quality standards is called the
41 grey water footprint (WF) (Hoekstra et al., 2011). For crop production, the grey WF can be expressed as the
42 volume of water per hectare or per tonne [$m^3 \text{ ha}^{-1}$ or $m^3 \text{ ton}^{-1}$]. Global crop production makes three quarters of
43 the total N-related grey WF in the world (Mekonnen and Hoekstra, 2015). Anthropogenic N application in
44 agriculture and the resulting freshwater pollution is expected to increase with the growing production of food,
45 feed, fibre, and biofuel in the world, driven by population growth and improving living standards. The assimilation
46 capacity of freshwater, however, is limited, which calls for appropriate management practices that limit the grey
47 WF per tonne of crop production.

48 Factors that influence the grey WF include the N application rate, the form of N applied (particularly inorganic-N
49 versus manure or organic-N), and the tillage and irrigation practice. A low N-application rate will hamper plant
50 growth and reduce crop yield (Raun et al., 2002). The low N-application rate will result in relatively little water
51 pollution per hectare, but, because of the low yield per hectare, it may cause relatively much water pollution per
52 unit of crop produced. A high N-application rate will result in a high crop yield, but with high water pollution per
53 hectare and per tonne of crop as well. The reason for the high water pollution per tonne of crop is that there is a
54 threshold for the N application rate beyond which yield does not respond (Zhou et al., 2011), while the surplus N
55 contributes to pollution (Carpenter et al., 1998;Vitousek et al., 2009). The form of N applied is another important
56 factor affecting N losses. Inorganic N is readily available for uptake by crops (Haynes, 2012), whereas the organic-
57 N contained in manure becomes available only gradually, as it should first be converted (mineralized) to inorganic
58 form (Ketterings et al., 2005). The mobile nature of nitrate makes it susceptible for higher risk of leaching (Yanan
59 et al., 1997), while the slow disappearance of manure makes it susceptible to N losses through runoff before
60 being taken up by the crop (Withers and Lord, 2002). Field operation practices such as tillage affect the water
61 holding capacity of the soil, the movement of moisture and nutrients in the soil, surface runoff, and eventually
62 crop yield and nutrient load to freshwater. There are various good reasons why conventional tillage is being
63 practiced: it mixes fertilizer, organic matter and oxygen in the soil, breaks up surface soil crusts and reduces weeds
64 (Horowitz, 2011). However, conventional tillage disrupts aggregates within the soil and life cycles of beneficial
65 organisms, increases soil erodability, and results in soil compaction and tillage pan formation (Triplett and Dick,
66 2008); tillage-pan is a formation of compacted soil layer caused by repeated ploughing using heavy weight tillage
67 machineries (Podder et al., 2012). Alternatively, no-tillage maintains the crop residue that serves as mulch cover,
68 improves the soil water holding capacity (Dangolani and Narob, 2013) and increases hydraulic conductivity (Azooy
69 and Arshad, 1996;Triplett and Dick, 2008). The irrigation practice primarily influences the water balance of the
70 soil, but as a side effect it influences nutrient movement in the soil. The advantage of deficit irrigation compared
71 to full irrigation is that there may be less leaching and runoff of nutrients (Withers and Lord, 2002), but the
72 disadvantage is that it may result in reduced N demand as crop growth diminished and reduced N supply as N
73 transporting agent is reduced and thus reduction in water pollution per unit of crop produced (Gonzalez-Dugo et
74 al., 2010).

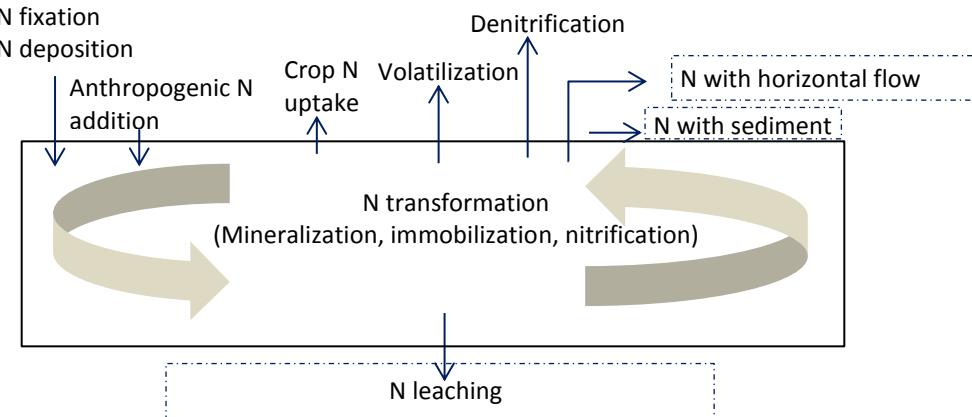
76
77 Various studies show how increasing N-application rates result in both increased crop yield and N leaching
78 (Berenguer et al., 2009;Rong and Xuefeng, 2011;Valero et al., 2005;Zhou et al., 2011;Cooper et al., 2012;Good
79 and Beatty, 2011). (Pittelkow et al., 2015) analysed the effect of tillage practices on crop yield; Yu et al. (2016)
80 explored the effect of different combinations of tillage practice and N fertilizer form on crop yield; Huang et al.
81 (2017) and Yanan et al. (1997) considered the effect of manure versus inorganic N fertilizer application on nitrate
82 leaching; and Huang et al. (2015) analysed the effect of different tillage practices and N application rates on yield
83 and N leaching. Furthermore, there are quite some studies on the relation between rates of irrigation and N
84 application and crop yield (Yin et al., 2014;Al-Kaisi and Yin, 2003;Rimski-Korsakov et al., 2009). These earlier
85 studies provide insight in the effects of individual management practices on yield, water productivity, or leaching,
86 however most of the studies vary only one or two management practices, not considering the combined effect
87 of N application rate, N form, tillage practice and irrigation strategy. Besides, none of these studies consider the
88 effect on the pollutant load per unit of crop obtained or the effect on the grey WF per tonne.
89

90 It is challenging to conduct field experimental studies and even more laborious and expensive to study the effects
91 of a comprehensive list of different combinations of management practices. Besides, leaching and runoff of N
92 from fields is difficult to determine through field experiments; N that can be measured in groundwater and
93 streams originates from different sources and cannot easily be attributed to an experimental field. An alternative
94 approach avoiding these downsides is to use modelling (Chukalla et al., 2015;Ragab, 2015).

95
96 The objective of this study is to explore the effect of nitrogen application rate, nitrogen form, tillage practice and
97 irrigation strategy on the nitrogen load to groundwater and surface water, crop yield and the grey water footprint
98 of crop production by a systematic model-based assessment. We apply the Agricultural Policy Environmental
99 eXtender (APEX) model, which simulates nutrient and water balances of the soil and plant growth, is able to
100 simulate the effect of a wide variety of agricultural management practices, and has been applied for a wide variety
101 of cases (Wang et al., 2012;Gassman et al., 2010;Liu et al., 2016;Clarke et al., 2017;Chen et al., 2017). As a case
102 study, we simulate irrigated-maize growth for twenty-years (1993-2012) at Badajoz in Spain on loam soil in a
103 semi-arid environment.

104
105 Franke et al. (2013) distinguish three tiers to estimate grey WFs from diffuse pollution, from tier-1 to tier-3,
106 ordered in the direction of increasing level of advancement. The tier-1 approach, simplest but also least data
107 demanding, is based on expert-based assumptions on which fractions of applied or surplus N in the soil will leach
108 or run off given contextual factors. It provides a first rough estimate of the N load without describing the
109 interaction and transformation of different chemical substances in the soil or along its flow pathways (see for
110 instance Mekonnen and Hoekstra (2011), and Brueck and Lammel (2016)). The more advanced tier-2 approach
111 for estimating grey WFs from diffuse pollution is based on an annual N mass balance approach (see for example
112 Mekonnen and Hoekstra (2015), and Liu et al. (2012)). This approach ignores soil organic matter build-up and
113 decomposition, and nitrogen transformations such as mineralization, immobilization and nitrification, which all

114 affect the N uptake and N load to freshwater. The current study is the first one to apply the tier-3 approach, which
115 explicitly considers daily physical and biochemical processes using an advanced water and nutrient balance model
116 (the APEX model). As an additional component of the current study, we will compare the N leaching-runoff
117 fractions that result from the APEX simulations with the leaching-runoff fractions estimated with the simpler tier-
118 1 approach, in order to find out the added value of employing the advanced model approach.
119


120 2. Method and data

121 2.1. Modelling the soil water & nitrogen balances and crop growth

123 The effect of various combinations of management practices on water flows (like soil evaporation, crop
124 transpiration, percolation and runoff), N flows (like N uptake by plants, leaching and runoff) and crop growth are
125 simulated using the APEX model, a dynamic, deterministic and process-based model with a daily time step
126 (Williams and Izaurralde, 2006). Below we briefly summarise the processes simulated in the model. More detailed
127 descriptions of the processes and the equations to simulate these processes can be found in the documentation
128 of APEX (Williams et al., 2008).
129

130 The water balance component of APEX encompasses key processes that impact the soil water compartment in
131 the hydrologic cycle. Initially, incoming inputs such as precipitation, snowmelt, or irrigation is partitioned between
132 surface runoff and infiltration. Surface runoff volume is simulated using a modified Soil Conservation Service curve
133 number technique described by Williams (1995). Infiltrated water can be stored in the soil profile, be lost via
134 evapotranspiration (ET), percolate vertically to groundwater, or flow laterally as subsurface flow, with a quick and
135 slow component. Reference ET is calculated using the Penman-Monteith method. The actual ET, an important
136 variable in estimating green and blue WF of crop production, is computed by simulating evaporation from the soil
137 and transpiration from plants separately, considering the soil moisture status and how agricultural management
138 practices affect the root zone. Percolation and lateral flow are computed using storage routing and pipe flow
139 equations described by Gassman et al. (2010). A deep groundwater table is assumed and thus capillary rise, which
140 APEX would simulate using storage routing (Gassman et al., 2010), is not considered in the water balance.
141

142 The N balance of the soil in APEX is computed based on inputs and outputs and conversion processes (Figure 1).
143 N is added to the soil-plant system through natural and anthropogenic pathways. Natural N inputs include wet
144 and dry deposition (Anderson and Downing, 2006) and N fixation, through lightning and through biological
145 fixation by legume plants (Carpenter et al., 1998). Anthropogenic input occurs when inorganic or organic N
146 fertilizers are applied (Vitousek et al., 2009). N outputs include N uptake by crops (partly harvested and removed
147 later on), denitrification, volatilization, nitrate-N losses through leaching, horizontal losses of organic N with
148 eroded sediments, and horizontal losses of inorganic N through surface runoff, or lateral subsurface flow. N
149 transformation includes mineralization, immobilization and nitrification.
150

151

152 **Figure 1.** Nitrogen fluxes into and from the root zone, and N transformation.

153

154 APEX simulates the growth of annual and perennial crops based on the EPIC model (Williams et al., 1989), an
 155 energy-driven crop growth model using a radiation-efficiency approach to simulate the generation of biomass.
 156 Potential biomass production is derived as function of leaf area index and climatic variables (solar radiation, CO_2 ,
 157 air humidity and temperature). Phonological development of the crop is based on heat unit accumulation
 158 measured in growing degree days. Annual crops grow from planting date to harvest date or until the accumulated
 159 heat units equal the potential heat units for the crop (Steduto, 1997). Daily potential growth is lowered to actual
 160 growth using the most limiting stress factor, considering stresses caused by water, nutrients (N and P),
 161 temperature and aeration, which are evaluated by assigning stress factors (from 0, high stress, to 1, no stress).
 162 Root growth is constrained based on the most limiting stress caused by soil strength and temperature. Total
 163 biomass is partitioned to root and above ground biomass, and from the above-ground biomass the economic
 164 yield is partitioned using harvest index.

165

166

2.2. The grey water footprint of growing crops

167

168 The grey water footprint (WF), an indicator of appropriated pollution assimilation capacity, is calculated following
 169 the Global Water Footprint Standard (Hoekstra et al., 2011), which means that the total pollutant load entering
 170 freshwater (groundwater or surface water) is divided by the difference between the maximum acceptable
 171 concentration for that pollutant and the natural background concentration for that pollutant. The grey WF can
 172 be expressed in two different ways, either as a water volume per ha, or as a water volume per tonne of crop:
 173

$$174 \text{Grey WF per hectare} = \frac{L}{C_{max} - C_{nat}} [m^3 \text{ ha}^{-1} \text{ y}^{-1}] \quad (1a)$$

$$175 \text{Grey WF per tonne} = \frac{\text{Grey WF per hectare}}{Y} [m^3 \text{ t}^{-1}] \quad (1b)$$

177

178 where L ($\text{kg ha}^{-1} \text{ y}^{-1}$) is the pollutant load to surface water and groundwater, C_{max} and C_{nat} are the maximum
179 acceptable and natural concentrations (kg m^{-3}), and Y the crop yield ($\text{t ha}^{-1} \text{ y}^{-1}$).

180

181 The total N load to freshwater (L , in $\text{kg N ha}^{-1} \text{ y}^{-1}$) is calculated as the sum of the N load in surface runoff, the N in
182 quick subsurface flow, the N in slow subsurface flow, the N adsorbed to eroded sediments and the N in
183 percolation. Each of these N loads are simulated separately in APEX.

184

185 A maximum acceptable N concentration of $50 \text{ mg nitrate-N L}^{-1}$ (or 11.3 mg N L^{-1}) is adopted, based on the EU
186 Nitrates Directive (Monteny, 2001). The natural concentration was considered to be 0.5 mg N L^{-1} , following for
187 example (de Miguel et al., 2015).

188

189 Next to the grey WF, the green and blue WF of crop production are calculated as well, again using the Global WF
190 standard (Hoekstra et al., 2011). The green WF refers to the rainwater consumed (water evaporated or
191 incorporated into the crop), while the blue WF refers to the irrigation water consumed (which comes from surface
192 water or groundwater). Together, the green and blue WF are called the consumptive WF. The consumptive WF
193 per tonne of crop is calculated by dividing the ET over the growing period by the crop yield.

194

195 2.3. Leaching-runoff fraction

196

197 As an additional component of the current study, we will compare the N leaching-runoff fraction simulated
198 through APEX (tier-3 level estimation) with the leaching-runoff fraction estimated with the simpler estimation
199 approach (tier-1) as applied in previous studies, in order to find out when the simple tier-1 approach suffices and
200 when it doesn't.

201

202 The leaching-runoff fraction can be defined in two ways (Franke et al., 2013). In the first definition, the leaching-
203 runoff fraction, called α , is defined as the percentage of the amount of chemical applied to the field as fertilizer
204 that is lost to groundwater through leaching or to surface water through runoff. In the second definition, the
205 leaching-runoff fraction, now called β , is defined as the percentage of the amount of 'surplus chemical' in the soil
206 that is transported to groundwater by leaching or to surface water by runoff. The 'surplus chemical' in the soil is
207 defined as the amount of chemical applied minus the uptake of the chemical by the crop.

208

$$209 \alpha = \frac{L}{Appl} \quad (2)$$

$$210 \beta = \frac{L}{Surplus} \quad (3)$$

211

212 where α and β are the leaching-runoff fractions, and where L ($\text{kg N ha}^{-1} \text{y}^{-1}$) is the N load to freshwater bodies,
213 Appl ($\text{kg N ha}^{-1} \text{y}^{-1}$) the N fertilizer applied, and Surplus ($\text{kg N ha}^{-1} \text{y}^{-1}$) the N applied but not taken up by the plant.
214

215 At the tier-3 level, the fractions α and β are not used in the calculations, but they can easily be calculated
216 afterwards, based on the outputs of the model. At the tier-1 level, α and β can be estimated using equation 4 and
217 5 following the guidelines of Franke et al. (2013). According to these guidelines, the leaching-runoff fractions lie
218 between a minimum and a maximum value (0.01 to 0.25 for α and 0.08 to 0.8 for β). The precise value is estimated
219 based context-specific environmental and management factors, using the following equations:
220

$$221 \alpha = \alpha_{min} + \left[\frac{\sum_i s_i * w_i}{\sum_i w_i} \right] * (\alpha_{max} - \alpha_{min}) \quad (4)$$

$$222 \beta = \beta_{min} + \left[\frac{\sum_i s_i * w_i}{\sum_i w_i} \right] * (\beta_{max} - \beta_{min}) \quad (5)$$

223 where s_i is score for the leaching runoff potential for environmental or management factor i , and w_i is the weight
224 of that factor.
225

226 2.4. Simulation set-up

227 We carry out model simulations with APEX for 56 management packages, whereby each management package
228 consists of a certain combination of management practices. We consider all possible combinations of seven N
229 application rates, two N forms, two tillage practices, and two irrigation strategies (Table 1). As a reference
230 management package, we assume the use of inorganic N fertilizer (nitrate) in combination with conventional
231 tillage and full irrigation. Conventional tillage is the most wide-spread tillage practice in the EU (EUROSTAT, 2013)
232 and full irrigation is the most common irrigation practice, aimed at achieving maximum yield.
233

234 **Table 1.** Research set-up: the APEX model is used to simulate the effect of 56 management packages
235 (combinations of different management practices) on ET, crop yield, nitrogen load to freshwater, and green, blue
236 and grey WF.
237

Management practices	Modelling	Effects
<ul style="list-style-type: none">• Nitrogen application rates: 25, 50, 100, 150, 200, 250 or 300 $\text{kg N ha}^{-1} \text{y}^{-1}$• Nitrogen forms: inorganic-N (nitrate) or organic-N (manure)• Tillage practices: no-tillage or conventional tillage• Irrigation strategies: full or deficit irrigation	Soil water & nutrient balances and crop growth model (APEX)	<ul style="list-style-type: none">- ET- Yield- N load- Green, blue, grey WF

240 The EU Nitrate Directive legally restricts annual farm application of manure in EU member states to 170 kg N ha⁻¹ y⁻¹, or in case of derogation up to 250 kg N ha⁻¹ y⁻¹ (Amery and Schoumans, 2014;Van Grinsven et al., 2012).
241 Surveys in Spain, however, show that application rates of 300-350 kg N ha⁻¹ y⁻¹ are common to cultivate maize in
242 the Ebro Valley (Berenguer et al., 2009) and up to 300 kg N ha⁻¹ y⁻¹ in La Mancha (Valero et al., 2005). As the
243 upper value for the N application rate in our simulations we apply 300 kg N ha⁻¹ y⁻¹.
244

245
246 The fertilization is assumed to be performed in two splits (30% in a first round, at planting for mineral fertilizer
247 and 15 days before planting for manure; 70% in a second round, one month after planting). In the first round of
248 application, inorganic fertilizer is assumed to be nitrate-N and applied through broadcasting while manure is
249 assumed to be injected. Manure injection is getting recognition in the EU and in the world due to its many
250 advantages, including reduction of N losses to freshwater and to the atmosphere and bad odour (Van Dijk et al.,
251 2015;van den Pol-van Dasselaar et al., 2015). In the second round, both the manure and nitrate-N fertilizers are
252 added as side-dressing.
253

254 As for the inorganic N applied, we assume that the N is 100% in the form of nitrate. Manure is generally contained
255 of mostly organic N, and a smaller amount of inorganic N (Ketterings et al., 2005;Pratt and Castellanos, 1981). In
256 this study, we assume the manure composition as in the APEX database: 91.67% organic N, 8.33% inorganic N
257 (0.23% nitrate and 8.10% ammonium N). In addition, the current study assumes that other nutrients (P, K and
258 micro nutrients) do not to constrain crop production.
259

260 We simulate conventional tillage in APEX as two times ploughing to a depth of 20 cm at thirty and fifteen days
261 before sowing date and one time harrowing following the emergence of the seed. The two times ploughing is the
262 average of what is most common, namely one to three times tilling (Nagy and Rátonyi, 2013;FAO, 2016). With
263 the tillage depth of 20 cm we follow the average estimate reported by Townsend et al. (2015) and FAO (2016).
264 No-tillage, a form of conservation tillage that is strongly encouraged by the EU agricultural policy (De Vita et al.,
265 2007), is simulated as no soil disturbance; the stubble of the previous crop is kept on the field.
266

267 We simulate full irrigation in APEX by irrigating up to field capacity as soon as the soil water content would
268 otherwise drop below a level at which water stress occurs. Deficit irrigation is simulated to allow for 20% plant
269 water stress, a deficit level that can achieve 61-100% of full ET (Fereres and Soriano, 2007). With this irrigation
270 strategy, average water productivity is higher than in case of full irrigation (Chukalla et al., 2015). We assume the
271 use of furrow irrigation, the irrigation technique that covered the largest irrigated area in the EU in 2010,
272 particularly in the Eastern and Mediterranean regions of Europe (EUROSTAT, 2016).
273

274 2.5. Data 275

276 The model experiment is carried out at field scale for a place near Badajoz in Spain, in the Guadiana river basin,
277 which has a semi-arid climate and faces water scarcity during part of the year, particularly in summer when water
278 is needed for irrigation (Hoekstra et al., 2012).

279
280 The following climatic and soil data have been collected for Badajoz in Spain (38.88° N, -6.83° E; 185 m above
281 mean sea level). Daily observed rainfall and temperature data (for the period 1993-2012) are extracted from the
282 European Climate Assessment and Dataset (Klein Tank et al., 2002). These data have been subject to homogeneity
283 testing and missing data have been filled with observations from nearby stations (Klein Tank, 2007). Mean
284 monthly solar radiation, relative humidity and wind speed data are taken from the FAO CLIMAWAT database
285 (Smith, 1993). Daily reference evapotranspiration is calculated using the Penman-Montheith equation, as
286 implemented in APEX (Williams et al., 2008). The average monthly climatic and reference evapotranspiration data
287 are shown in Table 2.

288
289 **Table 2.** The average monthly climatic data of Badajoz in Spain.

Climatic variables	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature max, °C	14.1	16.5	20.4	22.2	26.1	31.9	34.9	34.7	30.0	24.4	18.0	14.3
Temperature min, °C	3.6	4.2	6.7	9.0	12.2	15.8	17.3	17.6	15.2	11.9	7.3	4.9
Precipitation, mm	50.2	39.5	30.9	41.1	41.9	10.8	2.3	4.2	25.1	64.4	65.2	64.0
Solar radiation, MJ/M ²	7.4	10.5	12.9	19	21.9	25.7	26.9	23.9	17.8	12.3	8.1	6.4
Relative humidity, %	83	71	63	56	45	42	37	35	46	64	76	80
Wind speed, m/s	1.7	1.9	2.09	2.09	2.2	2.3	2.4	2.2	1.81	1.6	1.7	1.7
ET ₀ , mm	33.2	57.1	108.8	145.3	196.6	224.2	250.9	218.2	139.7	83.7	43.3	29.3

290
291 Using the Soil Texture Triangle Hydraulic Properties Calculator from (Saxton et al., 1986), we identified the soil at
292 our location as loam soil. The physical and chemical characteristics of the soil, and nutrient content in the soil
293 (nitrogen, phosphorus, carbon) that are used in APEX are extracted from the 1×1 km² resolution European Soil
294 Database (Hannam et al., 2009). We use a soil albedo of 0.13 for a loam soil at its field capacity (Sumner, 1999).

295
296 Regarding crop parameters, we use the default values from the APEX model. The effect of stresses related to
297 weed, pest and diseases on crop growth are not considered; we simulate the effect of stresses from excess and
298 limitation of water, from limitation of nitrogen, and from very high or very low temperature.

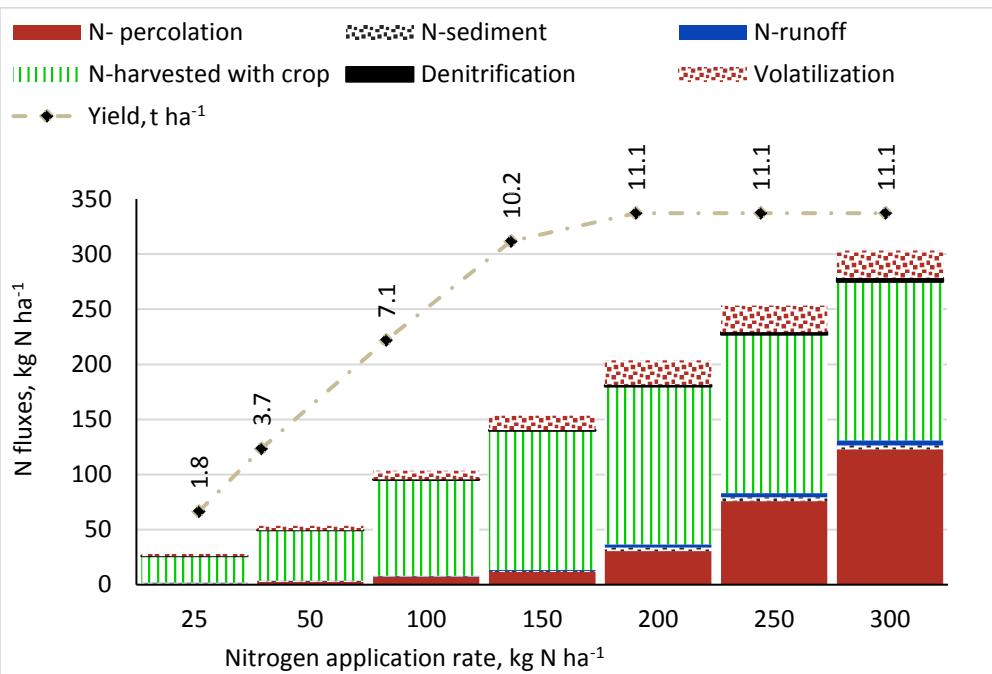
299
300 Soil moisture content is initialised using the standard procedure in APEX, which is based on average annual rainfall
301 within the period considered (1993-2012). We adjust initial organic-N content for each simulation so that the N
302 build-up in the soil over the 20-year period is zero. We apply the graphical time-series inspection method
303 (Robinson, 2002) to determine the warm-up period, i.e. the period in which simulation results are still affected

304 by the model initialization. We find that we best exclude the first five years of the simulation, thus we show results
305 for the period 1998-2012.

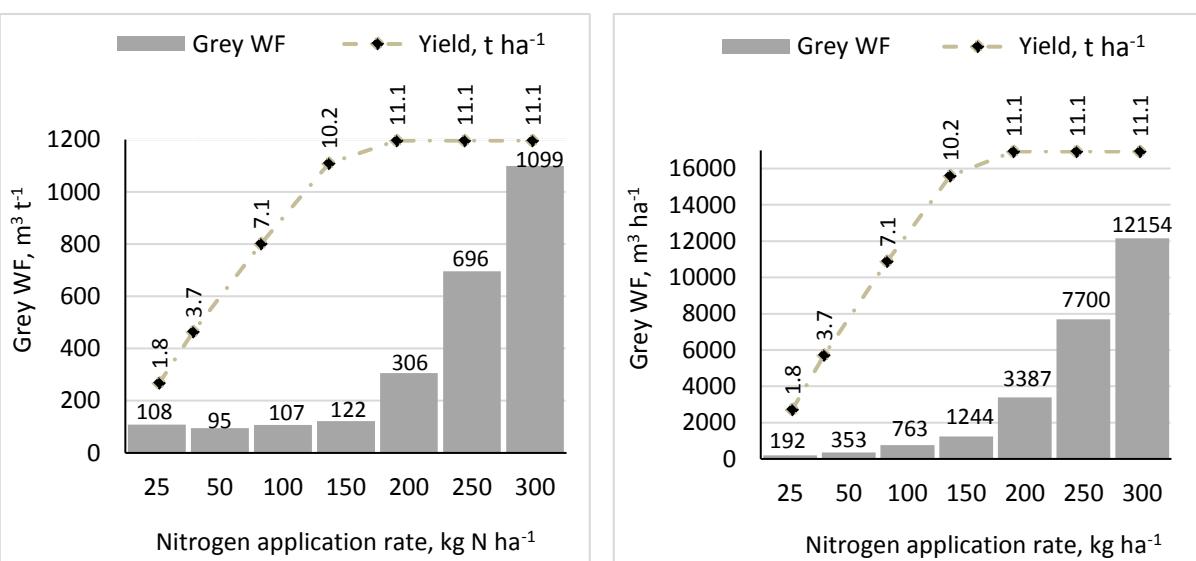
306

307 3. Results

308 3.1. Pollutant loads and grey WF for the reference management package


309

310 N out-fluxes from the soil for maize production under the reference management package (inorganic-N,
311 conventional tillage, full irrigation) for different N application rates are shown in Figure 2. The N out-fluxes are
312 denitrification and volatilization to the atmosphere, N harvested with the crop, and N loads to freshwater adhered
313 to sediment and dissolved in percolation and runoff. All of these N out-fluxes increase with the N application rate
314 and with the N surplus in the root zone (N application minus crop uptake). For all N application rates the N
315 harvested with the crop is the main share of the N out-flux. For larger N application rates, the share of N leaching
316 increases substantially. For all application rates, N leaching to groundwater constitutes at least 95% of the total
317 N load to freshwater, and the N flux to surface water (N dissolved in runoff plus N in eroded sediments) 5% at
318 most.


319

320 Crop yields increase with the N application rate as a result of reduced N stress. Yields stabilize at larger N
321 application rates. The yield increase, however, comes at a price: the N load to freshwater, through leaching, runoff
322 and eroded sediment, increases exponentially. As a result, large N-application rates result in a large grey WF
323 (Figure 3). At lower N-application rates, crop yields decline as a consequence of N stress. While the grey WF in m^3
324 ha^{-1} keeps on declining with lower N-application rates, the grey WF in $m^3 t^{-1}$ starts increasing again at very low N-
325 application rate (in our case when the N-application rate drops below 50 $kg N ha^{-1}$). The smallest grey WF per
326 tonne can be found at an N-application rate of 50 $kg N ha^{-1}$, where yield is substantially lower than the maximum,
327 but where additional N application goes along with increasing N load per unit of crop yield gain, thus with
328 increasing grey WF per tonne.

329

330
331 **Figure 2.** Nitrogen out-fluxes and yield for an irrigated maize field for a range of N-application rates under the
332 reference management package (inorganic-N, conventional tillage, full irrigation).
333

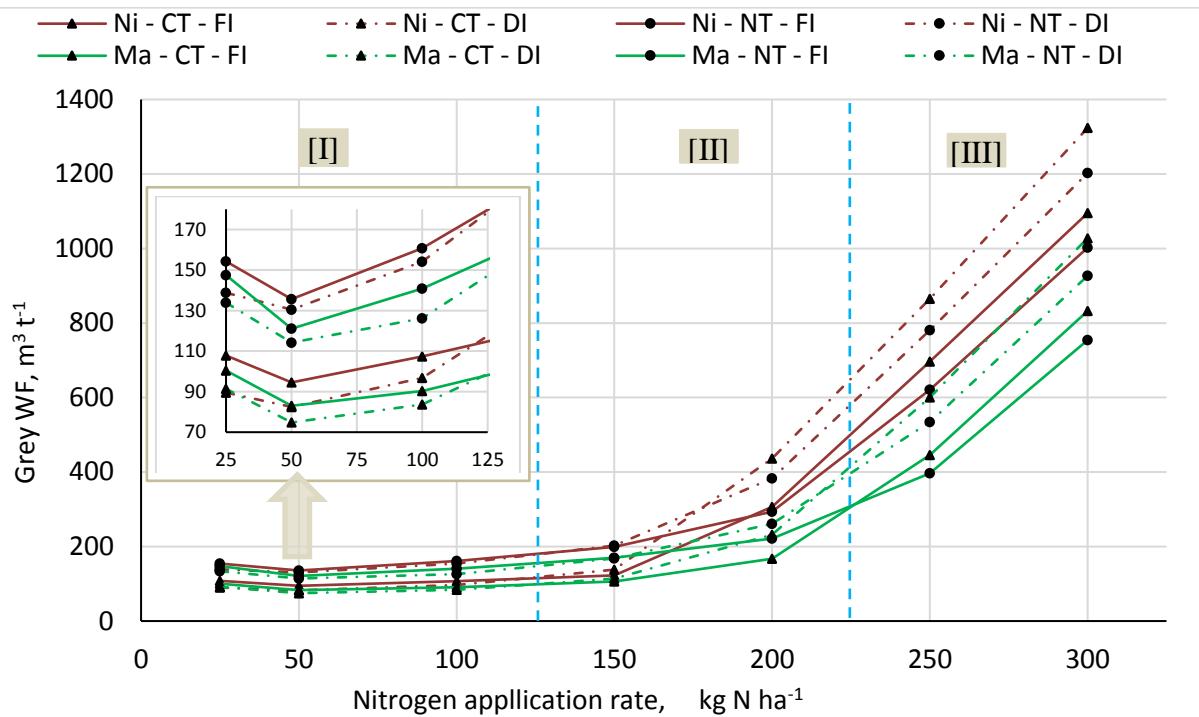
334
335 **Figure 3.** Grey WF of maize production in $m^3\ t^{-1}$ (left) and $m^3\ ha^{-1}$ (right) for a range of N-application rates under
336 the reference management package.
337

338 3.2. Effect of fertilizer form, tillage practice and irrigation strategy on grey WF
339

340 Figure 4 shows that, at a given N-application rate, the grey WF in $\text{m}^3 \text{t}^{-1}$ can be higher or lower than for reference
341 management package, by changing to manure, no-tillage or deficit irrigation, or a combination of those. Across
342 the whole range of N application rates, the use of manure results in a smaller grey WF per tonne than the use of
343 nitrate fertilizer. The effect of the tillage practice and irrigation strategy on the grey WF depends on the N-
344 application rate. We can identify three ranges for the application rate, each with a different management package
345 resulting in the smallest grey WF per tonne:

346

- 347 I. Application rates up to 125 kg N ha^{-1} : the grey WF is smallest for manure with conventional tillage and
348 deficit irrigation;
- 349 II. Application rates between 125 and 225 kg N ha^{-1} : the grey WF is smallest for manure with conventional
350 tillage and full irrigation;
- 351 III. Application rates above 225 kg N ha^{-1} : the grey WF is smallest for manure with no-tillage and full irrigation.

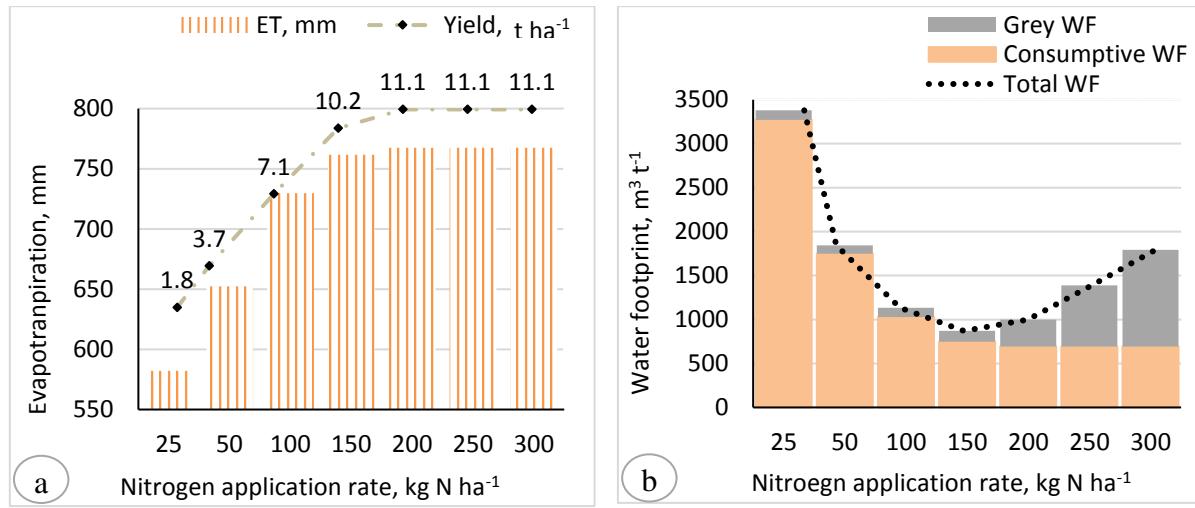

352

353 At low and intermediate N-application rates (ranges I-II), the advantage of conventional tillage over no-tillage is
354 that it decreases the hydraulic conductivity of the soil (because of the removal of fine cracks in the soil), which
355 reduces percolation and thus N leaching. At high N-application rates (range III), no-tillage appears to be better.
356 The disadvantage of increased hydraulic conductivity is now compensated by another effect: no-tillage results in
357 improved soil texture: the soil remains intact, which in combination with the build-up of organic content creates
358 favourable conditions for soil organisms that help to glue the soil particles and increase the number of micro-
359 pores and macro-pores in the soil. This increases the soil water holding capacity and thus N holding capacity of
360 the soil, resulting in lower N leaching (by 30%) and higher yield (by 3.6%).

361

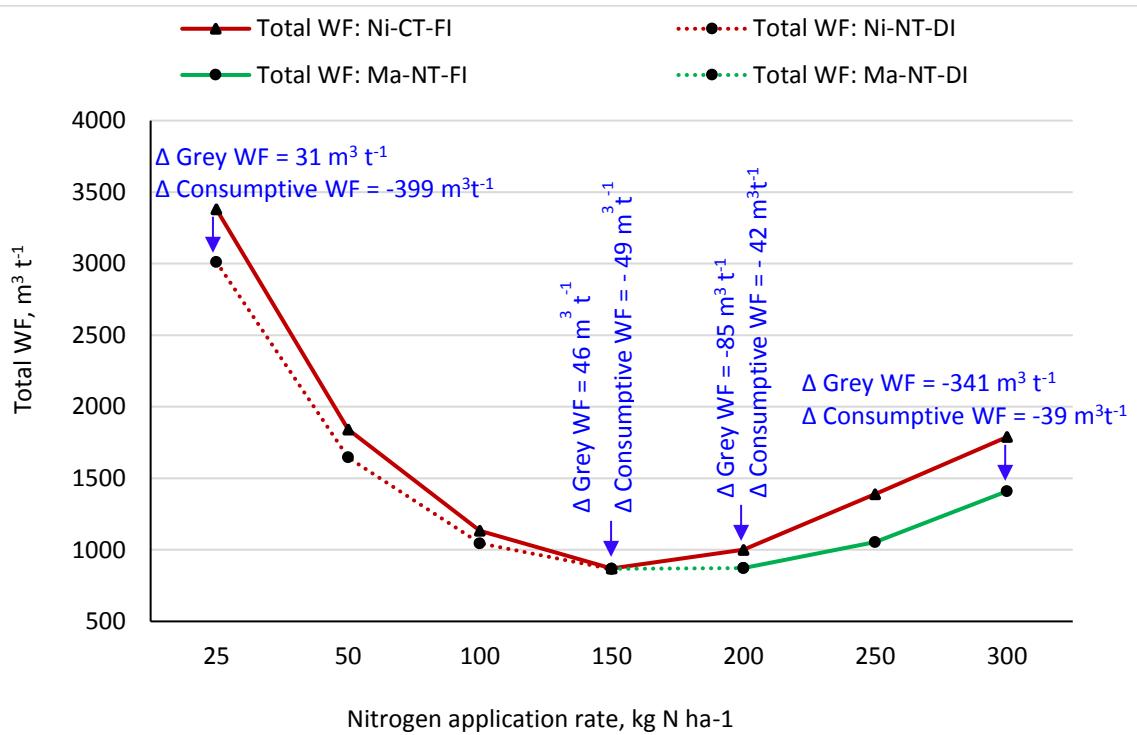
362 At low application rates (ranges I), deficit irrigation decreases the amount of water available for percolation and
363 thus reduces N leaching as well. At intermediate and higher N-application rates (ranges II-III), full irrigation has a
364 smaller grey WF per tonne as compared to deficit irrigation because of the higher crop yield. With the absence of
365 water stress and the higher yield, the N uptake by the crop is higher, resulting in a lower N surplus in the root
366 zone and decreased N leaching.

367



368
369 **Figure 4.** The effect of N application rate, N form, tillage practice and irrigation strategy on grey WF per tonne.
370 Considering which management package gives the lowest grey WF, three ranges can be distinguished: [I] N
371 application rates up to 125 kg N ha^{-1} , [II] N application rates between 125 and 225 kg N ha^{-1} , [III] N application
372 rates above 225 kg N ha^{-1} . Red lines refer to nitrate (Ni); green lines refer to manure (Ma). Circular markers refer
373 to no-tillage (NT); triangular markers refer to conventional tillage. Dashed lines refer to deficit irrigation (DI); solid
374 lines refer to full irrigation (FI).

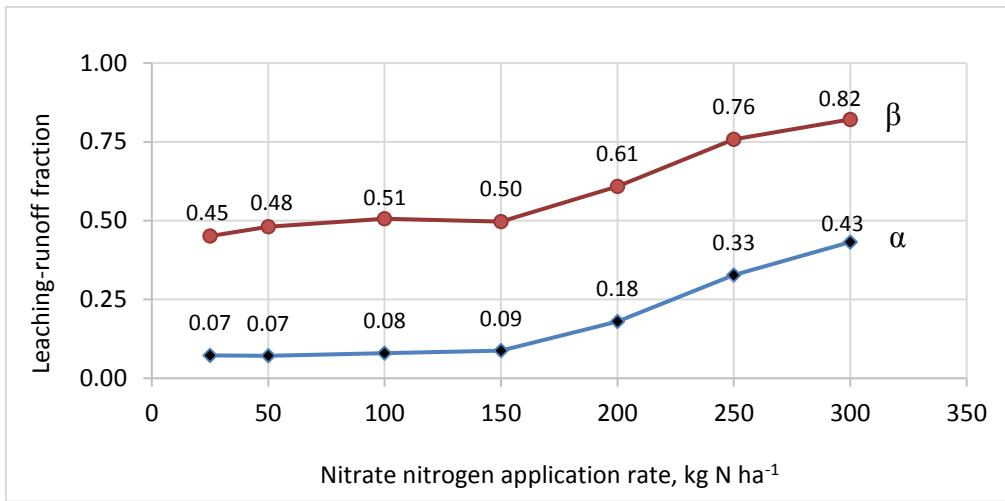
375
376 The smallest grey WFs per tonne are found for an N application rate of 50 kg N ha^{-1} . Taking the reference
377 management package with an N application rate of 300 kg N ha^{-1} as a starting point, one can reduce the grey WF
378 per tonne of crop production by reducing the N application rate while keeping the management package fixed,
379 by shifting the management package to one with a smaller grey WF, or both (Table A.1 in Appendix). Reducing
380 the N application rate from 300 kg N ha^{-1} to the optimum of 50 kg N ha^{-1} under the reference management package
381 will reduce the grey WF by 91% (from around 1100 to $95 \text{ m}^3 \text{ t}^{-1}$), but the crop yield will reduce by two thirds (from
382 11.1 to 3.7 t ha^{-1}). When, at the application rate of 50 kg N ha^{-1} , shifting from the reference management package
383 to organic N and deficit irrigation, one can further reduce the grey WF by 21% (from around 95 to $75 \text{ m}^3 \text{ t}^{-1}$), with
384 a yield reduction of 5% (from 3.7 to 3.5 t ha^{-1}).


385
386 **3.3. Reducing grey WF vs consumptive WF**

388 Both ET and yield increase with increasing N application rate, but level off at large N application rates (Figure 5a).
 389 Adding more N at relatively low application rates has a larger impact on Y increase than on ET increase. As a result,
 390 the consumptive WF per tonne, defined as ET over Y, decreases with increasing N application rate, levelling off at
 391 larger N application rate (Figure 5b). The grey WF per tonne, however, exponentially increases with increasing N
 392 application rate. As a result, the sum of grey and consumptive WF has a minimum somewhere at intermediate N
 393 application rate, at 150 N ha⁻¹ in the case of our reference management package. The total WF is dominated by
 394 the consumptive WF for smaller N application rates and by the grey WF for larger N application rates.
 395

396 **Figure 5.** Evapotranspiration and yield (Fagard et al.) and consumptive WF and grey WF per tonne (b) for the
 397 reference management package.
 398

400 Figure 6 shows the total (grey+consumptive) WF per tonne for the reference management package for different
 401 N application rates (the solid red line). For each given N application rate, shifting to another management package
 402 (the dashed red and green lines, and the solid green line) can reduce the total WF. Generally, the reduction in
 403 total WF is the result from reductions in both the grey WF and the consumptive WF (as indicated in the figure).
 404 At N application rates of 25, 50 and 100 kg N ha⁻¹, the total WF can be reduced by shifting towards no-tillage and
 405 deficit irrigation. At N application rates of 150 kg N ha⁻¹, the total WF can be reduced by shifting towards organic
 406 N, no-tillage and deficit irrigation. Finally, at N application rates of 200, 250 and 300 kg N ha⁻¹, the total WF can
 407 be reduced by shifting towards organic N and no-tillage. The total WF reductions shown in the figure are the net
 408 effect of changes in the consumptive WF and grey WF; in some cases, the total WF decrease is at the cost of some
 409 grey WF increase.



410
411 **Figure 6.** The total (green, blue plus grey) WF per tonne for the reference management package and for a
412 management package with the largest total WF reduction potential. Red lines refer to nitrate (Ni); green lines
413 refer to manure (Ma). Circular markers refer to no-tillage (NT); triangular markers refer to conventional tillage.
414 Dashed lines refer to deficit irrigation (DI); solid lines refer to full irrigation (FI).

415
416 3.4. Resultant leaching-runoff fractions

417
418 The N leaching-runoff fractions α and β for different N application rates for the reference management package,
419 as calculated here with the tier-3 approach, are shown in Figure 7. The α values, which show the ratio of the N
420 load to fresh water to the N application rate are lower than the β values, which show the ratio of the N load to
421 the N surplus in the soil. This can be logically understood, because the N load to freshwater (in the numerator of
422 both ratios) is the same, while the α ratio has the total N application rate in the denominator, while the β ratio
423 has the relatively smaller N surplus (which is only a fraction of the N applied) in the denominator.

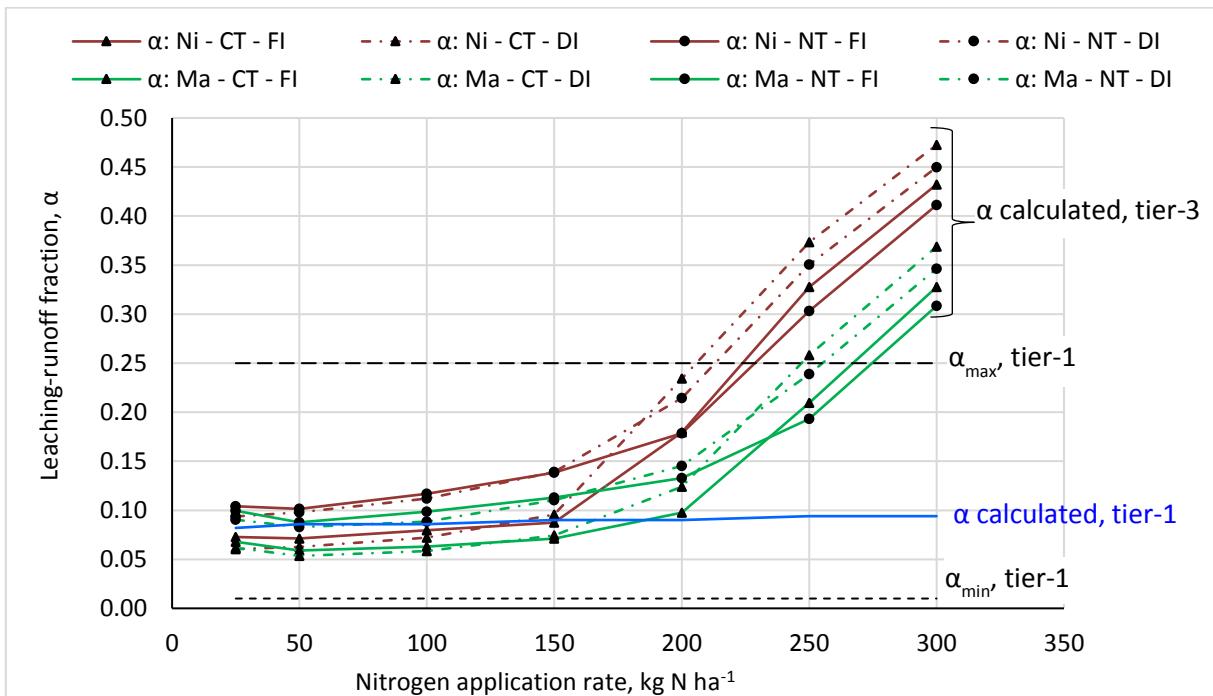
424
425 With increasing N application rate, both N surplus in the soil and the N load to freshwater increase exponentially
426 (Figure 2). The α values grow with increasing N application rate, because the N load to freshwater increases
427 quicker with increasing N application rates than the application rate itself. The β values also grow with increasing
428 N application rates, because denitrification and volatilization do not grow proportionally to the growth in N
429 surplus, which leads to greater fractions of the surplus getting lost through leaching and runoff.

431

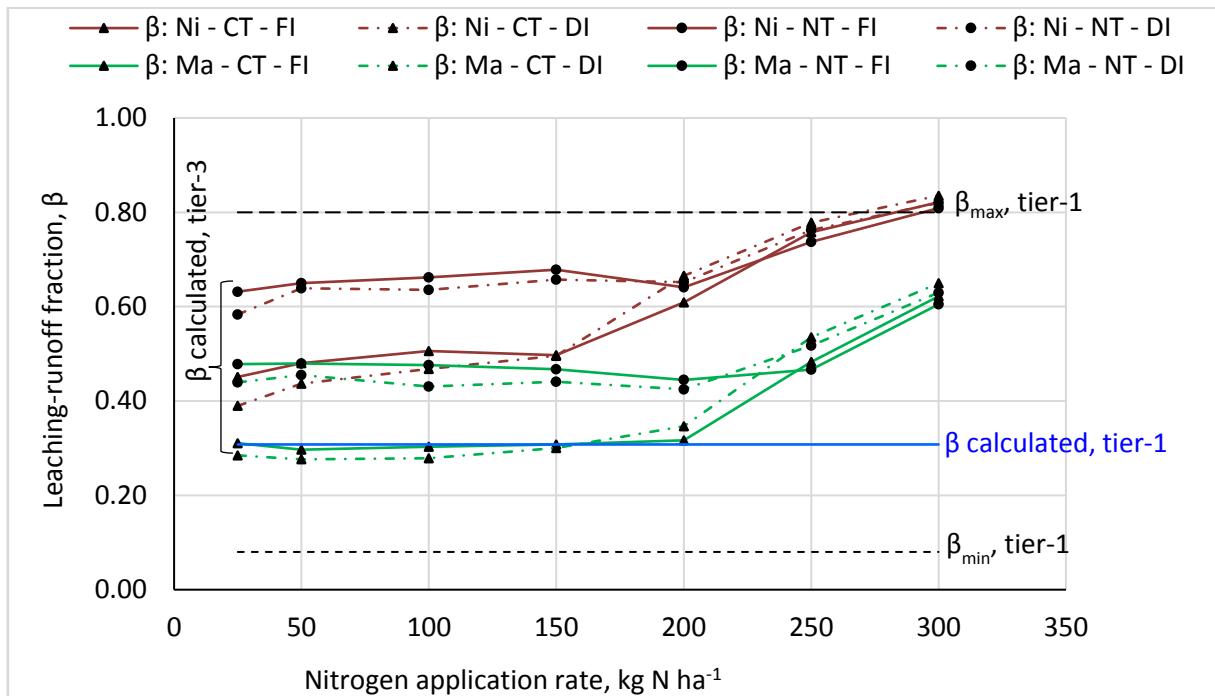
432 **Figure 7.** The N leaching-runoff fractions α and β calculated per N application rate for the reference
 433 management package.

434

435 Figure 8 and Figure 9 show α and β values for different management packages and N application rates. For
 436 comparison, the figures also show the α and β values when estimated based on the simpler tier-1 approach
 437 (Tables A.2 and A.3 in Appendix), which estimates α and β within minimum and maximum values based on
 438 context-specific environmental and management factors (see section 2.3). The calculated leaching-runoff
 439 fractions based on the APEX model (tier-3 approach) for all management packages across the range of N
 440 application rates fall within the range set by the minimum and maximum leaching-runoff fractions margins as
 441 applied in the tier-1 approach (Franke et al., 2013), except for α for very high N application rates.


442

443 For N applications rates in the range up to 150 kg ha⁻¹, the tier-1 approach gives a good proxy for the α value. For
 444 the reference management package, the most common practice, the tier-1 approach even yields nearly the same
 445 α values as the more advanced tier-3 approach. For N applications rates exceeding about 150 kg ha⁻¹, the tier-1
 446 approach underestimates the leaching-runoff fraction and thus the grey WF. The β values estimated based on the
 447 tier-1 approach are comparable to the ones calculated at the tier-3 level for the management packages with
 448 manure and conventional tillage. For the other management packages, β is underestimated with the tier-1
 449 approach. Also for N application rates of 250 kg ha⁻¹ and beyond, the tier-1 approach underestimates β .


450

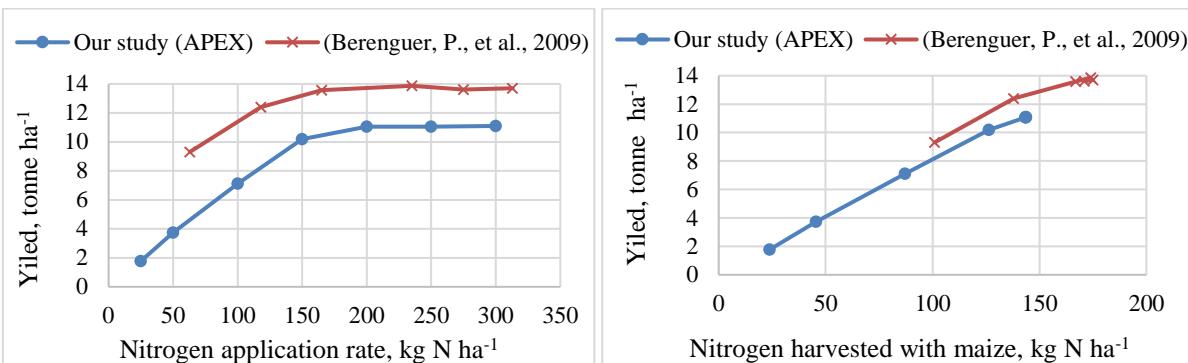
451 The leaching-runoff fractions from the application of inorganic N (nitrate) calculated at the tier-3 level are larger
 452 than these for organic N (manure), a distinction that is not made in the tier-1 approach.

453

454
455 **Figure 8.** N leaching-runoff fractions α for different management packages and N application rates following
456 from the tier-1 or tier-3 approach. Red lines refer to nitrate (Ni); green lines refer to manure (Ma). Circular
457 markers refer to no-tillage (NT); triangular markers refer to conventional tillage. Dashed lines refer to deficit
458 irrigation (DI); solid lines refer to full irrigation (FI).

460
461 **Figure 9.** N leaching-runoff fractions β for different management packages and N application rates following
462 from the tier-1 or tier-3 approach. Red lines refer to nitrate (Ni); green lines refer to manure (Ma). Circular
463 markers refer to no-tillage (NT); triangular markers refer to conventional tillage. Dashed lines refer to deficit
464 irrigation (DI); solid lines refer to full irrigation (FI).
465

466 4. Discussion


467
 468 The study shows that there is not one combination of management practices that minimises grey WF or overall
 469 WF and maximises crop yield at the same time. Table 3 shows that the best combination of practices depends on
 470 what variable is optimised. Yield is optimal when there is neither nitrogen stress nor water stress, so at high N
 471 application rate and full irrigation. The highest yield (11.5 t/ha) is found for when N is applied in the form of
 472 manure and the case of no-tillage. The total WF per tonne (the sum of the green, blue and grey WF) is smallest at
 473 150 kg N ha⁻¹, manure application, no-tillage and deficit irrigation. The yield in this case, 9.3 t/ha, is below-
 474 optimum. There is both nitrogen and water stress, but the latter is more important. The grey WF per tonne is
 475 smallest at 50 kg N ha⁻¹, manure application, conventional tillage and deficit irrigation. This, however, reduces the
 476 yield to 3.5 t/ha because of nitrogen stress. Deficit irrigation gives some water stress as well, but at such high
 477 nitrogen stress, it is the latter that constrains crop yield. Our results confirm the finding by (Mekonnen and
 478 Hoekstra, 2014) that there is a trade-off between consumptive WF per tonne and grey WF per tonne, i.e. a trade-
 479 off between reducing water consumption and water pollution.

480
 481 **Table 3.** The measures that give the optimum grey WF per tonne, total WF per tonne, or yield.

Indicator	Highest yield in t ha ⁻¹	Smallest total WF* in m ³ t ⁻¹	Smallest grey WF in m ³ t ⁻¹
Management practice			
Nitrogen application rate	200 kg N ha ⁻¹	150 kg N ha ⁻¹	50 kg N ha ⁻¹
Nitrogen form	Manure	Manure	Manure
Tillage practice	No-tillage	No-tillage	Conventional tillage
Irrigation strategy	Full irrigation	Deficit irrigation	Deficit irrigation

482 * Total WF refers to the sum of the green, blue and grey WF.

483
 484 The response of maize yield to nitrogen input as simulated in this study with the APEX model is comparable with
 485 the shape of the N-response curves for a few crops, including maize, constructed for the EU based on field
 486 measurements from various earlier studies (Godard et al., 2008). Our finding is also consistent with the results
 487 presented by Berenguer et al. (2009), who carried out field experiments for maize for similar conditions in Spain
 488 (Figure 10). For every given N input, their yields are a bit higher than from our study, which may relate to the fact
 489 that Berenguer et al. (2009) used a high-yield maize variety.

491
492 **Figure 10.** The maize yield simulated in our study in relation to N application rate (left)
493 and N harvested with maize (right) in comparison to the maize yields from field experiments by
494 Berenguer et al. (2009) when corrected for zero N build-up in the root zone.

495
496 An inter-model comparison for the case of no N stress and no water stress (taking optimal N application rate and
497 full irrigation) for exactly the same growing conditions in Spain shows similar crop yields and net irrigation supply.
498 The current study, using the APEX model, simulates a net irrigation supply of 638 mm and a maize yield of 11.1 t
499 ha⁻¹, while in an earlier study, employing the AquaCrop model (Steduto et al., 2011), we simulate an irrigation
500 supply of 630 mm and a maize yield of 11.9 t ha⁻¹ (Chukalla et al., 2015). APEX is reported to adequately simulate
501 evapotranspiration for different management practices with the Penman Monteith equation for semi-arid
502 conditions in the Mediterranean, including Spain (Cavero et al., 2012). The study by Milly and Dunne (2016),
503 however, reported that Penman Monteith overestimates evapotranspiration for non-water stress conditions,
504 which suggests that ground-truthing with field experiments is necessary.

505
506 While acknowledging the need for further validation of our simulation results through field experiments, we need
507 to be aware of the limitations attached to field measurements as well. The nitrogen that can be measured in
508 groundwater and streams can originate from different sources and represents the N coming from an experimental
509 field only partially, so that attribution of what can be measured in groundwater and streams to certain
510 management practices can be very difficult. Besides, field experimental results from a few years have to be
511 interpreted cautiously, because some management practices, such as no-tillage, become effective only after
512 some several years (Grandy et al., 2006;Derpsch et al., 2010). A practical difficulty is that field experiments
513 generally need to focus on varying just a few management practices as it is costly to experiment with a large
514 number of combinations of practices.

515
516 Simulated yields, N loads to freshwater and grey WFs under different management packages are subject to the
517 local environmental conditions of our case in Spain, which means that they cannot simply be transferred to other
518 conditions. Besides, even for our specific case, the outcomes are subject to uncertainties inherent to any
519 modelling effort (Kersebaum et al. (2016)). We have also excluded other factors relevant in crop production, like
520 the effects of weeds, pests and diseases. Therefore, the precise values presented should be taken with caution;

521 the value of our study rather lies in the understanding it provides on how different agricultural management
522 practices can affect yield, N load and resultant grey WF of crop production, and how and why there are inevitable
523 trade-offs between crop yield, water consumption and water pollution.

524
525 While the focus of the current study has been leaching and runoff of nitrogen, the effect of water pollution
526 through phosphorous can be as important. The results from the current study cannot necessarily be transferred
527 to the phosphorus-related grey WF of crop production, which requires additional study.

528 529 5. Conclusion

530
531 This paper provides the first detailed study on potential N-related grey WF reduction of growing a crop by
532 analysing the effect of a large number of combinations of different management practices. The paper shows that,
533 when choosing a certain N application rate and when choosing between inorganic versus organic fertilizer,
534 between conventional versus no tillage, and between full versus deficit irrigation, two inevitable trade-offs are
535 made. The first trade-off is between crop yield and water pollution (grey WF). Whereas maximizing crop yields
536 requires a relatively high N application rate and full irrigation, minimizing water pollution per unit of crop requires
537 deficit irrigation and seeking a balance between N application rate (and associated water pollution) and the
538 resultant yield. The second trade-off is between reducing water pollution (grey WF) and water consumption
539 (green and blue WF). Minimizing consumptive water use per tonne requires a higher N application rate (150 kg N
540 ha^{-1} in our case) than minimizing water pollution per tonne (50 kg N ha^{-1} in our case). Applying manure instead of
541 inorganic-N and deficit instead of full irrigation are measures that reduce both water pollution and water
542 consumption per tonne. However, for minimizing water pollution per tonne one can better choose for
543 conventional tillage, because that reduces leaching, whereas for minimizing water consumption per tonne the
544 no-tillage practice is to be preferred, because that reduces soil evaporation.

545
546 The study gives some support to the simple tier-1 approach of estimating the grey WF of applying N fertilizer as
547 proposed by Franke et al. (2013), but only for N application rates below 150 kg ha^{-1} . Below that, the α value is
548 estimated in the proper range (in our specific case), but the β value is underestimated. Beyond the N application
549 rate of 150 kg ha^{-1} , the tier-1 approach underestimates the leaching-runoff fraction, by not accounting for the
550 fact that N uptake by the crop is stabilizing and that denitrification and volatilization don't increase proportionally
551 with growing N inputs, which results into an increasing fraction of the N surplus in the soil lost through leaching,
552 runoff and erosion.

553 554 Acknowledgments

555 This research was conducted as part of the EU-FP7-funded project FIGARO. The paper was partially developed
556 within the framework of the Panta Rhei Research Initiative of the International Association of Hydrological
557 Sciences (IAHS).

559 References

560 Al-Kaisi, M. M., and Yin, X.: Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water
561 use efficiency, *Agronomy journal*, 95, 1475-1482, 2003.

562 Amery, F., and Schoumans, O.: Agricultural phosphorus legislation in Europe, Institute for Agricultural and
563 Fisheries Research (ILVO), 2014.

564 Anderson, K. A., and Downing, J. A.: Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in
565 an agricultural region, *Water, Air, and Soil Pollution*, 176, 351-374, 2006.

566 Azooz, R., and Arshad, M.: Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional
567 tillage systems, *Canadian Journal of Soil Science*, 76, 143-152, 1996.

568 Berenguer, P., Santiveri, F., Boixadera, J., and Lloveras, J.: Nitrogen fertilisation of irrigated maize under
569 Mediterranean conditions, *European Journal of Agronomy*, 30, 163-171, 2009.

570 Brueck, H., and Lammel, J.: Impact of Fertilizer N Application on the Grey Water Footprint of Winter Wheat in a
571 NW-European Temperate Climate, *Water*, 8, 356, 2016.

572 Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and Smith, V. H.: Nonpoint pollution
573 of surface waters with phosphorus and nitrogen, *Ecological applications*, 8, 559-568, 1998.

574 Cavero, J., Barros, R., Sellam, F., Topcu, S., Isidoro, D., Hartani, T., Lounis, A., Ibrikci, H., Cetin, M., and Williams,
575 J.: APEX simulation of best irrigation and N management strategies for off-site N pollution control in three
576 Mediterranean irrigated watersheds, *Agricultural water management*, 103, 88-99, 2012.

577 Chapagain, A., Hoekstra, A., Savenije, H., and Gautam, R.: The water footprint of cotton consumption: An
578 assessment of the impact of worldwide consumption of cotton products on the water resources in the
579 cotton producing countries, *Ecological economics*, 60, 186-203, 2006.

580 Chen, Y., Ale, S., Rajan, N., and Munster, C.: Assessing the hydrologic and water quality impacts of biofuel-induced
581 changes in land use and management, *GCB Bioenergy*, 2017.

582 Chukalla, A. D., Krol, M. S., and Hoekstra, A. Y.: Green and blue water footprint reduction in irrigated agriculture:
583 effect of irrigation techniques, irrigation strategies and mulching, *Hydrol. Earth Syst. Sci.*, 19, 4877-4891,
584 2015.

585 Clarke, N., Bizimana, J.-C., Dile, Y., Worqlul, A., Osorio, J., Herbst, B., Richardson, J. W., Srinivasan, R., Gerik, T. J.,
586 and Williams, J.: Evaluation of new farming technologies in Ethiopia using the Integrated Decision Support
587 System (IDSS), *Agricultural Water Management*, 180, 267-279, 2017.

588 Cooper, J., Quemada, M., Kristensen, H., and van der Burgt, G.: Toolbox of cost-effective strategies for on-farm
589 reductions in N losses to water. Final Report, Newcastle University, 2012.

590 Dangolani, S. K., and Narob, M.: The effect of four types of tillage operations on soil moisture and morphology
591 and performance of three varieties of cotton, *European Journal of Experimental Biology*, 3, 694-698, 2013.

592 de Miguel, Á., Hoekstra, A. Y., and García-Calvo, E.: Sustainability of the water footprint of the Spanish pork
593 industry, *Ecological Indicators*, 57, 465-474, 2015.

594 De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N., and Pisante, M.: No-tillage and conventional tillage effects on
595 durum wheat yield, grain quality and soil moisture content in southern Italy, *Soil and Tillage Research*, 92,
596 69-78, 2007.

597 Derpsch, R., Friedrich, T., Kassam, A., and Li, H.: Current status of adoption of no-till farming in the world and
598 some of its main benefits, *International Journal of Agricultural and Biological Engineering*, 3, 1-25, 2010.

599 Fagard, R. H., Staessen, J. A., and Thijs, L.: Advantages and disadvantages of the meta-analysis approach, *Journal*
600 of *Hypertension*, 14, S9-S13, 1996.

601 Falkenmark, M., and Lindh, G.: How can we cope with the water resources situation by the year 2015?, *Ambio*, 3,
602 114-122, 1974.

603 FAO: on-line database, Suitable methods of tillage for the farm, Food and Agricultural Organization, Rome, Italy,
604 <http://www.fao.org/docrep/006/y5146e/y5146e08.htm>, last access: November, 2016.

605 Fereres, E., and Soriano, M. A.: Deficit irrigation for reducing agricultural water use, *Journal of experimental*
606 *botany*, 58, 147-159, 2007.

607 Franke, N., Boyacioglu, H., and Hoekstra, A.: Grey water footprint accounting: Tier 1 supporting guidelines, *Value*
608 of *Water Research Report Series No. 65*, UNESCO-IHE, Delft, the Netherlands, 2013.

609 Gassman, P., Williams, J., Wang, X., Saleh, A., Osei, E., Hauck, L., Izaurrealde, R., and Flowers, J.: Invited Review
610 Article: The agricultural policy/environmental eXtender (APEX) model: an emerging tool for landscape and
611 watershed environmental analyses, *T Asabe*, 53, 711-740, 2010.

612 Godard, C., Roger-Estrade, J., Jayet, P.-A., Brisson, N., and Le Bas, C.: Use of available information at a European
613 level to construct crop nitrogen response curves for the regions of the EU, *Agricultural Systems*, 97, 68-82,
614 2008.

615 Gonzalez-Dugo, V., Durand, J.-L., and Gastal, F.: Water deficit and nitrogen nutrition of crops. A review, *Agronomy*
616 for sustainable development, 30, 529-544, 2010.

617 Good, A. G., and Beatty, P. H.: Fertilizing nature: a tragedy of excess in the commons, *PLoS Biol*, 9, e1001124,
618 2011.

619 Grandy, A., Robertson, G., and Thelen, K.: Do productivity and environmental trade-offs justify periodically
620 cultivating no-till cropping systems?, *Agronomy Journal*, 98, 1377-1383, 2006.

621 Haynes, R.: Mineral nitrogen in the plant-soil system, Elsevier, 2012.

622 Hoekstra, A. Y.: Water neutral: Reducing and offsetting the impacts of water footprints, *Value of Water Research*
623 *Report Series No. 28*, UNESCO-IHE, Delft, the Netherlands, 2008.

624 Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., and Mekonnen, M. M.: The Water Footprint Assessment Manual:
625 Setting the Global Standard, Earthscan, London, UK, 2011.

626 Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., and Richter, B. D.: Global monthly water
627 scarcity: blue water footprints versus blue water availability, *PLoS One*, 7, e32688, 2012.

628 Horowitz, J.: No-till farming is a growing practice, 70, DIANE Publishing, 2011.

629 Kersebaum, K. C., Kroes, J., Gobin, A., Takáč, J., Hlavinka, P., Trnka, M., Ventrella, D., Giglio, L., Ferrise, R., and
630 Moriondo, M.: Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on
631 Winter Wheat, *Water*, 8, 571, 2016.

632 Ketterings, Q., Albrecht, G., Czymbek, K., and Bossard, S.: Nitrogen credits from manure Fact Sheet 4, Cornell
633 University Cooperative Extension, Ithaca, 2005.

634 Klein Tank, A., Wijngaard, J., Können, G., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik,
635 L., and Kern-Hansen, C.: Daily dataset of 20th-century surface air temperature and precipitation series for
636 the European Climate Assessment, *International journal of climatology*, 22, 1441-1453, 2002.

637 Klein Tank, A.: EUMETNET/ECSN optional programme: European Climate Assessment & Dataset (ECA&D)
638 Algorithm Theoretical Basis Document (ATBD), version 4, Royal Netherlands Meteorological Institute KNMI,
639 2007.

640 Liu, C., Kroeze, C., Hoekstra, A. Y., and Gerbens-Leenes, W.: Past and future trends in grey water footprints of
641 anthropogenic nitrogen and phosphorus inputs to major world rivers, *Ecological Indicators*, 18, 42-49, 2012.

642 Liu, J., Liu, Q., and Yang, H.: Assessing water scarcity by simultaneously considering environmental flow
643 requirements, water quantity, and water quality, *Ecological Indicators*, 60, 434-441, 2016.

644 Mekonnen, M. M., and Hoekstra, A. Y.: The green, blue and grey water footprint of crops and derived crop
645 products, *Hydrol. Earth Syst. Sci.*, 15, 1577-1600, 2011.

646 Mekonnen, M. M., and Hoekstra, A. Y.: Water footprint benchmarks for crop production: A first global
647 assessment, *Ecological indicators*, 46, 214-223, 2014.

648 Mekonnen, M. M., and Hoekstra, A. Y.: Global gray water footprint and water pollution levels related to
649 anthropogenic nitrogen loads to fresh water, *Environmental science & technology*, 49, 12860-12868, 2015.

650 Milly, P. C., and Dunne, K. A.: Potential evapotranspiration and continental drying, *Nature Climate Change*, 6, 946-
651 949, 2016.

652 Monteny, G. J.: The EU Nitrates Directive: a European approach to combat water pollution from agriculture, *The
653 Scientific World Journal*, 1, 927-935, 2001.

654 Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Van Groenigen, K. J., Lee, J., Van Gestel, N., Six, J., Venterea,
655 R. T., and Van Kessel, C.: When does no-till yield more? A global meta-analysis, *Field Crop Res.*, 183, 156-
656 168, 2015.

657 Podder, M., Akter, M., Saifullah, A., and Roy, S.: Impacts of plough pan on physical and chemical properties of soil,
658 *Journal of Environmental Science and Natural Resources*, 5, 289-294, 2012.

659 Postel, S. L., Daily, G. C., and Ehrlich, P. R.: Human appropriation of renewable fresh water, *Science-AAAS-Weekly
660 Paper Edition*, 271, 785-787, 1996.

661 Pratt, P. F., and Castellanos, J. Z.: Available nitrogen from animal manures, *California Agriculture*, 35, 24-24, 1981.

662 Ragab, R.: Integrated Management Tool for Water, Crop, Soil and N-Fertilizers: The Saltmed Model, *Irrigation and
663 Drainage*, 64, 1-12, 2015.

664 Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., Thomason, W. E., and Lukina,
665 E. V.: Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate
666 application, *Agronomy Journal*, 94, 815-820, 2002.

667 Rimski-Korsakov, H., Rubio, G., and Lavado, R. S.: Effect of water stress in maize crop production and nitrogen
668 fertilizer fate, *Journal of plant nutrition*, 32, 565-578, 2009.

669 Robinson, S.: New simulation output analysis techniques: a statistical process control approach for estimating the
670 warm-up period, *Proceedings of the 34th conference on Winter simulation: exploring new frontiers*, 2002,
671 439-446,

672 Rong, Y., and Xuefeng, W.: Effects of nitrogen fertilizer and irrigation rate on nitrate present in the profile of a
673 sandy farmland in Northwest China, *Procedia Environmental Sciences*, 11, 726-732, 2011.

674 Saxton, K., Rawls, W. J., Romberger, J., and Papendick, R.: Estimating generalized soil-water characteristics from
675 texture, *Soil Science Society of America Journal*, 50, 1031-1036, 1986.

676 Smith, M.: CLIMWAT for CROPWAT. A climatic database for irrigation planning and management, FAO, 1993.

677 Steduto, P.: Modelling for crop response to water: physiological aspects, *Options Mediterraneennes. Serie A:
678 Seminaires Mediterraneens (CIHEAM)*, 1997.

679 Steduto, P., Hsiao, T., Raes, D., Fereres, E., Izzi, G., Heng, L., and Hoogeveen, J.: Performance review of AquaCrop-
680 The FAO crop-water productivity model, *ICID 21st International Congress on Irrigation and Drainage*, 2011,
681 15-23,

682 Sumner, M. E.: *Handbook of soil science*, CRC press, 1999.

683 Townsend, T., Ramsden, S., and Wilson, P.: How do we cultivate in England? Tillage practices in crop production
684 systems, *Soil Use and Management*, 32, 106-117, 2015.

685 Triplett, G., and Dick, W. A.: No-tillage crop production: a revolution in agriculture!, *Agron J*, 100, S-153-S-165,
 686 2008.

687 Valero, J. D. J., Maturano, M., Ramírez, A. A., Martín-Benito, J. T., and Álvarez, J. O.: Growth and nitrogen use
 688 efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization, *Spanish Journal of*
 689 *Agricultural Research*, 3, 134-144, 2005.

690 van den Pol-van Dasselaar, A., Aarts, H., De Vliegher, A., Elgersma, A., Reheul, D., Reijneveld, J., Verloop, J., and
 691 Hopkins, A.: Grassland and forages in high output dairy farming systems, *Grassland Science in Europe*,
 692 Wageningen Academic Publishers, Wageningen, the Netherlands, 2015.

693 Van Dijk, H., Schukking, S., and Van der Berg, R.: Fifty years of forage supply on dairy farms in the Netherlands,
 694 *Grassland Science in Europe*, 20, 12-20, 2015.

695 Van Grinsven, H., Ten Berge, H., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B. H., Lalor,
 696 S. T., and Lesschen, J.: Management, regulation and environmental impacts of nitrogen fertilization in
 697 Northwestern Europe under the Nitrates Directive: a benchmark study, *Biogeosciences*, 9, 5143-5160,
 698 2012.

699 Vitousek, P. M., Naylor, R., Crews, T., David, M., Drinkwater, L., Holland, E., Johnes, P., Katzenberger, J., Martinelli,
 700 L., and Matson, P.: Nutrient imbalances in agricultural development, *Science*, 324, 1519, 2009.

701 Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurrealde, R. C., Jeong, J., and Kiniry, J. R.: Epic and Apex:
 702 Model Use, Calibration, and Validation, *T Asabe*, 55, 1447-1462, 2012.

703 Williams, J., Jones, C., Kiniry, J., and Spanel, D. A.: The EPIC crop growth model, *Transactions of the ASAE*, 32, 497-
 704 0511, 1989.

705 Williams, J. R., and Izaurrealde, R. C.: The APEX model, *Watershed models*, 437-482, 2006.

706 Williams, J. R., Izaurrealde, R. C., and Steglich, E. M.: Agricultural Policy/Environmental eXtender Model:
 707 Theoretical documentation version 0604, BREC Report, 17, 2008.

708 Withers, P. J., and Lord, E. I.: Agricultural nutrient inputs to rivers and groundwaters in the UK: policy,
 709 environmental management and research needs, *Science of the Total Environment*, 282, 9-24, 2002.

710 Yanan, T., Emteryd, O., Dianqing, L., and Grip, H.: Effect of organic manure and chemical fertilizer on nitrogen
 711 uptake and nitrate leaching in a Eum-orthic anthrosols profile, *Nutrient cycling in Agroecosystems*, 48, 225-
 712 229, 1997.

713 Yin, G., Gu, J., Zhang, F., Hao, L., Cong, P., and Liu, Z.: Maize yield response to water supply and fertilizer input in
 714 a semi-arid environment of Northeast China, *PLoS one*, 9, e86099, 2014.

715 Zhou, J. B., Wang, C. Y., Zhang, H., Dong, F., Zheng, X. F., Gale, W., and Li, S. X.: Effect of water saving management
 716 practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat-summer maize
 717 cropping system, *Field Crop Res*, 122, 157-163, 2011.

718

719 Appendix

720

721 Table A.1. Grey WF per tonne of crop production for the different management packages.

Management packages			Nitrogen application rate						
Fertilizer form	Tillage practice	Irrigation strategy	25	50	100	150	200	250	300
Nitrate	Conventional	Full irrigation	108	95	107	122	306	696	1095
Nitrate	Conventional	Deficit irrigation	90	82	97	138	436	865	1324

Nitrate	No-tillage	Full irrigation	154	136	161	199	294	621	1002
Nitrate	No-tillage	Deficit irrigation	139	130	154	203	383	781	1202
Manure	Conventional	Full irrigation	100	83	90	106	167	445	832
Manure	Conventional	Deficit irrigation	91	75	84	114	231	600	1028
Manure	No-tillage	Full irrigation	148	121	141	170	221	397	754
Manure	No-tillage	Deficit irrigation	134	114	126	168	261	534	927

722
723
724

Table A.2. N leaching-runoff potential scores for environmental factors and agricultural practices, following the tier-1 approach (Franke et al., 2013).

Factors	Weight		Score (s)	Remark
	α	β		
Environmental factors	Atmospheric	N-deposition	10	10
	Soil	Texture (for leaching)	15	15
		Texture (for runoff)	10	10
		Natural drainage (for leaching)	10	15
		Natural drainage (for runoff)	5	10
	Climate	Precipitation (mm)	15	15
Agricultural practices	N-fixation (kg ha ⁻¹)		10	10
	Application rate		10	0
	Plant uptake (crop yield)		5	0
Management practice	Management practice		10	15
			0.33	Assumed good management practices

* See Table A.3.

725
726
727
728

Table A.3. N leaching-runoff potential scores based on fertilizer application rate and plant uptake, and calculated α and β values following the tier-1 approach.

Fertilizer application kg ha ⁻¹	Categorized	Score for application rate	Score for plant uptake	Calculated α and β	
				α	β
25	Very low	0	1	0.08	0.308
50	Low	0.33	0.67	0.09	0.308
100	Low	0.33	0.67	0.09	0.308
150	High	0.67	0.33	0.09	0.308
200	High	0.67	0.33	0.09	0.308
250	Very high	1	0	0.09	0.308
300	Very high	1	0	0.09	0.308

729
730
731