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Abstract. Riverine floodplains and coastal margins of the southeastern United States host extensive forested wetlands, 

providing myriad ecosystem services including carbon sequestration, water quality improvement, groundwater 

recharge, and wildlife habitat. However, these ecosystems, which are closely dependent on wetland hydrology, are at 20 

risk due to human-made climate change. This study develops site-specific empirical hydrologic models for five 

forested wetlands with different characteristics by synthesizing long-term observed meteorological and hydrological 

data. These wetlands represent typical Cypress Ponds/Swamps, Carolina Bays, Pine Flatwoods, and Wet Pine, and 

natural Bottomland Hardwoods ecosystems. The validated empirical models are then applied at each wetland to predict 

future water table changes using climate projections from 20 General Circulation Models (GCMs) participating in the 25 

Coupled Model Inter-comparison Project 5 (CMIP5) under both Regional Concentration Pathways (RCP) 4.5 and 

RCP 8.5 greenhouse gas emission scenarios. We show that projected combined changes in precipitation and potential 

evapotranspiration would significantly alter wetland groundwater dynamics in the 21st century. Compared to the 

historical period, all five studied wetlands are predicted to become drier by the end of this century. The water table 

depth increases vary from 4 cm to 22 cm due to global warming. The large decrease in water availability (i.e., 30 

precipitation minus potential evapotranspiration) will cause a drop in the water table in all the five studied wetlands 

by the late 21st century. Among the five examined wetlands, the depression wetland in hot and humid Florida appears 

to be most sensitive to climate change. This modeling study provides quantitative information on the potential 

magnitude of wetland hydrological response to future climate change for typical forested wetlands in the southern 

U.S. Study results suggest that the ecosystem functions of southern forested wetlands will be substantially impacted 35 

by future climate change due to hydrological changes that are the key control to wetland biogeochemical cycles, 

vegetation distribution, fire regimes, and wildlife habitat. We conclude that climate change assessment on wetland 
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forest ecosystems and adaptation management planning in the southeastern U.S. must first evaluate the impacts of 

climate change on wetland hydrology. 

1 Introduction 40 

The importance of the hydrology of forested wetlands in regulating ecosystem functions has long been recognized 

(Amatya et al., 2006; Sun et al., 2002; Sun et al., 2000). Wetlands provide critical ecosystem services such as 

groundwater recharge, water quality improvement, flood control, carbon sequestration, wildlife habitat, and recreation 

(Hammack and Brown, 2016; Greenberg et al., 2015; Richardson, 1994). Wetland hydrology plays an important role 

in biogeochemical cycles such as the emission of greenhouse gases of CH4, CO2, NOx (Dai et al., 2013; Zhang et al., 45 

2012) and therefore has an influence on regional and global climate (Paschalis et al., 2017). A small change in wetland 

water level, even by less than 10 cm, may have profound impacts on wetland structure and other ecosystem functions 

(Webb and Leake, 2006).  

Wetland hydrology is strongly influenced by the variation and change in climate (Brooks, 2009; Fossey and 

Rousseau, 2016; Liu and Kumar, 2016). Regional wetland area losses are predicted in the United States and globally 50 

(House et al. 2016; Nicholls, 2004) under future climate change. Wetland hydrology is extremely dynamic in space 

and time and is sensitive to climate change (Bullock and Acreman, 2003; Short et al., 2016), especially in the 

southeastern United States (SE US) (Li et al., 2013; Li and Li, 2015; Dai et al., 2013; Dai et al., 2010; Lu et al. 2010). 

Evidence of climate change in the region is plenty and climate models project that the temperature will increase by 

2 °C–10 °C by 2100 in this region (Diffenbaugh and Field, 2013). The severity and patterns of storms are changing 55 

as well, with more heavy downpours in many parts of the SE US, and more powerful Atlantic hurricanes landfall 

(Wang et al., 2010). 

However, process-based study on the impacts of climate change on different wetlands in the SE US are limited. 

Various hydrological models, ranging from regression models to complex distributed models, have been used to study 

hydrological response to climate change. For example, the physically based distributed model MIKE SHE has been 60 

applied to forested wetlands in the SE US (Dai et al., 2010; Lu et al., 2009; House et al., 2016). The hydrological 

regime of wetland forests on the coastal plains of South Carolina was found to be highly sensitive to annual 

precipitation and temperature changes (Dai et al., 2010). The water table of pine flatwoods in Florida was predicted 

to be 20-40 cm lower than the baseline scenario when precipitation decreased by 10 % or temperature increased by 

2 °C (Lu et al., 2009).  65 

Hydrological models have been widely used to study interactions among climate, water, and vegetation (Sun et al., 

1998). Although physically based hydrological models provide refined understanding of hydrologic processes (Yu et 

al., 2015; Chen et al., 2015) and detailed estimates of hydrologic states and fluxes (Qu and Duffy, 2007; Shen and 

Phanikumar, 2010), these models are generally data (Bhatt et al., 2014) and computation intensive (Vivoni et al., 

2011), their potential uses are often undercut by equifinality of parameters (Beven, 1993; Kumar et al., 2013; Pokhrel 70 

et al., 2008). Implementing distributed hydrologic models at multiple wetlands that cover a range of climatic, 

topographic, and management conditions is challenging because of the computational expense, lack of fine scale input 
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data, and poor adaptability of model parameters (Grayson et al., 1992).  In contrast to physically based distributed 

hydrological models, statistical models developed based long-term empirical data have been demonstrated to have 

advantages of high efficiency over physically based models. Performance such type of models in climate change 75 

studies appears to be satisfactory when incorporating downscaled Global Climate Model (GCM) outputs (Sachindra 

et al., 2013; Li et al., 2016). For example, Li et al. (2016) successfully used log-linear models for 21 rainfall stations 

and 7 hydrometric stations to predict hydrological drought. Greenberg et al. (2015) developed an empirical model and 

applied the model to study the impacts of climate change on wildlife habitat.   

In this study, we modelled the potential hydrological responses to climate change for five forested wetlands 80 

covering a range of climatic, topography and management conditions in the southeastern U.S. Future climate data 

from all the 20 GCMs participating in the Coupled Model Inter-comparison Project 5 (CMIP5) under both Regional 

Concentration Pathways (RCP) 8.5 and RCP 4.5 scenarios were used. We hypothesized that the wetlands would 

become drier due to climate warming and increased in evapotranspiration. We also hypothesized that hydrological 

responses would vary due to differences in background climate and wetland physical configurations.  85 

The objectives were to: 1) construct and validate empirical models of wetland groundwater dynamics using long-

term observational data in five forested wetlands, 2) forecast water table changes in the five wetlands under climate 

change under 40 scenarios (i.e., 20 GCMs and two CO2 emission pathways) s, and 3) investigate the key mechanisms 

driving the impacts of climate change in each wetland.  

2 Methods 90 

2.1 Study area 

     We selected five long-term research sites in the SE US representing five types of wetlands with a different 

combination of climate, topography and anthropogenic management disturbances. These research sites include (1) 

Alligator River Wildlife Refuge bottom hardwood wetland (designated as AR) on the coast of North Carolina, (2) a 

drained wetland converted from pocosin wetland to pine plantation forest (LP) on the lower coastal plain of North 95 

Carolina, (3) cypress pond wetland (wetland FL–WET) in north central Florida, (4) upland slash pine forest (wetland 

FL–UP) in northern central Florida, and (5) Carolina Bays (SC) on the coastal plain of South Carolina (Fig. 1). The 

wetland characteristics (e.g., climate, soil, vegetation, wetland type classification) have contrasting features (Table 1). 

These wetlands were selected with the following considerations. The AR (Miao, 2013) and LP (Noormets et al., 2010; 

Sun et al., 2010; Tian et al., 2015) are located in the lower coastal plain area of North Carolina with 62 miles apart 100 

from one another, representing the lower coastal plain forested wetlands with similar climate and topography but 

different management conditions. The AR is a natural coastal bottomland hardwoods wetland with no astronomic tides 

(Miao et al., 2013), while wetland LP is artificially managed by the forestry industry for timber production (Manoli 

et al., 2016; Noormets et al., 2010; Sun et al., 2010). LP is located within the outer coastal plain mixed forest province 

of North Carolina. The area has been artificially drained with a network of field ditches (90–100 cm deep; spacing 105 

80–100 m) and canals dividing the watershed into a mosaic of regularly shaped fields and blocks of fields (Sun et al., 
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2010). FL–WET and FL–UP (Lu, 2006; Lu et al., 2009) represent two types of ecosystems found the same pine 

flatwoods landscape with the same climate but slight different elevation and management. FL–UP is dominated by 

slash pine (Pinus elliotii) plantation forests on a relative higher elevation while FL–WET is dominated by naturally 

generated cypress (Taxodium distichum) on depression areas in pine flatwoods. The FL research site is located 33 km 110 

northeast of Gainesville in the Alachua County of north central Florida. The SC wetland was located in Bamberg 

County, South Carolina representing a typical depression wetland in the region (Dai et al., 2010; Dai et al., 2013; 

Pyzoha et al., 2008; Sun et al., 2006) The SC wetland was covered by naturally regenerated deciduous trees (i.e., water 

oak, willow oak) and was surrounded by deep, well-drained sand dominated by hardwood plantations and agricultural 

crops (Dai et al., 2010; Dai et al., 2013; Pyzoha et al., 2008; Sun et al., 2006).  115 

2.2 Databases 

2.2.1 Observed water table and meteorological data 

  The data details and the collection methods used in this study are summarized in Table 2. The meteorological 

variables include the precipitation, air temperature, wind speed, net radiation, and other canonical meteorological 

factors. The daylight duration data were from The United States Naval Observatory (USNO) 120 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php). The dataset consists of 48,826 30-min time series observations 

for each variable (i.e., water table and meteorological variable) for AR, 2,922 daily time series observations for LP, 

and 89,121 daily time series future climate data for each variable from each GCM of all five sites. The 30-min air 

temperature was averaged at the daily scale for estimating the potential daily evapotranspiration using Hamon’s 

equation (Federer and Lash, 1978a; Hamon, 1963):  125 

𝑃𝐸𝑇 = 29.8 × 𝐷 ×
𝑒𝑎

∗

𝑇𝑎+273.2
                                                                     ( 1 ) 

where PET is potential daily evapotranspiration (mm/day), D is day length (hr), and 𝑒𝑎
∗  is the saturation vapor pressure 

(kPa) at the mean daily air temperature (AT, ℃) calculated by the equation modified from Dingman (2015): 

 𝑒𝑎
∗ = 0.611 × exp (

17.3×𝐴𝑇

𝐴𝑇+237.3
)                                                                                                                       (2) 

A correction coefficient (Sun et al., 2002) was multiplied to adjust PET calculated by Hamon’s equation to derive 130 

realistic PET values for forests. The correction coefficients were reported to range from 1.0 to 1.2 (North Carolina, 

Federer and Lash, 1978b), and was 1.3 for the Florida site (Sun et al., 1998), thus to reduce uncertainty of the 

coefficient, the correction value of 1.2 was multiplied for all studying wetlands in SE US in this study.    

2.2.2 Future climate change data 

The daily climate data were derived from the 20 GCMs for two future RCP scenarios (RCP 4.5 and RCP 8.5; 135 

2006–2099). Future climate data represent intermediate and high greenhouse gas (GHG) emission scenarios with 

respect to a historical climate forcing baseline (1950–2005) (Duan et al., 2016).  

 The data of the 20 GCMs were obtained from the Multivariate Adaptive Constructed Analog (MACA) dataset, 

which was statistically downscaled from the native resolution of the GCMs of the CMIP5 to either 4- or 6- km 
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(Abatzoglou and Brown, 2012) (http://maca.northwestknowledge.net/index.php). We analyzed future climate 140 

conditions key to wetland hydrology, including the daily maximum temperature near the surface (2 m), daily minimum 

temperature near the surface (2 m), and projected average daily surface precipitation from January 1, 2050, to 

December 31, 2099. Daily maximum and minimum air temperatures were averaged to derive daily air temperature 

(Klein et al., 2002). To analyze the historical and future hydroclimatic change, we selected three 20-yr time periods 

according to IPCC Assessment Report 5 (2014): end of the 20th century (1980–1999), future mid-21st century (2040–145 

2059), and end of 21st century (2080–2099). The five climate scenarios used in the paper are:  

i. Scenario B for baseline period 1980–1999 (baseline scenario);  

ii. Scenario F1 using RCP 4.5 for the period 2040–2059;  

iii. Scenario F2 using RCP 4.5 for the period 2080–2099; 

iv. Scenario F3 using RCP 8.5 for the period 2040–2059;  150 

v. Scenario F4 using RCP 8.5 for the period 2080–2099. 

2.3 Model Development 

The fluctuation of water table reflects the water balance between inputs (i.e., precipitation (P), groundwater and 

surface inflows) and outputs (i.e., outflow and evapotranspiration (ET). Therefore, we hypothesized that these fluxes 

(i.e., P, ET) and associated meteorological variables would play significant roles on water table fluctuations. For 155 

example, precipitation patterns influence the discharge of rivers and streams, affecting the frequency and duration of 

inundation along these waterways and adjacent wetlands (Larsen et al., 2016). Water tables rise, and area of wetland 

expand with cooler temperatures, lower evaporation rates, and increased rainfall (Li et al., 2007). The lagged 15-day 

mean water table (i.e., Yt-1, Yt-2) was also considered as potential independent variables (Greenberg et al., 2015). 

A general linear model (Greenberg et al., 2015; Lydia et al., 2016; Tran et al., 2016) was then established with all 160 

the above variables:   

𝑌𝑖𝑡 = α𝑖0 + β𝑖1 𝑋1𝑡 + β𝑖2 𝑋2𝑡 + ⋯ + β𝑖𝑛 𝑋𝑛𝑡 + γ𝑖1 𝑌𝑖𝑡−1 + γ𝑖2 𝑌𝑖𝑡−2 + 𝑢𝑡                                  ( 3 )   

where  𝑌  is the water table; X1, … Xn are the designated matrix of individual climate variables such as total 

precipitation, mean air temperature, PET, total P-PET, etc.; i is the number of the wetlands, i = 1, 2, 3, 4, 5, which 

denote wetland AR, LP, SC, FL–UP, and FL–WET, respectively; t is the time period;  α, β and γ are regression 165 

parameters generated by the model; α𝑖0 is the intercept; β𝑖𝑛 is the coefficient of the variable 𝑋𝑛 of the ith wetland; and 

γ𝑖 is the coefficient of 𝑌 (water table of the ith wetland). 𝑌𝑡−1 𝑎𝑛𝑑  𝑌𝑖𝑡−2 are the lagged 15-day water table of the 

contemporaneous water table  𝑌𝑡 .  

Although water table dynamics are also affected by site-specific factors such as ditching/drainage, subsurface flow 

due to topographic differences and local landscape hydrology, they were not considered explicitly in our model. For 170 

example, regarding the AR wetland, besides the climatic forcing in the model, the future water table changes will also 

be impacted by the changing local hydrology due to sea level rise in this area (Miao, 2013). Our main aim is to evaluate 

the potential impacts of climate change on wetland hydrology and the aforementioned site specific factors are assumed 

static We assume that the effects of these local site characteristic factors are nonetheless taken into account indirectly 

by the coefficients (i.e., intercepts) of the model models.   175 
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Actual water loss from wetlands (ET) is controlled by both PET and precipitation and is a major output of water 

loss from a forested wetland (Sun et al., 2002). Here we used an air temperature-based Hamon equation to estimate  

PET (Hamon, 1963). Also, PET, instead of air temperature, was introduced into the model since PET was affected not 

only by air temperature, but also daytime length, which can better reflect evaporative demand in different locations 

than air temperature alone.  180 

According to the U.S. wetland regulatory standards, an area would be qualified as wetland when it is wet enough 

to be saturated within 1 ft (i.e., ~30 cm) of the ground surface for two weeks or more during the growing season in 

most years (Tiner, 2016). In addition, it is suggested that the water of wetlands should be held in impoundments for 

at least two weeks to provide weed control and also prolong wildlife use of habitat (Nelms, 2007). Thus, we set 15 

days as the model time step and all-time series data were transformed to a15-day interval.  185 

We then implemented correlation analysis and stepwise regression procedures to develop a parsimonious model 

for predicting wetland water table dynamics for each wetland. All independent variables were individually 

standardized first and introduced to the stepwise regression procedures to select the independent variables highly 

correlated to the contemporaneous water table. The correlation analysis between any two of the selected independent 

variables was executed to distinguish paired collinear variables. To reduce the multicollinearity, each of the paired 190 

collinear variables was removed by turns, and the other selected independent variables were then accordingly 

reintroduced to the stepwise regression procedures to seek a balance between the best statistical performance of the 

model and minimal multicollinearity of the independent variables (Sachindra et al., 2013). The correlation analysis 

and the stepwise regression model procedures were combined in this study to obtain an optimized model with least 

variables and best statistical performance.     195 

The final model was chosen based on the coefficient of determination (R2) and probability (P) value at a confidence 

level of 95 %. Durbin’s h statistic (Bhargava et al., 1982) was used to test for autocorrelation of the water table at a 

given time lag (i.e., t-1, t-2). Data were separated to two groups that cover different periods for model development 

and validation purposes (Table 2). For example, at wetland FL–WET, the time series including wet and dry years 

(1993–1994) was used to develop the model, and the remaining data (1992, 1995, and 1996) were used for model 200 

validation (Fig. 3).  

For a better understanding both the variabilities of long-term averages and short-term extreme water table 

dynamics, the modeled future water table was analyzed at annual and 15-day scales, respectively. The 15-day lowest 

water table results were further analyzed for two cases: 1) the percentage of time when water table is lower than 0 cm, 

representing the likelihood of a wetland without surface water ponding, and 2) the percentage of time when water 205 

table depth is between 0 and -30 cm, representing the likelihood of saturated soil. This 30-cm definition was based on 

previous studies that suggested wetland soils have a 30-cm saturated fringe and the average root depth is about 30-cm 

(Tiner, 2016). The 30-cm depth was also observed as the boundary for CH4 emission (Moore and Knowles, 1989), 

ammonification, denitrification (water table depth <30 cm) and nitrification (water table depth >30 cm) (Hefting et 

al., 2004).                                                                                                                               210 
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3 Model results 

3.1 Selected models and model performance 

The stepwise regression results suggest that the following linear model form best fits the water dynamics at all 

five wetlands: 

 𝑌𝑖𝑡 = α𝑖0 + β𝑖1 𝑋1𝑡 + γ𝑖1 𝑌𝑖𝑡−1 + 𝑢𝑡                                                          ( 4 )   215 

where X1t is the P-PET in mm per15 days, Y is the water table depth of wetland i (i=1, 2, 3, 4, 5) in cm at time t,  and 

t, t-1 is the current and previous time step, respectively. The statistics and parameter values for the five wetlands vary 

(Table 3). The predicted WT matched observed water tables consistently for all five wetlands (Fig. 2). Amongst the 

five wetlands,  β𝑖1 and γ𝑖1  were different but generally close, ranging from 0.11 to 0.40 and from 0.77 to 0.87, 

respectively (Table 3), suggesting there are some site-specific differences, but t the influence of P-PET and antecedent 220 

water table at t-1 time step on the present water table at t time step is similar across the study sites. However, the 

intercepts α𝑖0 vary significantly, with a maximum of 23.2 (FL–UP) and a minimum of -1.2 (AR), indicating that there 

may be other site specific factors that could vary across different wetlands but are not explicitly included in the model 

as independent variables.        

The statistical models were then validated using independent subsets of water table data during the validation 225 

period (Table 2). R2 values of regression between the observations and predictions were 0.77 for AR, 0.97 for LP, 

0.67 for FL–UP, 0.55 for FL–WET, and 0.91 for SC, respectively (Fig. 3). The results show that the models performed 

reasonably well for all five wetlands during the validation years, and could be good candidates used to determine the 

future changes in water table due to climate change.  

3.2 Patterns of future climate and PET 230 

The increase of the future mean annual air temperature in RCP 8.5 is expected to be 3.9 °C, 4.3 °C, 4.0 °C, and 

4.4 °C for AR, LP, FL, and SC, respectively (Table 4, Fig. S1), with respect to the historical baseline period (i.e., 

1980–1999). The average increase from the baseline to RCP 8.5 in the five wetlands would be approximately 4 °C, 

consistent with the U.S. climate assessment report (Pachauri et al., 2014). Similarly, the future annual total PET, 

would increase by 23 % (221 mm), 25 % (238 mm), 23 % (267 mm), and 25 % (266 mm) for AR, LP, FL, and SC, 235 

respectively, in the RCP 8.5 scenario compared with that of the historical baseline period (Table 4). The increase in 

PET is expected to be smaller in the RCP 4.5 scenario (Tables S1–S5, Fig. S2). For example, PET of wetland AR 

would increase by 13 % (130 mm) in the RCP 4.5 scenario (1107 mm), while the increase is 23 % (221 mm) in the 

RCP 8.5 scenario (1198 mm, Table S1).  

 The baseline mean annual precipitation was 1266 mm, 1275 mm, 1318 mm, 1192 mm (Tables S1-S5, Fig. S3) for 240 

AR, LP, FL, and SC, respectively. The annual total precipitation under RCP 8.5 scenario would increase the most in 

the wetlands LP (63 mm) and SC (60 mm) (Table 4), which is nearly two times the increase in wetland AR (37 mm). 

In contrast, the annual precipitation is projected to decrease at FL by 21 mm (Table 4). It is noteworthy that, unlike 

air temperature and PET, the magnitudes of the precipitation changes in the future RCP 8.5 scenario were smaller than 
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that of the RCP 4.5 scenario (Tables S4–S5). Specifically, the precipitation would increase by 56 mm, 68 mm, and 70 245 

mm (Tables S1-S3) under the RCP 4.5 scenario for wetland AR, LP and SC, respectively.  

Future estimated PET will increase in a larger magnitude than precipitation, causing a decrease in P-PET for all 

five wetlands. Specifically, the future annual mean P-PET in the RCP 8.5 scenario would decrease by 64 % (decrease 

by 184 mm from the 290 mm of baseline), 56 % (decrease by 175 mm from 313 mm), 175 % (decrease by 289 mm 

from 165 mm), and 146 % (decrease by 207 mm from 142 mm) at AR, LP, FL, and SC, respectively (Fig. 4, 250 

supplementary Tables S1–S5). The decrease in P-PET is smaller in RCP 4.5 scenario. For example, the annual P-PET 

at AR would decrease by approximately 75 mm (26 % of baseline) in RCP 4.5 and 184 mm (64 % of baseline) in RCP 

8.5 (Table S1).  

3.3 Future water table dynamics 

3.3.1 Predicted annual water table  255 

This modelling analysis suggests that future climate change may considerably affect wetland hydrology. The 

annual average water table exhibits a decreasing trend in all the five wetlands predicted by the 20 GCMs under both 

RCP8.5 and RCP4.5 scenarios (Fig. 5). In AR, the annual mean water table will decrease by 4 cm from a long term 

mean of 0 cm depth, Table S1) from the historical baseline period to the future RCP 8.5 scenario. It would decrease 

by 19 cm in LP (originally -100 cm, Table S2), by 7 cm in SC (originally -16 cm, Table S3), by 17 cm (originally -73 260 

cm, Table S4) in FL–UP and by 22 cm (originally 2 cm, Table S5) in FL–WET.  

3.3.2 The future 15-day water table changes  

At the 15-day scale, similar to the annual change, future water table would generally decline at all sites under both 

RCP 4.5 and RCP 8.5, especially for RCP 8.5 scenarios (Fig. 6). For AR, the decrease of the 15-day lowest water table 

would be 7 cm, from -10 cm of the historical baseline period to the future -17 cm under the RCP 8.5 scenario (Fig. 6). 265 

The decrease for LP, SC, FL–UP, FL–WET would be 28 cm (from -135 cm), 14 cm (from -28 cm), 23 cm (from -101 

cm), and 27 cm (from -19 cm), respectively (Fig. 6).  

Additionally, all the 15-day water table records are negative (i.e., water table < 0 cm) at LP, FL–UP, and SC, 

meaning there is no surface water ponding over the study period from the baseline to the future RCP 8.5 scenario 

(Table 4, Fig. 6). In contrast, wetlands AR and FL–WET show a low probability (40 % for FL–WET, 49 % for AR) 270 

of no surface water ponding in the baseline, but increase significantly to 62 % and 93%, respectively.  

While LP, FL–UP and SC are predicted to have no surface water ponding over the study period,, site LP and FL–

UP would remain 0 % saturated from baseline, with a water table level lower than -30 cm based on the RCP scenario, 

and the saturation probability of wetland SC would dramatically decrease from the original 100 % to 57 % in the 

future RCP 8.5 scenario. The wetland SC would, therefore, be at higher risk of being unsaturated. The saturation 275 

probability of the wetland FL–WET would decrease from the historic 100 % to 63 % in the future RCP 8.5 scenario. 

The wetland AR is the only wetland that would remain 100 % saturated under all scenarios including RCP 8.5 scenario 

(Table 4).  
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4 Discussion  

4.1 Difference and consistency of wetland hydrology models  280 

     Regarding the statistical results of the five models (Table 3), the relatively lower R2 values of AR (ca. 21 %) 

compared with that of LP, are likely due to lateral water movement in AR with a coastal influence (Johnston et al., 

2005), which cannot be ignored but is generally hard to simulate. The R2 values of FL wetland sites were lower (at 

percentages of 28 %, 43 %, 39 %) than that of the other three sites (AR, LP, and SC), likely due to the higher sensitivity 

of the lower water table to the warming and strongly changing precipitation.  285 

    Furthermore, the different regression coefficients of climatic-hydrological parameters (P-PET and antecedent water 

table at t-1 time step) and remarkably different intercepts (Table 3) among the five wetlands indicate different major 

controls for each of the wetland types. The trend that the model coefficients are similar between similar wetland types 

makes the regression model reasonable and acceptable. For example, the model shows much higher (approximately 

ten times) intercepts in wetland LP (-19.55) and wetland FL–UP (-23.17), compared to wetland FL–WET (-1.36) and 290 

wetland SC (-3.79). This is reasonable, since both wetland FL–WET and wetland SC are depression wetlands, or 

geographically isolated wetlands (Tiner et al., 2016) (i.e., ponds within flat landscape) surrounded by uplands, in 

which case local climatic-hydrological parameters would be the major controls and thus would have smaller intercepts. 

However, site FL–UP has sandy soils and found on higher elevation comparing to FL-WET on a flat landscape. The 

artificial drainage systems for LP could be the control in addition to the climatic-hydrological parameters involved in 295 

the models. Hence, the much higher intercepts of site FL–UP and site LP reflect the topographic and drainage 

management controls for these two wetland types.   

4.2 Different controls on future wetland hydrology in different wetlands   

Although the same model structure can be applied to all the five wetlands and had good performance, a closer 

comparison shows different influence on the wetland hydrology. For example, the annual water tables in the future 300 

RCP 8.5 scenario decline the most in wetland FL. This may not only be due to the PET increase, which is similar to 

that of the other three sites (AR, LP, and SC), but also because the precipitation decreases at the same time in the 

wetland FL, while it increases at the other sites. 

     Both precipitation and PET are predicted to be different between wetlands AR and LP. In the future RCP 8.5 

scenario, the increment of PET in LP is slightly (8 %) higher than that in AR (Table 5), and the increment of 305 

precipitation in LP is 170 % that of AR. The change in P-PET, however, is generally similar between the two wetlands 

(-175 mm for LP and -184 mm for AR, Supplementary Table S1-S2). Despite the similar P-PET changes, the future 

water table changes in AR and LP are remarkably different. The annual water table of LP will decrease 19 cm 

compared to 3.75 cm for AR from the period of 1980-1999 to 2080–2099. The dramatic differences, which are 

reflected by the different intercepts of the models, may be due to both management conditions in LP and the sea level 310 

rise effects in AR. Regarding the management conditions, wetland AR is undisturbed natural bottomland hardwoods 

while LP is highly managed pine plantation forests. LP has well-established ditches for drainage, with a flowline 

below the surface of the water table so that the hydraulic head of the drain is smaller than the hydraulic head of the 
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water table in the surrounding soil. The drainage ditch outflow on the watershed (pine plantation, NC) was closely 

(e.g., R2=0.75) related to the water table depth (Amatya et al., 2006). Notably, regarding the AR wetland, the local 315 

hydrologic drivers (not directly considered by the model, e.g., sea level rise) may increasingly impede the predicted 

decreasing water table. Thus the sea level rise related hydrology may counter the predicted future water table decline. 

Wetland type also contributes to the different water table dynamics. The water table changes differ significantly 

from the baseline to the future RCP 8.5 scenario for FL–WET and FL–UP with the different topography condition. 

The more significant change in FL–WET suggests that depression wetlands may be more sensitive to climate change 320 

compared to uplands, consistent with the results of another study (Lu et al., 2009).  

Thus, the different responses of the future water table to climate change in wetlands with climatic and topographic 

gradients and management conditions demonstrate the necessity and importance of developing wetland-specific 

hydrologic models in specific regions. 

4.3 Implications 325 

4.3.1 Efficient modeling of wetland water table dynamics 

Compared to lumped (e.g., DRAINMOD–FOREST, Tian et al., 2015) or distributed parameter models (e.g., MIKE 

SHE, Lu et al., 2009) the empirical hydrological models developed in this study is simple. However, our models well 

explained the different water table dynamics for multiple wetland sites across the SE US region. Those differences in 

wetland hydrological response to climate change imply different priority that wetland management strategies should 330 

be different according to the site individual characteristics. For example, the differences between FL–UP and FL–

WET suggest that depressional wetlands have higher sensitivity to the climate change; the differences between AR 

and LP suggest the importance of integrating the mechanisms of water table responds to sea level rise and extreme 

storm events in AR site.  

The empirical hydrological models performance well at the site and region levels, and can be empirically 335 

incorporated into biogeochemical models, landscape and larger scale models. For example, the empirical hydrological 

models can be linked with local soil respiration or regional CH4 emission models. Such empirical approach should be 

compared to process-based physically based hydrological models to effectively model the biogeochemical change 

under a changing climate. 

4.3.2 Biogeochemical cycles  340 

Previous studies report that increases in temperature (3 °C–5 °C) and precipitation (146–192 mm/year) would lead 

to a 175 % increase in the methane emissions (Shindell et al., 2004). Wetland C emissions in forested wetlands could 

be highly linked (e.g., a logarithmic relationship) to drought or flooded periods (Moore and Knowles, 1989). In AR, 

Miao et al., (2013) found that 93 % of the annual average soil CO2 efflux of 960–1103 g C m-2 in 2010 was released 

in the nonflooded periods. Our study suggests that the non-flooded period would increase by 13 % (from 49 % to 345 

62 %, assuming no rise in water table due to sea level rise) in the late 21st century. This means that the CO2 efflux may 

increase by 116–133 g C m-2 accordingly. Other studies suggest that gross ecosystem productivity and the available 

carbohydrate substrates for soil respiration would decrease with droughts (Noormets et al., 2008). Wetland trees may 
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also alter their use and allocation of nutrients (e.g., N cycling) in response to the changing availability of water (Vose 

et al., 2016).  350 

4.3.3 Droughts and wildfires 

The projected warming and long-term future drying indicate an increasing threat of droughts and wildfire in the 

studying area (Mitchell et al., 2014). Due to droughts, plant distributions may be shifted (Desantis et al., 2007; 

Mulhouse et al., 2005), trees may become increasingly susceptible to attacks by pests and pathogens (Schlesinger et 

al., 2015). A warmer and longer growing seasons mean increased possibility of droughts and occurrence of wildland 355 

fires (Vose et al., 2016). Furthermore, increasingly frequent wildfire would release more carbon and stimulate more 

greenhouse gas (GHG) emissions (e.g., CH4 production) with more biomass burning (Medvedeff et al., 2015),  making 

wetland forests a carbon sink rather than a source (Westerling et al., 2006). Thus, the management challenges in 

restoring wetland forests and reducing greenhouse gas emissions will substantially increase. 

4.3.4 Wildlife and habitats 360 

The predicted long-term drying (e.g., FL–WET) may greatly affect the biological diversity and metapopulations 

of the studying wetlands by impacting the inter-wetland movements, recruitment, recolonization, and genetic 

exchange of many species (Moor et al., 2015; Osland et al., 2013). Long-term drying could reduce the dispersion 

among wetlands, and increase the isolation of primarily aquatic species such as cricket frogs (Acrisgryllus), pig frogs 

(L. gryllio), swamp snakes (Seminatrix pygaea), and water fowl (Davis et al., 2017; Murphy et al. 2016). The density 365 

of waterfowl broods was found to be greater on impoundments than on seasonally flooded wetlands (Connor and 

Gabor, 2006). Changes in the water table level of even less than 10 cm (predicted to decline from 7 cm to 28 cm 

among the studied wetlands) may have profound effects on the habitat choice, species composition and provide 

conditions which favour certain species or communities over those currently dominant in a given wetland (Reddy and 

DeLaune, 2008). Brent geese would switch habitats within a water level span of 30 cm (Clausen, 2000). An equation 370 

linking decay coefficient for a specific habitat type and the water table was even illustrated (Bouma et al., 2014). 

Temperature increase of 2 °C (projected to be 4 °C in this study) in Florida would influence co-occurring mangrove 

and salt marsh plants (Coldren et al., 2016). This supports the hypothesis of significantly far-reaching influences and 

higher risks on wildlife habitats shifts for the studied wetlands in the SE US.  

4.4 Uncertainty 375 

Although the models developed by this study are efficient for simulating the historic and future water levels at 

multiple wetlands, the models do not account the full physical processes that govern wetland hydrological cycles. 

Thus, there are uncertainties on the hydrological response to extreme events such as droughts or floods that have not 

occurred in the past. In addition, wetlands are not isolated, thus a landscape approach is needed to accurately model 

wetland hydrology.   380 

In addition to uncertainty of hydrological model structure, uncertainties associated with future climate change data 

exist. GCMs projections are inherently inaccurate for small scale studies in spite of model bias corrections have been 
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implemented and multiple models are used in this application. Uncertainty in predicting precipitation is challenging 

in particular. Compared to previous studies using idealized climate data or climate data from a single GCMs, our 

approach assembling climate data from 20 GCMs and applying separate models to multiple wetlands  represents the 385 

best option to project hydrological response at the regional scale. Idealized or stochastically generated climate 

conditions were assumed in most previous models to illustrate impacts of climate change (Chen et al., 2016).  Climate 

data from single (Greenberg et al., 2015; Wang et al., 2015) has been used in wetalnd hydrological resposne, but using 

several GCMs (Chen et al., 2012; Meinshausen et al., 2011) could result in more realistic results. However, different 

GCMs and future scenarios produce very different climate projections. The differences are even greater when applied 390 

to localized areas (Alo and Wang et al., 2008). Multiple and overall GCM data can provide a better full-scale estimate 

(Hessami et al., 2008).  

5. Conclusions 

The empirical hydrological models developed in this study are able to simulate water table dynamics for different 

types of wetlands across the southeastern U.S. With the antecedent water table, precipitation, and potential 395 

evapotranspiration as the main predictors of the water table at a 15-day time step, the developed models are simple 

but powerful to provide useful wetland hydrology information under a range of climatic and management conditions. 

Under climate change, the decrease in water availability is predicted to be a dominant factor for all five wetlands, 

resulting in a drier future in the study region, especially the late 21st century. This study confirms the hypothesis that 

climate change may have a significant but varying influence on the hydrology of different forested wetlands in the 400 

southeastern U.S.   

This study may serve as a basis for future regional studies to understand the coupling between wetland hydrology 

and climate and quantify the role of wetlands in regulating water and energy balances, and climate feedbacks. 

Furthermore, given the close relationships between hydrology and biogeochemical cycles, vegetation distribution, fire 

regimes, and wildlife habitat, our study results suggest that the ecosystem functions of southern forested wetlands will 405 

be substantially impacted by future climate change. Climate change assessment on wetland forest ecosystems and 

adaptation management planning must first evaluate the impacts of climate change on wetland hydrology. Further 

studies are needed to explore the mechanisms of how climate change physically affects wetland water table dynamics 

and associated biogeochemical and ecological processes. 

  410 
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Tables 625 

Table 1 Characteristics of the studied wetlands.   

Wetla

nd 

Coordinate Climate (mean T and P) Soil Vegetation 

 

wetland type References 

AR 35°47’ N, 

75°54’ W 

16.8 ℃ in July, 6.8 ℃ in 

Jan; 1298 mm (1971-

2010) 

Pungo (41 %) 

Longshoal (32 %) 

Black gum, swamp tupelo, bald 

cypress (overstory); fetterbush, 

bitter gallberry, red bay 

(understory) 

Natural wetlands; tree stand 

density of 2320 ± 800 stems/ha 

(Miao et al., 2013; Moorhead 

and Brinson, 1995) 

LP 35°48’ N, 

76°40’ W 

26.6 ℃ in July, 6.4 ℃ in 

Jan; 1320±211 mm 

(1945-2008) 

Belhaven Series, 20–95 % 

organic content in the top 

50 cm and sandy loam 

underneath (Diggs, 2004) 

Hardwoods, loblolly pine from 

1992 

Artificially managed lower 

coastal plain forested wetland 

with tree density of 1660 

trees/ha  

(Sun et al., 2010; Tian et al., 

2012; Tian et al., 2015) 

FL 29°48’ N, 

82°24’ W 

27℃ in July, 14 ℃ in 

Jan; 1330 mm 

Top organic and 

sandy (Pomona 

fine sand) soil and  

underlying 

impermeable blue- 

greenclays  

Flatwoods: Pond cypress, slash 

pine, swamp tupelo (wetland); 

slash pine (overstory in upland); 

saw palmetto, gallberry shrubs 

(understory in upland) 

 

Cypress swamps and depression 

wetlands 

 

 

(Lu, 2006; Lu et al., 2009; 

Sun et al., 1998; Sun et al., 

2000) 

SC 33°06’ N, 

81°06’ W 
26.5℃ in July, 12.5 ℃ in 

Jan; 1193 mm 

Coxville series (fine, kaolinitic, 

thermic Typic Paleaquults). 

Bottomland hardwoods (water 

oak, willow oak, swamp tupelo) 

Carolina bay (Dai et al., 2010; Dai et al., 

2013; Pyzoha et al., 2008; 

Sun et al., 2006) 
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Table 2 Raw data summary. 

                                                       

Wetlands 

Data types 

AR LP SC FL − UP FL − WET                   

Model 

development 

Meteorological 

data 

07/02/2009–

01/01/2011 

01/01/2005–

12/31/2012 

01/01/1997–

12/31/2002 

01/01/1992–

12/31/1996 

01/01/1992–

31/12/1996 

Interval 30 min Daily, with 

some data 

missing 

Daily Daily Daily 

Water table data 03/19/2009–

12/31/2011 

01/01/2005–

12/31/2012 

 

01/01/1997–

12/31/2002 

01/01/1992–

12/31/1996 

01/01/1992–

31/12/1996 

Interval Daily Daily Daily Daily Daily 

Validation 

data 

Model 

development 

Year 

2009–2010 2009–2012 1997–2000 1993–1994 1993–1994 

Validation year 2011 2005–2008 2001–2002 1992, 

1995–1996 

1992, 

1995–1996 

Interval 15 days 15 days 15 days 15 days 15 days 

Prediction 

data 

Meteorological 

data 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

      

Interval 30 min 30 min 30 min 30 min 30 min 

References Data collection 

methods 

Miao et al., 

2013 

Noormets et al., 

2010; 

Sun et al., 2010; 

Tian et al., 2015 

Sun et al., 

2006 

Lu et al. 2009;  

Sun et al., 

2000 

Lu et al. 2009;  

Sun et al., 

2000 
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Table 3 Results for regressions of water table for five wetlands in the Southeastern United States. 

wetland α𝑖0 β𝑖1  γ𝑖1  R2 p   

AR (i=1) -1.24 0.1137 0.7698 0.81 <0.001 

LP (i=2) -19.55 0.3750 0.8530 0.83 <0.001 

FL–UP (i=3) -23.17 0.3963 0.7206 0.69 <0.001 

FL–WET (i=4) -1.36 0.2360 0.8707 0.78 <0.001 

SC (i=5) -3.79 0.1450 0.82 0.71 <0.001 

Note: i is the number of the wetlands, i=1, 2, 3, 4, 5, t denoted the time periods, α𝑖0is the intercept,  β𝑖𝑛 is the coefficient of the 

variable 𝑋𝑛 of the i wetland,  γ𝑖1 is the coefficient of the antecedent water table at t-1 time step of the i wetland, R2 denotes the 

coefficient of determination, and P donates the probability value when confidence level was at 95 % (Unites: mm/15 days). 635 

 

Table 4 Annual changes of variables from baseline scenario to scenario RCP 8.5 of five wetlands in the Southeastern 

United States. 

Wetland 
WT changes 

(cm) 

Baseline annual WT 

(cm) 

P 

(mm) 

PET 

(mm) 

P minus PET 

(mm) 

AT 

(Deg C) 

AR -4 0 37 221 -184 3.9 

LP  -19 -100 63 238 -175 4.3 

FL–UP -17 -73 -21 267 -289 4.0 

FL–WET  -22 2 -21 267 -289 4.0 

SC -7 -16 60 266 -207 4.3 

Notes: WT is water table, P is precipitation, PET is potential evapotranspiration, AT is air temptation.  
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Table 5 A summary of 15-day water table fluctuations in growing season under future RCP 8.5 scenario of five wetlands 640 

in the Southeastern United States 

Wetlands Lowest WT 

(cm) 

PB of  

WT<0 cm 

PR85 of  

WT<0 cm 

PB of 

WT>-30 cm 

PR85 of 

WT>-30 cm 

AR -17 49 % 62 % 100 % 100 % 

LP -164 100 % 100 % 0% 0 % 

FL–UP -124 100 % 100 % 0% 0 % 

FL–WET -46 40 % 93 % 100 % 63 % 

SC -42 100 % 100 % 100 % 57 % 

Note: WT is water table, PB is the probability in baseline period, PR85 is the probability in RCP 8.5 period (2080-2099, future 

scenario F4). The water table >-30 cm is for growing season condition. 
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Figures 645 

 

Fig. 1 Study area, where the star symbol marks the study site location. Wetland AR: wetland of Alligator River National 

Wildlife Refuge in North Carolina; wetland LP: wetland of loblolly pine plantation in North Carolina; wetland SC: wetland 

in South Carolina; wetlands in Florida: wetland FL–UP (upland in Florida) and FL–WET (wetland in Florida).   

 650 
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 665 

Fig. 2 Comparison of observed and simulated 15-day water table depth in five wetlands in the Southeastern United States. 

(a) site AR; (b) site LP; (c) site FL–UP; (d) site FL–WET; (e) site SC. WT is water table, Mea is the observed data, PRE is 

the predicted data. 
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Fig. 3 Scatter plots of the observed and predicted mean water table in five wetlands in the Southeastern United States. (a) 670 

AR; (b) LP; (c) FL–UP; (d) FL–WET; (e) SC; Dashed lines are 1:1 line. 
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Fig. 4 Total annual precipitation minus potential evapotranspiration of 20 GCMs in five wetlands in the Southeastern 

United States (unit: mm), (a): AR, (b): LP, (c): FL, (d): SC. B:1980–1999, historical baseline period; F1:2040–2059, RCP 4.5, 

future scenario 1; F2:2080–2099, RCP 4.5, future scenario 2; F3:2040–2059, RCP 8.5, future scenario 3; F4:2080–2099, RCP 8.5, 675 

future scenario 4; 
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Fig. 5 Mean predicted annual water table of 20 GCMs in five wetlands in the Southeastern United States (unit: cm), (a) AR, 

(b) LP, (c) FL–UP, (d) FL–WET, (e) SC. 680 

Note: B:1980–1999, historical baseline period;  

F1:2040–2059, RCP 4.5, future scenario 1; F2:2080–2099, RCP 4.5, future scenario 2;  

F3:2040–2059, RCP 8.5, future scenario 3; F4:2080–2099, RCP 8.5, future scenario 4; 
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Fig. 6 Exceedance probability of the mean predicted water table in the growing season of 20 GCMs in five wetlands in the 685 

Southeastern United States (unit: cm/15 days), (a) AR, (b) LP, (c) FL–UP, (d) FL–WET, (e) SC, respectively. B:1980–1999, 

historical baseline period; F1:2040–2059, RCP 4.5, future scenario 1; F2:2080–2099, RCP 4.5, future scenario 2;  F3:2040–2059, 

RCP 8.5, future scenario 3; F4:2080–2099, RCP 8.5, future scenario 4. 
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