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Abstract. In this study we use CryoSat-2 SAR (Delay-Doppler Synthetic Aperture Radar) data over the Mekong River Basin

to estimate water levels. Smaller inland waters can be observed with CryoSat-2 data with a higher accuracy compared to the

classical radar altimeters due to the increased along track resolution of SAR and the smaller footprint. However, even with this

SAR data the estimation of water levels over smaller (width less than 500 m) is still challenging as only very few consecutive

observations over the water body are present. The usage of land-water-masks for target identification tends to fail as the river5

becomes smaller. Therefore, we developed a classification to divide the observations into water and land observations based

solely on the observations.

The classification is done with an unsupervised classification algorithm, and it is based on features derived from the SAR

and RIP (Range Integrated Power) waveforms. After the classification, classes representing water and land are identified. The

measurements classified as water are used in a next step to estimate water levels for each crossing over the Mekong River.10

The resulting water levels are validated and compared to gauge data, Envisat data and CryoSat-2 water levels derived with a

land-water mask. The CryoSat-2 classified water levels perform better than results based on the land-water-mask and Envisat.

Especially, in the smaller upstream regions the improvements of the classification approach for CryoSat-2 are evident.

1 Introduction

The water of rivers is vital for humans but poses a threat at the same time. Rivers are crucial as a suppliers of water for irrigation15

and fresh water for drinking. However, floods can destroy crops, settlements, and infrastructure. For this reason, it is essential to

monitor the water level of river systems. An increasing number of in situ gauges have been derelicted since the 1980s (Center,

2013), or the data is not publicly available. It is therefore increasingly important to measure river water level with satellite

altimetry.

In recent years many studies were published that apply satellite altimetry over rivers of various sizes (e.g. Birkett, 1998;20

Santos da Silva et al., 2010; Schwatke et al., 2015; Boergens et al., 2016b; Frappart et al., 2006; Biancamaria et al., 2016). All of

the aforementioned studies use pulse-limited altimetry data. CryoSat-2, launched in 2010, is the first satellite carrying a Delay-

Doppler altimeter (Raney, 1998). The altimeter operates in three measuring modes: the classical pulse-limited Low Resolution

1

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



(LR) mode, the Delay-Doppler Synthetic Aperture Radar (SAR) mode, and the SAR Interferometric (SARin) mode. The modes

of the altimeter are governed by a geographical mode mask (https://earth.esa.int/web/guest/-/geographical-mode-mask-7107).

Compared to conventional radar altimeters, Delay-Doppler measurements have a higher along track resolution and a smaller

footprint. This improves the observation of water levels of inland water bodies like lakes (e. g. Nielsen et al., 2015; Kleinheren-

brink et al., 2015; Göttl et al., 2016) or rivers (e. g. Villadsen et al., 2015; Bercher et al., 2013). The advantage of SAR altimetry5

observations are especially useful for measuring smaller inland waters like rivers. However, CryoSat-2 has a long repeat time

of 369 days compared to 35 days of Envisat and SARAL, and 10 days for Topex/Poseidon, Jason-1 and Jason-2. This restricts

the estimation of meaningful water level time series over rivers or lakes, if not enough different tracks cross the water body.

The advantage of the long repeat time is the very dense spatial distribution of observations.

To derive water levels from lakes or rivers it is necessary to identify the water returns of the altimeter. This can be done10

by applying a land-water-mask such as the mask provided by the World Wildlife Fund (https://www.worldwildlife.org/pages/

global-lakes-and-wetlands-database). Such a mask is constant over time, therefore, it neither accounts for the seasonal vari-

ations of the water extent nor inter-annually shifting river and lake banks. These masks are usually not accurate enough for

narrow rivers where only a few water measurements are available. Although a high accuracy land-water-mask is provided by

the Mekong River Commission (http://portal.mrcmekong.org/map_service) for our study area of the Mekong River Basin, its15

accuracy of 30 m is still not sufficient for the smaller and, especially, the small rivers. In the Mekong River Basin the river

width varies between 20 m to more than 2 km. The small rivers with a width of less than 100 m are most of the tributaries and

the upstream part of the left river bank side main tributaries. The smaller rivers, which are less than 500 m wide, are the main

tributaries and the upstream main river. In the downstream reach of the river, before it splits into the delta, the river has a width

of over 2 km (see also Figure 1 for a map of the basin).20

To overcome the problems and limitations of land-water-masks, we classify the altimetry data beforehand in water and land

observations. For the classical pulse-limited altimeter this has been done successfully for the last decade (e.g Berry et al., 2005;

Desai et al., 2015). Even very small water areas in wetlands have been classified successfully with Envisat data by Dettmering

et al. (2016). In the classification, the shape of the waveform is used to discriminate between different reflecting surfaces. Also

CryoSat-2 SAR data has been classified based on the SAR waveform before for lakes (Göttl et al., 2016), lakes and rivers25

(Villadsen et al., 2016), or ice (Armitage and Davidson, 2014). This study takes a step further and uses not only the waveform

but also the Range Integrated Power (RIP) for a classification of the altimeter measurements in water and non-water returns over

the Mekong River Basin in Southeast Asia. The RIP is only available for Delay-Doppler SAR altimetry and gives additional

insight to the reflective surface which the waveform alone could not provide (see Figure 2 for an example and Wingham et al.

(2006)).30

The unsupervised k-means algorithm is used for the classification (MacQueen, 1967) as not enough reliable training data

is available for a supervised classification. The k-means algorithm is a widely used unsupervised clustering algorithm and has

been used for altimetry classification before (e.g. Göttl et al., 2016).

This paper is structured as follows: First, an introduction is given about the study area of the Mekong River Basin in section 2,

afterwards more information of the CryoSat-2 SAR data is given in section 3. The classification and the used features are35
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described in section 4 followed by an explanation of the water level estimation in section 5. The results and validations are

presented and discussed in section 6. The paper ends with the conclusions in section 7.

2 Study Area

In this study, the Mekong River Basin in Southeast Asia (China, Myanmar, Thailand, Laos, Cambodia, and Vietnam) is investi-

gated, with focus on the part of the basin south of the Chinese border. Upstream from here, it is not possible to measure the river5

with satellite altimetry because the river flows through narrow gauges that shadow the altimetric measurements. Downstream,

the study area ends by the confluence with the Tonle Sap River from where on the river is under tidal influence. The tributaries,

namely the large left bank side tributaries in Laos, are investigated as well. The hydrology of the Mekong Basin is primarily

influenced by the precipitation on the Tibetan Plateau and the south-eastern monsoon (Commission, 2005).

The Mekong River and its tributaries flow through different topographic regions (Figure 1). The main river upstream from10

Vientiane and the left bank tributaries in Laos are surrounded by mountainous areas with steep banks where the rivers have a

greater slope and have a width smaller than 500 m or even less than 100 m. Downstream of Vientiane and up to the Mekong

Falls the river widens and flows with less slope over the Khorat plateau. Below the Mekong Falls the river is surrounded by

seasonal wetlands and widens to more than 1 km. For further processing we defined three overlapping data masks according to

these regions (Figure 1).15

3 Data

In this study we use Delay-Doppler SAR altimeter data measured by CryoSat-2 between 2010 and 2016. CryoSat-2 measures in

three different modes, which are set in a geographical mask (https://earth.esa.int/web/guest/-/geographical-mode-mask-7107).

The LRM is active mostly over the oceans and the interior of the ice sheets of Antarctica and Greenland, whereas the SAR

mode measures over sea ice and other selected regions and SARin focuses mostly on glaciated regions (ESA, 2016). This mask20

has changed over the life time of the satellite. The entire study area of the Mekong River Basin has only been measured in

SAR mode since July 2014 (see Figure 1 for the extent of the SAR mode mask). In SAR mode the along-track foot print size

is reduced to 300 m while it remains 10 km in the across-track direction.

Here, we use the CryoSat-2 baseline C SAR Level 1b data provided by ESA GPOD SARvatore (https://gpod.eo.esa.int/) for

the period of 2010 to 2016. These data contain the full stack matrix.25

The Delay-Doppler SAR altimeter measures a point on the surface several times from different looking angles (Cullen

and Wingham, 2002). All these measurements form the multi-look stack data (see Figure 2). For every point 246 single-look

waveforms are collected in the stack matrix. In Figure 2, two exemplary stack matrices are presented. The first (a) is measured

over the Tonle Sap lake and the second (b) over a smaller river upstream. Each row is a single-look waveform. The integration

of this matrix over all single-looks results in the multi-look SAR waveform (in Figure 2 integration over each row of the stack)30

hereafter referred to as the waveform. The integration over the range bins results in the Range Integrated Power (RIP). In
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Figure 1. Map of the study area with the regional masks (black areas with different hachures) and the SAR mode mask with their validity

period (red boxes).

Figure 2 this corresponds to the integration over the columns. Detailed information on the Delay-Doppler measurements are

described in Raney (1998).

Additionally, we use a river polygon which is provided by the Mekong River Commission (http://portal.mrcmekong.org/

map_service). The polygon was derived from aerial images and topographic maps. The accuracy of the river mask is ∼ 30 m,

but no information about seasonality of the polygon is given.5
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Figure 2. Two exemplary stack matrices with their RIP and waveform. The color of the stack plot indicates the power of the signal. The

example on the left hand side is measured over the Tonle Sap lake, the one on the right hand side over a smaller upstream river.

4 Classification Approach

For the smaller and small rivers in our study area of the Mekong basin no reliable land-water-mask is available. Thus a

classification by means of the k-means algorithm is performed to extract the water measurements.

The k-means algorithm (MacQueen, 1967) is an unsupervised method to cluster the data on the basis of different features.

For the land-water classification a set of features derived from both the waveform and the RIP is used which are summerized in5

Table 1. The features derived from the waveform are the maximum power, the peakiness, and the position of the leading edge.

It is well known, that waveforms of water reflections have a higher power than those of land reflections. Smaller, and even

more so small, water bodies have a smooth mirror-like surface which can only be measured by signals emitted close to nadir.

This leads to a very peaky waveform and RIP with a high power. Following Laxon (1994) the peakiness pwf is calculated with

pwf =
max(wf)∑

i

wfi
, (1)10

where wf is the waveform and wfi the power of the ith bin.

To estimate the relative position of the leading edge in the waveform, the waveform is retracked using an Improved Threshold

Retracker with a threshold of 50% on the best sub-waveform (Gommenginger et al., 2011). The on-board tracking system

always tries to hold the leading edge of the main reflection at the nominal tracking point. This is not always possible and leads

5
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to a deviation of the leading edge from the nominal tracking point. Over wider rivers the tracking system can manage to keep

the leading edge close to the tracking point. In Figure 3, left panel, one exemplary waveform with its features maximum power

and position of the leading edge is shown (the peakiness cannot be displayed).

Features based on the RIP are the peakiness pRIP, the standard deviation stdRIP, the width, the off-center, and the symmetry.

The stdRIP is a measure of the the difference in the returning power under different looking angles is (see Figure 2). Water5

reflections over larger water bodies result in a overall smoother RIP than water reflections over smaller water bodies which in

turn have a smoother RIP than land reflections. The stdRIP is

stdRIP =

√
1
N

∑

i

(RIPi−mean(RIP))2, (2)

where RIPi is the ith entry of the RIP and N the number of looks in the RIP, usually 246.

As mentioned before, smaller inland waters with a smooth surface only reflect the signal back to the satellite at near nadir.10

Therefore the RIP is both very peaky and narrow. The width wOCOG is derived by the formula of the OCOG retracker (Gom-

menginger et al., 2011):

wOCOG =

∑
i

RIP2
i
2

∑
i

RIP4
i

. (3)

The off-center feature off describes the deviation of the main reflection from the nadir point. It should be close to zero for

measurements of water, whereas land measurements are more disturbed and often show the maximum return in the lobes. We15

measure the off-center feature off as the difference between the middle look of the RIP and the mean point of the RIP which

is calculated with the formula of the centre of gravity from the OCOG retracker:

off =
246
2
−

∑
i

iRIP2
i

∑
i

RIP2
i

. (4)

A positive off value indicates that the majority of the returning power was detected before the satellite passed the nadir position,

a negative value vice versa.20

The last feature is a measure of the symmetry of the RIP s. For an ideal smooth water reflection, like a small lake, the RIP

should be perfectly symmetrical. However, for a sloped target, as a river is, the reflection depends on the relative orientation

between the satellite and the water surface. The reflection is stronger when the satellite looks on a water surface that is sloped

towards it. This effect leads to an unsymmetrical RIP. To quantify this, an unsymmetrical exponential function RIP is fitted to

the RIP with25

RIPi =





aexp
(

(i−b)2

2c2
1

)
, if i < b

aexp
(
− (i−b)2

2c2
2

)
, if i = b.

(5)

6

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



Table 1. Features used for the classification

RIP features Waveform features

Peakiness: pRIP pwf

Standard deviation: stdRIP Maximum power: maxwf

OCOG width: wOCOG Relative position of leading edge

Off-center: off

Symmetry: s

Here, a is the amplitude of the exponential function, b the look where the function reaches its maximum, and c1 and c2 are the

two decay parameters. The symmetry feature is then

s = c1− c2. (6)

Figure 3, right hand, displays a RIP with the feature wOCOG marked. The off-center feature off is too small to be visible

in this example, but the symmetry, or the lack thereof, is clearly shown.5

Additional to these eight features, both the whole waveform and the whole RIP are used as features. Each bin is then

considered as a single feature. The waveform needs to be shifted so that the leading edge is positioned on the nominal tracking

point. Since the features span different orders of magnitude, it is necessary to normalize the feature set.

The k-means algorithm is used to cluster the data on the basis of the above features in 20 classes. The number of classes de-

pends on the application and variation in the input features. An estimate for the number of classes can be done with knowledge10

of the classified data. In our study case, a look at the spatial distribution of the features tells us that only two classes, land and

water, are not sufficient as altimeter measurements of land can be very diverse (this holds also for water measurements, but

they are less diverse than land). The diversity of the returning waveform and RIP can be explained by the reflective properties

of e. g. land, water, vegetation. With this it can be concluded that at least 10 classes are needed. We tested the classification and

validated resulting water levels for a several numbers of classes (10, 15, 20,30) and found similar results for all with the results15

of 20 classes slightly superior.

Each of the clusters is defined by their centroid which is the mean feature of all points in this cluster. New data is then

classified by grouping it to the closest centroid. Here, the clustering is done on one randomly drawn third of the data. The

residual two third of the data is then classified into the cluster classes. The clustering is not done on the whole data set

due to computational efficiency. The repeatability of the clustering and classification will be validated in section 6. After the20

classification it is determined which classes represent water and land returns, respectively. This was done by visual inspection

of the mean waveform and RIP for each class and the locations of the observations in each class related to the land-water-mask

(see section 3).

As described in section 2 the Mekong Basin is divided into different regions, upstream, middle and downstream. We classify

each of the regions separately as they are too diverse in the reflectivity properties of the water bodies to be classified together.25
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Additionally, the classification is done only on altimeter data not further away than 20 km from the river polygon due to

computational efficiency (the polygon can be seen in Figure 1).
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Figure 3. One example of a waveform and the corresponding RIP with some of their derived features.

5 Water Level Estimation Approach

The classification results in a set of measurements considered as water returns. From these measurements the water level for

each crossing is determined in this section.5

5.1 Altimetric Water Levels

A water level is computed for each crossing of the satellite track with a river in the Mekong River Basin. To locate these cross-

ings a river polygon (see section 3) is used. We apply all measurements less than 5 km away from the river crossing that were

classified as water and retrack the SAR waveforms with an Improved Threshold Retracker with 50% threshold (Gommengin-

ger et al., 2011). Instead of using a median or mean over all classified measurements, we search for a horizontal line in the10

heights, which is assumed to represent the water surface. It is still possible that some of the water classified measurements do

not represent the river surface and need to be excluded from the water level computation (across-track of nadir effects or water

bodies surrounding the river). These outliers do not necessarily have to be at the margin of the river but can also be located

in the middle due to islands or sandbanks in the river. This would restrict the use of an along-track standard deviation of the

heights for outlier detection.15

To find the line of equal water height, a histogram of the water levels with Doane bins (Doane, 1976) is used. Doane bins are

more suitable to small (less than 30) non-normally distributed data than the classical Sturge bins (Sturges, 1926). If a horizontal

line is present in the heights, one of the bins is distinctively larger, e.g. contains more observations, than the others and collects

the heights of nearly equal water level. The median of the heights in this bin is then taken as water level. If less than 5 height

points were classified as water, the median of the heights is taken as the water level. The advantage of this approach is that it is20
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better suited for rivers wider than 1 km with islands and sandbanks that cause outliers in the heights. However, in many cases

our histogram approach and taking the median of all observations deliver similar results.

5.2 Outlier Detection

In spite of careful data selection through the classification and in the height retrieval, some retrieved water levels have to be

considered as outliers. To find these outliers we make use of the CryoSat-2 repeat time of 369 days. With the knowledge of5

the very stable annual signal of the Mekong River one can assume that two measurements of the same CryoSat-2 track 369

days apart should measure a similar height. Based on this, a water level is considered as an outlier if the mean difference to all

other heights of the same pass is larger than 7 m. This is only applicable if other water level measurements of the same track

exist. Due to the changing mode mask (see section 3) some regions are only measured in the last two years. To overcome this,

a second outlier detection is applied which compares the water level with water levels of other tracks that are close in space10

and time of the year. To this end, we used all measurements that are less than 10 km away along the river and less then 30 days

of the year apart. If the water level is more than 10 m different from the distance weighted mean water level of all these points

it is considered as an outlier.

The thresholds for the outlier detection were chosen as a conservative upper bound. It has to be expected to have in average a

water level difference of 40 to 60 cm in five days during the rising water season, but it could be as high as 4 or 5 m (Commision,15

2009). Additionally, some inter-annual changes in the flood season can be expected, and the rivers in the Mekong Basin have

a median slope of 30 cm/km.

5.3 Merging of the overlap regions

From the classification we derive a set of heights for each of the different geographical regions which have a certain overlap (see

Figure 1 and section 2). In this overlap, for the same crossing two water levels were computed, therefore, it has to be decided20

which height shall be used. To resolve this, we use the distance weighted mean water level of all other water level measurements

that are less than 10 km away and less then 30 days of the year apart as in the outlier detection (see subsection 5.2). The water

level that is closest to this mean water level is applied. The results of the merging process can also be used for validation of the

classification as will be shown in subsubsection 6.3.3.

6 Results, Validation and Discussion25

We applied the described methodology for the classification and water level determination on CryoSat-2 SAR data in the

Mekong River Basin. In this section, both the results of the classification and the water level determination are presented and

validated.

9
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6.1 Results of the Classification

After the clustering and classification of the CryoSat-2 measurements we select the classes of water returns. In the upstream

region we identify three and in the middle region six out of twenty as water classes. In the downstream region the classification

approach failed. There, the rivers are surrounded by seasonal wetland whose observations are also water returns. Additionally,

the width of the rivers feature larger seasonal changes than in the other regions. This can influence the waveform and RIP5

significantly. At some points we find peaky returns in the dry season, which can also be found in the wet season in the wetland,

whereas the river itself shows near ocean-like waveforms during in the wet season.

In Figure 4 the mean waveform and mean RIP of some classes are shown ( note the different power-axes). The classes

displayed are selected to best represent all 20 classes for the upstream and middle region. As can be seen, the shape of the

mean waveform and mean RIP of water classes in the upstream region reappear in the middle region, but not as water classes.10

In the middle region small lakes have the same signature as the river upstream. For this reason, the two regions were classified

separately. The third land class shown for the upstream region has a very distorted mean RIP. In this area not all stacks over

land are ’full’, i. e. not every single-look recorded returning power. This leads to such distorted RIPs (side note: in another class

the distortion is mirrored). All mean waveforms and RIPs are displayed in Appendix A for the interested reader.

In Figure 5, a section of the river network in the upstream region with the results of the classification is shown. The course of15

the river is well depicted, however, not at every crossing of the satellite track with the river water is identified. At some crossings

no water reflection of the river was measured since the river was too narrow. On the other hand, some points classified as water

are not close to the given polygon (blue line). However, the topography model (ETOPO1, Amante and Eakins (2009)) shown

in the background indicates river valleys in the three circled areas. Therefore, one can assume that the classification is able to

find rivers that are so small (down to 20 m wide) that they are not present in the high resolution river polygon provided by the20

MRC.

Figure 6 shows the classification for one exemplary track in the upstream region. The measurements classified as water (red

dots) line up to a nearly constant water level at all crossings of the satellite track with the river.

6.2 Resulting water level

In the entire Mekong Basin we estimate water levels at more than 2000 crossings, which means approximately one measure-25

ment every 4 km along the main river (compared to 50 km for Envisat). It is not possible to measure a water level at every

crossing between the CryoSat-2 track with a river in the basin. As mentioned before, at some crossings the river is too small

so that not in every pass a reliable measurement could be made; some other water levels were discarded during the outlier

detection; furthermore, at some crossings the classification failed to identify the water. However, we are still able to retrieve at

least some measurements from rivers as small as 20 m in width. In Figure 7 all measured heights at all dates are presented in a30

map, which shows well the overall topography of the river network but cannot show smaller details like seasonal variations.

For one track the heights and the classification are displayed in Figure 6 with an inlaid map of the geographic surroundings.

In this track four water crossings are found where the two most northern ones are very close together with a difference of the
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Figure 4. The mean waveforms and RIPs of some selected classes.

water level of 20 cm. There the river meanders under the track which causes two crossings close together. The two southern

crossings are two different rivers which explains the large height difference between the two locations close together. It is

visible that only few measurements are used to estimate the water level at each crossing. Approximately 180 water levels (or

8%) are even estimated by just one measurement, the majority of those in the upstream region.

For crossings with more than one water measurement we can calculate the standard deviation of the measurements used for5

water level estimation. More than 85% of the water levels have a standard deviation of less than 0.5 m.
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Figure 5. An example of the classification. The red dots are classified as water measurements, black are the land classified measurements.

The three circles indicate areas where water was detected in river valleys which are not included in the river polygon. The background shows

the ETOPO1 topography model.

6.3 Validation

The classification is validated twofold: On the one side, we test the repeatability of the classification with a cross validation.

On the other side, the different classification in the regions can be compared in the overlap areas. The latter can be used at

the same time also to validate the resulting water levels. Additionally, the water levels are validated with respect to the stable

seasonal signal using gauge data. We compare these results with the performance of Envisat water levels and CryoSat-2 data5

extracted with a land-water mask in the same validation.
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layout of the rivers. The black dots are all retracked heights with the red dots indicating which measurments were classified as water. The

blue vertical lines show the location of the crossing of the track with the river polygone and the horizontal lines are the estimated water level

at each crossing.

6.3.1 Validation of the Classification

The cross validation of the classification is done for one third of the data. The classes determined before are considered as true

values for this validation. The data are split into two equal parts. The first part is again clustered with the k-means algorithm,

whereas the second part is classified with the resulting classes. This classification is validated against the "true" classes we

found before in the first classification.5

Table 2 summarizes the results of the cross validation. Water and non water classes are distinguished. The overall accuracy

is 97.9%. This cross validation shows that the classification is stable and does not change with the data subset used for the

clustering.

Table 2. Result of the cross validation

Classified classes with parts of data

Water No water

Classes with all data
Water 7321 205

No water 423 22660
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Figure 7. Resulting water levels in the Mekong River Basin

6.3.2 Validation of Water Levels

Unlike water level time series measured by short-repeat orbit missions, CryoSat-2 measurements cannot be validated against

the time series of in situ gauges without reducing the topography as done by Villadsen et al. (2015). The Mekong River and

its tributaries have topography that is too complex to allow for reliable reduction. To validate the water levels we use again

the nearly one year repeat time of CryoSat-2. We investigate the differences between two subsequent tracks at the same river5

crossing. A histogram of the differences is shown in Figure 8(a). Table 3 displays the median, mean and standard deviation

of these differences for the merged results as well as for the two regions (upstream and middle) separately. The results of

the validation are compared to a validation with in situ gauge data, Envisat data and CryoSat-2 data with a land-water-mask.

The gauge data provided by the Mekong River Commission for the main river and also some tributaries has a daily temporal

resolution (http://ffw.mrcmekong.org/). From Table 3 and Figure 8 one can see that the water level varies up to10

50 cm in median from year to year, but some years show much larger differences of up to 4 m. The Envisat data is taken from

the DAHITI database (Schwatke et al., 2015) for the main river as well as some tributaries (Boergens et al., 2016b) and has a

temporal resolution of up to 35 days. For validation, we take the differences between gauge measurements that are 369 days

apart and Envisat measurements where the day of the year is less than 5 days different. The validation of the gauges gives
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a measure of how stable the annual signal is in the Mekong Basin. The Envisat observations are the most commonly used

data for inland waters with a pulse limited altimeter. We also compare our results to water levels derived from CryoSat-2 by

simply averaging measurements inside the land-water-mask (Figure 8(b)). The water levels derived with the land-water mask

underwent the same outlier detection as used on the results of the CryoSat-2 classification for better comparability.

The median of the differences of the CryoSat-2 classification results are always better than the Envisat results (see Table 3).5

Even though, the differences are larger for the upstream region than for the middle region. In the upstream region, the mean

difference are nearly equal for CryoSat-2 classification and Envisat results caused by the larger spread of the CryoSat-2 results.

The land-water-mask method lead to comparable good results as the classification along the main stream in the middle region

where the river is wide. But in the upstream region with small rivers with a width of 100 m or less the quality deteriorates. The

polygon is given with an accuracy of 50 m which is sufficient for a 1 km wide river but is too inaccurate for 100 m wide rivers.10

This causes the larger difference in the validation results of the two CryoSat-2 data sets in the upstream region

Additionally, the feature selection of the classification was done mostly with regard to the reflective properties of small water

bodies which we find in the upstream region. This explains the better classification results in the upstream region compared to

the middle region.

6.3.3 Validation in the overlap regions15

The overlap between the two regions, upstream and middle described in subsection 5.3, can be used for validation of the

classification and height determination.

Theoretically, the land-water classification and the resulting water levels should be identical in the overlap between the two

regions. Unfortunately, this is not the case for all points. Overall, at only 67 river crossings the water levels are estimated in

both regions. At these 67 points it is possible to evaluate the differences of the two water levels. Out of these, in 45 cases, or20

67%, the differences are below 15 cm where we consider them equal given the accuracy of river altimeter measurements. At the

same time, the largest difference between two water levels at the same location is 17 m. At the crossings where the difference

is larger than 15 cm it has to be decided which water level is taken for the final data set (see subsection 5.3). In 17 cases the

water level of the upstream region and in 5 cases the water level of the middle regions was chosen. We found that the decision

which of the water levels should be taken has a spatial dependency. Towards the upstream border of the overlap region the25

results of the upstream classification are more likely to be taken, and vice versa for the middle region. Something similar can

be observed for those crossings in the overlap region which have only in one of the two data sets water level estimations, we

find more valid upstream observations towards the border to the upstream region and more middle stream observations towards

the middle stream region. All this together justifies the separation of the classification into the different regions.

7 Conclusions30

We demonstrate in this study the possibilities of classifying CryoSat-2 SAR data in the Mekong River Basin and using this

classification for water level extraction. The classification uses features derived not only from the waveform but also from the
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Figure 8. Histogram of the differences of height measurements 369 days apart for CryoSat-2 water levels with the classification, CryoSat-2

water levels inside land-water-mask, gauge water level, and Envisat water level.

RIP. The RIP contains more information about the reflecting surface than the waveform on its own can provide. This improves

the classification and allowes us to identify even very small rivers with a width as small as 20 m. In fact, the classification

works better on smaller rivers than wider rivers. The cross validation of the classification shows that it is stable and repeatable.

However, we were not able to use this classification to isolate the river in the downstream region where the Mekong River is

surrounded by seasonal wetlands.5

The classification in water and land measurements is used to derive water levels at the crossings of the CryoSat-2 track with

a river in the whole basin. Overall, more than 2000 water levels are measured, after outlier detection. However, it is not possible

to derive at every crossing a water level. The altimeter is not able to measure a water return at every possible river crossing due

to too small rivers or too disturbed returns. Additionally, some measured water levels are discarded in the outlier detection.

The water levels are validated using the near yearly return time of CryoSat-2 and the very stable annual signal in the basin.10

This validation is compared to the same validation done on Envisat water levels, gauge measurements and using a land-

water-mask on CryoSat-2 data. Especially, for small rivers in the upstream region the classification improves the water level
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Table 3. Analysis of the differences of height measurements 369 days apart for the whole study area, only the upstream region, and only the

middle stream region.

Median [m] Mean [m] Standard deviation [m]

Whole study area

CryoSat-2 classification 0.76 1.43 1.59

CryoSat-2 land-water-mask 0.83 1.86 4.55

Gauge 0.45 0.82 1.09

Envisat 0.96 1.42 1.44

Middle region

CryoSat-2 classification 0.76 1.15 1.10

CryoSat-2 land-water-mask 0.84 1.55 1.87

Gauge 0.54 1.00 1.14

Envisat 0.81 1.26 1.26

Upstream region

CryoSat-2 classification 0.79 1.54 1.70

CryoSat-2 land-water-mask 0.85 2.00 5.44

Gauge 0.42 0.72 1.05

Envisat 1.01 1.46 1.49

determination compared to the use of a land-water-mask. Compared to Envisat water levels the CryoSat-2 water levels are of

higher quality in the whole river basin due to the smaller footprint of the SAR compared to pulse limited altimeter on Envisat.

The resulting water levels of this study will be used in a combination with other altimetric water levels following the ideas

of Boergens et al. (2016a) to build basin wide multi-mission water level time series. With CryoSat-2 data we will be able to

significantly improve the spatial resolution of the water level observations and to better close the data gap between the end of5

the Envisat mission and the launch of the SARAL mission. With the launch of the Sentinel-3 satellite in February 2016 SAR

altimetry data with a short repeat time is available. When the full stack data are publicly available the same classification of the

data for water level retrieval can be hopefully used.

Appendix A: Mean waveforms and RIPs

Author contributions. EB developed the method, conducted the data analysis and wrote the majority of the paper. KN helped with the10

development of the method and validation. OBA and DD contributed to the discussion of the method and results and writing the manuscript.

FS supervised the research and contributed to manuscript writing and organization.
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Figure A1. Upstream region mean waveforms. Water classes: 0, 4, 13
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Figure A1. Upstream region mean RIPs. Water classes: 0, 4, 13
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