
AUTHOR’S RESPONSES 

 

These aƌe the Authoƌs͛ ƌeplies to comments from Referees #1 and #2. We use blue color for our 

replies and black color for Refeƌee͛s comments.  

It should be noted that the comments of the Referees make reference to pages and lines of the 

production paper. We use the same criteria in this reply. 

 

Author’s response. Referee #1 

 

Received and published: 25 May 2017 

 

Summary: This manuscript presents an analysis of meteorological drought metrics over the lower 

Jinsha River Basin in China. They use precipitation data from 29 meteorological stations and calculate 

various formulations of the Standardized Precipitation Index (SPI), the Rainfall Anomaly Index (RAI), 

the Percent of Normal precipitation (PM) and Deciles (DEC). These indices are then evaluated 

spatially and in the context of their intensity using what the authors call the Overall Drought 

Extension (ODE) and the Overall Drought Intensity (ODI). Characterizations of these metrics are then 

compared to historical documentation of droughts over the lower Jinsha Basin from 1960-2014 to 

assess their efficacy in characterizing historical drought events. The authors make various 

conclusions about which of the indices and their spatial characterizations best represent the 

historical data. 

General Remarks: This is generally a well written paper (it nevertheless could benefit from some 

English writing improvements and attention to typos throughout) that seeks to evaluate how best to 

characterize meteorological droughts over the lower Jinsha Basin. It should be published after some 

major revisions regarding clarity and content, which I outline as general comments below. 

We want to thank Referee #1 for the General Remarks. English writing improvements will be carried 

out before submission of the revised manuscript. Aspects regarding clarity and content are treated 

below. 

2. The authors make clear that their assessment is specific to meteorological drought and therefore 

focus exclusively on precipitation. This is fine as far as it goes, but they make several statements 

about temperature and river discharge assessments in the context of droughts that are too critical 

and not entirely accurate. 

The authors wanted to stress that, in this particular case, precipitation data is the most reliable 

source of information. The questionable statements about temperature and discharge will be 

reviewed and adjusted. 

Moreover, they point out that temperature/ET plays an important role in droughts within their study 

region (e.g. Pg. 3, Lns. 27-29). While they note as a caveat in their conclusions that ET has not been 

considered and may explain some of the deficiencies in their assessments, it is too little and too late 

in my opinion. The authors need to take on this obvious criticism of their study more directly and 

provide more guidance on how it might impact their results, if not try to quantify the impact of ET in 

an assessment metric. They also should not be so dismissive of the vast amount of work that has 

shown integrated drought metrics like modeled soil moisture, PDSI, SPEI, etc. to work as a suitable 

measure of drought (they mentioned the US Drought Monitor, but fail to note it is based on PDSI!). 

For instance, their paragraph starting on Pg. 2, Ln. 31 is far too dismissive of integrated metrics and 



reads like a poor justification for why they focus only on precipitation. If they only have reliable 

precipitation data over their study region that is fine, but a focus on precipitation alone in this case 

should not be falsely justified by an attempt to dismiss integrated metrics. This aspect of the paper 

needs to be modified throughout. 

We have only used precipitation-based indices for several reasons: 

- The availability of measured meteorological data was limited; precipitation was found as the 

single most reliable type of information. 

- It is true that the use of integrated drought metrics such as PDSI or SPEI could improve the scope 

and quality of the study and enrich the procedure. However, potential evapotranspiration (PET) 

data is required to compute these indices, and no reliable PET data was available for the study 

region. PET calculation depends on solar and longwave radiation, temperature, wind speed, and 

humidity. Although approximations may be used to estimate this variable, for example by only 

using temperature data, some studies (Jeevananda Reddy, 1995; Shaw and Riha, 2011; Staage et 

al., 2014) showed a high sensitivity of the PET to the chosen approximation method. A deeper 

analysis that helps selecting and applying such methods is needed. 

- While this study is specific for the lower Jinsha River Basin, the procedure proposed is intended to 

serve as a basis for further studies in other regions where only precipitation data is available. This 

study should be seen as a test for other cases to validate whether precipitation-based indices can 

be used to predict droughts at a basin scale. 

The authors will present these considerations more clearly in the manuscript to justify the only use of 

precipitation-based indices. 

Same answer applies to the corresponding comment of Referee #2. 

2. I am not convinced that the metrics proposed by the authors are new. They claim that the ODE 

and ODI are newly developed metrics and tout their development at multiple points within the 

manuscript. The ODE is just a form of drought area index and is no more than a measure of the total 

area of their study region in drought. A similar criticism can be made of the ODI. I therefore have no 

criticism of the application of these methods, just that they should not be touted as newly developed 

metrics or metrics of particular novelty that somehow add to the importance of their study. 

As indicated by Referee #1 (and also Referee #2), some works (Bhalme and Mooley, 1980; Fleig et al., 

2011; Mitchell et al., 1979) have already developed and used drought area indices, although without 

specifically using the SPI, RAI, PN and DEC indices for their definition. Consequently, the authors will 

mention these references in the manuscript and avoid presenting the ODE and ODI indices as newly 

developed. Instead, they will indicate that these indices (ODE and ODI) are an adaptation of existing 

ones. 

3. The authors present quantitative metrics for comparing drought conditions based on their metrics 

and the historical records of droughts in the region. What is not clear, however, is how they actually 

translate the historical data into quantitative measures that can be compared to the drought metrics. 

In other words, they define skill scores in terms of hits, misses, etc., but what actually constitutes a 

hit or a miss? Is it just timing? Are magnitudes considered? 

For the original paper, the authors had considered the temporal coincidence (timing) of drought 

events as defined by the ODE indices surpassing a predefined threshold (magnitude). The following 

definitions were used: 

- A hit: when one (or more) drought detected according to the ODE values happened during the 

same year of a historical drought. 

- A miss: when, during a year where a drought has been recorded, no event has been detected. 

- A false alarm: when one (or more) drought detected according to the ODE values happened 

during a year when no event has been detected. 



- A correct rejection: when, during a year where no droughts have been recorded, no drought has 

been detected according to the ODE values. 

The maximum number of hits (or misses) was limited to the number of years of the study period, i.e. 

55, which impacted on the confidence interval of the PSS and thus the precision of the PSS-based 

results. 

The comments of Referee #1 have entailed a discussion among the authors of potentials for 

improving this approach. We now propose using a discretization by months (instead of by years) for 

the matching between detected and recorded droughts. That means that: 

- We create 2 monthly seƌies of eǀeŶts, eaĐh ŵoŶth ďeiŶg eitheƌ ͞dƌought͟ oƌ ͞ŶoŶ-dƌought͟: oŶe 
series for the historical events; and one series for the detected events. 

- For each month, we check if a drought in the detected series corresponds to a drought in the 

historical series, thus defining the hits, misses, etc. 

- IŶ this ǁaǇ, ǁe iŶĐƌease the Ŷuŵďeƌ of possiďle hits, ŵisses… theƌeďǇ iŶĐreasing the sample size 

and reducing the confidence interval of the PSS. 

Moreover, instead of calibrating different ODE thresholds for the different index-timescale 

combinations, we will now use the same threshold across all index/timescale combinations for the 

analysis, investigating the sensitivities of our results for a range of thresholds. This decision is based 

on the fact that ODE captures the coverage of droughts at the basin scale, which should not depend 

on the type of index used. We think this new approach is less arbitrary and more consistent than the 

original one. It is worth mentioning that new results have been obtained, which differ in some way 

from those presented in the original manuscript. In particular: 

- The confidence intervals corresponding to each PSS value have been reduced, which implies a 

greater statistical confidence on the new results. 

- In general the 3- and 6-month timescales offer better results than the 12- and 24-month 

timescales, practically for all the thresholds, while in the original work best results were found for 

the 6- and 12-month timescales. Figure 1 shows an example of results for 2 different ODE 

thresholds (0.45 and 0.8). 

- Based on the PSS values and taking into account their confidence interval, there are no 

statistically significant differences of results across the different indices for the 3- and 6-month 

timescales. This indicates that indices perform similarly well, consistent with the fact that they all 

rely on the same type of data (precipitation). 

A complete description of this new approach and the results obtained will be included in the final 

version of the manuscript. 

  

Figure 1. New PSS results. Comparison between ODE thresholds of 0.45 and 0.8. 

Note that drought magnitudes are not directly considered for the comparison between historical 

records and our metrics. 
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It is also not clear why the authors consider the historical accounts a reliable benchmark, relative to 

the more quantitative measure of droughts that they develop in their study. I do not think enough 

emphasis is placed on skill scores that are impacted by inaccuracies in the historical records (in terms 

of how well they characterize the timing, severity and spatial extent of droughts) relative to what the 

authors construct from the network of precipitation records. 

The catalogue of historical droughts is mainly used to find which combination of index and timescale 

best fit these catalogued events for different thresholds of the ODE indicator. That means we 

considered that the information collected during the compilation process is the basis to which 

quantitatively detected droughts must be compared, simply because no other benchmark exists in 

this region. While the historical accounts may not be entirely reliable, in this study they are used as a 

reference for lack of better information. 

However, as mentioned in the manuscript, historical accounts should be addressed carefully, in 

particular regarding the reliability of the data sources and their ambiguity. The compilation process 

of information relative to historic drought events will be described in more detail in the manuscript. 

Particular focus will be set on the type and form of information which was available and used. And 

the authors will discuss the availability and accuracy of the information on the drought 

characteristics (such as date, duration, area, etc.). 

The authors will discuss the expected sensitivity of the results to the historical records. 

Specific Comments: 

Pg. 10, Ln. 17: While not essential, the authors might consider using two consecutive positive or 

negative years to end or start a drought. There are definitely periods in Figure 2 that identify 

droughts as separated by a single year of positive SPI values or very short droughts that represent 

just single-year excursions. If more persistent and widespread droughts are the interest, a 2-yr 

criterion for beginning and ending droughts might help. 

Indeed, Figure 2 shows very short drought events (1-2 months). This is more noticeable for low 

timescales and is due to the identification criteria based on the index values (e.g., the criteria defined 

by McKee et al. (1993) for the SPI). The authors agree with Referee #1 and consider that it would be 

convenient to set a minimum duration of droughts. According to the range of drought durations of 

the historical events recorded ;шϯŵoŶths aŶd чϭϯŵoŶthsͿ, a 2-year criterion for beginning and 

ending droughts seems too restrictive. The authors will adapt the applied identification criteria to 

avoid an overestimation of events by defining a minimum duration of dry (and wet) periods of 3 

months. 

Pg. 15, Ln. 6: The authors optimize the characteristics of their drought metrics based on skill 

assessments over the full historical interval. This is akin to calibrating the forecast model and then 

performing in-sample skill assessments. A more rigorous assessment would be to optimize over a 

specific period and then assess the skill in an out-of-sample period. This could be done using block 

hold out periods or leave half out assessments. As it stands, however, the authors optimize over the 

same period that they assess the skill of their metrics. This is particularly relevant when considering 

the authoƌs͛ ŵethods foƌ futuƌe dƌought assessŵeŶts. Theiƌ iŶ-sample skill assessment is very likely 

to exaggerate the efficacy of their metrics for future droughts. 

The main objective of our work is to identify which combination of index and timescale offers good 

correlation with the observed events. The fact that only 13 events have been documented is an 

important limitation, and the authors realize that an optimization of the ODE threshold based on this 

limited sample is not robust. Any meaningful cross-validation of this optimization would require a 

larger sample. Instead, the authors no longer search for an optimal threshold but explore the effect 

of varying the threshold in a reasonable range. Since the general findings turn out to be independent 

of the specific threshold, we consider them robust. 

Same answer applies to the corresponding comment of Referee #2. 



Author’s response. Referee #2 

 

Received and published: 29 May 2017 

 

General comments 

This is an interesting paper thanks to the region of interest, the compilation of historical documents, 

the use of station data and the comparison of various drought indices. 

We want to thank Referee #2 for the General comments. 

Specific comments 

While the ODE aŶd ODI iŶdeǆes pƌoposed aƌe iŶdeed ƌeleǀaŶt iŶ this ĐoŶteǆt, I doŶ͛t think they can 

be presented as extremely innovative, as similar indices have been used to study drought area and 

intensity. 

As indicated by Referee #2 (and also Referee #1), some works (Bhalme and Mooley, 1980; Fleig et al., 

2011; Mitchell et al., 1979) have already developed and used drought area indices, although without 

specifically using the SPI, RAI, PN and DEC indices for their definition. Consequently, the authors will 

mention these references in the manuscript and avoid presenting the ODE and ODI indices as newly 

developed. Instead, they will indicate that these indices (ODE and ODI) are an adaptation of existing 

ones. 

Second, a big caveat is that the skill scores are computed on the same period than the one chosen to 

determine the ODE thresholds for detection. The fact that only 13 events have been documented is 

an understandable limitation; however, this method will likely create an overestimation of the power 

of the index to detect droughts. A more rigorous ͞Đƌoss-ǀalidatioŶ͟ pƌoĐeduƌe is Ŷeeded (e.g. 

segmenting the record period and perform the study leaving one segment out each time?). 

The fact that only 13 events have been documented is indeed an important limitation and the 

authors realize that an optimization of the ODE threshold based on this limited sample is not robust. 

Any meaningful cross-validation of this optimization would require a larger sample. Instead, the 

authors no longer search for an optimal threshold but explore the effect of varying the threshold in a 

reasonable range. Since the general findings turn out to be independent of the specific threshold, we 

consider them robust. 

Same answer applies to the corresponding comment of Referee #1. 

Moreover, while it is absolutely true that drought measures such as the SPEI and PDSI have 

shortcomings – in particular the reliance on PET rather than ET, they do capture features that 

precipitation-only indices cannot see. It is absolutely fine if data is not available to compute such 

indices, but it should be the main reason for not comparing what these other indices would say 

relative to the historical data. It may not be very useful, but I wonder if global PDSI/SPEI datasets 

capture anything in that region during the drought events mentioned (even if they have a much 

lower resolution). 

We have only used precipitation-based indices for several reasons: 

- The availability of measured meteorological data was limited; precipitation was found as the 

single most reliable type of information. 

- It is true that the use of integrated drought metrics such as PDSI or SPEI could improve the scope 

and quality of the study and enrich the procedure. However, potential evapotranspiration (PET) 

data is required to compute these indices, and no reliable PET data was available for the study 

region. PET calculation depends on solar and longwave radiation, temperature, wind speed, and 

humidity. Although approximations may be used to estimate this variable, for example by only 



using temperature data, some studies(Jeevananda Reddy, 1995; Shaw and Riha, 2011; Staage et 

al., 2014) showed a high sensitivity of the PET to the chosen equation. A deeper analysis that 

helps selecting and applying such methods should be performed. 

- While this study is specific for the lower Jinsha River Basin, the procedure proposed is intended 

to serve as a basis for further studies in other regions where only precipitation data is available. 

This study should be seen as a test for other cases to validate whether precipitation-based 

indices can be used to predict droughts at a basin scale. 

As already suspected by Referee #1, we have not used PDSI/SPEI datasets because of their too low 

resolution for properly capturing the spatial detail of the events. 

The authors will present these considerations more clearly in the manuscript to justify the only use of 

precipitation-based indices. 

Same answer applies to the corresponding comment of Referee #1. 

Furthermore, for clarity, it may be useful for the authors to develop a little more the compilation 

process of documents relative to drought in the paper itself, and explain in a little more detail why 

they consider that the spatial distribution of the stations and the quality of the records are good 

enough for the study they want to perform. It would also be nice if the question the bias introduced 

by station locations was treated with more detail. Related to this, how was the grid resolution chosen 

(p.12)? 

The compilation process of information relative to historic drought events will be described in more 

detail in the manuscript. Particular focus will be set on the type and form of information which was 

available and used. And the authors will discuss the availability and accuracy of the information on 

the drought characteristics (such as date, duration, area, etc.). 

We consider that the spatial distribution of the stations is adequate for the purposes of the study: 

stations are distributed more or less evenly both in the X- and in the Y-axis. There are no zones with a 

significantly denser presence of stations that could overestimate their importance. 

Regarding the quality of the records, it should be mentioned that all the precipitation data used have 

been provided by the China Meteorological Administration (CMA) and doǁŶloaded fƌoŵ the ͞ChiŶa 
Meteorological Data Sharing “eƌǀiĐe “Ǉsteŵ͟ ;http://cdc.nmic.cn/gx/web/yqlj.jsp). A preliminary 

quality check and correction of datasets (including data gap-filling) was already done by CMA before 

uploading them to the system.  

Regarding the grid resolution, we have chosen a 400x300 cells grid as a trade-off between the 

density of points and the computational requirements. The grid density used corresponds more or 

less to 1 cell/3.2 km
2
, which is certainly adequate for the purposes of the study. However, this choice 

must be adapted to the needs of potential other cases: computation time, data availability, variations 

of precipitation patterns, changing topography, etc. 

Finally, the sensitivity of the ODE thresholds chosen to the classifications proposed in table 6 and to 

the definition of the beginning and end of droughts should be discussed briefly. 

Authors will include a summary of the sensitivity analysis performed on the ODE thresholds that will 

show that their variation hardly affects the overall findings on the best performing index/timescale 

combinations. 

Concerning the thresholds of Table 6, these are based on standard criteria (Jain et al., 2015; McKee 

et al., 1993; Tsakiris et al., 2007) and supported by follow-up literature. A sensitivity analysis of these 

particular thresholds could be interesting for a supplementary work but may exceed the scope of this 

paper. 

Technical corrections 

http://cdc.nmic.cn/gx/web/yqlj.jsp


I have found that the paper should undergo significant editing.  However, I am not a native English 

speaker myself you may not want to follow exactly the suggestions given below. In the following, I 

suggest replacements: 

English writing improvements will be carried out before submission of the revised manuscript. All 

further technical corrections of Referee #2 will be taken into account in this process. 

p.1: 

l.Ϯϱ: ͞HistoƌiĐal dƌought eǀeŶts ǁhiĐh oĐĐuƌƌed͟? 

l.Ϯϳ͟ ͞that ďest ƌepƌoduĐe͟ 

p.2: 

l.7 : ͞iŶ agƌiĐultuƌe͟ ďǇ ͞to the agƌiĐultuƌe seĐtoƌ͟? 

l.ϭϲ: ͞that is the Đase of͟ ďǇ ͞aŶ eǆaŵple is͟? 

l.17: ͞the ChiŶa͛s NatioŶal Cliŵate ChaŶge͟ ďǇ ͞ChiŶa͛s NatioŶal DeǀelopŵeŶt aŶd Reform 

CoŵŵissioŶ͟? 

l. 26: ͞MaiŶ adǀaŶtages͟ ďǇ ͞the ŵaiŶ adǀaŶtages͟?, ͞the ease of use͟ ďǇ ͞theiƌ ease of use͟, ͞the 
liŵited Ŷeed of data ͞ ďǇ ͞the liŵited data ƌeƋuiƌeŵeŶts͟, 

l.Ϯϳ: ͞ĐapaĐitǇ to aŶ eaƌlǇ deteĐtioŶ of dƌought eǀeŶts͟ ďǇ ͞ĐapaĐitǇ foƌ eaƌlǇ deteĐtioŶ of drought 

eǀeŶts͟? 

l.ϯϯ: ͞is depeŶdiŶg oŶ͟ ďǇ ͞depeŶds oŶ͟ 

p3: 

l.Ϯ: ͞ŵoƌe eǆhaustiǀe ǁoƌk͟ ͞ŵoƌe tiŵe-ĐoŶsuŵiŶg ǁoƌk͟ 

l.4 ͞This alloǁs ideŶtifǇiŶg͟ ďǇ ͞This eŶaďles oŶ to the ideŶtifǇ͟ 

l.ϭϬ: ͞do Ŷot iŵplǇ ŶeĐessaƌilǇ͟ ďǇ ͞do Ŷot ŶeĐessaƌilǇ iŵplǇ͟ 

l.23-Ϯϰ ͞fall͟ ďǇ ͞disĐhaƌge͟? 

l.ϯϭ ͞aƌe susĐeptiďle to ďe affeĐted͟ ďǇ ͞ĐaŶ ďe affeĐted͟? 

p.4: 

l.ϯ ͚loĐatioŶ͟ ďǇ ͞loĐatioŶs͟ 

p.5 

l.ϴ: ͞Foƌ the last ϮϬ Ǉeaƌs, detailed iŶfoƌŵatioŶ is aǀailaďle ƌegaƌdiŶg all dƌought eǀeŶts͟ ďǇ ͞Detailed 
iŶfoƌŵatioŶ is aǀailaďle foƌ all dƌought eǀeŶts oǀeƌ the past ϮϬ Ǉeaƌs͟ 

l. ϭϴ: ͞The use of ŵeteoƌologiĐal iŶdiĐes alloǁs aŶalǇziŶg the iŶflueŶĐe͟ ͞alloǁs oŶe to aŶalǇze͟ 

p.7 

l.5: ͞This allows ĐhaƌaĐteƌiziŶg͟ ͞This allows for the characterization of...  and thus faĐilitates͟ 

l. ϲ: ͞eaĐh statioŶ suƌƌouŶdiŶgs͟ ďǇ ͞eaĐh statioŶ͛s suƌƌouŶdiŶgs͟ 

l.19: ͞This alloǁs defiŶiŶg͟ ďǇ ͞This alloǁs us to defiŶe͟ 

l.Ϯϱ: ͞it helps defiŶiŶg͟ ďǇ ͞it helps defiŶe͟ 

p.13 

l.ϴ: ͞ĐoŵpletiŶg the ĐolleĐted histoƌiĐal ƌeĐoƌds foƌ little information regarding the magnitude of the 

eǀeŶts has ďeeŶ fouŶd͟ ďǇ ͞Đoŵplete the ĐolleĐted historical records which include little information 

on the magnitude of the events 



l. ϵ ͞Not defiŶed ǀalues͟ ďǇ ͞UŶdefiŶed ǀalues͟ 

l.11: ͞OŶ puƌpose, oŶlǇ Đells uŶdeƌ dƌought ĐoŶditioŶs haǀe ďeeŶ ĐoŶsideƌed foƌ the definition of this 

iŶdiĐatoƌ ďǇ͟ OŶlǇ cells under drought conditions have been considered to defiŶe this iŶdiĐatoƌ͟ ͞If 
the ODI was calculated as an average value for the entire basin (as adopted for instance in 

Trambauer et al. 2014)) higher (or lower) indicator values in a part of the basin may compensate 

lower (or higher, respectively) indicator values in the rest of the basin, offering an overall value close 

to Ŷoƌŵal pƌeĐipitatioŶ.͟ ďǇ ͞If the ODI had ďeeŶ ĐalĐulated as aŶ aǀeƌage ǀalue foƌ the eŶtiƌe ďasiŶ 
(as adopted for instance in Trambauer et al. 2014)) higher (or lower) indicator values in a part of the 

basin may have compensated for lower (or higher, respectively) indicator values in the rest of the 

ďasiŶ, ǇieldiŶg aŶ oǀeƌall ǀalue Đlose to Ŷoƌŵal pƌeĐipitatioŶ.͟ 

p.14 

l23-Ϯϰ: ͞haǀe ďeeŶ͟ ďǇ ͞ǁeƌe͟ 

p.15 

l.3-4: idem 

p.17 

l.ϭ: ͞that ĐoƌƌespoŶd ǁith͟ ďǇ ͞that ĐoƌƌespoŶd to͟ 

l.ϳ: ͞the dƌoughts oĐĐuƌƌed͟ ďǇ ͞the dƌoughts ǁhiĐh oĐĐuƌƌed͟ 

p.19: 

l.ϭ: ͞higheƌ͟ ďǇ ͟highest͟ 

l.Ϯ: ͞false positiǀes͟ ďǇ ͞false positiǀe͟ 

l.ϰ: ͞Ƌuite͟ ďǇ ͞ǁell͟ 

l.5: ͞iŶ ƌelatioŶ͟ ďǇ ͞iŶ ĐoŵpaƌisoŶ͟ 

l.ϳ: ͚dƌoughts haǀe ďeeŶ ĐhƌoŶiĐled͟ ďǇ ͞dƌought has ďeeŶ ĐhƌoŶiĐled͟ 

l.ϭϬ: ͚Ŷot ǁide͛ ďǇ ͚spatiallǇ ĐoŶĐeŶtƌated͛ 

l.ϭϮ: ͚haǀe ďeeŶ͛ ďǇ ͚ǁeƌe͛ 

l.ϭϯ ͚ideŶtifǇiŶg these eǀeŶts is possiďle, although it is diffiĐult to diseŶtaŶgle theŵ͟ 

l.ϭϲ: ͚ďǇ the use͛ ďǇ ͚usiŶg͛ 

l.Ϯϳ: ͞soŵe ĐoŶsideƌatioŶs aƌe ƌeĐoŵŵeŶded͟ ďǇ ͞ĐautioŶ is adǀised͟ 

l.Ϯϵ: delete ͞soŵe͟, ͞pƌoǀed ďǇ ͚pƌoǀeŶ͛ 

l.ϯϬ: ͞The ǀaƌiaďilitǇ of teŵpeƌatuƌe, foƌ iŶstaŶĐe, ŵaǇ haǀe aŶ iŵpoƌtaŶt iŵpaĐt oŶ the crop water 

availability and then in the assessment of agricultural droughts, although it has not been taken into 

aĐĐouŶt͟ ďǇ ͞temperature variability, not considered here, can play a significant role in the onset of 

agƌiĐultuƌal dƌought͟ 

p.20 

l.ϭϬ: ͞This ǁoƌk ƌepƌeseŶts aŶ atteŵpt at ďuildiŶg a tool...͟ 

l.ϭϯ: ͞ǁas Đoŵpiled͟ 

l.ϭϰ: ͞ǁeƌe ideŶtified aŶd Đatalogued͟ 

l.Ϯϯ͟iŶdeǆes aŶd tiŵe sĐales͟ 

l.Ϯϱ͟ ͞ĐoŶseĐutiǀe oƌ ͞Đlusteƌed iŶ tiŵe͛ ƌatheƌ thaŶ ͞ŵoƌe ĐoŶseĐutiǀe͟ 



l.Ϯϴ͟ supposes͟ ďǇ ͞ƌepƌeseŶts͟ 

l.ϯϮ͟ faĐiŶg͟ ďǇ ͞foƌ͟ 
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RELEVANT CHANGES 

 

This is a list of the main relevant changes made in the manuscript after the comments of the 

Referees. 

1. English review. 

2. The use of meteorological indices exclusively based on precipitation data has been justified 

(Sect. 1). 

3. A more detailed and clear description of the compilation process of information relative to 

historic drought events is included (Sect. 3). 

4. For the calculation of the PSS (for the comparison between alternatives), we now propose a 

monthly discretization (instead of yearly) for the matching between detected and recorded 

droughts. This enhances the precision of the PSS-based results (Sect. 5.4). 

5. As suggested by Referee #1, we set a minimum duration of dry (and wet) periods of 3-

months, in order to avoid an overestimation of events (Sect. 5.4). 

6. A sensitivity analysis of the ODE thresholds has been performed. We used the same 

threshold across all index/timescale combinations for the analysis, investigating the 

sensitivities of our results for a range of thresholds (Sect. 6). 

7. Results based on the PSS values and on the graphical results show a better performance for 

the 6-month timescale, with no statistically significant difference between indices (Sect. 6). 

8. For clarity and consistency with the changes applied, some figures and tables have been 

included (Fig. A7, Fig. A8, Fig. B1), modified (Table 7, Fig. 3, Fig. 4, Fig. 5) or removed (Fig. 5, 

Table 8, Table 9). 
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Abstract. Drought indices based on precipitation are commonly used to identify and characterize droughts. Due to the 

general complexity of droughts, the comparison of index-identified events with droughts at different levels of the complete 15 

system, including(e.g., soil humidity or river discharges), rely typically on model simulations of the latter, entailing 

potentially significant uncertainties. 

The present study explores the potential of using precipitation based indices to reproduce observed droughts in the lower part 

of the Jinsha River Basin, proposing an innovative approach for a catchment-wide drought detection and characterization. 

Two new indicators, namely the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI), have been 20 

developeddefined. These indicators aim at identifying and characterizing drought events at basin scale, using results from 

four meteorological drought indices (Standardized Precipitation Index, SPI; Rainfall Anomaly Index, RAI; Percent of 

Normal precipitation, PN; Deciles, DEC) calculated at different locations of the basin and for different time scales. Collected 

historical information on drought events is used to contrast results obtained with the indicators. 

This method has been successfully applied to the lower Jinsha River Basin, in China, a region prone to frequent and severe 25 

droughts. Historical drought events occurred from 1960 to 2014 have been compiled and catalogued from different sources, 

in a challenging process. The analysis of the newly developed indicators shows a good agreement with the recorded 

historical drought events at basin scale. It has been found that the combinations of index and time scale that best reproduces 

observed events across all the indices is the 6-month time scaleare the SPI-12 and PN-12 for long droughts (1 year or more) 

and the RAI-6, PN-6 and DEC-6 for shorter or more consecutive events. 30 
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1 Introduction 

Drought is a natural phenomenon that results from persistent lower precipitations than what is considered as normal. It 

generally affects larger areas than other hazards and more people than any other natural catastrophe (Keyantash and Dracup, 

2002; Wilhite, 2000). 

In China, droughts represent the most severe natural threat for socioeconomic development and ecosystems (Mei and Yang, 5 

2014). Drought events occur in the Jinsha River Basin (JRB) and surrounding regions with high frequency. They affect a 

wide range of areas and cause huge losses to the agriculture sectorin agriculture (He et al., 2013). The clustering of severe 

and sustained droughts in southwest China during the last decade has resulted in tremendous losses, including crop failure, 

lack of drinking water, ecosystem degradation, health problems, and even deaths (Wang et al., 2015). 

To reduce and anticipate such drought impacts, a comprehensive characterization of the phenomenon is essential to which 10 

effective and accurate analysis of hydrometeorological data is a key input. Drought indices are useful for tracking droughts 

and providing a quantitative assessment of the severity, location, timing and duration of such events (World Meteorological 

Organization and Global Water Partnership, 2016), but also for real-time monitoring (Niemeyer, 2008), risk analysis (Hayes 

et al., 2004) and drought early warning (Kogan, 2000). 

Some organizations and agencies already rely on the use of indices in their decision-making processes, thus enhancing 15 

proactive drought management policies (Wilhite, 2000). An example isThat is the case of the U.S. Drought Monitor (USDM, 

2017), an index-based drought map that policymakers use in discussions of drought and in allocating drought relief. Other 

platforms such as the European Drought Observatory (Joint Research Centre, 2017), the China’s NationalDepartment of 

Climate Change, National Development and Reform Commission (Department of Climate Change, National Development 

and Reform Commission, 2017) or the experimental African Drought Monitor (Land Surface Hydrology Group - Princeton 20 

University, 2017) also use this approach for the assessment, diagnosing and forecasting of droughts. 

The choice of the index should be based on the type of drought (meteorological, agricultural, hydrological or socio-

economical), the climate regime and the regions affected, as well as the regions affected. available data. It was found that 

measured meteorological data was limited in the study region and that precipitation was the single most reliable type of 

exploitable information. The present study thus focuses on the use of meteorological indices based only on precipitation 25 

data. for this characterization, in particular: Standardized Precipitation Index (SPI, McKee et al., 1993a, 1995), Rainfall 

Anomaly Index (RAI, Van Rooy, 1965), Percent of Normal precipitation (PN, Barua et al., 2011) and the Deciles (DEC, 

Gibbs and Maher, 1967).  The mMain advantages of meteorological indices are their ease of use, the limited need of data 

requirements and the capacity forto an early detection of drought events, while e. Extensive literature and calculation tools 

are widely accessible (World Meteorological Organization and Global Water Partnership, 2016). The four above-mentioned 30 

indices only rely on precipitation data; temperature and river discharge data are often not exploitable, potential 

evapotranspiration data are nonexistent at most meteorological stations, and soil characteristics information is hardly 

appraisable. 
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The use of integrated indices such as PDSI (Palmer, 1965) or SPEI (Vicente-Serrano et al., 2010), relying also on potential 

evapotranspiration (PET) data, could improve the scope and quality of this study. However, no reliable PET data was 

accessible for the study region. Although approximations may be applied to estimate this variable, for example, by only 

considering temperature data, some studies (Jeevananda Reddy, 1995; Shaw and Riha, 2011; Staage et al., 2014) showed a 

high sensitivity of the PET to the chosen equation. A deeper analysis that helps selecting and applying such methods should 5 

be performed prior to the use of these indices. Therefore, it has been decided to base this study on the Standardized 

Precipitation Index (SPI, McKee et al., 1993a, 1995), the Rainfall Anomaly Index (RAI, Van Rooy, 1965), the Percent of 

Normal precipitation (PN, Barua et al., 2011) and the Deciles (DEC, Gibbs and Maher, 1967). 

To fill the lack of specific drought-related information, most studies assess the performance of drought indices against results 

from hydrological soil water models (Halwatura et al., 2016; Hao and AghaKouchak, 2013; Trambauer et al., 2014; 10 

Vasiliades et al., 2011; Wanders et al., 2010). However, the performance of theseis types of studies is dependingdepends on 

the accuracy of the models. Their limitations and uncertainties represent an important drawback and should be addressed 

(Mishra and Singh, 2011). An alternative that often requires a more exhaustivetime-consuming work is the compilation of 

historical records of drought events from different sources. Consequently, their duration, the water scarcity levels and the 

drought impacts on population and agriculture can be estimated and then integrated into the analysis. This enables one to 15 

identifyallows identifying other types of droughts such as socio-economical droughts that are hard to assess with 

hydrological models. 

Regarding their spatial resolution, the available drought indices may be based on local measurements (Zhou et al., 2012) and 

index calculations are usually applied to stations or cells of gridded precipitation datasets; overall spatial patterns at 

catchment or sub-catchment scales being are thus hardly captured. As stated above, droughts affect large areas whose limits 20 

are often vaguely demarcated. Besides, water resources are part of a more complex interrelated network that which links the 

source to the point of consumption, where isolated rainfall deficiencies do not imply necessarily imply a shortage of water 

availability or even a drought event. Some work (Bhalme and Mooley, 1980; Fleig et al., 2011; Mitchell et al., 1979) 

suggests the use of drought area indices for the study of droughts that considers areal coverage. This leads toT the 

convenience of relying on use of overall indicators capable of capturing in a unique single value the effect of the rainfall 25 

deficiency at a regional level is thus convenient and will be applied in this study based on the above-mentioned work. 

The objective of this study is to capitalize on the collection of drought events that the authors have registered in the lower 

part of the JRB since 1960 to evaluate and calibrate two indicators capable of identifying drought occurrence and 

characterizing their intensity at catchment scale. These new indicators are based on commonly used meteorological drought 

indices for particular time scales. 30 
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2 Investigation area and data 

The JRB is a sensitive zone in terms of water resources, food security, ecosystem management and human well-being where 

glacier and climatic variability greatly influence the water regimes and availability. Originating from the southern glacier at 

Jianggendiru peak, the highest point of the Geladaindong Snowy Mountain in the middle of the Tanggula Mountains, the 

JRB constitutes the upper part of the Yangtze River Basin. It is located between 24°28′N–35°46′N longitude and 90°23′E–5 

104°37′E latitude in southwestern China, with a catchment area of 473,200km
2
 (Figure 1). The total length of the river is 

3’500 km from the Yibin city, with a total fall of 5,100 m. This part of the Yangtze River accounts for 55.5% of its length 

and 95% of its total fall. 

The lower part of JRB is a hot-dry valley region characterized by a southwest monsoon climate. The hydrologic regime is 

characterized by a pronounced seasonal cycle with an annual average precipitation of 600–800 mm/year. Dry season 10 

(November to April) precipitation accounts for 10% to 22% of the annual precipitation. Evaporation is 10 to 20 times of 

precipitation during the dry season, which could be the major reason for the frequent occurrence of winter drought or winter–

spring droughts in lower JRB (Mei and Yang, 2014; Yang et al., 2013). Droughts occurring in the lower JRB and 

surrounding areas affect a wide range of areas, causing huge losses in agriculture (Wu et al., 2011): more than 4 million 

people and 3 million livestock face drinking water shortage, and more than 1 million hm
2
 of cultivated area are susceptible to 15 

be affected by severe droughts and water shortages, with expected direct economic losses of hundreds of millions USD (Wu, 

1999).  

Figure 1 shows the division of the JRB in three parts (Upper, Middle and Lower), and the locationlocations of the 

meteorological stations used. This study focuses on the analysis of drought events in the lower JRB. The precipitation data 

needed in this study have been obtained from the China Meteorological Data Service Center (CMA) (China Meteorological 20 

Administration, 2017), and downloaded from its data sharing service system (CMDC, 2017). A preliminary quality check 

and correction of datasets (including data gap-filling) is performed by CMA before uploading them to the system.which is 

responsible for primary quality control. The monthly precipitation data of 29 meteorological stations within or around JRB, 

recorded from 1960 to 2014, have been collected and processed. More than 50 years of continuous data are thus available, 

except for the Batang and Yuanmou stations where only 46 years are available. The spatial distribution of the stations and 25 

the quality of the records enable its use for this studyis supposed adequate for the purposes of the study: the stations are 

distributed relatively evenly both in the zonal and meridional directions, with no zones having a significantly denser 

presence of stations that could overestimate their importance. 
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Figure 1. a) Location of the JRB in China; b) subdivision of the JRB for this study; c) overview of the lower JRB with the location of the 

29 meteorological stations. 

3 Catalogue of historical droughts 

In order to obtain a good basis for the evaluation of drought indices performance, hHistorical drought events have been 5 

recorded collected since 1960. The information required for the identification and characterization of major droughts in the 

lower JRB has been compiled from different sources, including scientific literature, inventories (e.g., international disaster 

database, Chinese inventories), governmental reports and yearbooks, newspaper and internet articles. The collection of 

information focused on the affected area, the start date of the drought events, their duration, their spatial and temporal 

distribution, their severity and impacts on the population and agriculture, their damage and financial losses. 10 

A web-based event registration platform and database (GEOTEST AG, 2017) has been developed to provide a standardized 

analytical framework with a quantitative description of the drought characteristics. All available information on extreme or 

disaster events has been compiled within the platform, giving a valuable description of each recorded event and allowing a 

comparison of them. Table 1 summarizes the main available information for the registered drought events within the lower 

JRB. 15 
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For the last 20 years, detailedDetailed information is available regardingfor the majorall drought events over the past 20 

years. Before 1980, much less information about droughts in the lower JRB is available. Moreover, detailed information 

prior to 1960 could not be found. 

Compiling and harmonizing the information from these different data sources is was a challenge. The drought event 

descriptions in the scientific literature often give an overview about the entire event in a descriptive way without detailed 5 

information about the affected area and damage. They often provide information about the meteorological conditions and the 

duration of the event. Available information from government reports and databases, in contrast, generally contain 

information in high detail for a specific county (e.g., affected areas in km
2
), but neither give information about the entire 

affected area if the event affected several counties, nor about prevailing meteorological conditions., as the different 

information sources often provide only partial information for one event, for example only for one county and not the entire 10 

affected area. For some events, the data harmonizing process even revealed differences in the information issued from 

different sources. 

Information at very different levels of detail and various contents were collected. As a first step, all available information 

was registered in a database. For this purpose, a A web-based event registration platform and database (GEOTEST AG, 

2017) has been developed to provide a standardized analytical framework with a quantitative description of the drought 15 

characteristics. Particularly, drought events since 2000 are all mentioned in a different source, what significantly enhances 

the reliability of their existence and related information. Most of the drought events before 2000 are documented in detail in 

He (2010), and some of these major dry periods are also mentioned in scientific literature such as He et al. (2016) and Wang 

et al. (2015). Even if the amount of data and level of detail is lower for these older events, their occurrence and temporal 

positioning can be assumed as reliable. 20 

In a second step, the level of detail was harmonized for the most relevant information and summarized in Table 1. This 

catalogue of the most relevant drought characteristics focusesThe collection of information focused on the affected area, the 

start date of the drought events, their duration, their spatial and temporal distribution, their severity and the impacts on the 

population and agriculture, includingtheir damage and financial losses. The time of occurrence and duration is given in 

seasonal units, the affected area is described on a county scale and the indicators and impacts are summarized in a 25 

descriptive way, as better accuracy was not feasible for all events. 

In total, 13 major drought episodes have been registered from 1960 until 2014. However, this data set is probably not 

complete, as non-documented events likely have occurred. A clustering of severe and sustained droughts in the JRB has been 

observed from 2009 to 2014. Another period with high drought activity and severity can be detected between 1980 and 1990. 

Although the droughts identified from 2009 until 2014 were extremely serious, this was not the worst period in the long-term 30 

because the drought episodes that occurred around 1940 were of similar intensity and duration (Wang and Chen, 2012). The 

registered drought events are often strongly correlated with low precipitation, but the analyses also reveal 
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The use of meteorological indices allows analyzing the influence of precipitation on the identification of droughts in the 

lower JRB. However, the documentation also reveals  that the registered droughts often occur during periods with 

temperatures above average. 

 

Table 1. Catalogue of historical drought collected for the lower JRB (DJF=December-January-February, MAM=March-April-May, 5 
JJA=June-July-August, SON=September-October-November). 

ID Year Seasons Affected area Reference Other indicators Impacts 

I 
1962–
1963 

SON, DJF, 

MAM, 

JJA 

Yunnan, 

southern part 

of Sichuan 

He, 2010 
Precipitation deficit of 50% from 

November 62 to April 63. 

Drinking water shortage for 900 000 

people. Impacts on 3 700 km2 

agricultural land. 

II 
1978–
1979 

DJF, 

MAM, 

JJA 

Yunnan Liu, 2012  
Impacts on 7 000 km2 agricultural land, 

poor harvest/crop loss. 

III 
1981–
1982 

DJF, 

MAM, 

JJA 

Sichuan, 

northern 

Yunnan 

He, 2010  

Drinking water shortage for 2 million 

people or 3 million people and 2 million 

livestock. 

IV 1987 

exact 

duration 

unknown 

Mainly 

Yunnan 
  

Impacts on 6 000 km2 agricultural land, 

poor harvest/crop loss. 

V 1992 
MAM, 

JJA, SON 

Yunnan, 

southern 

Sichuan 

He, 2010 
Maximum in precipitation deficit: 50–
80%. 

Drinking water shortage for 2 million 

people and 1 million livestock. Impacts 

on 9 300 km2 agricultural land. 

VI 
1998–
1999 

DJF, 

MAM 

Mainly 

Yunnan 
He, 2010 

Temperatures in Yunnan province 2–3°C 

higher than long-term average. 

Dayao County: 150 days without rain. 

8 000 km2 damaged agricultural area. 

VII 
2000–
2001 

DJF, 

MAM 

Sichuan, 

Yunnan 
WCB, 2001 

Temperatures in Yunnan province 2–3°C 

higher than long-term average. The cities 

of Dali, Baoshan, Dehong, Chuxiong, 

Lincang have almost no rainfall during the 

whole winter. 

Drinking water shortage for 3 million 

people and 2 million livestock. Impacts 

on 5 800 km2 agricultural land. 

VIII 2005 
MAM, 

JJA 

Large parts of 

Yunnan 

Yang et al., 

2012; Liu 

Yu et al., 

2007 

High temperatures; in April to early June, 

the temperature is 1°C above the same 

period of history in most parts of Yunnan 

province. Precipitation deficit of 20–80% 

in May-June November. 56 days without 

precipitation. 

Drinking water shortage for 6 million 

people and 4 million livestock. Impacts 

on 15 200 km2 agricultural land, poor 

harvest. 

IX 
2009–
2010 

SON, DJF, 

MAM 

Parts of 

Yunnan, 

Sichuan and 

Guizhou 

Yang et al., 

2012;Wang 

et al., 2015 

Precipitation deficit. 

119 days without precipitation. 

Average temperature anomaly of plus 

1°C. 

Drinking water shortage for 21 million 

people and 11 million livestock. Impacts 

on 43 500 km2 agricultural land, poor 

harvest. 

X 2011 
MAM, 

JJA, SON 

Large areas in 

southwest 

China 

Yang et al., 

2012; Wang 

et al., 2015 

Temperatures 0.4–1.1°C higher than 

normal. From June to September 2011, 

persistent high temperature weather 

conditions. Precipitation deficit of 20–
60%. 

Drinking water shortage for 12 million 

people and 9 million livestock. Impacts 

on 19 000 km2 agricultural land. Cargo 

shipping has been suspended. 

XI 
2011–
2012 

DJF, 

MAM 

Large areas in 

southwest 

China 

Wang et al., 

2013 

Precipitation deficit. 

 

Drinking water shortage for 2.4 million 

people and 1.6 million livestock. Impacts 

on 6 500 km2 agricultural land. 

XII 
2012–
2013 

Oct-Apr 
Southwest 

China 

Guha-Sapir 

et al., n.d.; 

Hu Xueping 

et al., 2015 

From October to April 0.5°C higher 

temperatures than normal, in February 

2.5°C higher than long-term average. Jan-

Feb: precipitation deficit of 45–55%. 

More than 3 million people and about 2 

million large livestock had drinking 

water shortage with varying degrees. 323 

small rivers and 331 small reservoirs 

dried up. 23 300 km2 agricultural area 

affected (whereof 15 500 km2 forest). 
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XIII 2014 
DJF, 

MAM 

Central 

Yunnan and 

south Sichuan 

Duan et al., 

2015 

Spring temperatures 2–4°C higher than 

historic values in SW China. Spring 

precipitation in central Yunnan and south 

Sichuan province was 50–90% less than 

average of the same period. 

Drinking water shortage for 1.6 million 

people in Yunnan province. 106 rivers 

and 76 reservoirs dried up. Affected area: 

6080 km2. 

4 Meteorological drought indices 

Four different commonly used meteorological drought indices have been applied in this study: the Standardized Precipitation 

Index, the Rainfall Anomaly Index, the Percent of Normal precipitation and the Deciles. Their definition basically rests upon 

the comparison of precipitation values with normal value (the definition of “normality” may vary from one index to another), 

resulting in a single number. This allows characterizing drought conditions and thus facilitating its interpretation and use in 5 

strategic planning and operational applications (Tigkas et al., 2013). 

This comparison must be month or season specific. For instance, for the index calculation of January 2000, the precipitation 

of this month should be compared to the normal precipitation extracted taking into account only the Januaries from a 

reference period. The same applies when calculating the index for the time window January-February-March 2000: the sum 

precipitation for these 3 months will be compared to the sum of precipitation of all the groups of January-February-March 10 

registered in the reference period. 

4.1 Standardized Precipitation Index (SPI) 

The widely used Standardized Precipitation Index (SPI) was formulated by McKee et al. (1993a, 1995) to quantify the 

precipitation deficit from long-term recording and for multiple time scales. 

Long-term record of precipitation values is fitted to a probability distribution which is then transformed into a standard 15 

normal distribution, of which mean and variance are 0 and 1, respectively (Edwards and McKee, 1997). The data sets are 

most commonly adjusted to the Gamma function (McKee et al., 1993a; Sönmez et al., 2005; Tsakiris et al., 2007) although 

some studies show better adjustments to other functions (Akbari et al., 2015). 

A classification of drought conditions based on the SPI values was established by McKee et al. (1993a) to define drought 

intensities and is presented in Table 2. Positive SPI values indicate greater than normal precipitation, and negative values 20 

indicate less than normal precipitation. 

 

Table 2. Classification of drought conditions according to the SPI values. 

SPI Classification 

≥ 2.0 Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

–0.99 to 0.99 Near normal 

–1.49 to –1.0 Moderately dry 
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SPI Classification 

–1.99 to –1.5 Severely dry 

≤ –2.0 Extremely dry 

 

As mentioned earlier, the SPI was designed to quantify precipitation deficit for multiple time scales or moving time windows 

(World Meteorological Organization, 2012). These time scales reflect the drought impacts on different water resources that 

which are needed by decision-makers: 

 3-month SPI: reflects short- and medium-term moisture conditions and provides a seasonal estimation of 5 

precipitation. 

 6-month SPI: indicates seasonal to medium-term trends in precipitation and may be very effective in showing the 

precipitation anomaly over distinct seasons. Information from a 6-month SPI may also be associated with 

anomalous streamflow and reservoir levels, depending on the region and time of year. 

 12-month up to 24-month SPI: reflects long-term precipitation patterns and is usually tied to streamflow, reservoir 10 

levels, and even groundwater levels at longer time scales. 

4.2 Rainfall Anomaly Index (RAI) 

The Rainfall anomaly Index (RAI) was developed by Van Rooy (1965). The RAI indices are computed by comparing the 

average precipitation over a given time window with the mean of the ten highest (for positive anomalies) and the ten lowest 

(for negative anomalies) precipitation records. Despite its simplicity, this index requires a series of complete data to be 15 

calculated. 

The RAI values are classified (Van Rooy, 1965) as shown in Table 3. Olukayode Oladipo (1985) found that differences 

between the RAI and the more complicated indices of Palmer Drought Index (Palmer, 1965) and Bhalme and Mooly 

Drought Index (Bhalme and Mooley, 1980) were negligible. 

 20 

Table 3. Classification of the period according to the values of the RAI. 

RAI Classification 

≥ 3.00 Extremely wet 

2.00 to 2.99 Very wet 

1.00 to 1.99 Moderately wet 

0.50 to 0.99 Slightly wet 

–0.49 to 0.49 Near normal 

–0.99 to –0.50 Slightly dry 

–1.99 to –1.00 Moderately dry 

–2.99 to –2.00 Very dry 

≤ –3.00 Extremely dry 
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4.3 Percent of Normal precipitation (PN) 

The percent of normal precipitation (PN) is one of the simplest measurements of precipitation value for a location. It is 

calculated by dividing precipitation during a given time window by normal precipitation of that same time window over the 

reference period (typically considered to be a 30-year average). For PN values over 100%, the precipitation is higher than the 

average precipitation (and vice versa): the higher PN value, the wetter the considered month is. 5 

The main advantage of this index is its simplicity and transparency, which makes it practical to communicate drought levels 

to the public (Keyantash and Dracup, 2002). Analyses using PN are very effective when used for a single region and/or a 

specific season. 

Even if no threshold ranges have been widely established in the technical literature for the PN, some studies (Barua et al., 

2011; Morid et al., 2006) propose a classification similar to the SPI. For this study, the classification proposed by Barua et al. 10 

(2011) has been adopted (Table 4). 

 

Table 4. Classification of drought conditions according to the PN values. 

PN Classification 

180% or more of normal rainfall Extremely wet 

161% to 180% of normal rainfall Very wet 

121% to 160% of normal rainfall Moderately wet 

81% to 120% of normal rainfall Near normal 

41% to 80% of normal rainfall Moderately dry 

21% to 40% of normal rainfall Severely dry 

20% or less of normal rainfall Extremely dry 

4.4 Deciles (DEC) 

Another drought-monitoring technique consists in dividing the monthly precipitation data into deciles (DEC). This method, 15 

developed by Gibbs and Maher (1967), was selected as the meteorological measurement of drought for the Australian 

Drought Watch System (Lee, 1979; Sivakumar et al., 2010) because it is relatively simple to calculate and requires less data 

and fewer assumptions than the Palmer Drought Severity Index (Smith et al., 1993). The procedures have also been adopted 

by the World Meteorological Organization to monitor drought on a worldwide scale (World Meteorological Organization, 

1985). 20 

The threshold ranges of deciles used to classify drought conditions are presented in Table 5 (Gibbs and Maher, 1967). 

 

Table 5. Classification of drought conditions according to the values of the deciles. 

DEC Percent Classification 

Deciles 1–2 lowest 20% Much below normal 

Deciles 3–4 next lowest 20% Below normal 

Deciles 5–6 middle 20% Near normal 
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DEC Percent Classification 

Deciles 7–8 next highest 20% Above normal 

Deciles 9–10 highest 20% Much above normal 

5 Approach for the identification of drought events at basin scale 

An indicator (or indicators) capable to adequately characterize historical droughts must be able to capture the following 

characteristics: 

 The beginning and the end of the event, which defines its duration. 

 The drought intensity, derived from the index value. 5 

 The geographical area affected by the drought. 

The following guidelines specify the approach proposed in this study to characterize drought events at basin scale based on 

precipitation data available at each station and how to contrast these results with the catalogued historical events. 

First, following the previous definitions (Sect. 4), precipitation data are used to calculate the four above-described 

meteorological drought indices (SPI, PN, RAI and DEC) for each station and for different time scales (1-, 3-, 6-, 12-, 24- and 10 

48-month) using the 1951-2000 reference period. Then, according to the criteria presented below, these values are used to 

detect potential drought events at a given station and at a given time. 

In order to aggregate results from all stations of the basin, two new indicators are proposed in this study: the Overall Drought 

Extension (ODE) and Overall Drought Indicator (ODI). The results of these new indicators will then be contrasted with 

historical recorded events to define the best combination of index and time scale used for the definition of the ODE and ODI 15 

new indicators. 

5.1 Use of indices to detect droughts at station scale 

According to McKee et al. (1993), a drought event occurs at the station level any time the SPI is continuously negative and 

the SPI reaches a value of –1.0 or less, which corresponds to moderately dry condition (Table 2) or drier. The drought begins 

when the SPI first falls below zero (mean of the normalized precipitation) and ends with the positive value of SPI following 20 

a value of –1.0 or less. The drought magnitude is the positive sum of the SPI for each month during the drought event. The 

intensity of a drought is defined as the magnitude of this event divided by its duration. 

Figure 2 shows an example of the SPI-6, SPI-12 and SPI-24 series calculated at the Chuxiong station. Drought periods are 

colored in orange and the lower threshold that defines their occurrence in red. The influence of the time scale on the number 

and duration of detected droughts is clearly apparent. It is worth noting that there are periods in Figure 2 that identify very 25 

short droughts (one or two months long), which is due to the identification criteria based on the index values. 
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Figure 2. Example of the SPI-6, SPI-12 and SPI-24 series at the Chuxiong station, indicating drought periods in orange (lower threshold in 

red). 

 

In the present study, the above-mentioned principles used to detect drought events based on the SPI classification (McKee et 5 

al., 1993b) have been standardized to be applicable to the other three indices (PN, RAI and DEC) as follows: 

 A drought event occurs any time the index is continuously below its normal value and reaches the moderately dry 

condition class. 

 The drought is considered to begin when the index first falls below its normal value. 

 The drought ends when the index exceeds its normal value. 10 

Table 6 summarizes the thresholds for each index that specify the drought event’s start and end criteria, which correspond 

respectively to the limit of the moderately dry class and to the index normal value. Although the “normal value” of DEC 

would be 50% (which corresponds to the median of the precipitation records), in this study the drought end criterion 
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suggested for this index is 60%, which is the limit between near and above normal conditions (Jain et al., 2015; Tsakiris et 

al., 2007). 

 

Table 6. Values of the thresholds defining the start and the end of the drought events, for each index. 

Index 
Start 

(moderately dry condition) 

End 

(normal value) 

SPI –1 0 

RAI –1 0 

PN 80 100 

DEC 40% 60% 

5.2 Identification of drought occurrence 5 

As stated above, whenWhen analyzing directly athese meteorological indexindices, results only concern each stationstation’s 

surroundings without capturing the patterns of neighboring areas. However, available historical records refer to regional 

droughts characterized by larger areas that cover several stations. 

In order to consider the basin as a whole in the definition of drought occurrence, duration and intensity, the resulting indices 

must be consistently extended to the entire area and then combined in overall indicators. For that purpose, a regular grid 10 

divides the lower JRB into a 400x300 cells raster (400 rows and 300 columns). The grid resolution was chosen as a trade-off 

between the density of cells (1 cell/3.2 km
2
) and the computational requirements (however, this choice should be adapted to 

the needs of potential other cases). that, aAfter trimming off the areas sticking out of the basin boundaries, the raster 

possesses 44 133 cells. Index values have been calculated at each grid cell by applying the Inverse Distance Weighting 

(IDW) spatial interpolation from the values available at the stations. 15 

For this study, it iswe followed the approaches taken for the definition of Drought Area Indices (Bhalme and Mooley, 1980; 

Mitchell et al., 1979) and Regional Drought Area Indices (Fleig et al., 2011). It is thus considered that a basin-wide event is 

ongoing when a substantial part of the basin is under drought conditions. It is therefore necessary to identify the portion of 

the territory for which the calculated index indicates a drought. An indicator to detect drought occurrence at basin scale has 

been set up based on the criteria described above to identify an event considering the index values (Figure 2). 20 

Based on the interpolation of the index, drought events are detected for each time step and at each grid cell of the described 

raster. This allows defining a newus to define an indicator, named here Overall Drought Extension (ODE). It is, expressed as 

the percentage of the lower JRB area suffering a drought by calculating. It is calculated as the number of cells indicating a 

drought at a precise date (N_drought) divided by the total number of cells of the raster (in this case, N_TOTAL=44 133) as 

shown in Eq. (1)., 25 ܱܧܦ = ே_ௗ�௢௨�ℎ௧ே_்ை்�௅ ∙ ͳͲͲ%. ,          

 (1) 



14 

 

The ODE ranges from 0% (when no drought is occurring at any point of the basin) to 100% (when the entire basin is 

suffering an event). It highlights the coverage of a drought, allowing a direct comparison between registered historical 

information and calculated results. Moreover, it helps definingdefine the temporal component of droughts as it states the 

beginning and the end of an event. However, it does not take into account its intensity. 

5.3 Characterization of drought intensities 5 

Regarding the intensity of the droughts, in this study a complementary new indicator is proposedapplied to integrate the 

intensities computed at every grid cell. The Overall Drought Indicator (ODI) is defined as the average index value across the 

cells under drought conditions at a precise date, as shown in Eq. (2),. 

�ܦܱ = ∑ ሺ�௡ௗ௘��ሻ�_���ೠ�ℎ೟�=1ே_ௗ�௢௨�ℎ௧்ை்�௅  .,           (2) 

The ODI expresses the average severity in the drought-affected part of the basin. It gives information about the 10 

meteorological stress level of the areas being effectively affected by a drought. Moreover, this indicator may help 

completingcomplete the collected historical records forwhich include little information regardingon the magnitude of the 

events has been found. 

. From indications of Table 2, Table 3, Table 4 and Table 5, lower values of this indicator denote drier conditions. Not 

definedUndefined values occur when no cells are under drought conditions. 15 

On purpose, onlyOnly cells under drought conditions have been considered for the definition ofto define this indicator. If the 

ODI was had been calculated as an average value for the entire basin (as adopted for instance in Trambauer et al. (2014)) 

higher (or lower) indicator values in a part of the basin may have compensated lower (or higher, respectively) indicator 

values in the rest of the basin, yieldingoffering an overall value close to normal precipitation. Therefore, the ODI must 

always be used together with the ODE: whenever a drought has been detected with the ODE, its overall intensity may be 20 

assessed with the corresponding value of the ODI. 

5.4 Evaluating indicator-based results with catalogued historical events 

In order to support the choice of an index and time scale combination for the definition of the ODE and ODI, an assessment 

of the quality of the forecasts performed with the different variants is recommended. The hypothesis followed in this study is 

that detected drought events (i.e., the forecasts) correspond to the cases when the ODE value exceeds a given threshold, 25 

which indicates a certain area is affected by an event. The temporal coincidence of these forecasts have has to be then 

contrasted with the occurrence of recorded droughts (i.e., the observations). As stated above, Figure 2 shows that very short 

index-based events risk being forecasted. In order to avoid an overestimation of droughts, an additional 3-month criterion for 

beginning and ending forecasted droughts was established: an event will be effectively detected when the ODE value 

exceeds the threshold for at least three consecutive months. 30 
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For the matching between forecasts and observations, two monthly series of events were created (one for the events detected 

according to the ODE values; and one for the historical events), where for each month either a “Drought” or a “No drought” 

condition is assigned. Different scores for verifying contrasting this type of dichotomous forecasts (occurrence vs. no 

occurrence) exist: the Peirce skill score, PSS (Hanssen and Kuipers, 1965; Murphy and Daan, 1985; Peirce, 1884); the 

Heidke skill score, HSS (Heidke, 1926); the Gilbert’s skill score, GSS (Schaefer, 1990); or the odds ratio skill score, ORSS 5 

(Stephenson, 2000). As recommended by Candogan Yossef et al. (2012), the PSS is used in this study. For its calculation, 

the Miss Rate (M) and the False Alarm Rate (F) are defined in Eq. (3) and Eq. (4) respectively: � = ௖௔+௖ ,            (3) 

ܨ = ௕௕+ௗ ,            (4) 

where a, b, c and d represent the number of cases for each possible forecast outcome: hit, false alarm, miss and correct 10 

rejection, respectively (Table 7). : 

 hit: when one detected drought corresponds with an observed drought; 

 false alarm: when a drought appears during a month where no observed event has occurred; 

 miss: when, during a month where a drought has been observed, no event has been detected; 

 correct rejection: when, during a month where no drought has been observed, no drought is detected. 15 

The Miss Rate (M) indicates how many of the observed events are not forecasted (related to the Type 1 errors) while the 

False Alarm Rate (F) is the proportion of non-occurrences that are incorrectly forecasted (Jolliffe and Stephenson, 2003). 

 The PSS is expressed as shown in Eq. (5): ܲ�� = ͳ − � −  (5)           , ܨ

The PSS ranges from –1 to +1: perfect forecasts receive a score of one, random forecasts receive a score of zero, and 20 

negative values indicate less skill than a random prediction. A suitable combination of the index and time scale will then lead 

to higher PSS values. 

 

Table 7. Contingency table of the comparison between forecasts and observations. 

  Observation 

  YesDrought No drought 

Forecast 
YesDrought a (hit) b (false alarm) 

No drought c (miss) d (correct rejection) 

 25 

However, high values of the PSS score may be obtained purely by chance, especially when using only a small number of 

forecasts. Such is the case of the present work, where only 13 independent events have been documented during the 55 years 
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of record keeping. This could lead to overestimatinge the goodness of a combination of the index and time scale. A statistical 

test should then be was applied to check if the calculated PSS values are were significantly different from zero, at least at a 

95% confidence. Assuming independence of the Miss and False Alarm rates, the standard error in the Peirce skill score is 

simply the square root of the sum of the squared standard errors in the Miss and False Alarm rates (Stephenson, 2000), as 

expressed in Eq. (6): 5 �ܧ௉ௌௌ = √ሺ�ܧெሻ2 + ሺ�ܧ�ሻ2 ,          (6) 

where the standard errors in estimated Miss (SEM) or False Alarm (SEF) rates can be extracted from Thornes and Stephenson 

(2001). If the PSS±1.96·SEPSS interval does not include zero, then the null of a random forecast can be rejected at a 95% 

confidence level. 

6 Results and discussion 10 

Following the previous approach, the series of the SPI, PN, RAI and DEC indices have beenwere calculated for different 

time scales (1-, 3-, 6-, 12-, 24- and 48-month) within for the period of 1960–2014. First computed at the 29 stations, these 

indices havewere then been extrapolated to the rest of the lower JRB. Figure 3 shows the example of the Standardized 

Precipitation Index for a 126-month time scale (SPI-126) calculated in August October 20123 (corresponding to the drought 

event XII) and spatially distributed at the lower JRB, where . Blue colors indicate wet conditions while brown colors 15 

represent regions under drier conditions. 

According to the criteria proposed in Table 6, detected drought events have beenwere identified based on the indexse values. 

Then, the ODE and ODI indicators have beenwere calculated for the lower JRB. An example of tThe resulting ODE and 

ODI series are is shown in Figure 4 and Figure 5 for the SPI-6 and RAI-6 combinations andas well as in Appendix A for all 

the time scales and indices analyzed, along with the recorded historical droughts shaded in orange. 20 

The objective is to establish a combination of time scale and index that offers an optimum identification of historical 

droughts. As stated before, the main criteria used to contrast the performance of the forecasts is that a drought event is 

supposed to happen when the ODE value exceeds a threshold that is to be defined for each combination. The combination 

finally retained should maximize the number of hits and minimize the misses between the forecasts and the observed events. 

 25 
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Figure 3. Extrapolated SPI-612 values in August October 20123 for the entire lower JRB. 
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Figure 4. ODE and ODI values using the 126-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 5 
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Figure 5. ODE and ODI values using the 12-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

The 1-month scale overall indices show rapid fluctuations that correspond withto short periods of precipitation deficiency 5 

not captured in the catalogue of historical droughts. This is mainly due to punctual large rainfall events, that haveing an 

important influence in the indices which may indicate that the drought had ceased when it is not the case (Barua et al., 2011). 

The use of this time scale is not recommended for drought monitoring since long drought events are hardly identified. The 

opposite effect occurs when using the 48-month scale. The inertia of the rainfall shortage tendencies may mask shorter 

droughts and overestimate their durations. Since most of the episodes last one year or less (Table 1), they are hardly detected 10 

using the 48-month scale. The droughts which occurred from 2009 to 2014 (droughts IX to XIII) illustrate this phenomenon: 

even if five different droughts have been catalogued, a unique one is detected using the 48-month scale, according to the 

ODE time series. Therefore, using the 1- and 48-month scales do not provide any substantial information about the 

occurrence and duration of the droughts and have been excluded from the performance analysis. 

For the rest of the time scales (3-, 6-, 12- and 24-month), the ODE thresholds indicating the occurrence of a drought are is 15 

required for the computing of the PSS that will serve as a support for the selection of the best combination of index and time 

scale. Traditionally, cross-validation techniques are used to define optimum thresholds, for when within a training subset the 

threshold maximizing the PSS is identified and validated in a non-overlapping validation subset. The limited number of 13 

independent events in our record prevents following this approach. Instead, a sensitivity analysis was performed using the 

same threshold across all of the combinations and exploring the effect of varying it in a reasonable range (in this case, from 20 
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0.3 to 1 by 0.1 steps). The resulting PSS values are shown in Figure B1 of Annex B along with the 95% confidence interval, 

which allows indicating whether the score is significantly different from zero. 

Based on the resulting ODE series, a set of thresholds has been manually estimated () to match as many observed events as 

possible. According to these thresholds, the PSS is calculated for each index and time scale combination () along with its 

95% confidence interval, which allows indicating whether the score is significantly different from zero as stated above. 5 

Graphic results are presented in Figure 5. 

 

Table 8. Thresholds estimated for the ODE indicating the occurrence of a drought. 

Index 
Time scale 

3-month 6-month 12-month 24-month 

SPI 75% 75% 65% 50% 

RAI 95% 85% 75% 75% 

PN 95% 85% 60% 25% 

DEC 75% 75% 75% 60% 

 

Table 9. Peirce skill score values for each combination of index and time scale, with 95% confidence intervals. 10 

Index 
Time scale 

3-month 6-month 12-month 24-month 

SPI 0.34 ± 0.18 0.23 ± 0.18 0.38 ± 0.18 0.17 ± 0.18 

RAI 0.3 ± 0.16 0.4 ± 0.14 0.25 ± 0.18 0.17 ± 0.18 

PN 0.37 ± 0.17 0.44 ± 0.16 0.45 ± 0.16 0.32 ± 0.16 

DEC 0.29 ± 0.18 0.38 ± 0.18 0.32 ± 0.17 0.25 ± 0.18 

 

Code

Code
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Figure 5. Graphic representation of the PSS results for an ODE threshold of 0.4, with the black error bars representing the 95% confidence 

interval (±1.96 standard errors). 

 5 

Most of the 95% confidence intervals of the PSS do not include zero, disproving that skill scores could have identified 

drought events by chance sampling fluctuations. On the contraryOnly, for the SPI and RAIsome of the indices at 24-month 

(e.g., RAI-24 for an ODE threshold=0.7), results cannot assert that skill scores are significantly different from zero and thus 

these two combinations should not be considered. 
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Attending to the PSS values (Figure B1), results show a consistent tendency across all ODE thresholds of higher PSS at the 

3- and the 6-month time scales. An example of PSS for an ODE threshold of 0.4 is presented in Figure 5. Moreover, there is 

no single index that clearly produces better results. Indeed, based on the PSS values and taking into account their confidence 

intervals, there are no statistically significant differences across the different indices for the 3- and 6-month time scales. This 

indicates that, for these time scales, all the indices perform similarly well on capturing the events, which is consistent with 5 

the fact that they all rely on the same type of data (precipitation). PSS results are independent of the specific threshold and 

thus they are considered robust. However, it is worth mentioning that in general, higher PSS for the 3- and the 6-month time 

scales are produced using ODE thresholds between 0.4 and 0.6. 

 

In general, the 6- and 12-month time scales shows a better performance on detecting historical droughts, in particular when 10 

using the PN index. It is thus recommended to use the 12-month indices to assess drought occurrence of one year duration, 

and the 6-month indices for shorter or more consecutive events (e.g., droughts IX to XIII). 

Attending toRegarding the 126-month ODE series (Figure A5 and Figure A6 of Appendix AFigure 4), it is important to 

highlight some relevant aspects:  

 All the observed drought events have their corresponding ODE series have peaks corresponding to the drought 15 

events I, II, III and V. 

 The drought event IV is captured by an increase of the ODE values. This increase is shifted forward, starting in the 

middle of the drought event IV and having its peak around 1990 (around 3 years later than specified in the 

catalogue). Nevertheless, as indicated in the catalogue of droughts (Table 1) the exact start date and duration of this 

event are unknown and could have occurred later. 20 

 Although event VIII has an estimated duration of 3 months, ODE and ODI results consistently show a longer 

drought occurring in two phases (two consecutive increases of their values), covering a period of 1.5 and 2.5 years 

respectively. Event VIII seems to correspond to the second of these phases. Again, Tthe exact period of this drought 

is not well defined as indicated in the catalogue, leaving room for a longer duration of the real episode. 

 Among the four different meteorological indices, the RAI presents the higher variability which may lead to 25 

inconsistencies with the catalogued droughts. A clear example is the false positives detected in 1997 that does not 

correspond with any recorded event. 

 In general, the SPI and the DECall the indices are quitewell correlated, identifying most of the recorded droughts. 

The PN index behaves similarly, although it tends to underestimate the ODE values in relation to the SPI and the 

DEC. 30 

 Three Several droughts of increasing magnitude are consistently detected between event I (1962) and II (1979) even 

if no droughts havedrought has been chronicled (false alarms). This may correspond to the above-mentioned 

scarcity of reliable information on droughts prior to 1980. 
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 While two episodes are reported in 1999 (event VI) and in 2001 (event VII), no ODE has captured them. However, 

the SPI-based ODI shows a significant decrease corresponding to event VII, which may indicate a not wide but 

intense drought. 

 As mentioned above, during the period 2009–2014, five consecutive events (IX, X, XI, XII and XIII) have been 

reported. Using the 12-month series a certain spotting of these events can be achieved, although it tends to 5 

aggregate them in one or two unique episodes. 

For the 6-month time scale (Figure A5 and Figure A6 of Appendix A): 

 The drought events IX, X, XI, XII and XIII droughts are well captured by the use of the 6-month timescale. As 

shown in Figure A5 and Figure A6, the different events during this period (2009–2014) match with the consecutive 

increases in the ODE values for all the indices (DEC, PN, RAI, SPI).  10 

 However, the 6-month series of ODE suggest some false positive detections: more drought events than the observed 

are calculated. An overestimation of the influence of short periods of rainfall scarcity may be masking the true 

duration of the droughts. 

Regarding the 3-month ODE series (Figure A3 and Figure A4), results suggest an overestimation of the number of detected 

events, as sometimes several detected events combine into one (longer) observed event. The 6-month time scale appears as 15 

more appropriate. 

In general, the 1-, 3-, 24- and 48-month time scales do not reproduce the observed events and are not recommended. In 

summary, aAccording to the ODE series represented in Figure 4 and Figure 5 and in Appendix A, and to the forecast 

verification carried out with the Peirce skill score (Appendix BFigure 6), it seems that the best combination time scale for the 

identification of long droughts is the SPI or the PN indices at a 12at 6-months time scale. Results show an equally effective 20 

performance of the ODE series for all the indices, and the RAI, the PN or the DEC at a 6-month scale for shorter or more 

consecutive events. However, the risk of false positives must be addressed carefully, as the observation record likely misses 

events, in particular between 1962 and 1979, especially for 6-month scales. 

Despite the good performance shown by the proposed overall indicator ODE to detect droughts, some considerations are 

recommendedcaution is advised. In particular, the choice of meteorological indices as a basis for the calculation of the ODE 25 

and ODI can lead to some errors when assessing drought occurrence. It has been proved that not all indices are equally 

capable of identifying droughts in this particular region. Temperature variability, not considered here, can play a significant 

role in the onset of agricultural droughtThe variability of temperature, for instance, may have an important impact on the 

crop water availability and then in the assessment of agricultural droughts, although it has not been taken into account. 

Besides, changes in the regulation infrastructures such as reservoirs have a growing influence on water supply. HenceM, 30 

meteorological indices aremay not be fully capable to capture the impacts on water scarcity and shouldcould be 

complemented with other types of indices, such as agricultural or hydrological. The same approach proposed in this study is 

recommended using different more comprehensive indices, such as hydrological or agricultural, in order to better capture the 

complex drought processes. 
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The performance assessment of the ODE indicator to detect droughts relies basically on the comparison with the historical 

events catalogued in this study. The search and compilation of this information from different data sources, often scarce and 

ambiguous, represents a challenge. Different information sources often provide only partial information for one episode, and 

for some events the differences in the available information complicate the harmonization of data. As a result, the accuracy 

of the collected information may impact on the applicability of the developed methodology. 5 

7 Conclusions 

This study aims at definingapplying overall drought indicators representing the drought status within the entire lower JRB 

investigation area. This work represents an attempt at building a tool This represents a tool for drought monitoring and risk 

management purposes at basin scale. It is based on established meteorological indices for the identification of droughts and a 

newly developed method for a catchment-wide drought assessment and characterization, which is compared to historical 10 

drought events of the lower JRB.  

The information used for the identification and characterization of major historic droughts has beenwere compiled from 

different sources. A total of 13 major droughts between 1960 and 2014 have beenwere identified in the lower JRB and have 

been catalogued using a web-based registration platform, allowing for a comparison of the different events. 

Drought indices typically assess local water deficits while available historical records usually refer to regional droughts. To 15 

overcome this problem, two newdrought area indicators, the Overall Drought Extension (ODE) and the Overall Drought 

Indicator (ODI), have been developedused to characterize the occurrence and intensity of an event within a specific 

investigation area. These new indicators are based on four common meteorological indices at different time scales between 1 

and 48 months: the Standardized Precipitation Index (SPI), the Rainfall Anomaly Index (RAI), the Percent of Normal 

precipitation (PN) and the Deciles index (DEC). By relying exclusively on precipitation, the proposed procedure serves as a 20 

basis for further studies in other regions where only precipitation data is availableThese indices only rely on precipitation 

data, which facilitates their applicability. 

The performance of the ODE at detecting droughts has been assessed by contrasting the results of this new indicator with 

historical recorded events, offering promising results. It seems that the best results are independent of the index used and 

produced using the 6-month time scale.combinations of index and time scale are the SPI-12 and the PN-12 to identify long 25 

droughts (1 year or more) and the RAI-6, PN-6 and DEC-6 for shorter or more consecutive events. Although results suggest 

the same patterns for all ODE thresholds, it has been noticed that highest PSS values are produces for thresholds between 0.4 

and 0.6, which can be Moreover, for each combination, an ODE threshold has been defined as a trigger to detect the 

occurrence of a drought in the lower JRB: 65% for the SPI-12, 60% for the PN-12, 85% for the RAI-6, 85% for the PN-6 

and 75% for the DEC-6. 30 

Considering the challenge that the compilation of historical drought information supposes represents and the identified 

limitations, this is a good method for the monitoring of drought episodes within an entire catchment. The definitionuse and 
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contrast of drought indicators at basin scale and the use ofwith historical collected information represent the main innovative 

aspects of this study. Since meteorological droughts are the first stage in the progression of subsequent agricultural or 

hydrological droughts, this methodology could be used to activate a management response facing for a drought event, which 

starts at a specific threshold value. Additionally, this methodology can be used to complete lacking information on droughts’ 

duration, geographical extension or intensity. 5 

8 Appendices 

Appendix A: series of ODE and ODI indicators 

The series of the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI) have also been calculated for 

the 1-, 3-, 6-, 24 and 48-month time scales. Graphic results are presented in Figure A1 to Figure A12 below. 
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Figure A1. ODE and ODI values using the 1-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 
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Figure A2. ODE and ODI values using the 1-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A3. ODE and ODI values using the 3-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 
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Figure A4. ODE and ODI values using the 3-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A5. ODE and ODI values using the 6-month time scales of SPI and RAI indices, compared with the 13 detected historical droughts 

(in orange). 
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Figure A6. ODE and ODI values using the 6-month time scales of DEC and PN indices, compared with the 13 detected historical droughts 

(in orange). 

 

 5 

Figure A7. ODE and ODI values using the 12-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 
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Figure A8. ODE and ODI values using the 12-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 

 

 5 

Figure A9. ODE and ODI values using the 24-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 

 

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

0%

25%

50%

75%

100%

125%

150%

1960 1964 1969 1974 1980 1984 1989 1994 2000 2004 2009 2014

O
D

I

O
D

E

Date

Overall indicators for DEC & PN - 12-month

ODE - DEC

ODE - PN

ODI - DEC

ODI - PN

c97800

64

c9780

064

I III IVII VIIV XIIIXIXVIIIVI

XI

XII

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0%

25%

50%

75%

100%

125%

150%

1960 1964 1969 1974 1980 1984 1989 1994 2000 2004 2009 2014

O
D

I

O
D

E

Date

Overall indicators for SPI & RAI - 24-month

ODE - SPI

ODE - RAI

ODI - SPI

ODI - RAI

c97800

64

c9780

064

I III IVII VIIV XIIIXIXVIIIVI

XI

XII



30 

 

 

Figure A10. ODE and ODI values using the 24-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 

 

 5 

Figure A11. ODE and ODI values using the 48-month time scales of SPI and RAI indices, compared with the 13 detected historical 

droughts (in orange). 
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Figure A12. ODE and ODI values using the 48-month time scales of DEC and PN indices, compared with the 13 detected historical 

droughts (in orange). 
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Appendix B: PSS results 

 

Figure B1: Graphical PSS results for different index and timescale combinations, for a range of ODE thresholds between 0.3 and 1. The 

black error bars represent the 95% confidence interval. 
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