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Abstract. Drought indices based on precipitation are commonly used to identify and characterize droughts. Due to the 

general complexity of droughts, the comparison of index-identified events with droughts at different levels of the complete 15 

system, including soil humidity or river discharges, rely typically on model simulations of the latter, entailing potentially 

significant uncertainties. 

The present study explores the potential of using precipitation based indices to reproduce observed droughts in the lower part 

of the Jinsha River Basin, proposing an innovative approach for a catchment-wide drought detection and characterization. 

Two indicators, namely the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI), have been defined. 20 

These indicators aim at identifying and characterizing drought events at basin scale, using results from four meteorological 

drought indices (Standardized Precipitation Index, SPI; Rainfall Anomaly Index, RAI; Percent of Normal precipitation, PN; 

Deciles, DEC) calculated at different locations of the basin and for different time scales. Collected historical information on 

drought events is used to contrast results obtained with the indicators. 

This method has been successfully applied to the lower Jinsha River Basin in China, a region prone to frequent and severe 25 

droughts. Historical drought events occurred from 1960 to 2014 have been compiled and catalogued from different sources, 

in a challenging process. The analysis of the indicators shows a good agreement with the recorded historical drought events 

at basin scale. It has been found that the time scale that best reproduces observed events across all the indices is the 6-month 

time scale. 
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1 Introduction 

Drought is a natural phenomenon that results from persistent lower precipitations than what is considered as normal. It 

generally affects larger areas than other hazards and more people than any other natural catastrophe (Keyantash and Dracup, 

2002; Wilhite, 2000). 

In China, droughts represent the most severe natural threat for socioeconomic development and ecosystems (Mei and Yang, 5 

2014). Drought events occur in the Jinsha River Basin (JRB) and surrounding regions with high frequency. They affect a 

wide range of areas and cause huge losses to the agriculture sector (He et al., 2013). The clustering of severe and sustained 

droughts in southwest China during the last decade has resulted in tremendous losses, including crop failure, lack of drinking 

water, ecosystem degradation, health problems, and even deaths (Wang et al., 2015). 

To reduce and anticipate such drought impacts, a comprehensive characterization of the phenomenon is essential to which 10 

effective and accurate analysis of hydrometeorological data is a key input. Drought indices are useful for tracking droughts 

and providing a quantitative assessment of the severity, location, timing and duration of such events (World Meteorological 

Organization and Global Water Partnership, 2016), but also for real-time monitoring (Niemeyer, 2008), risk analysis (Hayes 

et al., 2004) and drought early warning (Kogan, 2000). 

Some organizations and agencies already rely on the use of indices in their decision-making processes, thus enhancing 15 

proactive drought management policies (Wilhite, 2000). An example is the U.S. Drought Monitor (USDM, 2017), an index-

based drought map that policymakers use in discussions of drought and in allocating drought relief. Other platforms such as 

the European Drought Observatory (Joint Research Centre, 2017), the China’s Department of Climate Change, National 

Development and Reform Commission (Department of Climate Change, National Development and Reform Commission, 

2017) or the experimental African Drought Monitor (Land Surface Hydrology Group - Princeton University, 2017) also use 20 

this approach for the assessment, diagnosing and forecasting of droughts. 

The choice of index should be based on the type of drought (meteorological, agricultural, hydrological or socio-economical), 

the climate regime and the regions affected, as well as the available data. It was found that measured meteorological data 

was limited in the study region and that precipitation was the single most reliable type of exploitable information. The 

present study thus focuses on the use of meteorological indices based only on precipitation data. The main advantages are 25 

their ease of use, the limited data requirements and the capacity for early detection of drought events, while extensive 

literature and calculation tools are widely accessible (World Meteorological Organization and Global Water Partnership, 

2016).  

The use of integrated indices such as PDSI (Palmer, 1965) or SPEI (Vicente-Serrano et al., 2010), relying also on potential 

evapotranspiration (PET) data, could improve the scope and quality of this study. However, no reliable PET data was 30 

accessible for the study region. Although approximations may be applied to estimate this variable, for example, by only 

considering temperature data, some studies (Jeevananda Reddy, 1995; Shaw and Riha, 2011; Staage et al., 2014) showed a 

high sensitivity of the PET to the chosen equation. A deeper analysis that helps selecting and applying such methods should 
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be performed prior to the use of these indices. Therefore, it has been decided to base this study on the Standardized 

Precipitation Index (SPI, McKee et al., 1993a, 1995), the Rainfall Anomaly Index (RAI, Van Rooy, 1965), the Percent of 

Normal precipitation (PN, Barua et al., 2011) and the Deciles (DEC, Gibbs and Maher, 1967). 

To fill the lack of specific drought-related information, most studies assess the performance of drought indices against results 

from hydrological soil water models (Halwatura et al., 2016; Hao and AghaKouchak, 2013; Trambauer et al., 2014; 5 

Vasiliades et al., 2011; Wanders et al., 2010). However, the performance of these types of studies depends on the accuracy of 

the models. Their limitations and uncertainties represent an important drawback and should be addressed (Mishra and Singh, 

2011). An alternative that often requires more time-consuming work is the compilation of historical records of drought 

events from different sources. Consequently, their duration, the water scarcity levels and the drought impacts on population 

and agriculture can be estimated and then integrated into the analysis. This enables one to identify other types of droughts 10 

such as socio-economical droughts that are hard to assess with hydrological models. 

Regarding their spatial resolution, the available drought indices may be based on local measurements (Zhou et al., 2012) and 

index calculations are usually applied to stations or cells of gridded precipitation datasets; overall spatial patterns at 

catchment or sub-catchment scales are thus hardly captured. As stated above, droughts affect large areas whose limits are 

often vaguely demarcated. Besides, water resources are part of a more complex interrelated network which links the source 15 

to the point of consumption, where isolated rainfall deficiencies do not necessarily imply a shortage of water availability or 

even a drought event. Some work (Bhalme and Mooley, 1980; Fleig et al., 2011; Mitchell et al., 1979) suggests the use of 

drought area indices for the study of droughts that considers areal coverage. The use of overall indicators capable of 

capturing in a single value the effect of the rainfall deficiency at a regional level is thus convenient and will be applied in this 

study based on the above-mentioned work. 20 

The objective of this study is to capitalize on the collection of drought events that the authors have registered in the lower 

part of the JRB since 1960 to evaluate and calibrate two indicators capable of identifying drought occurrence and 

characterizing their intensity at catchment scale. These indicators are based on commonly used meteorological drought 

indices for particular time scales. 

2 Investigation area and data 25 

The JRB is a sensitive zone in terms of water resources, food security, ecosystem management and human well-being where 

glacier and climatic variability greatly influence the water regimes and availability. Originating from the southern glacier at 

Jianggendiru peak, the highest point of the Geladaindong Snowy Mountain in the middle of the Tanggula Mountains, the 

JRB constitutes the upper part of the Yangtze River Basin. It is located between 24°28′N–35°46′N longitude and 90°23′E–

104°37′E latitude in southwestern China, with a catchment area of 473,200km
2
 (Fig. 1). The total length of the river is 3’500 30 

km from Yibin city, with a total fall of 5,100 m. This part of the Yangtze River accounts for 55.5% of its length and 95% of 

its total fall. 
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The lower part of JRB is a hot-dry valley region characterized by a southwest monsoon climate. The hydrologic regime is 

characterized by a pronounced seasonal cycle with an annual average precipitation of 600–800 mm/year. Dry season 

(November to April) precipitation accounts for 10% to 22% of the annual precipitation. Evaporation is 10 to 20 times of 

precipitation during the dry season, which could be the major reason for the frequent occurrence of winter drought or winter–

spring droughts in lower JRB (Mei and Yang, 2014; Yang et al., 2013). Droughts occurring in the lower JRB and 5 

surrounding areas affect a wide range of areas, causing huge losses in agriculture (Wu et al., 2011): more than 4 million 

people and 3 million livestock face drinking water shortage, and more than 1 million hm
2
 of cultivated area are susceptible to 

be affected by severe droughts and water shortages, with expected direct economic losses of hundreds of millions USD (Wu, 

1999).  

Figure 1 shows the division of the JRB in three parts (Upper, Middle and Lower), and the locations of the meteorological 10 

stations used. This study focuses on the analysis of drought events in the lower JRB. The precipitation data needed in this 

study have been obtained from the China Meteorological Data Service Center (CMA), and downloaded from its data sharing 

service system (CMDC, 2017). A preliminary quality check and correction of datasets (including data gap-filling) is 

performed by CMA before uploading them to the system. The monthly precipitation data of 29 meteorological stations 

within or around JRB, recorded from 1960 to 2014, have been collected and processed. More than 50 years of continuous 15 

data are thus available, except for the Batang and Yuanmou stations where only 46 years are available. The spatial 

distribution of the stations is supposed adequate for the purposes of the study: the stations are distributed relatively evenly 

both in the zonal and meridional directions, with no zones having a significantly denser presence of stations that could 

overestimate their importance. 

 20 
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Figure 1. a) Location of the JRB in China; b) subdivision of the JRB for this study; c) overview of the lower JRB with the location of the 

29 meteorological stations. 

3 Catalogue of historical droughts 

In order to obtain a good basis for the evaluation of drought indices performance, historical drought events have been 5 

collected since 1960. The information required for the identification and characterization of major droughts in the lower JRB 

has been compiled from different sources, including scientific literature, inventories (e.g., international disaster database, 

Chinese inventories), governmental reports and yearbooks, newspaper and internet articles.  

Detailed information is available for the major drought events over the past 20 years. Before 1980, much less information 

about droughts in the lower JRB is available. Moreover, detailed information prior to 1960 could not be found. 10 

Compiling and harmonizing the information from these different data sources was a challenge. The drought event 

descriptions in the scientific literature often give an overview about the entire event in a descriptive way without detailed 

information about the affected area and damage. They often provide information about the meteorological conditions and the 

duration of the event. Available information from government reports and databases, in contrast, generally contain 

information in high detail for a specific county (e.g., affected areas in km
2
), but neither give information about the entire 15 

affected area if the event affected several counties, nor about prevailing meteorological conditions. 
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Information at very different levels of detail and various contents were collected. As a first step, all available information 

was registered in a database. For this purpose, a web-based event registration platform and database (GEOTEST AG, 2017) 

has been developed to provide a standardized analytical framework with a quantitative description of the drought 

characteristics. Particularly, drought events since 2000 are all mentioned in a different source, what significantly enhances 

the reliability of their existence and related information. Most of the drought events before 2000 are documented in detail in 5 

He (2010), and some of these major dry periods are also mentioned in scientific literature such as He et al. (2016) and Wang 

et al. (2015). Even if the amount of data and level of detail is lower for these older events, their occurrence and temporal 

positioning can be assumed as reliable. 

In a second step, the level of detail was harmonized for the most relevant information and summarized in Table 1. This 

catalogue of the most relevant drought characteristics focuses on the affected area, the start date of the drought events, their 10 

duration, their spatial and temporal distribution, their severity and the impacts on the population and agriculture, including 

damage and financial losses. The time of occurrence and duration is given in seasonal units, the affected area is described on 

a county scale and the indicators and impacts are summarized in a descriptive way, as better accuracy was not feasible for all 

events. 

In total, 13 major drought episodes have been registered from 1960 until 2014. However, this data set is probably not 15 

complete, as non-documented events likely have occurred. A clustering of severe and sustained droughts in the JRB has been 

observed from 2009 to 2014. Another period with high drought activity and severity can be detected between 1980 and 1990. 

Although the droughts identified from 2009 until 2014 were extremely serious, this was not the worst period in the long-term 

because the drought episodes that occurred around 1940 were of similar intensity and duration (Wang and Chen, 2012). The 

registered drought events are often strongly correlated with low precipitation, but the analyses also reveal that the registered 20 

droughts often occur during periods with temperatures above average. 

 

Table 1. Catalogue of historical drought collected for the lower JRB (DJF=December-January-February, MAM=March-April-May, 

JJA=June-July-August, SON=September-October-November). 

ID Year Seasons Affected area Reference Other indicators Impacts 

I 
1962–

1963 

SON, DJF, 

MAM, 
JJA 

Yunnan, 

southern part 
of Sichuan 

He, 2010 
Precipitation deficit of 50% from 

November 62 to April 63. 

Drinking water shortage for 900 000 

people. Impacts on 3 700 km2 
agricultural land. 

II 
1978–

1979 

DJF, 

MAM, 
JJA 

Yunnan Liu, 2012  
Impacts on 7 000 km2 agricultural land, 

poor harvest/crop loss. 

III 
1981–

1982 

DJF, 

MAM, 
JJA 

Sichuan, 

northern 
Yunnan 

He, 2010  

Drinking water shortage for 2 million 

people or 3 million people and 2 million 
livestock. 

IV 1987 

exact 

duration 

unknown 

Mainly 

Yunnan 
  

Impacts on 6 000 km2 agricultural land, 

poor harvest/crop loss. 

V 1992 
MAM, 

JJA, SON 

Yunnan, 

southern 
Sichuan 

He, 2010 
Maximum in precipitation deficit: 50–

80%. 

Drinking water shortage for 2 million 

people and 1 million livestock. Impacts 
on 9 300 km2 agricultural land. 
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VI 
1998–
1999 

DJF, 
MAM 

Mainly 
Yunnan 

He, 2010 

Temperatures in Yunnan province 2–3°C 

higher than long-term average. 

Dayao County: 150 days without rain. 

8 000 km2 damaged agricultural area. 

VII 
2000–

2001 

DJF, 

MAM 

Sichuan, 

Yunnan 
WCB, 2001 

Temperatures in Yunnan province 2–3°C 

higher than long-term average. The cities 

of Dali, Baoshan, Dehong, Chuxiong, 
Lincang have almost no rainfall during the 

whole winter. 

Drinking water shortage for 3 million 

people and 2 million livestock. Impacts 
on 5 800 km2 agricultural land. 

VIII 2005 
MAM, 

JJA 

Large parts of 

Yunnan 

Yang et al., 

2012; Liu 

Yu et al., 
2007 

High temperatures; in April to early June, 
the temperature is 1°C above the same 

period of history in most parts of Yunnan 

province. Precipitation deficit of 20–80% 
in May-June November. 56 days without 

precipitation. 

Drinking water shortage for 6 million 

people and 4 million livestock. Impacts 

on 15 200 km2 agricultural land, poor 
harvest. 

IX 
2009–

2010 

SON, DJF, 

MAM 

Parts of 
Yunnan, 

Sichuan and 

Guizhou 

Yang et al., 

2012;Wang 

et al., 2015 

Precipitation deficit. 
119 days without precipitation. 

Average temperature anomaly of plus 

1°C. 

Drinking water shortage for 21 million 
people and 11 million livestock. Impacts 

on 43 500 km2 agricultural land, poor 

harvest. 

X 2011 
MAM, 

JJA, SON 

Large areas in 

southwest 
China 

Yang et al., 

2012; Wang 
et al., 2015 

Temperatures 0.4–1.1°C higher than 

normal. From June to September 2011, 

persistent high temperature weather 
conditions. Precipitation deficit of 20–

60%. 

Drinking water shortage for 12 million 
people and 9 million livestock. Impacts 

on 19 000 km2 agricultural land. Cargo 

shipping has been suspended. 

XI 
2011–

2012 

DJF, 

MAM 

Large areas in 
southwest 

China 

Wang et al., 

2013 

Precipitation deficit. 

 

Drinking water shortage for 2.4 million 
people and 1.6 million livestock. Impacts 

on 6 500 km2 agricultural land. 

XII 
2012–

2013 
Oct-Apr 

Southwest 

China 

Guha-Sapir 

et al., n.d.; 

Hu Xueping 

et al., 2015 

From October to April 0.5°C higher 

temperatures than normal, in February 

2.5°C higher than long-term average. Jan-

Feb: precipitation deficit of 45–55%. 

More than 3 million people and about 2 
million large livestock had drinking 

water shortage with varying degrees. 323 

small rivers and 331 small reservoirs 

dried up. 23 300 km2 agricultural area 

affected (whereof 15 500 km2 forest). 

XIII 2014 
DJF, 

MAM 

Central 

Yunnan and 

south Sichuan 

Duan et al., 
2015 

Spring temperatures 2–4°C higher than 
historic values in SW China. Spring 

precipitation in central Yunnan and south 

Sichuan province was 50–90% less than 
average of the same period. 

Drinking water shortage for 1.6 million 

people in Yunnan province. 106 rivers 
and 76 reservoirs dried up. Affected area: 

6080 km2. 

4 Meteorological drought indices 

Four different commonly used meteorological drought indices have been applied in this study: the Standardized Precipitation 

Index, the Rainfall Anomaly Index, the Percent of Normal precipitation and the Deciles. Their definition basically rests upon 

the comparison of precipitation values with normal value (the definition of “normality” may vary from one index to another), 

resulting in a single number. This allows characterizing drought conditions and thus facilitating its interpretation and use in 5 

strategic planning and operational applications (Tigkas et al., 2013). 

This comparison must be month or season specific. For instance, for the index calculation of January 2000, the precipitation 

of this month should be compared to the normal precipitation extracted taking into account only the Januaries from a 

reference period. The same applies when calculating the index for the time window January-February-March 2000: the 

precipitation for these 3 months will be compared to the sum of precipitation of all the groups of January-February-March 10 

registered in the reference period. 
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4.1 Standardized Precipitation Index (SPI) 

The widely used Standardized Precipitation Index (SPI) was formulated by McKee et al. (1993a, 1995) to quantify the 

precipitation deficit from long-term recording and for multiple time scales. 

Long-term record of precipitation values is fitted to a probability distribution which is then transformed into a standard 

normal distribution, of which mean and variance are 0 and 1, respectively (Edwards and McKee, 1997). The data sets are 5 

most commonly adjusted to the Gamma function (McKee et al., 1993a; Sönmez et al., 2005; Tsakiris et al., 2007) although 

some studies show better adjustments to other functions (Akbari et al., 2015). 

A classification of drought conditions based on the SPI values was established by McKee et al. (1993a) to define drought 

intensities and is presented in Table 2. Positive SPI values indicate greater than normal precipitation, and negative values 

indicate less than normal precipitation. 10 

 

Table 2. Classification of drought conditions according to the SPI values. 

SPI Classification 

≥ 2.0 Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

–0.99 to 0.99 Near normal 

–1.49 to –1.0 Moderately dry 

–1.99 to –1.5 Severely dry 

≤ –2.0 Extremely dry 

 

As mentioned earlier, the SPI was designed to quantify precipitation deficit for multiple time scales or moving time windows 

(World Meteorological Organization, 2012). These time scales reflect the drought impacts on different water resources 15 

which are needed by decision-makers: 

 3-month SPI: reflects short- and medium-term moisture conditions and provides a seasonal estimation of 

precipitation. 

 6-month SPI: indicates seasonal to medium-term trends in precipitation and may be very effective in showing the 

precipitation anomaly over distinct seasons. Information from a 6-month SPI may also be associated with 20 

anomalous streamflow and reservoir levels, depending on the region and time of year. 

 12-month up to 24-month SPI: reflects long-term precipitation patterns and is usually tied to streamflow, reservoir 

levels, and even groundwater levels at longer time scales. 

4.2 Rainfall Anomaly Index (RAI) 

The Rainfall anomaly Index (RAI) was developed by Van Rooy (1965). The RAI indices are computed by comparing the 25 

average precipitation over a given time window with the mean of the ten highest (for positive anomalies) and the ten lowest 
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(for negative anomalies) precipitation records. Despite its simplicity, this index requires a series of complete data to be 

calculated. 

The RAI values are classified (Van Rooy, 1965) as shown in Table 3. Olukayode Oladipo (1985) found that differences 

between the RAI and the more complicated indices of Palmer Drought Index (Palmer, 1965) and Bhalme and Mooly 

Drought Index (Bhalme and Mooley, 1980) were negligible. 5 

 

Table 3. Classification of the period according to the values of the RAI. 

RAI Classification 

≥ 3.00 Extremely wet 

2.00 to 2.99 Very wet 

1.00 to 1.99 Moderately wet 

0.50 to 0.99 Slightly wet 

–0.49 to 0.49 Near normal 

–0.99 to –0.50 Slightly dry 

–1.99 to –1.00 Moderately dry 

–2.99 to –2.00 Very dry 

≤ –3.00 Extremely dry 

4.3 Percent of Normal precipitation (PN) 

The percent of normal precipitation (PN) is one of the simplest measurements of precipitation value for a location. It is 

calculated by dividing precipitation during a given time window by normal precipitation of that same time window over the 10 

reference period (typically considered to be a 30-year average). For PN values over 100%, the precipitation is higher than the 

average precipitation (and vice versa): the higher PN value, the wetter the considered month is. 

The main advantage of this index is its simplicity and transparency, which makes it practical to communicate drought levels 

to the public (Keyantash and Dracup, 2002). Analyses using PN are very effective when used for a single region and/or a 

specific season. 15 

Even if no threshold ranges have been widely established in the technical literature for the PN, some studies (Barua et al., 

2011; Morid et al., 2006) propose a classification similar to the SPI. For this study, the classification proposed by Barua et al. 

(2011) has been adopted (Table 4). 

 

Table 4. Classification of drought conditions according to the PN values. 20 

PN Classification 

180% or more of normal rainfall Extremely wet 

161% to 180% of normal rainfall Very wet 

121% to 160% of normal rainfall Moderately wet 

81% to 120% of normal rainfall Near normal 

41% to 80% of normal rainfall Moderately dry 
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PN Classification 

21% to 40% of normal rainfall Severely dry 

20% or less of normal rainfall Extremely dry 

4.4 Deciles (DEC) 

Another drought-monitoring technique consists in dividing the monthly precipitation data into deciles (DEC). This method, 

developed by Gibbs and Maher (1967), was selected as the meteorological measurement of drought for the Australian 

Drought Watch System (Lee, 1979; Sivakumar et al., 2010) because it is relatively simple to calculate and requires less data 

and fewer assumptions than the Palmer Drought Severity Index (Smith et al., 1993). The procedures have also been adopted 5 

by the World Meteorological Organization to monitor drought on a worldwide scale (World Meteorological Organization, 

1985). 

The threshold ranges of deciles used to classify drought conditions are presented in Table 5 (Gibbs and Maher, 1967). 

 

Table 5. Classification of drought conditions according to the values of the deciles. 10 

DEC Percent Classification 

Deciles 1–2 lowest 20% Much below normal 

Deciles 3–4 next lowest 20% Below normal 

Deciles 5–6 middle 20% Near normal 

Deciles 7–8 next highest 20% Above normal 

Deciles 9–10 highest 20% Much above normal 

5 Approach for the identification of drought events at basin scale 

An indicator (or indicators) capable to adequately characterize historical droughts must be able to capture the following 

characteristics: 

 The beginning and the end of the event, which defines its duration. 

 The drought intensity, derived from the index value. 15 

 The geographical area affected by the drought. 

The following guidelines specify the approach proposed in this study to characterize drought events at basin scale based on 

precipitation data available at each station and how to contrast these results with the catalogued historical events. 

First, following the previous definitions (Sect. 4), precipitation data are used to calculate the four above-described 

meteorological drought indices (SPI, PN, RAI and DEC) for each station and for different time scales (1-, 3-, 6-, 12-, 24- and 20 

48-month) using the 1951-2000 reference period. Then, according to the criteria presented below, these values are used to 

detect potential drought events at a given station and at a given time. 

In order to aggregate results from all stations of the basin, two indicators are proposed in this study: the Overall Drought 

Extension (ODE) and Overall Drought Indicator (ODI). The results of these indicators will then be contrasted with historical 
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recorded events to define the best combination of index and time scale used for the definition of the ODE and ODI 

indicators. 

5.1 Use of indices to detect droughts at station scale 

According to McKee et al. (1993), a drought event occurs at the station level any time the SPI is continuously negative and 

the SPI reaches a value of –1.0 or less, which corresponds to moderately dry condition (Table 2) or drier. The drought begins 5 

when the SPI first falls below zero (mean of the normalized precipitation) and ends with the positive value of SPI following 

a value of –1.0 or less. The drought magnitude is the positive sum of the SPI for each month during the drought event. The 

intensity of a drought is defined as the magnitude of this event divided by its duration. 

Figure 2 shows an example of the SPI-6, SPI-12 and SPI-24 series calculated at the Chuxiong station. Drought periods are 

colored in orange and the lower threshold that defines their occurrence in red. The influence of the time scale on the number 10 

and duration of detected droughts is clearly apparent. It is worth noting that there are periods in Fig. 2 that identify very short 

droughts (one or two months long), which is due to the identification criteria based on the index values. 
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Figure 2. Example of the SPI-6, SPI-12 and SPI-24 series at the Chuxiong station, indicating drought periods in orange (lower threshold in 

red). 

 

In the present study, the above-mentioned principles used to detect drought events based on the SPI classification (McKee et 5 

al., 1993b) have been standardized to be applicable to the other three indices (PN, RAI and DEC) as follows: 

 A drought event occurs any time the index is continuously below its normal value and reaches the moderately dry 

condition class. 

 The drought is considered to begin when the index first falls below its normal value. 

 The drought ends when the index exceeds its normal value. 10 

Table 6 summarizes the thresholds for each index that specify the drought event’s start and end criteria, which correspond 

respectively to the limit of the moderately dry class and to the index normal value. Although the “normal value” of DEC 

would be 50% (which corresponds to the median of the precipitation records), in this study the drought end criterion 
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suggested for this index is 60%, which is the limit between near and above normal conditions (Jain et al., 2015; Tsakiris et 

al., 2007). 

 

Table 6. Values of the thresholds defining the start and the end of the drought events, for each index. 

Index 
Start 

(moderately dry condition) 

End 

(normal value) 

SPI –1 0 

RAI –1 0 

PN 80 100 

DEC 40% 60% 

5.2 Identification of drought occurrence 5 

When analyzing directly these meteorological indices, results only concern each station’s surroundings without capturing the 

patterns of neighboring areas. However, available historical records refer to regional droughts characterized by larger areas 

that cover several stations. 

In order to consider the basin as a whole in the definition of drought occurrence, duration and intensity, the resulting indices 

must be consistently extended to the entire area and then combined in overall indicators. For that purpose, a regular grid 10 

divides the lower JRB into a 400x300 cells raster (400 rows and 300 columns). The grid resolution was chosen as a trade-off 

between the density of cells (1 cell/3.2 km
2
) and the computational requirements (however, this choice should be adapted to 

the needs of potential other cases). After trimming off the areas sticking out of the basin boundaries, the raster possesses 44 

133 cells. Index values have been calculated at each grid cell by applying the Inverse Distance Weighting (IDW) spatial 

interpolation from the values available at the stations. 15 

For this study, we followed the approaches taken for the definition of Drought Area Indices (Bhalme and Mooley, 1980; 

Mitchell et al., 1979) and Regional Drought Area Indices (Fleig et al., 2011). It is thus considered that a basin-wide event is 

ongoing when a substantial part of the basin is under drought conditions. It is therefore necessary to identify the portion of 

the territory for which the calculated index indicates a drought. An indicator to detect drought occurrence at basin scale has 

been set up based on the criteria described above to identify an event considering the index values (Fig. 2). 20 

Based on the interpolation of the index, drought events are detected for each time step and at each grid cell of the described 

raster. This allows us to define an indicator, named here Overall Drought Extension (ODE), expressed as the percentage of 

the lower JRB area suffering a drought. It is calculated as the number of cells indicating a drought at a precise date 

(N_drought) divided by the total number of cells of the raster (in this case, N_TOTAL=44 133) as shown in Eq. (1), 

𝑂𝐷𝐸 =
𝑁_𝑑𝑟𝑜𝑢𝑔ℎ𝑡

𝑁_𝑇𝑂𝑇𝐴𝐿
∙ 100%.          (1) 25 

The ODE ranges from 0% (when no drought is occurring at any point of the basin) to 100% (when the entire basin is 

suffering an event). It highlights the coverage of a drought, allowing a direct comparison between registered historical 
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information and calculated results. Moreover, it helps define the temporal component of droughts as it states the beginning 

and the end of an event. However, it does not take into account its intensity. 

5.3 Characterization of drought intensities 

Regarding the intensity of the droughts, in this study a complementary indicator is applied to integrate the intensities 

computed at every grid cell. The Overall Drought Indicator (ODI) is defined as the average index value across the cells under 5 

drought conditions at a precise date, as shown in Eq. (2), 

𝑂𝐷𝐼 =
∑ (𝐼𝑛𝑑𝑒𝑥𝑖)
𝑁_𝑑𝑟𝑜𝑢𝑔ℎ𝑡
𝑖=1

𝑁_𝑑𝑟𝑜𝑢𝑔ℎ𝑡
 .           (2) 

The ODI expresses the average severity in the drought-affected part of the basin. It gives information about the 

meteorological stress level of the areas being effectively affected by a drought. Moreover, this indicator may help complete 

the collected historical records which include little information on the magnitude of the events. From indications of Table 2, 10 

Table 3, Table 4 and Table 5, lower values of this indicator denote drier conditions. Undefined values occur when no cells 

are under drought conditions. 

Only cells under drought conditions have been considered to define this indicator. If the ODI had been calculated as an 

average value for the entire basin (as adopted for instance in Trambauer et al. (2014)) higher (or lower) indicator values in a 

part of the basin may have compensated lower (or higher, respectively) indicator values in the rest of the basin, yielding an 15 

overall value close to normal precipitation. Therefore, the ODI must always be used together with the ODE: whenever a 

drought has been detected with the ODE, its overall intensity may be assessed with the corresponding value of the ODI. 

5.4 Evaluating indicator-based results with catalogued historical events 

In order to support the choice of an index and time scale combination for the definition of the ODE and ODI, an assessment 

of the quality of the forecasts performed with the different variants is recommended. The hypothesis is that detected drought 20 

events (i.e., the forecasts) correspond to the cases when the ODE value exceeds a given threshold, which indicates a certain 

area is affected by an event. The temporal coincidence of these forecasts has to be then contrasted with the occurrence of 

recorded droughts (i.e., the observations). As stated above, Fig. 2 shows that very short index-based events risk being 

forecasted. In order to avoid an overestimation of droughts, an additional 3-month criterion for beginning and ending 

forecasted droughts was established: an event will be effectively detected when the ODE value exceeds the threshold for at 25 

least three consecutive months. 

For the matching between forecasts and observations, two monthly series of events were created (one for the events detected 

according to the ODE values; and one for the historical events), where for each month either a “Drought” or a “No drought” 

condition is assigned. Different scores for contrasting this type of dichotomous forecasts (occurrence vs. no occurrence) 

exist: the Peirce skill score, PSS (Hanssen and Kuipers, 1965; Murphy and Daan, 1985; Peirce, 1884); the Heidke skill score, 30 
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HSS (Heidke, 1926); the Gilbert’s skill score, GSS (Schaefer, 1990); or the odds ratio skill score, ORSS (Stephenson, 2000). 

As recommended by Candogan Yossef et al. (2012), the PSS is used in this study. For its calculation, the Miss Rate (M) and 

the False Alarm Rate (F) are defined in Eq. (3) and Eq. (4) respectively: 

𝑀 =
𝑐

𝑎+𝑐
 ,            (3) 

𝐹 =
𝑏

𝑏+𝑑
 ,            (4) 5 

where a, b, c and d represent the number of cases for each possible forecast outcome, respectively (Table 7): 

 hit: when one detected drought corresponds with an observed drought; 

 false alarm: when a drought appears during a month where no observed event has occurred; 

 miss: when, during a month where a drought has been observed, no event has been detected; 

 correct rejection: when, during a month where no drought has been observed, no drought is detected. 10 

The Miss Rate (M) indicates how many of the observed events are not forecasted (related to the Type 1 errors) while the 

False Alarm Rate (F) is the proportion of non-occurrences that are incorrectly forecasted (Jolliffe and Stephenson, 2003). 

The PSS is expressed as shown in Eq. (5): 

𝑃𝑆𝑆 = 1 − 𝑀 − 𝐹 ,           (5) 

The PSS ranges from –1 to +1: perfect forecasts receive a score of one, random forecasts receive a score of zero, and 15 

negative values indicate less skill than a random prediction. A suitable combination of the index and time scale will then lead 

to higher PSS values. 

 

Table 7. Contingency table of the comparison between forecasts and observations. 

  Observation 

  Drought No drought 

Forecast 
Drought a (hit) b (false alarm) 

No drought c (miss) d (correct rejection) 

 20 

However, high values of the PSS score may be obtained purely by chance, especially when using only a small number of 

forecasts. Such is the case of the present work, where only 13 independent events have been documented during the 55 years 

of record keeping. This could lead to overestimating the goodness of a combination of the index and time scale. A statistical 

test was applied to check if the calculated PSS values were significantly different from zero, at least at a 95% confidence. 

Assuming independence of the Miss and False Alarm rates, the standard error in the Peirce skill score is simply the square 25 

root of the sum of the squared standard errors in the Miss and False Alarm rates (Stephenson, 2000), as expressed in Eq. (6): 

𝑆𝐸𝑃𝑆𝑆 = √(𝑆𝐸𝑀)
2 + (𝑆𝐸𝐹)

2 ,          (6) 
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where the standard errors in estimated Miss (SEM) or False Alarm (SEF) rates can be extracted from Thornes and Stephenson 

(2001). If the PSS±1.96·SEPSS interval does not include zero, then the null of a random forecast can be rejected at a 95% 

confidence level. 

6 Results and discussion 

Following the previous approach, the series of the SPI, PN, RAI and DEC indices were calculated for different time scales 5 

(1-, 3-, 6-, 12-, 24- and 48-month) within the period of 1960–2014. First computed at the 29 stations, these indices were then 

extrapolated to the rest of the lower JRB. Figure 3 shows the example of the Standardized Precipitation Index for a 6-month 

time scale (SPI-6) calculated in October 2012 (corresponding to the drought event XII) and spatially distributed at the lower 

JRB, where brown colors represent regions under drier conditions. 

According to the criteria proposed in Table 6, detected drought events were identified based on the index values. Then, the 10 

ODE and ODI indicators were calculated for the lower JRB. An example of the resulting ODE and ODI series is shown in 

Fig. 4 for the SPI-6 and RAI-6 combinations and in Appendix A for all the time scales and indices analyzed, along with the 

recorded historical droughts shaded in orange. 

The objective is to establish a combination of time scale and index that offers an optimum identification of historical 

droughts. As stated before, the main criteria used to contrast the performance of the forecasts is that a drought event is 15 

supposed to happen when the ODE value exceeds a threshold that is to be defined. The combination finally retained should 

maximize the number of hits and minimize the misses between the forecasts and the observed events. 
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Figure 3. Extrapolated SPI-6 values in October 2012 for the entire lower JRB. 

 

  

Figure 4. ODE and ODI values using the 6-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 5 
(in orange). 
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The 1-month scale overall indices show rapid fluctuations that correspond to short periods of precipitation deficiency not 

captured in the catalogue of historical droughts. This is mainly due to punctual large rainfall events, that have an important 

influence in the indices which may indicate that the drought had ceased when it is not the case (Barua et al., 2011). The use 

of this time scale is not recommended for drought monitoring since long drought events are hardly identified. The opposite 

effect occurs when using the 48-month scale. The inertia of the rainfall shortage tendencies may mask shorter droughts and 5 

overestimate their durations. Since most of the episodes last one year or less (Table 1), they are hardly detected using the 48-

month scale. The droughts which occurred from 2009 to 2014 (droughts IX to XIII) illustrate this phenomenon: even if five 

different droughts have been catalogued, a unique one is detected using the 48-month scale, according to the ODE time 

series. Therefore, using the 1- and 48-month scales do not provide any substantial information about the occurrence and 

duration of the droughts and have been excluded from the performance analysis. 10 

For the rest of the time scales (3-, 6-, 12- and 24-month), the ODE threshold indicating the occurrence of a drought is 

required for the computing of the PSS that will serve as a support for the selection of the best combination of index and time 

scale. Traditionally, cross-validation techniques are used to define optimum thresholds, for when within a training subset the 

threshold maximizing the PSS is identified and validated in a non-overlapping validation subset. The limited number of 13 

independent events in our record prevents following this approach. Instead, a sensitivity analysis was performed using the 15 

same threshold across all of the combinations and exploring the effect of varying it in a reasonable range (in this case, from 

0.3 to 1 by 0.1 steps). The resulting PSS values are shown in Fig. B1 of Annex B along with the 95% confidence interval, 

which allows indicating whether the score is significantly different from zero. 

 

 20 

Figure 5. Graphic representation of the PSS results for an ODE threshold of 0.4, with the black error bars representing the 95% confidence 

interval (±1.96 standard errors). 
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Most of the 95% confidence intervals of the PSS do not include zero, disproving that skill scores could have identified 

drought events by chance sampling fluctuations. Only for some of the indices at 24-month (e.g., RAI-24 for an ODE 

threshold=0.7), results cannot assert that skill scores are significantly different from zero and thus these combinations should 

not be considered. 5 

Attending to the PSS values (Fig. B1), results show a consistent tendency across all ODE thresholds of higher PSS at the 3- 

and the 6-month time scales. An example of PSS for an ODE threshold of 0.4 is presented in Fig. 5. Moreover, there is no 

single index that clearly produces better results. Indeed, based on the PSS values and taking into account their confidence 

intervals, there are no statistically significant differences across the different indices for the 3- and 6-month time scales. This 

indicates that, for these time scales, all the indices perform similarly well on capturing the events, which is consistent with 10 

the fact that they all rely on the same type of data (precipitation). PSS results are independent of the specific threshold and 

thus they are considered robust. However, it is worth mentioning that in general, higher PSS for the 3- and the 6-month time 

scales are produced using ODE thresholds between 0.4 and 0.6. 

Regarding the 6-month ODE series (Fig. A5 and Fig. A6 of Appendix A), it is important to highlight some relevant aspects:  

 All the observed drought events have their corresponding ODE peaks. 15 

 Although event VIII has an estimated duration of 3 months, ODE and ODI results consistently show a longer 

drought. The exact period of this drought is not well defined as indicated in the catalogue, leaving room for a longer 

duration of the real episode. 

 In general, all the indices are well correlated, identifying most of the recorded droughts.  

 Several droughts are consistently detected between event I (1962) and II (1979) even if no drought has been 20 

chronicled (false alarms). This may correspond to the above-mentioned scarcity of reliable information on droughts 

prior to 1980. 

 The drought events IX, X, XI, XII and XIII are well captured. As shown in Fig. A5 and Fig. A6, the different events 

during this period (2009–2014) match with the consecutive increases in the ODE values for all the indices (DEC, 

PN, RAI, SPI).  25 

 However, the 6-month series of ODE suggest some false positive detections: more drought events than the observed 

are calculated. 

Regarding the 3-month ODE series (Fig. A3 and Fig. A4), results suggest an overestimation of the number of detected 

events, as sometimes several detected events combine into one (longer) observed event. The 6-month time scale appears as 

more appropriate. 30 

In summary, according to the ODE series presented in Appendix A, and to the forecast verification carried out with the 

Peirce skill score (Appendix B), it seems that the best time scale for the identification of droughts is at 6-months. Results 

show an equally effective performance of the ODE series for all the indices. However, the risk of false positives must be 

addressed carefully, as the observation record likely misses events, in particular between 1962 and 1979. 



20 

 

Despite the good performance shown by the overall indicator ODE to detect droughts, caution is advised. In particular, the 

choice of meteorological indices as a basis for the calculation of the ODE and ODI can lead to errors when assessing drought 

occurrence. Temperature variability, not considered here, can play a significant role in the onset of agricultural drought. 

Meteorological indices may not be fully capable to capture the impacts on water scarcity and could be complemented with 

other types of indices, such as agricultural or hydrological. The same approach proposed in this study is recommended using 5 

more comprehensive indices in order to better capture the complex drought processes. 

The performance assessment of the ODE indicator to detect droughts relies basically on the comparison with the historical 

events catalogued in this study. The search and compilation of this information from different data sources, often scarce and 

ambiguous, represents a challenge. Different information sources often provide only partial information for one episode, and 

for some events the differences in the available information complicate the harmonization of data. As a result, the accuracy 10 

of the collected information may impact on the applicability of the developed methodology. 

7 Conclusions 

This study aims at applying overall drought indicators representing the drought status within the entire lower JRB 

investigation area. This work represents an attempt at building a tool for drought monitoring and risk management purposes 

at basin scale. It is based on established meteorological indices for the identification of droughts and a method for a 15 

catchment-wide drought assessment and characterization, which is compared to historical drought events of the lower JRB.  

The information used for the identification and characterization of major historic droughts were compiled from different 

sources. A total of 13 major droughts between 1960 and 2014 were identified in the lower JRB and catalogued using a web-

based registration platform, allowing for a comparison of the different events. 

Drought indices typically assess local water deficits while available historical records usually refer to regional droughts. To 20 

overcome this problem, two drought area indicators, the Overall Drought Extension (ODE) and the Overall Drought 

Indicator (ODI), have been used to characterize the occurrence and intensity of an event within a specific investigation area. 

These indicators are based on four common meteorological indices at different time scales: the Standardized Precipitation 

Index (SPI), the Rainfall Anomaly Index (RAI), the Percent of Normal precipitation (PN) and the Deciles index (DEC). By 

relying exclusively on precipitation, the proposed procedure serves as a basis for further studies in other regions where only 25 

precipitation data is available. 

The performance of the ODE at detecting droughts has been assessed by contrasting the results of this indicator with 

historical recorded events, offering promising results. It seems that the best results are independent of the index used and 

produced using the 6-month time scale. Although results suggest the same patterns for all ODE thresholds, it has been 

noticed that highest PSS values are produces for thresholds between 0.4 and 0.6, which can be defined as a trigger to detect 30 

the occurrence of a drought in the lower JRB. 
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Considering the challenge that the compilation of historical drought information represents and the identified limitations, this 

is a good method for the monitoring of drought episodes within an entire catchment. The use and contrast of drought 

indicators at basin scale with historical collected information represent the main innovative aspects of this study. Since 

meteorological droughts are the first stage in the progression of subsequent agricultural or hydrological droughts, this 

methodology could be used to activate a management response for a drought event, which starts at a specific threshold value. 5 

Additionally, this methodology can be used to complete lacking information on droughts’ duration, geographical extension 

or intensity. 

8 Appendices 

Appendix A: series of ODE and ODI indicators 

The series of the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI) have been calculated for the 1-, 10 

3-, 6-, 24 and 48-month time scales. Graphic results are presented in Fig. A1 to Fig. A12 below. 

 

 

Figure A1. ODE and ODI values using the 1-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 15 

 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0%

25%

50%

75%

100%

125%

150%

1960 1964 1969 1974 1980 1984 1989 1994 2000 2004 2009 2014

O
D

I

O
D

E

Date

Overall indicators for SPI & RAI - 1-month

ODE - SPI

ODE - RAI

ODI - SPI

ODI - RAI

c97800
64

c9780
064

I III IVII VIIV XIIIXIXVIIIVI
XI

XII



22 

 

 

Figure A2. ODE and ODI values using the 1-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A3. ODE and ODI values using the 3-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 
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Figure A4. ODE and ODI values using the 3-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A5. ODE and ODI values using the 6-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 
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Figure A6. ODE and ODI values using the 6-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A7. ODE and ODI values using the 12-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 
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Figure A8. ODE and ODI values using the 12-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 

 

 5 

Figure A9. ODE and ODI values using the 24-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 

 

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

0%

25%

50%

75%

100%

125%

150%

1960 1964 1969 1974 1980 1984 1989 1994 2000 2004 2009 2014

O
D

I

O
D

E

Date

Overall indicators for DEC & PN - 12-month

ODE - DEC

ODE - PN

ODI - DEC

ODI - PN

c97800
64

c9780
064

I III IVII VIIV XIIIXIXVIIIVI
XI

XII

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0%

25%

50%

75%

100%

125%

150%

1960 1964 1969 1974 1980 1984 1989 1994 2000 2004 2009 2014

O
D

I

O
D

E

Date

Overall indicators for SPI & RAI - 24-month

ODE - SPI

ODE - RAI

ODI - SPI

ODI - RAI

c97800
64

c9780
064

I III IVII VIIV XIIIXIXVIIIVI
XI

XII



26 

 

 

Figure A10. ODE and ODI values using the 24-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 

 

Figure A11. ODE and ODI values using the 48-month time scales of SPI and RAI indices, compared with the 13 detected historical 5 
droughts (in orange). 
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Figure A12. ODE and ODI values using the 48-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 
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Appendix B: PSS results 

 

Figure B1: Graphical PSS results for different index and timescale combinations, for a range of ODE thresholds between 0.3 and 1. The 

black error bars represent the 95% confidence interval. 
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