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Abstract.  

A distributed or semi-distributed deterministic hydrological model should consider the hydrological most relevant catchment 

characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain 

spatial organisation which results in archetypes of combined characteristics. In order to reproduce the natural rainfall-runoff 10 

response the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the 

catchment is desirable. In this study the width-function approach is utilized as a basic characteristic to analyse the succession 

of catchment characteristics. By applying this technique we were able to assess the context of catchment properties like soil 

or topology along the stream flow length and the network geomorphology, giving indications on the spatial organisation of a 

catchment. Moreover, this information and technique have been implemented in an algorithm for automated sub-basin 15 

ascertainment, which included the definition of zones within the newly defined sub-basins. The objective was to provide 

sub-basins that were less heterogeneous than common separation schemes. The algorithm was applied on two parameters 

characterising topology and soil of four mid-European watersheds. Resulting partitions indicated a wide range of 

applicability for the method and the algorithm. Additionally, the intersection of derived zones for different catchment 

characteristics could give insights on sub-basin similarities. Finally, a HBV96-case study demonstrated the potential benefits 20 

of modelling with the new subdivision technique. 

1 Introduction 

Hydrological models are instruments for structuring the knowledge of hydrological processes in their dependence on 

watershed characteristics. For the set-up of these models several initial decisions have to be made, e.g.:  

 Which type of model has to be used?  25 

 Which temporal resolution could be appropriate? 

 Which spatial resolution of the model would be necessary and useful? 

 Which way could the model be parameterised? 
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It is obvious that all of these options will affect the effort of the model and all choices have to consider the modelling 

purpose. Furthermore, these choices are interrelated, for example predominant soil properties define the dominant runoff 

process and should, hence, define the used model. Therefore, conceptual models of a natural watershed require its 

subdivision into spatial units which should be as homogeneous as possible. Hydrological modelling is the attempt to specify 

hydrological processes quantitatively under consideration of boundary conditions. These boundary conditions are mainly 5 

determined by spatial heterogeneously distributed catchment characteristics. There are several approaches to address this 

heterogeneity in models to enable working with more or less homogeneous units.  

One option to address spatial heterogeneity might be the subdivision of a river basin into sub-basins which have to be 

modelled separately. The common approach for such a subdivision is usually based on available hydro-meteorological data, 

though the correct criteria would be the spatial heterogeneity of hydrological characteristics within the river basin. If the 10 

heterogeneity is at a low level, neighbouring basins could be modelled in accordance. In the reverse case, i.e. at a high level 

of heterogeneity, sub-basins should be modelled separately with an especially adapted model taking into account their 

specific characteristics (e.g. an urban watershed model). Subsequently each sub-basin needs to be treated as a unique 

modelling instance that should provide a minimum level of heterogeneity (regarding key catchment characteristic). This way 

each sub-basin would end up with its own unique model and/or parameter set to adjust the model to mimic its natural 15 

response. 

Another option to address spatial heterogeneity within a watershed could be splitting the catchment into so-called hydrologic 

response units (HRUs). A single unit merges areas, or cells, within a basin displaying similar characteristics independent 

from their respective spatial allocation, i.e. each unit is a unique modelling instance. The HRU approach is based on the key 

assumption that the variation of the hydrological process dynamics within the HRU must be low relative to the dynamics in 20 

another HRU (Flügel, 1995). HRUs are developed by intersecting different data layers of different physiographic criteria. 

The delineation of HRUs by combinations of these layers requires a categorisation of its characteristics (soils, land-use and 

vegetation types, topography, and geology) to keep the number of HRUs at a manageable level. Both, the selection of criteria 

and their subdivision into classes at an acceptable degree of heterogeneity within the hydrological system. Subject to the 

chosen technique or purpose of HRUs, their models omit the actual spatial allocation (Lindström et al., 1997; Schumann et 25 

al., 2000) or define coherent units (Dunn and Lilly, 2001; Soulsby et al., 2006; Müller et al., 2009; Nobre et al., 2011; 

Gharari et al., 2011). However, some of these models try to transfer geological information (Müller et al., 2009; Soulsby et 

al., 2006) or topographical information (Nobre et al., 2011; Gharari et al., 2011) to hydrological processes and assume 

homogeneous conditions of remaining parameters. 

A third option to address spatial heterogeneity in hydrological modelling is the utilisation of a distributed catchment 30 

characteristic as a covariant metric supporting the spatial distribution of a lumped state variable. An example for this 

approach is the use of the topographic index in the well-known TOP-model as a characteristic of the spatial variability of the 

soil water content (Beven et al., 1984).  
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Since GIS layers are widely available, there is an obvious trend to incorporate this data into the ascertainment of spatial 

units. Most approaches are based on topography (Band, 1986; Moore and Grayson, 1991; Vogt et al., 2003; Lai et al., 2016) 

and focus on the extraction of stream networks and the network connectivity, utilizing topology driven modelling concepts 

(Beven and Kirkby, 1979; Rodríguez-Iturbe and Valdés, 1979). Particularly the development of the geomorphologic 

instantaneous unit hydrograph (GIUH) as well as its enhancements like the geomorphological dispersion (Rinaldo et al., 5 

1991; Gupta and Mesa, 1988)require sophisticated stream network derivation and analysis. Methods introduced by Band 

(1986) or Verdin and Verdin (1999) were developed to generate data to meet this requirement. Furthermore Snell and 

Sivapalan (1994) applied the width-function, introduced by Kirkby (1976), to model the geomorphic structure of networks. 

Snell and Sivapalan (1994) were able to demonstrate that GIUHs based on the width function provide a better geomorphic 

dispersion than GUIHs derived from Horton laws (Robinson et al., 1995; D'Odorico and Rigon, 2003; Rigon et al., 2016). 10 

This has been a further step to incorporate remote sensed data in describing the organisation of catchments. While above 

described methods are based on gridded digital elevation models (DEM) other methods try to identify streamlines derived 

from DEM-shapes, producing contour-lines (Moore and Grayson, 1991; Lai et al., 2016) that are subsequently used  as 

modelling instances. 

 15 

The following sections of this paper will present a combination of different methods to address spatial heterogeneity of 

watershed characteristics, utilizing patterns resulting from the spatial organisation of catchments. Sivapalan (2005) pointed 

out that the organisation of a catchment has a fundamental influence on the hydrological system. He defined the organisation 

of a catchment as patterns of symmetry between soil, topography and the stream network. These patterns could unveil 

underlying mechanisms that induce discharge behaviour. Combining soil data with the flow path lengths at hillslopes in 20 

particular could provide a better understanding of  lateral flow distribution processes (Grayson and Blöschl, 2001). 

In this study we will present a method to address these patterns by combining the width-function (Kirkby, 1976; Mesa and 

Mifflin, 1986) with soil properties like pore volume and topographic characteristics like surface slope. Unlike traditional 

methods for spatial pattern evaluation (like Point-by-Point or optimal logical alignment methods (Grayson and Blöschl, 

2001)) we retain the allocation of catchment properties. This analysis revealed the organisation of the watershed and gave 25 

indications of spatial heterogeneity gradations which could be useful for the set-up of an appropriated model structure. 

Applying this method we developed an algorithm for automated sub-basin ascertainment. Our objective was to incorporate 

the spatial organisation of watersheds into the spatial structuring of a semi-distributed model and to assess its benefits for 

model performance. The purpose of the proposed algorithm was to provide a basin partition with a minimum of 

heterogeneity by a minimum of sub-divisions, i.e. to reduce the number of unnecessary sub-divisions and subsequently the 30 

number of parameters in cases of hydrological modelling. 

The proposed algorithm has been applied in a case study to four meso-scale mid-European watersheds and in a HBV96 

modelling application in one of these basins. Remaining heterogeneity and the modelling performance of the proposed 

subdivision scheme were compared to a common subdivision / modelling setup. 
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The presentation has been split into four sections: 

 Data, giving references to observations in some of the basins during the description of the methodological 

development.  

 Methodological development, including observations, considerations and techniques to assess spatial patterns of 5 

catchment characteristics and their spatial organisation. In this section the sequence of the proposed algorithms will 

be presented which was utilized to incorporate the spatial organisations into the model. 

 Method analysis i.e. checking their applicability and their limits.  

 Method application, including the subdivision case study and modelling application. 

2 Data 10 

Due to the fact that the proposed methods were based on GIS-based catchment analysis, we first had to establish our data 

base first. In general, four catchments were selected to develop and test our methodological approach with one catchment 

serving as a development catchment and the remaining catchments for validation. Our development catchment was the 

Mulde River basin (Fig. 1, left). The basin is actually located mainly in Eastern Germany with a small section in Northern 

Czech. Its southern section is located in the mid-range mountainous region of the Ore Mountains. With a size of 6170 km2 it 15 

is the largest catchment used in this study. The three other catchments are the catchments of the rivers Regen (A = 2613 km2, 

Fig. 1, lower mid), upper Main (A = 4224 km2, Fig. 1, upper mid) and Salzach (A = 5995 km2, Fig 1, right). While the 

Mulde, Main and Regen basins are mid-mountainous catchments the Salzach basin is an alpine catchment. All catchments 

have different geomorphologic structures and river network types. While in the first three catchments, higher mountains are 

nearly exclusively located at the outer catchment boundaries, the Salzach catchment contains three high mountains located in 20 

the centre of the catchment. The two main tributaries encompass these mountains. While the Mulde River basin has a nearly 

continuous increase of slope and elevation from north to south, the topography of the remaining catchments is much more 

heterogeneous. 

A digital elevation model (DEM) is essential for the proposed methods and the algorithm. We used a gridded DEM derived 

from the Shuttle Radar Topography Mission (SRTM) with a regular resolution of 100 meters. By application of the D8-25 

algorithm the required data, i.e. flow directions, flow length and flow accumulation (i.e. number of cells draining to the 

respective cell) were calculated (Jenson and Domingue, 1988). For the catchment of the Mulde River a proved digital river 

network was already available. Stream networks of the remaining basins were calculated via flow accumulation algorithms. 

To characterise the soil characteristics of the German catchments, a gridded soil data map from the German Federal Institute 

for Geosciences and Natural Resources (BÜK200) and CORINE land coverage data (CLC) (Bossard et al., 2000) were used. 30 

Pedo-transfer functions (Sponagel, 2005) were applied to transfer this information into gridded data of (available) water 

capacities (AWC), maximum soil storage capacity (referred as total pore volume TPV) and hydraulic conductivity (HC) for 
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the upper soil, up to two meters depth. In case of the Salzach basin precast pore volume data provided for Europe along with 

the LARSIM-ME model were used, due to a lack of soil data (Bremicker, 2016). The used soil and topography input data 

unfortunately include a certain level of uncertainty because these were derived data. However, this was assessed to be 

negligible for the performed case studies. The pore volume (TPV) data were summarized in Fig. 2. 

3 Methodological development 5 

This section introduces an algorithm that characterises the heterogeneity of regions and applies techniques to efficiently 

subdivide the watershed. In order to make the sequence of the algorithm easier to understand we will first introduce all 

required new techniques and methods and then present the algorithm.  

First, the underlying approach of the distance-factor function for the assessment of spatial organisations (Sec. 3.1) will be 

presented. Next the tools of the algorithm (Sec. 3.2) will be introduced followed by Sec. 3.3 presenting the sequence of the 10 

proposed algorithm. All tools are only introduced briefly, a detailed description of the applied methodologies can be found in 

the Appendix. 

3.1 Distance-factor function 

Throughout the development and ongoing research of the geomorphologic instantaneous unit hydrograph (Rodríguez-Iturbe 

and Valdés, 1979; Gupta et al., 1980) the width-function as introduced by (Kirkby, 1976) and the subsequently developed  15 

area- or weight-function (Mesa and Mifflin, 1986; Snell and Sivapalan, 1994; Robinson et al., 1995) were applied to describe 

the distribution of runoff producing area with respect to flow distance from the outlet (Mesa and Mifflin, 1986). In particular 

the weight-function provided the probability distribution for a uniform areal precipitation intensity for the choice of a flow 

path (Snell and Sivapalan, 1994). Since the the flow path and distance is known, we can describe the hydrograph at the outlet 

of a basin under the assumption of a uniform velocity. 20 

However, velocity in reality is not uniform in a basin. It is subject to its surrounding medium (soil, air, other water particles) 

and the medium condition (dry or wet/empty or full) and a wide range of other impact factors. We would describe the 

transformation from the arrival of precipitation at its flow path to the outlet of the catchment as the trail-function. It merges 

losses and retention of water along the flow path. The detailed description of the trail-function is part of a hydrological 

model which at this point, is open  to the deliberate choice of the user. 25 

In general nearly all hydrological models require information about catchment characteristic(s) or at least homogeneous 

conditions of a single characteristic (in most cases soil properties). Coming back to the idea of the weight-function, it seemed 

worthwhile to develop a method to assess an arbitrary catchment characteristic in the same manner.  

We propose the distance-factor function for analysing the distribution of an arbitrary catchment property C for the flow path. 

To do so we split the flow path into the section going through (or along) the hillslope (hillslope flow length xH) and the 30 

section streaming to the outlet (stream flow length xS). It has to be noted that stream cells have a hillslope flow length of 0 
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and hillslope cells comprise of the xS of their draining stream cell. Furthermore it has to kept in mind that the term flow 

length refers to the actual length of the path water has to travel to the outlet, its calculation being based on the D8-algorithm 

(Jenson and Domingue, 1988). 

To assess groups of hillslopes and to account for the non-continuousness of grid-based distances we substituted the estimated 

flow lengths (xS and xH) by distance classes. The stream flow length was subdivided into multiples of the length ∆s (for xS) 5 

and the hillslope flow length subdivided into multiples of the distances ∆o (for xH). Distance classes defined in this way will 

split the basin into stripes. Depending on the width ∆s the basin would be classified into NS distance classes, where NS is an 

integer larger or equal to one. 

Let us now look at a single distance class i, where i indicates the class. All cells of the input data with a flow distance in a 

range between i·∆s and (i+1) ·∆s are assigned to this distance class. We can write the set of distances of xS assigned to i as the 10 

following set B: 

 ;( 1)B i s i s               (1) 

To characterise a property C in the distance class i we can calculate the expected value E(C) and standard deviation σ(C), 

taking only those values of C into account that are situated in the boundaries of the distance classes: 

;( | )

1
( )

( )
s j

i j

j x B

E C C
w i s 




   (2) and  
 

 ;

2

|

1
( ) ( )

( )
s j

i j i

j x B

C C E C
w i s




 



, (3) 15 

where w(i·∆s) represents the number of values (or grid cells) within the class. Please note that w(x) is the non-normalised 

value of the area-function (Snell and Sivapalan, 1994). To visualise the proposed function a simple synthetic basin with its 

stream network, distance-classes and an arbitrary characteristic is shown in Fig. 3. To keep things simple Fig. 3c shows the 

unified flow length (comprising xS and xH) derived from the flow direction data in Fig. 3b. As it can be seen in Fig. 3c the 

basin has been split into 5 distance classes. Applying Eq. 1 and 2 to the data (Fig. 3a) produces the average and standard 20 

deviation within these five distance classes. The obtained distance-factor function is shown in Fig. 4. 

Figure 5 shows the application to real data in a meso-scale catchment, namely for AWC in the Mulde catchment. Expected 

values and a 1-σ-range were plotted against the stream flow distance to the outlet. Distance classes with lower and higher 

variance are clearly visible in this figure as well as the succession of lower values to higher expected AWC values with 

increasing stream flow lengths. 25 

Taking this approach we will be able to assess the arrangement of catchment properties with the flow-path which will, in 

case of a non-random arrangement, be referred to as the spatial organisation of the basin. Please note that we will always co-

notate which type of distance-factor function (expected value or standard deviation) has been applied. 
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3.2 Tools for automated sub-basin ascertainment 

The example of a distance-factor function in Fig. 5 shows that in some distance classes the AWC-values are at a similar level 

due to a low standard deviation. This could be caused by the small size of the distance class (which is the case close to the 

outlet and in the furthest distance class) but also by the fact that the class is located in the same region (low lands, 

mountainous regions). The example also shows that distance classes between 50 and 170 km are more heterogeneous 5 

recognizing its higher standard deviations. In order to minimise heterogeneity in these regions, a further subdivision is 

required in these parts of the catchment.  

To ensure more homogeneous sub-basins an algorithm was developed based on consisting of: 

1. An objective function which identifies the needs and (if necessary) the region of further subdivisions. 

2. A tool to specify the subdivision points in the selected region for subdivision of the catchment. 10 

3. An evaluation strategy to assess performed subdivisions. 

The following subsections give a brief introduction to these three functionalities, before the sequence of the algorithm is 

described. More details on the introduced tools have been listed up in Appendix A. 

3.2.1 Objective Function 

As outlined before the standard deviation σ(C) can be used as an indicator for the heterogeneity of the sub-areas. Looking at 15 

the results of the distance-factor function for σ(AWC) of the Mulde (Fig. 6) the 1·σ(C)-range clearly indicates regions with 

higher heterogeneity. These regions should be considered for subdivision. In order to build this into the GIS-based algorithm, 

a threshold value Ω was introduced that states whether a distance class is to categorise by (relatively) “low” or “high” 

standard deviations. The threshold Ω is derived from the data by: 
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where NS is the number of distance classes in the basin, the exponent e is the parameter of a (non-)linearity factor and ω is a 

weighting factor defined as: 
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The actual objective function Z is the number of distance classes that display a standard deviation higher than the threshold 

Ω. It is defined as the cardinality of the set of distance classes fulfilling this condition: 25 

 i| 0 ; ( ) minSZ i i N C               (6) 
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The proposed algorithm tries to minimize this value. Coherent distance-classes above the threshold are considered as regions 

of high variance regarding the characteristic in focus requiring a further spatial subdivision. If the standard deviation in 

coherent distance-classes stays below the threshold, these regions will be marked as low variance regions.  

As the index NS in Eq. (3) indicates, the threshold Ω is calculated for the entire catchment and does not necessarily represent 

the true value of σ(C) for homogeneous sub-basins. It just helps to distinguish regions of high and low variances. Therefore it 5 

is recommended to vary the value of the non-linearity factor e in a range of [0; ∞], though values between 0 and 1 were 

found most applicable in our case studies. If e is set to zero Ω is equal to the average of σ(C) in the basin. As e is increased Ω 

lowers. The choice of e is dependent on the intention of the purpose of partition. If a detailed subdivision is required to 

capture the majority of heterogeneity e should be set to value greater or equal to 1. Otherwise if only regions with a 

significantly higher heterogeneity are to be captured e is recommended to be set to 0. However, in the presented case studies 10 

e has been set to 0.5. To indicate the range of potential results Ω is shown in all distance-factor functions for values of e ~ 0., 

0.5 and 1.0. 

3.2.2 Subdivision tools 

 The functionality of the proposed tools will be shown for the synthetic catchment (Fig. 3) introduced in the previous 

sections (more details in Appendix A).The application of the objective function was expected to result in one of the listed 15 

three potential outcomes:  

1. The standard deviations in all distance-classes stays below threshold Ω, 

2. Only parts of the classes have values of σ(C) smaller than Ω, 

3. Standard deviations of all classes are larger than Ω. 

The first listed outcome would indicate that no further subdivision is required. The second would indicate that parts of the 20 

flow path display nearly homogeneous characteristics. This case is shown in Fig. 7a. Hatched cells indicate the low variance 

region. Since this region is homogeneous it will not require any further handling and can be separated from the residual, 

more heterogeneous parts of the basin.  

To do so a tool called Detachment has been developed. The tool will determine the ideal drainage points ensuring their 

watershed covering the maximum range of low variance regions. The identification of these separation points is done 25 

iteratively close to the transition from low variance to high variance region. In Fig. 7b the result of Detachment is shown for 

the introduced synthetic catchment. Black dots indicate the identified drainage points, hollow points indicate potential 

separation points which were rejected in the course of iterations. After applying the Detachment tool, three sub-basins are 

defined. One containing the low variance regions not requiring any further treatment and two sub-basins containing the 

remaining parts of the catchment.  30 

Both remaining heterogeneous sub-basins, in this example, consist of distance classes with standard deviations above the 

threshold. This could be caused by different spatial patterns in the sub-areas. On one hand, parallel streams, or more specific 

neighbouring valleys with different vegetation, slope etc. could cause higher variance. On the other hand a zoning of 
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hillslopes and higher elevated parts of the basin framing the drainage network (e.g. gley horizons close to stream) could 

results in higher values of the standard deviations. Such patterns are a result of the co-evolutional formation of catchments 

(Blöschl et al., 2013; Sivapalan, 2005).  

Further tools were developed specifically for these two different potential root causes for heterogeneity. The first tool will 

provide a subdivision at stream branches (because our perspective of analysis is directed upstream; downstream would mean 5 

confluences) which will define new sub-basins at branching points of higher order streams. The pruning tool identifies 

branches by distance-factor functions of flow accumulation (see Appendix A). 

The second tool is a zonal classification scheme, designed to account for heterogeneity within a distance class that is not 

caused by neighbouring valleys. We classified three zone types with an individual extent determined iteratively subject to 

three variables, i.e. Strahler order, distance to stream (compare xH Sec. 3.1) and heights. The first zone type “close to stream” 10 

will be determined by the Strahler order and is intended to cover the stream-network. Individual streams (beginning at the 

highest Strahler order and adding lower orders successively) and its extent (distance to the stream, beginning with 1·∆o) 

close to stream zones are determined iteratively, as already mentioned. The second zone type, referred to as “transition” 

zones, is first defined as all cells of the sub-basins not “close to stream”. Subsequently, these cells are reassigned by their 

height-value either into “high elevation”- (heights above the iterated threshold) or into “transition” (heights below 15 

threshold)-zones. The height threshold mentioned before is iteratively determined as the quantile of the histogram of height 

of all non-“close to stream” zones. 

In Fig. 7d & e the results of an application of both tools for the exemplary synthetic catchment are shown. Hatched cells in 

the lower left area indicate high variance regions that require partition. The pruning resulted in two additional drainage 

points and split this region into three sub-basins. The zonal classification provided no new drainage points but specified 20 

three zones for the previously defined drainage points. Note that the algorithm has the potential to reject a zonal 

classification if the resulting variance is equal or higher than for the un-classed sub-basin. In this case all cells will be 

marked as “None” zones.  

The introduced tool-names will be used in Sec. 3.3 (and Fig. 8) where a detailed description and explanation of the 

algorithms’ sequence will be provided. 25 

3.2.3 Evaluation scheme 

After the application of each previously introduced tools it has to be evaluated if its target has been achieved, i.e. minimising 

heterogeneity through the introduction of sub-basin and zones. Since our assessment of heterogeneity was based on the 

evaluation of distance-classes, we could also define our objective as the minimisation of the standard deviation within each 

distance class. No matter which tool has been applied, in some or all distance classes of the original sub-basin U multiple 30 

sub-basin / zones are present afterwards. Since the standard deviation was calculated for each partition unit (sub-basin or 

zone) individually, we were able to calculate the average standard deviation of neighbouring units within a distance class. 

This evaluation technique can be described as follows:  
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 B specifies the number of the sub-basins defined within the original catchment U.  

 As first step we estimated the standard deviation σ(C) (Eq. 2) within each sub-basin within distance classes based 

on flow length to the outlet of this sub-basin.As second step the calculated σ(C)-values were transferred to the flow-

length axis of the original watershed U.  

 This was done for all sub-basins by adding the stream flow length between their points of confluence and the outlet 5 

of the basin.  

 Finally, the new standard deviation σS(C) for the separated basin was calculated for each distance class of U as 

average of σ(C)-values assigned to the class of the initial sub-basin (U). 
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with Pi being the number of parallel basins or zones, w(i·∆s)p the number of cells within the distance-class i of the considered 10 

parallel basin/zone b and σ(C)i;p being the neighbouring standard deviations. The success of the partition can be measured by 

comparison with the standard deviation of the unseparated basin σU(C), e.g. as the quotient of these values. With the new 

value σS(C) the effect of each subdivision can be measured independently from the objective function (and its threshold). 

3.3 Sequence of the algorithm 

The tools presented above are at this point incoherent. Their sequential application in the ACS-algorithm (Ascertainment by 15 

Catchment Structure) will be explained step-by-step following the sequence shown in the flowchart in Fig. 8. Our 

considerations leading to the presented sequence can be summarized as follows: 

1. Homogeneous regions should be separated from the remaining basin by the algorithm. 

2. Preferably a basin should be subdivided into sub-basins at major branches/confluences of the river network. 

3. For high variance regions the two options pruning and zonal classification should be carried out simultaneously, 20 

since the origin of high variance is unknown. 

4. The results of both techniques (pruning or zonal classification) should subsequently be compared with the 

subdivision yielding a lower σS(C) to be saved (other results to be discarded) 

5. Zonal classification to be additionally applied in cases where only low variance regions are present. Independent of 

the target to reduce σ(C) , this way all ascertained sub-basins would obtain a zonal classification. 25 

At the very beginning of the sequence, on initialisation of the algorithm, we would consider just one drainage point, i.e. at 

the outlet of the basin. After calculation of its watershed and the determination of the width-function of accumulated partial 

areas it would be evaluated if we also needed to consider major branches (See Appendix for a detailed description of this 

procedure). Major branches would account for larger, main rivers within a catchment. Since large rivers consist of a large 

number of cells draining into them, branches/confluences of rivers are easy to be differentiated by size. If the test for major 30 
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branches would turn out to be true, the tool pruning is called to specify two new drainage points (sub-basin outlets). These 

would be saved and put on the schedule of the algorithm for later examination. 

Should a subdivision occur, the algorithm would start again at the previously used point, this time only looking at the 

watershed between the previous and the newly defined drainage points. If no further major branch would be present, the 

algorithm would calculate the standard deviations of the characteristic of interest and the objective function to estimate the 5 

number of distance-classes above the threshold Ω. 

There are three potential outcomes (see Sec. 3.2.2), i.e. Standard deviation in none, some, or all classes above threshold. For 

each outcome the algorithm had an option: 

- If no standard deviation of a class is above Ω, no further partition would be required so that the analysis of this part 

of the basin was complete and subsequently the zonal classification would be started and its results were saved. The 10 

algorithm would then proceed and examine the next drainage point on its schedule. 

- If only some classes are above Ω, a partition would be required but not in all areas. These areas would be clipped by 

the detachment tool. One or more new drainage points would be defined and added to the schedule. The algorithm 

would then start again at its last active point. 

- In case that all classes were above threshold points 3 & 4 of our consideration would be started. Both tools would 15 

try to lower the heterogeneity assuming different root causes for variation. Results leading to a lower residual 

variance would be saved, other result would be discarded. The algorithm would then start again at its last active 

point. 

This process would be repeated until all drainage points have been examined by the algorithm. The fact that each basin, or 

sub-basin, is analysed again after each subdivision, provides the opportunity to apply a pre-partition. This could be useful if 20 

an existing structure (like a gauging network) is analysed for further improvements or just for zonal classification. 

4 Method analysis 

In this section we will analyse the outcome of applying the proposed algorithm for our case study catchments. First, we will 

take a qualitative look at the ascertained sub-basins and zones to assess similarities between catchments and characteristics. 

Subsequently we will take a quantitative look at the performance of the algorithm relative to its intended function. 25 

The ACS-algorithm has been applied to all four catchments for pore volume and surface slope. Ascertained sub-basins and 

zones are shown in Fig. 9 a-d (Mulde and Regen) and Fig. 10 a-d (Main and Salzach). Additionally, the distance-factor 

functions for standard deviation σ(C) for the respective characteristic C, prior to and after partition of the catchment, are 

shown. 

http://www.linguee.de/englisch-deutsch/uebersetzung/quantitative.html
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4.1 Qualitative Evaluation 

Looking at the results it can be noted that the proposed zonal classification was applicable on almost all catchments. Just one 

sub-basin in the Mulde catchment rejected a zonal classification (Fig. 9a, red sub-basin). Additionally, the defined sub-basins 

for both characteristics (same catchment) are comparable and often identical. This is mostly caused by the subdivision at a 

major branch. Nevertheless, differences in the number and extent of defined sub-basins are visible. More important though 5 

are the similarities and dissimilarities of the defined zones. 

Both applications within the Regen (Fig. 9 c, d) and Main (Fig.10 a, b) catchment resulted in similar patterns of “high 

elevation” zones. In the Main catchment even the extent of “close to stream” zones (CTS-zones) is very similar. Wide-

spread CTS-zones do not seem to be necessary for pore volume in the Regen catchment. Looking more closely at the CTS-

zones for pore volume and comparing them to the maps of pore volume (Fig. 2), we can see a pattern across all catchments. 10 

Especially in the Mulde and Salzach catchment very narrow CTS-zones have been defined for most parts of the basin. The 

occurrence of these narrow zones coincides with the presence of belts of different pore volumes around a major streams (best 

visible in the Mulde catchment, Fig. 2, middle region). The soil patterns are not visible in the Regen and play a minor role in 

the Main catchment, hence the distribution of CTS-zones is more likely to be extensive. 

The same analysis for surface slope zones shows that these zones are in most cases, more extensive than the pore-volume 15 

zones and follow the valley structure of the DEM (Fig. 1). CTS-zones cover the streams and floodplains at the bottom the 

valleys, “transition” zones cover the hillslopes and “high elevation” zones cover higher located plains.  

The interaction of zonal extent is best visible in the Salzach catchment which is the most diverse in all of its characteristics 

(very high mountains with high slopes, soils with high and nearly no storage capacity). A comparison of the outcome for 

pore volume and slope (Fig 9 c, d) with the respective maps (Fig. 1 & 2) shows that the “high elevation” zones for pore 20 

volume cover the bare soil and rock formations with nearly no pore volume and in case of slope application the higher 

elevated parts of the mountains with only little slope. “Transition” zones cover in this case the steep hillslopes between the 

(comparably) flat valley bottoms and high plateaus. In case of pore volume they capture the mid-range soils between the 

mountain top and the floodplains which are in both applications encompassed by CTS-zones. 

From this analysis of spatial natural patterns and patterns in the ascertained sub-basins and zones we can draw the conclusion 25 

that the outcome of the ACS-algorithm is linked to the spatial organisation of the considered catchment. 

4.2 Quantitative Evaluation 

Having confirmed that the proposed algorithm can actually mirror the spatial organisation of the catchment, we will now 

evaluate if the heterogeneity of the specific characteristic has been decreased. As stated in Sec. 2.4 the intended function of 

the algorithm was the reduction of the number of distance-classes comprising a standard deviation σ(C) above the threshold 30 

Ω (of the characteristic C). To evaluate the performance towards this target we will look at the reduction of σ(C), defined as 
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the normalised sum of all Ns differences of the standard deviation of the unseparated catchment σU(C) and the separated 

basin σS(C): 
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The standard deviation of the separated catchment σS(C) is calculated according to Eq. 6. In addition to this we applied a 

second performance metric to evaluate to what extend our target has been met. The metric α2 highlights cases where the total 5 

heterogeneity was decreased significantly, but still being above objective as defined by threshold Ω. The metric α2 was 

calculated as the delta between threshold Ω and standard deviation in the separated catchment σS(C), normalised by the delta 

between Ω and the standard deviation in the unseparated catchment σU(C): 
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In Eq. 8 M is the set of distance classes comprising a higher standard deviation than the threshold Ω: 10 

[i | 0 ; ]S ii N      .          (10) 

Performance data for all applications were listed in Tab. 1.  Including the number of ascertained sub-basins (demonstrating 

modelling/calibration efforts). 

As already  indicated in the distance-factor functions of σ(C) (Fig. 9 and 10) the performance of pore volume applications is 

in all cases (and both evaluation subjects) was superior to slope applications leading to a 2 to 6 times higher level of 15 

reduction ( between 46 and 65% total reduction of variance). The remaining variance above the threshold ranged between 

0.9% and 25% for pore volume applications. Compared to slope applications this was better between 8ppt (Regen) and 67ppt 

(Mulde). Although the reduction of variance for slope might be inferior, yet up to 25% of variance could be compensated by 

the ACS-partition of the basin. 

 20 

Focussing on cases with insufficient variance reduction we were able to identify some limitations for the algorithm. First we 

will look at the slope application. The achieved reduction was generally low and the remaining variance was still high, but 

especially the outcome of the Mulde basin is inferior to all other (slope) applications.  

The reason for this inferior performance might be the shape and arrangement of the catchment itself. In contrast to the other 

basins, the Mulde basin can be described as triangular. Several streams arise from the south of the basin and converge 25 

gradually heading to the north. Yielding nearly parallel situated sub-basins with the same spatial organisation of heights and 

slope. As it can be seen in the distance-factor function, the variance increases in upstream direction nearly continuously, is 

equally distributed and remains on a (comparably) low level (see ordinate-axis of distance-factor functions for remaining 

basins in Fig. 9 and 10). Contrary to that, the remaining catchments offer different spatial patterns. Here, headwater 
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catchments with higher elevations and slope lie within same distance classes with plain catchment parts, offering a higher 

variance and, hence, a better opportunity for subdivision. 

Another inferior case is the pore volume application in the Salzach basin. The shape of the basin as well as the amount of 

variation (see Fig. 10) cannot be explained as previously. Figure 10 shows the map of the available water capacity (AWC) in 

the Salzach basin on a lower scale and the distance-factor function for standard deviation of AWC. On the map red boxes 5 

highlight spots within the basin displaying much higher AWC-values than its surrounding areas. These spots are also visible 

in the distance-factor function. For the separated basin (red line) the peaks are still visible after the separation, although the 

basic height of the line has been lowered. This observation can only be interpreted such that the occurrences of such soil 

enclosures are a limiting factor for the reduction of heterogeneity with the ACS-algorithm. It does not restrict its 

applicability, though. 10 

4.3 Dependence on basin structure 

In the previous section we concluded that the shape of Mulde basin in combination with the present surface slope values 

could have been the root cause for the noticed decrease of performance. Additionally, the arrangement of pore volume values 

in the Salzach catchment could also have led to a decrease of performance. These conclusion brought up a fundamental 

question: was it the value-range of the considered characteristics or the spatial arrangement/basin shape that caused the 15 

issue? In other words: if we could examine the same basin with another set of values, would the outcome, i.e. the number of 

sub-basins, zonal extent and the performance criteria change?  

The problem is that no basin is like the other and even parts of the basin display different structures and shapes than the 

entire basin. Therefore, it is unlikely that there is only a single causal factor for the noticed performance decrease 

To overcome this issue we performed what we called a “resampling experiment”. The intention was to examine the same 20 

basin shape and spatial arrangement with a different set of values (just like a time series analysis). Therefore a quantile-

exchange of values has been performed. 

Due to their similar size the basins of the Mulde and Salzach have been chosen for resampling. First we took the maps for 

AWC of both basins (Salzach Fig.1, Mulde not shown, but spatial organisation is analogue to TPV, range of value from 51 

to 471 mm) and calculated an empirical distribution function for each basin. Subsequently, the AWC values were replaced 25 

with their respective empirical quantile level. Finally, the distribution functions were exchanged (Mulde to Salzach and vice 

versa) and the quantile levels were replaced with the exchanged distribution function quantiles. Results are shown in Fig. 12. 

We repeated this procedure with the DEMs as the source data for surface slope. 

With this, we admit, slightly confusing resampling procedure we virtually relocated the Mulde basin in a steep alpine 

environment with diverse soils while the Salzach basin was equipped with mid-range mountainous heights and more 30 

homogeneous soil. That way we were able to assess the same basin shape and spatial arrangement with different (natural 

reasonable) range of parameter values. 
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The ACS-algorithm has been applied to the resampled values of pore volume and surface slope. Ascertained sub-basins, 

zones and distance-factor functions of the respective standard deviation are shown in Fig. 13, performance values are 

tabulated in Tab. 2. In case of the Mulde basin the outcome did not change significantly. Ascertained sub-basins (number 

and shape) as well as zonal extent were very similar to the original results, performance values were stable. It can be noted 

that the distance-factor function for σ(AWC) had a very different shape than in the original basin (Fig. 6).  5 

Application to AWC in Salzach basin showed a significant change in performance. While the total reduction decreased, the 

remaining variance above the threshold was 20ppt lower than in the original basin. This is also visible in the distance-factor 

function of σ(AWC). Compared to Fig. 11it can also be noted that previous peaks close to the outlet and in the more distant 

parts of the basin disappeared. This result could be explained by the missing enclosures which have been transmitted as high 

values to the Mulde basin. Here, the allocation of the highest values is not organised in enclosures but in the upper-middle of 10 

the catchment (see Fig. 12) following a stream-orientated pattern. The peak of standard deviation is clearly visible in the 

distance-factor function of the unseparated resampled basin in Fig. 13, but the techniques of the ACS-algorithm are able to 

encompass this structure. Hence, the reduction of variance remained on the same level. We also experienced a change in 

performance for the slope. The exchange of heights values led to a lower range of slope values and a lower amount of 

heterogeneity. These patterns resulted in all other applications in inferior α2 performances. Still, the geomorphologic 15 

structure of the basin remained unchanged and heterogeneity could be assessed by the algorithm (visible through unchanged 

total reduction). 

In conclusion we can state that the actual spatial arrangement, or more specifically its spatial organisation, defines the 

outcome of the algorithm. Since this was our initial intention, this can be noted as a positive study outcome. On the down 

side we had to recognise that patterns (in this case soil patterns) that do not follow the co-evolutional structure of a basin 20 

(between soil and streams) (Blöschl et al., 2013) cannot be captured satisfactorily by the proposed algorithm. Furthermore, a 

spatially homogeneous variation structure of catchment characteristic, independent from its actual amount of variation, is 

also complicated to assess with the ACS-algorithm. However, we were able to demonstrate that the proposed algorithm 

works well for catchment characteristics that offer wide range patterns (like soil properties). (In the supplement to this article 

we substantiate this statement by applying the algorithm to hydraulic conductivity data, results are in accordance to results of 25 

pore volume) 

5 Method application 

In the previous sections we have shown how the algorithm works, what results it produces and what information about the 

basins we gained from its application. But we have not yet assessed how useful it is and what benefits it could provide. We 

will address this topic in the following two sub-sections. In comparison to a common subdivision, we will first evaluate its 30 

reduction of variance and second show its benefits for designing a hydrological rainfall-runoff model. 
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5.1 Comparison to gauging networks 

The most common subdivision scheme is based on the available gauging network. On one hand this is due to calibration 

requirements and on the other hand it is the only source for a reasonable partition of the catchment. Obviously, existing 

gauging networks are a result of multiple considerations and requirements, e.g. of water management issues. In some parts of 

the basin it tends to be denser than required to catch the natural heterogeneity within a river basin, but other hydrological 5 

aspects (e.g. scale problems) might not be considered in the network design sufficiently.  

Comparing sub-basins defined by hydrological networks by looking at the results of the ACS algorithm might show 

differences in the number of separation points. Such a comparison might help to provide advice to decision makers on where 

to locate new gauges for reducing variances. It could also provide information about the usefulness of the ACS algorithm. 

(Please keep in mind that for the decision maker the usefulness of the algorithm might be limited by the informational value 10 

of the specific catchment characteristic for runoff generation processes.) 

Two benchmark subdivisions were established: 

1. A subdivision based on the gauging network to be compared to the obtained ACS-basins (without zones). 

2. A subdivision based on the gauging network with an additional zonal partition by land cover, based on the 

suggestions by Lindström et al. (1997), an additional third zone “Rock/Bare soil” has been introduced to account for 15 

alpine structures in the Salzach basin. This to be compared to the full outcome of ACS. 

Gauging networks and defined land cover zones are shown on the left of Fig. 14. The distance-factor function of standard 

deviations for pore volume (centre of Fig. 14) and slope (right) are displayed in addition to the results of ACS-subdivisions. 

Performance data were summarized in Tab. 3. 

Looking at the distance-factor function for pore volume it can be recognized that the red-line, representing ACS-results, is 20 

below the blue (rep. gauges) and the green (rep. gauges & land cover) line for nearly all distances, demonstrating the 

advantage of ACS. The ACS-advantage is also confirmed by the performances measures in Tab. 3. The total reduction α1 

(Eq. 8) exceeds the achieved values for gauges & land cover (bench-2) by a factor between 1.3 and 1.8. Furthermore the 

remaining variance above the threshold α2 (Eq. 9) is lower by between 16ppt to 45ppt. Please note that this advantage was 

accomplished with a significantly smaller number of subdivisions. This makes us conclude that the proposed algorithm is a 25 

more effective tool to reduce the heterogeneity of pore volume data, or any catchment characteristic that has a similar spatial 

organisation (see Supplement). 

Similar to Section 4, results for slope provided a different impression and quality. In the distance-factor functions (Fig. 14) 

we can see that all lines are on an equal level and show no clear advantage for any of the partition strategies. Looking at the 

performance results in Tab. 3, we can see that without zonal classification the gauging network has an advantage to ACS-30 

results. Especially the sub-divisions in the Mulde basin are ineffective. However, with the introduction of zonal classification 

the performance values are at a more comparable level, withα1 results ranging between 8% and 17 % (with exception of the 

Regen catchment). Results for remaining variance, however, are more different (22-77% ACS and 30-54% Bench-2) which 
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points out that the benchmark partition captures the heterogeneity of slope at least at some points of the basin better than the 

ACS. 

This result is, again, caused by the fragmented nature of surface slope values. As we have shown before the gauging 

catchments in isolation will not capture the heterogeneity of surface slope and its performance is subject to a zonal 

classification that can be described as small scale distributed and fragmented. 5 

5.2 Modelling application 

Our model of choice is the HBV96-model (Lindström et al., 1997), due to the fact that we already used its recommended 

catchment zonal classification scheme, its obvious ability to incorporate zones and, after all, due to its common usage.  

The HBV96-model is a semi-distributed conceptual model. Each sub-basin has one lower and upper ground water storage 

responsible for slow and fast runoff generation. On top of these storages an arbitrary number of zones can be placed. Each 10 

zone has an individual atmospheric-, interception-, snow- and soil water-routine. In the original concept four types of zones 

are possible: Field, Forest, Lake and Glaciers. The latter has not been used in this study so we excluded its description. Field 

and Forest zones are conceptually identical; their purpose is to provide different parameters for different land cover. Lake 

zones do not include any soil routines. All precipitation on these zones is handed directly into the lower ground water 

storage. Since the modelling application is meant to be short, please see (Lindström et al., 1997) for further information 15 

about the model.  

Our application case was the Mulde catchment due to good data availability. Daily mean discharge, precipitation sums, 

temperature means and sums of potential evapotranspiration time series from 1951 to 2011 are available for 39 gauged sub-

basins (discharge data available for 20-39 gauges, dependent on time window).  

Two spatial model setups were employed for application, both are shown in Fig. 15. The left part of Fig. 15 shows the 20 

bench-2 partition we already used in the previous section, based on gauging network, heights and land cover. On the right 

part of Fig. 15 our proposed subdivision of the catchment, based on gauging network and pore volume, is shown. The 

gauging network has been used as a pre-partition of the basin and the ACS refined the sub-basin density and defined zones 

for all sub-basins. We chose pore volume as catchment characteristic. Its spatial organisation has been incorporated in the 

spatial setup of the model. Our decision was based on the fact that ACS worked better for pore volume than for slope and 25 

that information about storage capacities seemed to be more valuable for a conceptual (storage based) model. 

Besides the incorporation into the model structure we were able to use information about the catchment characteristics in the 

calibration process. Each (ACS) sub-basin featured three zones, each having an individual average value for pore volume. 

Since we minimised the heterogeneity of the respective characteristic we were able to assume a uniform distribution of this 

value for the entire zone. Now, an automated calibration routine benefitted from these information and we were able to 30 

reasonably couple parameters of the zones by their respective average of the characteristic.  

Say, each zone included a parameter called X. An algorithm, like the BOBYQA-algorithm employed in this study (Powell, 

2009), offers in each iteration step a guess for this parameter ẋ. The parameter guess is then transformed to the zonal-
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parameter by the zone characteristic EZone(C) normalized by the average value of the entire basin E(C) and a linear coupling 

parameter kX: 

X

( )
k

( )

Zone
Zone

E C
X x

E C
              (11) 

Please note that the coupling parameter is subject to the calibration process itself and linked to a single parameter. In this 

study we coupled 6 zonal-parameters that are related to soil properties. This coupling-scheme (comparable to studies by 5 

Gharari et al., 2014) has been additionally applied to the benchmark. Here, E(C) in Eq.10 is omitted and applied only to field 

zones, while forest zones use an unchanged ẋ. Since the coupling of the benchmark subdivision is not based on any process 

assumptions, we additionally applied a free parameterisation, where all parameters within each sub-basin and zone can be 

used for model fitting. 

As already mentioned we performed calibration by the BOBYQA-algorithm (Powell, 2009), progressively from the 10 

headwaters towards the outlet of the basin. Both benchmark calibrations employ the same spatial setup with 38 sub-basins 

and an average of 30 zones per sub-basins. Due to the different parametrisation strategies a different but equally high number 

of parameters are subject to the calibration (see Tab. 4). The ACS-structure employs 44 sub-basins but only 3 zones (except 

two sub-basins having only one zone), giving 51 parameters per sub-basins. Compared to the benchmark calibrations this 

number is six to nine times lower. A high number of parameters is assumed to offer a model structure with a higher 15 

flexibility to match the observed data, though its higher complexity might lower its performance. To compare our proposed 

model structure with a benchmark at a similar number of parameters we added a third calibration strategy. The performed 

approach coupled all zonal parameters as described above. This lowered the amount of parameters per sub-basin to 45 for 

both model setups. As it can be seen in Tab. 4 the total amount of parameters in the benchmark partition is higher than in the 

new ACS-based partition. 20 

After the calibration (time period 1995-2006) we evaluated the model’s performance in three validation periods. Two in 

direct (temporal) neighbourhood to the calibration period and the last at the very beginning of the time series. Model 

performance has been calculated as the average Nash-Sutcliffe-Efficiency (NSE) (Nash and Sutcliffe, 1970) of all gauges 

and is tabulated in Tab. 5. Results show that ACS-parametrisations are superior in all cases. Its increase in performance 

ranges from 17-52% in comparison to the free-, 11-21% to the 6-parameter-coupled benchmark and 5-19% to the all-coupled 25 

parametrisation. 

Beside this “lumped” evaluation we compared the performance of the models at each gauge in each period. A comparison of 

NSE for 6-parameter coupled model is shown in Fig. 16, for ACS and free-benchmark model in Fig. 17. Comparison for the 

all-coupled parametrisation is shown in Fig. 18. We can see that the individual performances led to the same conclusion as 

the lumped performance, though some results are better for benchmark models (both parametrisations). To be more precise, 30 

in case of 6-parameter coupled model 20 points (rep. a single gauge in one of the time periods) are below equivalency (rep. a 
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better performance of the benchmark model), in case of the free-benchmark model 12 and for the all-coupled benchmark 23 

points. Representing 15%, 9% and 20% of the evaluated cases. 

In conclusion we had to ask ourselves: What is the result of this modelling study? Obviously, we could improve the 

modelling performance. In accordance with findings in literature we could prove that additional information relevant to 

hydrological processes improve the model performance (Finger et al., 2015; Li et al., 2015) and, furthermore, we can 5 

confirm that the spatial organisation of catchment characteristics (in this case pore volume) is a relevant information. The 

latter conclusion is drawn from the fact that the ACS-model offers a similar (or superior) model performance to the coupled 

model although it included less model parameters. 

6 Conclusions 

The intention of this study was to assess the spatial organisation of catchments and their characteristics as well as to evaluate 10 

the benefit we can gain from this information for the use in conceptual, semi-distributed hydrological models. First, we 

proposed the distance-factor function to assess the interaction of an arbitrary catchment characteristic with the flow path. 

Graphical representations of this function are capable to visualize the heterogeneity of the considered characteristic visible. 

We further build an algorithm on this proposed function, mainly focusing on factor-functions of standard deviations, with the 

objective to reduce the heterogeneity of the respective catchment characteristic. The proposed ACS-algorithm utilises three 15 

different techniques to reduce the heterogeneity that were developed by looking at the main sources of heterogeneity visible 

in natural catchments. The outcome of the algorithm offers a spatial subdivision of the catchment, at a minimum of standard 

deviation of the respective characteristic. 

After the introduction of these methods we performed an extensive test of the ACS-algorithm. First, we tested model 

functionality and its limits of application on four different basins. We evaluated the spatial patterns we obtained relative to 20 

visible spatial patterns in the basins. Furthermore we compared the reduction of variance for different characteristics and 

basins. Next, we evaluated the usefulness of the obtained results. On one hand we compared the variance reduction to a 

benchmark separation and on the other hand we merged our results to a semi-distributed hydrological model. The modelling 

study demonstrated the benefits we can generate from incorporating the spatial organisation of the basin. 

We were able to confirm that the distance-factor function is a useful tool to detect non-random spatial patterns and the 25 

interaction of catchment characteristics with the flow path. Furthermore we could confirm its capability to detect anomalies 

in the structure of the catchment, e.g. spots of different soil types that do not follow the co-evolutional structure of the basin.  

The proposed ACS-algorithm provided satisfactory results for different catchment forms, sizes and patterns. Heterogeneity 

of characteristics with spatial patterns (like soils) turned out to be beneficial for the application of ACS algorithm in terms of 

variance reduction. For more fragmented characteristics (like surface slope) displaying a small-scale but spatially equally 30 

distributed heterogeneity the algorithm will certainly provide a subdivision and zonal classification, but the variance 

reduction was at a comparable level to common approaches for basin subdivision. In addition we identified the general basin 
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shape to be influential for the efficiency of the algorithm. Although this is quite obvious, we learned that basins arranged 

along a single axis (like a strict south to north orientation), with variance of catchment characteristics is highly correlating to 

the distance to the outlet, are more difficult to assess for the proposed algorithm. 

Our future work will focus on two topics: On one hand we have to further improve the subdivision algorithm. At this point 

we are able to assess the structure of a single characteristic, while it is highly desirable to consider multiple characteristics. 5 

Additionally we will have to develop methods to encompass soil enclosures and fragmented characteristics. The latter 

problem might lead to the well-known HRU-concept. We have to study if such development is desirable. On the other hand 

we will address the value for catchment similarity studies. Following intentions by Mesa and Mifflin (1986), who suggested 

the width-function as an indicator for catchment similarity, it might be worthwhile to investigate how results of the distance-

factor function can be used to characterise similarity.  10 

7 Code & Data availability 

Python code and Toolboxes for common GIS-Software products of the proposed ACS-algorithm are available at 

https://github.com/HenningOp/ACS. Spatial data used in this study (DEM, Soil data, drainage points) are made available as 

well. 

Appendix A 15 

In this Appendix details to the proposed ACS-tools are given for further understanding of the algorithm. Each tool will be 

addressed separately. 

Detachment tool for low variance regions 

Regions of small variance have no need for further subdivisions, hence they are detached from the rest of the basin. Since the 

exact allocation of these regions is known, all cells within can be defined as target area T (hatched in Fig. 7a). Remaining 20 

cells are drawn together as non-target area NT. If one random point of the basin is selected as possible separation point (SP) 

and its watershed is calculated, the set of points belonging to the watershed, or sub-basin, of SP, BSP is obtained. The 

calculated watershed BSP covers parts of T and NT and hence a coverage rate can be calculated as the proportion of the 

cardinalities of the intersections and their respective superset: 
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which shall be maximised. 

The objective of a detachment O is to find a separation point (SP) whose basin BSP covers a maximum of T and a minimum 

of NT. Please note that for regions located at the outlet of the basin or at its upstream boundary only one SP will be defined. 

Possible SPs are assumed to be allocated at the transit of the main stream from T to NT, or vice versa. An iterative search 5 

returns the coverage values O and the highest value is selected as SP, defining a new sub-basin. In the upper part of Fig. 7a 

the obtained separation as well as the rejected SPs of the iteration (hollow points) are shown. 

Pruning at confluences/branches 

To identify branches, the distance-factor function of flow accumulation (i.e. the cumulative number of cells draining into a 

cell) (FAcc) is examined. FAcc indicates the contributing drainage area to each stream cell. Hence, discontinuities in the 10 

distance-factor function indicate confluences of streams (See Fig. A2 for example of distance-factor function). 

Beginning at the outlet (zero on the x-axis) two features are visible: a slowly decreasing line of high FAcc values, 

representing the main stream at the outlet, and a noise-like smaller range of FAcc values close to the abscise, caused by the 

smaller tributary streams and contributing areas. To identify major tributaries, this noise has to be removed. We assume that 

in the first distance class the disparity between main rivers and contributing hillslopes is most distinct. Within the first class a 15 

k-Means cluster analysis is carried out to divide high and low FAcc values. The threshold value τS is determined as: 
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,        (A3) 

where c1 and c2 indicate the clusters and γ is the reduction order and by default 0. The algorithm will start with the default 

value for γ and searches for the first branch in upstream direction. If no branch is found, the order γ is increased by 1. The 

maximum order is set to 10. Please note that the higher γ is set, the lower the threshold gets and more FAcc-values remain 20 

for analysis. The routine identifies the coordinates of the branch inducing the drop in FAcc values (see Fig. A2, for example 

at distance ≈ 80 km).  

Drainage points of major streams or major stream branches are identified likewise. Before the objective function is called, 

prevailing FAcc values in the basin are checked. If the FAcc value of the tributary stream is higher than the threshold value 

τR, a subdivision is performed. This parameter is calculated as percentage of the maximum FAcc value in the entire 25 

watershed (e.g. 5%) once at the initialisation of the algorithm. 
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Zonal classification 

The iterative search for the optimal zonal classification involves three parameter: reduction of Strahler order sR, distance 

from stream o and heights quantile h. The maximum Strahler order within the considered sub-basin mS is also involved but it 

is a constant. Initial values are: sR = 0, o = 0 and h = 0/hite (note that hite is a required, user defined parameter > 1.). In each 

iteration step one of the three parameters is increased to its maximum value (sR;Max = mS; oMax = 5; hMax = hite) creating a 5 

different composition of zonal extent. 

sR: Controls which cells within the basin are potential “close to stream” (CTS) zones. All stream cells of Strahler order 

greater/equal to mS-sR and all non-stream cells draining into a stream cell fulfilling this requirement are potential CTS-zones. 

o: Defines the width of CTS-zones. All potential CTS-cells with xH ≤ o·∆o (as defined in Sec. 3) are confirmed as CTS-cells, 

all remaining cells of the sub-basin are “transition” (TS)-cells. 10 

h: Controls the threshold used to define “high elevation” (HE) zones. An empirical distribution function of heights (taken 

from the input DEM) of all FFS-cells is calculated. The height threshold τH is then calculated as the h/hite·100 [%] quantile of 

the empirical distribution function. All cells with an assigned heights > τH are filed HE-zones, all remaining cells are 

confirmed as TS-cells. 

After each iteration the average, distance-based standard deviation (Eq. 6) is calculated. The parameter combination giving 15 

the lowest σS(C) is chosen as result. 
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Table 1: Results of applications of ACS. Number of ascertained sub-basins, normalized reduction of standard deviation  

Catchment 

Pore volume Slope 

No. of 

Basins[-] 

α1 (Eq. 7) 

[%] 

α2 (Eq. 9) 

[%] 

No. of 

Basins [-] 

α1 (Eq. 7) 

[%] 

α2 (Eq. 9) 

[%] 

Mulde 38 54.3 10.4 30 8.2 77.9 

Main 59 65.2 0.9 22 17.7 54.3 

Regen 17 62.5 13.5 24 28.0 22.1 

Salzach 24 48.5 25.6 38 15.1 56.0 

 
Table 2: Normalized reduction of standard deviation for resampled basins 

Catchment 
Pore Volume Slope 

α1 [%] α2 [%] α1 [%] α2 [%] 

Mulde (res) 53.1 12.3 8.8 75.4 

Salzach (res) 50.9 18.7 16.3 55.3 

 5 

Table 3: Normalized reduction of standard deviation for sub-basins based on gauging network, ACS-basins and gauges and land 

cover 

Catchment 
Pore volume Slope No. of 

Gauges α1 [%] α2 [%] α1 [%] α2 [%] 

Gauging network 

Mulde 24.2 53.4 9.4 69.9 40 

Main 41.9 26.2 14.0 44.0 46 

Regen 21.1 74.6 10.1 57.9 20 

Salzach 30.3 48.8 9.6 68.5 33 

ACS-basins only  

Mulde 32.8 45.3 0.0 100.0 38/30 

Main 50.7 8.5 9.2 72.9 59/22 

Regen 40.9 35.9 14.1 52.8 17/24 

Salzach 40.6 24.6 9.3 73.6 24/38 

Gauging network & land cover Occ. zones 

Mulde 35.3 35.0 14.5 54.8 2 

Main 48.9 17.7 19.8 26.2 2 

Regen 33.2 59.4 19.1 27.4 2 

Salzach 38.4 50.1 21.6 30.8 3 
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Table 4: Parameter quantities 

 
Benchmark 

Free 

Benchmark 

6-Coupled 

Benchmark 

All coupled 

ACS            

6-Coupled 

ACS  

All coupled 

Sub-basins 38 38 38 44 44 

Zones per Sub. ~30 ~30 ~30 3 3 

Parameter (total) 19562 12198 1710 2244 1980 

Parameter (per Sub.) ~495 ~321 45 51 45 

 

Table 5: Nash-Sutcliffe Efficiencies of Benchmark and ACS-model 

Simulation      

(Start-End) 
NSEB;Free  

[-] 

NSEB;6  

[-] 

NSEB;All 

[-] 

NSEACS;6            

[-] 

NSEACS;All            

[-] 

1995 - 2006 (C) 0.678 0.659 0.682 0.792 0.791 

2007 - 2011 (V) 0.524 0.570 0.578 0.622 0.647 

1984 - 1995 (V) 0.496 0.516 0.525 0.607 0.546 

1951 - 1961 (V) 0.433 0.568 0.458 0.660 0.572 

 

  5 
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Figure 1: Digital Elevation models of the Mulde (left), upper Main (mid, upper case), Regen (mid, lower case) and the Salzach 

(right) 

 5 

Figure 2: Values of total pore volume of the Mulde (left), upper Main (mid, upper case), Regen (mid, lower case) and AWC of the 

Salzach (right) 
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Figure 3: Exemplary input data (left), flow direction and Strahler order (middle) and distance data and –classes (right)  

 

 

Figure 4: Distance-factor function of sample Data in synthetic catchment  5 

 

 

Figure 5: Distance-factor function of AWC in the Mulde catchment  
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Figure 6: Distance-factor function of σ(AWC) and threshold values Ω for different values of e, in the Mulde catchment 

 

 

Figure 7: a&c) Answers of the objective function; result of b) Detachment, d) Pruning and e) zonal classification in the synthetic 5 
catchment 
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Figure 8: Sequence of the ACS-algorithm 

 

Figure 9: Results of ACS application for catchments of the Mulde and Regen, sub-basins based on pore volume (left) and slope 

(right). Comparison of σU(C) and σS(C) for each application (red and blue lines). 5 
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Figure 10: Results of ACS application for catchments of the Main and Salzach (from top to bottom), sub-basins based on pore 

volume (left) and slope (right). Comparison of σU(C) and σS(C) for each application (red and blue lines). 

 

Figure 11: AWC of the Salzach catchment and the distance-factor function of σU(C) and σS(C). Red marked and numbered areas 5 
incorporating high value enclosures 
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Figure 12: Resampled AWC values for Mulde and Salzach catchment 

 

Figure 13: Results of ACS application for resampled catchments of the Mulde and Salzach (from top to bottom), sub-basins based 

on resampled pore volume (left) and slope (right). Comparison of σU(C) and σS(C) for each application (red and blue lines). 5 
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Figure 14: Subdivisions based on gauging network & zonal classification and distance-factor functions of σ(pore volume) and 

σ(slope) (left to right) for catchments of the Mulde, Main, Regen and Salzach (top to bottom) 
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Figure 15: Spatial structures for HBV96-Model: (left) ACS-basins & zones; (right) gauging network, land use & heights  

 

Figure 16: Nash-Sutcliffe Efficiency of ACS-based model and benchmark model, 6 coupled parameters 

 5 

Figure 17: Nash-Sutcliffe Efficiency of ACS- based model and benchmark model, free parametrisation 
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Figure 18: Nash-Sutcliffe Efficiency of ACS- based model and benchmark model, all zonal parameters coupled 

 

Figure A2: Distance-factor function of Flow Accumulation in the catchment of the Mulde 


