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Abstract. The southeastern United States hosts extensive forested wetlands, providing ecosystem services including 

carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these 

wetland ecosystems are dependent on local climate and hydrology, and therefore at risk due to climate and land use 20 

change. This study develops site-specific empirical hydrologic models for five forested wetlands with different 

characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent 

typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwoods 

ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes 

using climate projections from 20 General Circulation Models (GCMs) participating in the Coupled Model Inter-25 

comparison Project 5 (CMIP5) under both Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. 

We show that combined projected changes in precipitation and potential evapotranspiration would significantly alter 

wetland hydrology including groundwater dynamics by the end of the 21
st
 century. Compared to the historical 

period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 

4 cm to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) 30 

by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to 

be most vulnerable to future climate change. This study provides quantitative information on the potential 

magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern 

U.S.  
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1 Introduction 35 

Wetlands provide ecosystem services such as groundwater recharge, water quality improvement, flood control, 

carbon sequestration, wildlife habitat, and recreation (Hammack and Brown, 2016; Richardson, 1994). The 

importance of wetland hydrology in regulating ecosystem function has long been recognized (Sun et al., 2000). 

Wetland hydrology controls biogeochemical cycles and emissions of greenhouse gases such as CH4, CO2, and NOx, 

and therefore have an influence on regional and global climate (Paschalis et al., 2017). A small change (less than 10 40 

cm) in wetland water table depth, may have profound impacts on wetland structure and other ecosystem functions 

(Webb and Leake, 2006).  

Wetland hydrology is strongly influenced by the variation and change in climate (Brooks, 2009; Fossey and 

Rousseau, 2016; Liu and Kumar, 2016), and continued regional wetland area losses are predicted in the United 

States and globally (House et al. 2016; Nicholls, 2004). Wetland hydrology in the southeastern United States (SE 45 

US) may be particularly dynamic (Li et al., 2013; Lu et al. 2010). There are already indications of climate change in 

the SE US (Li and Li, 2015), and climate models project that temperature will increase by 2 to 10 °C by 2100 in this 

region (Diffenbaugh and Field, 2013). The severity and patterns of storms are changing as well, with more heavy 

downpours in many parts of the SE US, and more intense Atlantic hurricanes (Wang et al., 2010; Wuebbles et al., 

2014). 50 

Various hydrological models, ranging from regression models to complex distributed models, have been used to 

study hydrological response to climate change. For example, the physically based distributed model MIKE SHE has 

been applied to forested wetlands in the SE US (Dai et al., 2010; Lu et al., 2009; House et al., 2016). The 

hydrological regime of wetland forests on the coastal plains of South Carolina was found to be highly sensitive to 

annual precipitation and temperature changes (Dai et al., 2010). The water table of pine flatwoods in Florida was 55 

predicted to be 20-40 cm lower than that of a baseline scenario when precipitation decreased by 10 % or temperature 

increased by 2 °C (Lu et al., 2009).  

Integrated studies on the impacts of climate change on multiple wetlands in the SE US are limited. Physically 

based hydrological models provide a refined understanding of hydrologic processes (Yu et al., 2015; Chen et al., 

2015) and quantification of hydrologic states and fluxes (Qu and Duffy, 2007; Shen and Phanikumar, 2010). 60 

However, these models are generally data (Bhatt et al., 2014) and computation intensive (Vivoni et al., 2011), and 

their potential uses are often undercut by equifinality of parameters (Beven, 1993; Kumar et al., 2013; Pokhrel et al., 

2008). Implementing distributed hydrologic models across multiple wetlands that cover a range of climatic, 

topographic, and management conditions is challenging due to the computational expense, lack of fine scale input 

data, and difficulty in application for multiple sites (Grayson et al., 1992). Conversely, in spite of the weakness of 65 

assumption of static relationships between climate and hydrological response patterns in the future, statistical 

models have advantages of both high efficiency and acceptable performance when applied over multiple sites. The 

performance of empirical models in climate change studies appears to be powerful when incorporating downscaled 

Global Climate Model (GCM) outputs (Sachindra et al., 2013; Li et al., 2016). For example, Li et al. (2016) used 

log-linear models for 21 rainfall stations and severn hydrometric stations to predict hydrological drought. Greenberg 70 

et al. (2015) developed an empirical model and demonstrated its utility for climate-change planning by forecasting 
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the weekly hydrologic regimes from 2012 to 2060 and examining the indirect impacts of climate change on 

biological diversity.  

In this study, five forested wetlands across a range of climatic/topographic gradients and different management 

conditions in the SE US were used to investigate the impact of future climate change on wetland hydrology (i.e., 75 

hydroperiod). Future climate data from 20 GCMs participating in the Coupled Model Inter-comparison Project 5 

(CMIP5) under both Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 scenarios were used. We 

hypothesized that the wetlands would become drier due to climatic warming and subsequent increases in 

evapotranspiration. We also hypothesized that hydrological responses would vary due to differences in baseline 

climate and wetland physical configurations.  80 

The objectives of this study were to 1) construct and validate empirical models of wetland groundwater 

dynamics using long-term observational data in five typical southern forested wetlands; 2) forecast water table 

changes in the five wetlands under 40 climate change scenarios (i.e., 20 GCMs and two CO2 emission pathways); 

and 3) investigate the key mechanisms driving the impacts of climate change in southern forested wetlands.  

2 Methods 85 

2.1 Study area 

     We selected five long-term research sites in the SE US representing five types of wetlands with different 

combinations of climate, topography and anthropogenic management disturbances. These research sites include (1) a 

Alligator River National Wildlife Refuge bottomland hardwood wetland (designated as AR) on the coast of North 

Carolina, (2) a drained pocosin wetland covered by pine plantation forest (LP) on the lower coastal plain of North 90 

Carolina, (3) a cypress pond wetland (wetland FL–WET) in north central Florida, (4) an upland slash pine forest 

(wetland FL–UP) in northern central Florida, and (5) a Carolina bay forest (SC) on the coastal plain of South 

Carolina (Fig. 1). The wetland characteristics (e.g., climate, soil, vegetation, wetland type classification) have 

contrasting features (Table 1). These wetlands were selected with the following considerations. AR (Miao, 2013) 

and LP (Noormets et al., 2010; Sun et al., 2010; Tian et al., 2015) are located in the lower coastal plain area of North 95 

Carolina within 62 miles of one another, representing lower coastal plain forested wetlands with similar climate and 

topography, but different management conditions. AR is a natural coastal bottomland hardwoods wetland with no 

tidal influence (Miao et al., 2013), while wetland LP is intensively managed by the forest industry for timber 

production (Manoli et al., 2016; Noormets et al., 2010; Sun et al., 2010). LP is located in the outer coastal plain 

mixed forest province of North Carolina. The area has been artificially drained with a network of field ditches (90–100 

100 cm deep; spacing 80–100 m) and canals dividing the watershed into a mosaic of regularly shaped fields and 

blocks of fields (Sun et al., 2010). FL–WET and FL–UP (Lu, 2006; Lu et al., 2009) represent two types of 

ecosystems found in the same pine flatwoods landscape with the same climate, but slightly different elevation and 

management. FL–UP is dominated by slash pine (Pinus elliotii) plantation forests on relatively high elevation, while 

FL–WET is dominated by naturally regenerated cypress (Taxodium distichum) in depressional areas in pine 105 
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flatwoods. The FL research site is located 33 km northeast of Gainesville in the Alachua County of north central 

Florida. The SC wetland was located in Bamberg County, South Carolina, representing a typical depressional 

wetland in the region (Pyzoha et al., 2008; Sun et al., 2006) The SC wetland was covered by naturally regenerated 

deciduous trees (i.e., water oak, willow oak) and was surrounded by deep, well-drained sand dominated by 

hardwood plantations and agricultural crops (Pyzoha et al., 2008; Sun et al., 2006).  110 

2.2 Databases 

2.2.1 Observed water table and meteorological data 

  The data and the collection methods used in this study are summarized in Table 2. The meteorological variables 

include the precipitation, air temperature, wind speed, net radiation, and other canonical meteorological factors. The 

daylight duration data were from The United States Naval Observatory (USNO) 115 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php). The dataset consists of 48,826 30-min time series 

observations for each variable (i.e., water table and meteorological variable) for AR, 2,922 daily time series 

observations for LP, and 89,121 daily time series future climate data for each variable from each GCM of all five 

sites. The 30-min air temperature was averaged at the daily scale for estimating the potential daily 

evapotranspiration using Hamon’s equation (Federer and Lash, 1978a; Hamon, 1963):  120 

𝑃𝐸𝑇𝐻 = 29.8 × 𝐷 ×
𝑒𝑎

∗

𝐴𝑇+273.2
                                                                     (1) 

where PETH is potential daily evapotranspiration (mm/day), D is day length (hr), and 𝑒𝑎
∗  is the saturation vapor 

pressure (kPa) at the mean daily air temperature (AT, ℃) calculated by the equation modified from Dingman (2015): 

 𝑒𝑎
∗ = 0.611 × exp (

17.3×𝐴𝑇

𝐴𝑇+237.3
)                                                                                                                       (2) 

A correction coefficient (Sun et al., 2002) was used to adjust PET calculated by Hamon’s equation to better 125 

represent the forest PET for the study region. The correction coefficients for North Carolina ranged from 1.0 to 1.2 

(Federer and Lash, 1978b), and was 1.3 for the Florida site (Sun et al., 1998). To be consistent and reduce 

uncertainty of PET estimates, 1.2 was used for all five wetlands in this study.   

2.2.2 Future climate change data 

The mean daily climate data were derived from the 20 GCMs, a product of the Multivariate Adaptive 130 

Constructed Analog (MACA) dataset (Supplementary Table S1) for two future RCP scenarios (RCP 4.5 and RCP 

8.5; 2006–2099). Future climate data represent intermediate and high greenhouse gas (GHG) emission scenarios 

considering a historical climate forcing baseline (1950–2005) (Duan et al., 2016).  

 The GCM dataset was statistically downscaled from the CMIP5 model resolutions to either 4- or 6- km 

(Abatzoglou and Brown, 2012) (http://maca.northwestknowledge.net/index.php). The downscaled GCM climate 135 

dataset was determined to be a proper selection (i.e., 90 % of Perkins PDF skill score between 0.8-0.95) across the 

SE US by observed means and the entire distribution of observations (Keellings, 2016). We analyzed the historical 

and future climate conditions key to wetland hydrology, including the daily maximum temperature near the surface 

http://aa.usno.navy.mil/data/docs/Dur_OneYear.php
http://maca.northwestknowledge.net/index.php
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(2 m), daily minimum temperature near the surface (2 m), and daily precipitation from January 1, 1950, to 

December 31, 2099. Daily maximum and minimum air temperatures were averaged to derive daily air temperature 140 

(Klein et al., 2002). Means from the 20 GCMs climate dataset were used. To analyze the historical and future 

hydroclimatic changes for the full time scale of the GCM simulations (i.e., 1950-2099), we selected three 

representative 20-yr time periods according to IPCC Assessment Report 5 (2014). These time periods included: the 

end of the 20
th

 century (1980–1999) as a baseline, future mid-21
st
 century (2040–2059), and the end of 21

st
 century 

(2080–2099). Thus both the historical run and the future run share the same bias from the same GCM climate 145 

dataset. The five simulation scenarios include:  

i. Baseline: baseline period 1980–1999;  

ii. F1: RCP 4.5 for the future period 2040–2059;  

iii. F2: RCP 4.5 for the future period 2080–2099; 

iv. F3: RCP 8.5 for the future period 2040–2059;  150 

v. F4: RCP 8.5 for the future period 2080–2099. 

2.3 Model Development 

We used a general regression model for this study by including climatic variables and water table depth 15-day 

prior to the modeled date that has major controls of wetland water balances. The fluctuations of water table are a 

result of the water balance between inputs (i.e., precipitation (P), groundwater and surface inflows) and outputs (i.e., 155 

outflow and evapotranspiration (ET). Therefore, we hypothesized that P and ET fluxes and associated 

meteorological variables should largely control water table fluctuations. The lagged 15-day mean water table (i.e., 

water table 15 days prior to the modeled date) was also considered as potential explanatory variables following 

similar studies for hydroregime prediction (Greenberg et al., 2015, Webb et al., 2003), urban water demand 

prediction (Almendarez-Hernández et al., 2016; Arbués et al., 2004; Arbues et al., 2010, Lyman, 1992), and energy-160 

food-water interaction modeling (Liu et al., 2017; Ozturk, 2015). The adjustment’s significance of minimizing 

heterogeneity in the traditional Ordinary Least Squares assumptions was confirmed by including the first lagged 

dependent variable (Lyman, 1992; Ozturk, 2015). Additionally, the variance of the dependent variable does not 

change by introducing a proven wide-sense stationary (|β|<1) first-order autoregressive process (Yt = α + βYt−1 +

εt , where εt is a white noise process with zero mean and constant variance σε
2) (Mills, 1990). Also, the selected 165 

explanatory variables are considered to be independent.   

Actual water loss from wetlands (ET) is controlled by both PET and precipitation (Sun et al., 2002). PET is 

mainly controlled by net radiation, air temperature, wind speed, and air humidity (Hargreaves and Samani, 1982). 

Due to data availability, this study used the air temperature-based Hamon equation to calculate PET (Hamon, 1963). 

The Hamon’s PET method has been widely used worldwide to estimate potential forest water use (Sun et al., 2002). 170 

Also, PET instead of air temperature was introduced into the model since PET was affected not only by air 

temperature but also day length, which can better reflect variation in evaporative demand in different locations 

compared to air temperature alone. 
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The temporal scale for this study is 15-days, in line with criteria used by common wetland definitions. According 

to the U.S. wetland regulatory standards, an area would be qualified as wetland when it is wet enough to be saturated 175 

within 1 ft (i.e., ~30 cm) of the ground surface for two weeks or more during the growing season in most years 

(Tiner, 2016). In addition, it is suggested that the water of wetlands should be held in impoundments for at least two 

weeks to provide weed control and also prolong wildlife use of habitat (Nelms, 2007). Thus, we set 15 days as the 

model time step, and all-time series data were transformed to 15-day intervals.  

Once all possible controlling variables were examined, we used correlation analysis and stepwise regression 180 

procedures to develop a parsimonious model for predicting wetland water table dynamics for each wetland. All 

explanatory variables were individually standardized first and introduced to the stepwise regression procedures to 

select the explanatory variables that were highly correlated to the modeled water table depth. The correlation 

analysis between any two of the selected explanatory variables was executed to distinguish paired collinearity. To 

reduce the multicollinearity, each of the paired collinear variables was removed by turns, and the other selected 185 

explanatory variables were then individually reintroduced to the stepwise regression procedures to seek a balance 

between the best statistical performance of the model and minimal multicollinearity of the explanatory variables 

(Sachindra et al., 2013). The correlation analysis and the stepwise regression model procedures were combined in 

this study to obtain an optimized model with the least number of variables and best statistical performance. Both the 

normality and the homoscedasticity for the five wetland sites were tested before the models were used for 190 

prediction. Also, the autocorrelation disturbance process was tested by Durbin’s h statistic (Bhargava et al., 1982). 

After the above tests and correlation analysis, the final model was chosen based on the coefficient of determination 

(R
2
) and probability (P) value at a confidence level of 95 %. Data were separated into two groups that covered 

different periods for model development and validation (Table 2).  

Limited data availability can contribute to model deficiency. Long-term, high resolution observed wetland water 195 

table data for multiple sites in the SE US are rare. For example, the Alligator River National Wildlife Refuge 

bottomland hardwood wetland (AR site), is located in a remote location and water table data are the only 

measurements that characterize the local hydrological condition. Fortunately, the dataset covered both dry and wet 

years at the selected sites and was available for model development and validation. At the FL–UP and FL-WET 

wetlands, the time series including wet and dry years (1993–1994) were used to develop the model, and the 200 

remaining data (1992, 1995, and 1996) were used for model validation (Fig. 3). Then the model was applied to 

predict water table depth based on the GCMs dataset (1950-2099), including the baseline period (1980-1999) and 

the future periods (2040-2059, 2080-2099). 

The modeled future water tables were presented at annual and 15-day scales to better understand the variabilities 

of long-term averages and short-term extremes on water table dynamics. The modeled 15-day lowest water table 205 

data were further analyzed in two ways: 1) the percentage of time when water table level is lower than 0 cm, 

representing the likelihood of a wetland without surface water ponding, and 2) the percentage of time when water 

table level was between 0 and -30 cm, representing the likelihood of saturated soil. This 30-cm definition was based 

on previous studies that suggested wetland soils have a 30 cm saturated fringe and the average root depth is about 30 

cm (Tiner, 2016). The 30-cm depth was also observed as the boundary ‘switch’ for CH4 emission (Moore and 210 
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Knowles, 1989), ammonification, denitrification (water table depth <30 cm) and nitrification (water table depth >30 

cm) (Hefting et al., 2004).                                                                

3 Results 

3.1 Selected models and model performance 

The stepwise regression results suggest that the following linear model form best fits the water dynamics at all 215 

five wetlands: 

 𝑌𝑖𝑡 = α𝑖0 + β𝑖1 𝑋1𝑡 + γ𝑖1 𝑌𝑖𝑡−1 + 𝜀𝑖𝑡                                                          ( 4 )   

where X1t is the P-PET in mm per15 days, Y is the water table depth of wetland i (i=1, 2, 3, 4, 5) in cm at time t, and 

t, t-1 is the current and previous time step, respectively. The residual plots and the normal probability plot of 

residuals showed normality and homoscedasticity for all five specific models. Durbin’s h statistic showed that all 220 

five wetland regressions support the autocorrelation disturbance process. The predicted water tables matched the 

observations consistently for all five wetlands with the determination coefficient (R
2
, the proportion of the variance 

in predicted water table depth) values ranging from 0.69 to 0.83 (Fig. 2). The statistics and parameter values for the 

five wetlands varied (Table 3). Among the five wetlands, β𝑖1 and γ𝑖1  were different but generally close, ranging 

from 0.11 to 0.40 and from 0.77 to 0.87, respectively (Table 3).  This suggests there are some site-specific 225 

differences, but the influence of P-PET and antecedent water table at t-1 time step on the modeled water table at t 

time step was similar across the study sites. However, the intercepts α𝑖0 did vary significantly, with a maximum of 

23.2 (FL–UP) and a minimum of -1.2 (AR), indicating that there may be other site specific factors that could vary 

across different wetlands but that are not explicitly included in the model as explanatory variables.     

The statistical models were then validated using independent subsets of water table data during the validation 230 

period (Table 2, Fig. 3). The average water table was over-predicted by 1.4 cm for LP (-106.25 cm for observation, -

104.85 cm for prediction, with root mean square error (RMSE) of 4.92 cm, similarly hereinafter), 0.95 cm for FL-

WET (19.02 cm, 19.97 cm, with RMSE of 9.23 cm), and 1.3 cm for SC (-19.1 cm, -17.8 cm, with RMSE of 5.16 

cm). Also, it was under-predicted by 2.11 cm for FL-UP (-48.97 cm, -51.08 cm, with RMSE of 5.9 cm), and 0.38 cm 

for AR (-4.19 cm, -4.57 cm, with RMSE of 3.71 cm). The models captured the changing water table level even 235 

during an extremely dry year (e.g. 2007-2008 at LP). For the FL-WET, the water table levels were over-predicted in 

the normal period while the observations and the predictions matched better during the dry year in 1993. Overall, the 

results show that the models performed reasonably well for all five wetlands, and could be used to predict future 

changes in water table level due to climate change.  

3.2 Projected patterns of future air temperature, PET, and precipitation 240 

The increase of the future mean annual air temperature in RCP 8.5, compared to the historic 1980 to 1999 

baseline, is expected to be 3.9 °C, 4.3 °C, 4.0 °C, and 4.4 °C in the future (2080 to 2099) for AR, LP, FL, and SC, 

respectively (Table 4, Fig. S1). The average increase from the baseline in RCP 8.5 in the five wetlands would be 
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approximately 4 °C, which is consistent with the U.S. climate assessment report (Pachauri et al., 2014). Future 

annual total PET, would increase by 23 % (221 mm), 25 % (238 mm), 23 % (267 mm), and 25 % (266 mm) for AR, 245 

LP, FL, and SC, respectively, in the RCP 8.5 scenario compared with that of the historical baseline period (Table 4). 

The increase in PET is expected to be smaller in the RCP 4.5 scenario (Tables S2–S6, Fig. S2). For example, PET of 

wetland AR would increase by 13 % (130 mm) in the RCP 4.5 scenario (1107 mm), while the increase is 23 % (221 

mm) in the RCP 8.5 scenario (1198 mm, Table S2).  

 The baseline mean annual precipitation was 1266 mm, 1275 mm, 1318 mm, 1192 mm (Tables S2-S6, Fig. S3) 250 

for AR, LP, FL, and SC, respectively. The annual total precipitation under RCP 8.5 scenario would increase the 

most in the wetlands LP (63 mm) and SC (60 mm) (Table 4), which is nearly two times of the increase in wetland 

AR (37 mm). In contrast, the annual precipitation is projected to decrease at FL by 21 mm (Table 4). Unlike air 

temperature and PET, the magnitudes of the precipitation changes in the future RCP 8.5 scenario were smaller than 

that of the RCP 4.5 scenario (Tables S5–S6). Specifically, the precipitation would increase by 56 mm, 68 mm, and 255 

70 mm (Tables S2-S4) under the RCP 4.5 scenario for wetland AR, LP and SC, respectively.  

Future predicted PET will increase more than precipitation, causing a decrease in P-PET for all five wetlands. 

Specifically, the future annual mean P-PET in the RCP 8.5 scenario would decrease by 64 % (decrease by 184 mm 

from the 290 mm of baseline), 56 % (decrease by 175 mm from 313 mm), 175 % (decrease by 289 mm from 165 

mm), and 146 % (decrease by 207 mm from 142 mm) at AR, LP, FL, and SC, respectively (Fig. 4, supplementary 260 

Tables S1–S6). The decrease in P-PET is smaller in the RCP 4.5 scenario. For example, the annual P-PET at AR 

would decrease by approximately 75 mm (26% of baseline) in RCP 4.5 and 184 mm (64 % of baseline) in RCP 8.5 

(Table S2).  

3.3 Future water table dynamics 

3.3.1 Predicted annual water table  265 

This modeling analysis suggests that future climate change may considerably affect wetland hydrology. The 

annual average water table exhibits a decreasing trend in all the five wetlands predicted by the 20 GCMs under both 

RCP8.5 and RCP4.5 scenarios (Fig. 5). In AR, the mean water table will decrease by 4 cm from a long term 

historical baseline period mean of 0 cm depth (Table S2) compared to the future RCP 8.5 scenario. The mean annual 

water table would decrease by 19 cm in LP (originally -100 cm, Table S3), by 7 cm in SC (originally -16 cm, Table 270 

S4), by 17 cm (originally -73 cm, Table S5) in FL–UP and by 22 cm (originally 2 cm, Table S6) in FL–WET.  

3.3.2 Predicted future 15-day water table 

At the 15-day and annual scale, future water table would decline at all sites under the RCP 4.5 and especially for 

the RCP 8.5 scenarios (Fig. 6). For AR, the decrease of the 15-day lowest water table would be 7 cm, from -10 cm 

of the historical baseline period to -17 cm under the future RCP 8.5 scenario (Fig. 6). The decrease for LP, SC, FL–275 

UP, FL–WET would be 28 cm (from -135 cm), 14 cm (from -28 cm), 23 cm (from -101 cm), and 27 cm (from -19 

cm), respectively (Fig. 6).  
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Additionally, all the predicted 15-day water table levels were negative (i.e., water table < 0 cm) at LP, FL–UP, 

and SC, meaning there would be no surface water ponding in the RCP 8.5 scenario, as well as in the baseline 

scenario (Table 5, Fig. 6). In contrast, the wetlands AR and FL–WET show a lower probability (i.e., 40 % for FL–280 

WET, 49 % for AR) with no surface water ponding in the baseline, but a significantly increasing probability of 62 % 

and 93%, respectively, in the RCP 8.5 scenario.  

Despite the fact that LP, FL–UP and SC were all predicted to have no surface water (water table < 0 cm) over the 

study period, the soil saturation status (water table depth still within 30 cm) varied by location (Table 5). Site LP and 

FL–UP would completely dry up by 2099 based on the RCP 8.5 scenario. Wetland SC was saturated 100 % of the 285 

time during the baseline period, but the saturation period would decrease to 57 % by 2099. The wetland FL-WET 

would be the most sensitive of the five sites. In FL-WET, the probability would increase most in losing surface 

water ponding (increasing from 40% to 93 % from the baseline period to 2099) and decrease most in saturated soil 

(decreasing from 100% to 63 %). Notably, the wetland AR would be the only wetland that would remain 100 % 

saturated under all future scenarios including RCP 8.5 scenario (Table 5, Fig. 6).  290 

4 Discussion  

4.1 Difference and consistency of wetland hydrology models  

   The lower R
2
 values (0.69) of the model in FL-UP site than the FL-WET site (0.78) might be caused by other 

impacts beyond the model considerations, e.g. the hydrologic interaction between the uplands and the wetlands in 

the Florida site. Also, the temporal scale of 15 days may better capture the hydrological changes in FL-UP rather 295 

than FL-WET due to a faster drainage system in the FL-UP site. Further, different regression coefficients of climatic 

and hydrologic parameters (P-PET and antecedent water table at t-1 time step) and different intercepts (Table 3) 

among the five wetlands indicate different major controls for each of the wetland types. For example, the model 

shows much lower (approximately ten times) intercepts in wetland LP (-19.55) and wetland FL–UP (-23.17), 

compared to wetland FL–WET (-1.36) and wetland SC (-3.79). This is reasonable, given that both wetland FL–WET 300 

and wetland SC are depression wetlands, or geographically isolated wetlands (Tiner et al., 2016) (i.e., ponds within 

flat landscape) surrounded by uplands. Thus the wetlands would be wetter and ponded more frequently than 

uplands. However, site FL–UP has sandy soils and would drain faster with the artificial ditching systems and higher 

elevation comparing to FL-WET on a flat landscape. Hence, the much lower intercepts of site FL–UP and site LP 

may reflect the topographic and drainage management controls for these two wetland types.  305 

4.2 Differing controls on future wetland hydrology in different wetlands   

Although the model structure proved the same in all five wetlands, and had good performance overall, a closer 

comparison shows differing influences on the wetland hydrology. For example, the future annual water table depths 

in RCP 8.5 scenario decline the most in wetland FL. This may not only be due to the PET increase, which was 
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similar to that of the other three sites (AR, LP, and SC), but also because the precipitation decreased in the wetland 310 

FL, while it increased at the other sites. 

     Future changes in precipitation and PET are predicted to vary between AR and LP. In the RCP 8.5 scenario, the 

increment of PET in LP is 8 % higher than that in AR (Table 5), and the increment of precipitation in LP is 170% 

higher than that of AR. However, the change in P-PET is generally similar between the two wetlands (i.e., -175 mm 

for LP and -184 mm for AR, Supplementary Table S2-S3). Despite the similar P-PET changes, the projected future 315 

water table depth changes in AR and LP are different. The mean water table depth of LP was predicted to decrease 

19 cm compared to 4 cm, for AR from the period of 1980-1999 to 2080–2099. The differences are reflected by the 

different intercepts of the models, and may be due to the different management conditions in AR and LP. Wetland 

AR is a natural undisturbed natural bottomland hardwood swamp, while LP is highly managed pine plantation forest. 

LP has well-established ditches for drainage, with a flowline below the surface of the water table so that the 320 

hydraulic head of the drain is lower than the hydraulic head of the field water table depth. The drainage outflow of 

site LP from the watershed is closely related to the water table depth (Amatya et al., 2006). Additionally, in reality at 

the AR wetland, the other local hydrologic drivers (not directly considered by the model, e.g., sea level rise) may 

increasingly slow the predicted decreasing water table depth. The sea level rise related hydrology may counter the 

predicted future water table decline. 325 

Wetland type also contributes to the different water table dynamics. The water table changes differ from the 

baseline to the future RCP 8.5 scenario for FL–WET and FL–UP with the different topography conditions. The more 

significant change in FL–WET water table depth compared to the other site differences suggests that depressional 

wetlands may be more sensitive to climate change compared to uplands, consistent with the results of Lu et al., 

(2009). Thus, the different responses of future water table depth in the wetlands modeled here, with varying climatic 330 

and topographic gradients and management practices, demonstrate the necessity and importance of developing 

wetland-specific hydrologic models. 

4.3 Implications 

4.3.1 Efficient modeling of wetland water table dynamics 

Compared to a lumped (e.g., DRAINMOD–FOREST, Tian et al., 2015) or distributed parameter model (e.g., 335 

MIKE SHE, Lu et al., 2009), the empirical hydrological models developed in this study is simple. However, our 

models were able to accurately predict the different water table dynamics for multiple wetland sites across the SE 

US region. Differences in wetland hydrological response to climate change suggest that different wetland 

management strategies should be developed according to individual site characteristics. For example, the differences 

between FL–UP and FL–WET suggest that depressional wetlands have higher sensitivity to climate change. The 340 

differences between AR and LP suggest the importance of integrating the mechanisms of water table response to sea 

level rise and extreme storm events.  

Overall, the empirical models developed from this study performed well at the site level, and can be incorporated 

into landscape and larger scale biogeochemical models. For example, the empirical hydrological models can be 

linked with local soil respiration or regional methane emission models. Such an empirical approach should be 345 
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compared to process-based hydrological models to effectively quantify the biogeochemical change under future 

climate. 

4.3.2 Biogeochemical cycles  

Previous studies report that 3 to 5 °C increases in temperature and 146 to 192 mm/year increases in precipitation 

would lead to a 175 % increase in the methane emissions (Shindell et al., 2004). The carbon (C) emissions in 350 

forested wetlands could be tightly linked (e.g., a logarithmic relationship) to drought or flood periods (Moore and 

Knowles, 1989). In the costal wetland (AR) in this study, Miao et al., (2013) found that 93 % of the annual average 

soil CO2 efflux of 960–1103 g C m
-2

 was released in non-flooded periods. Our study suggests that the non-flooded 

period would increase by 13 % (from 49 % to 62 %, assuming no influence in sea level rise) in the late 21
st
 century. 

This translates into a 116 to 133 g C m
-2

 CO2 efflux increase by the end of the century for this site. Other studies 355 

suggest that gross ecosystem productivity and the available carbohydrate substrates for soil respiration would 

decrease with drought (Noormets et al., 2008). Wetland trees may also alter the use and allocation of nutrients (e.g., 

N cycling) in response to the changing availability of water (Vose et al., 2016).  

4.3.3 Droughts and wildfires 

The projected warming and future drying trends indicate an increasing threat of drought and wildfire in the study 360 

area (Mitchell et al., 2014). Plant distributions may shift due to drought (Desantis et al., 2007; Mulhouse et al., 

2005), and trees may become increasingly susceptible to attack by pests and pathogens (Schlesinger et al., 2015). A 

warmer and longer growing seasons corresponds to an increased possibility of droughts and occurrence of wildland 

fires (Vose et al., 2016). Furthermore, increasingly frequent wildfire would release more carbon by biomass burning 

(Westerling et al., 2006) and stimulate other greenhouse gas (GHG) emissions (e.g., CH4 production) (Medvedeff et 365 

al., 2015). Thus, the management challenges in restoring wetland forests and reducing greenhouse gas emissions 

will substantially increase. 

4.3.4 Wildlife and habitat 

The predicted long-term drying of some sites (e.g., FL–WET) may greatly affect the biological diversity and 

metapopulations of wetlands by impacting the inter-wetland movements, recruitment, recolonization, and genetic 370 

exchange of many species (Moor et al., 2015; Osland et al., 2013). Long-term drying could reduce the dispersion 

among wetlands, and increase the isolation of primarily aquatic species such as cricket frogs (Acris gryllus sp.), pig 

frogs (Lithobates grylio), swamp snakes (Seminatrix pygaea), and water fowl (Greenberg et al., 2017, Davis et al., 

2017; Murphy et al. 2016). The abundance of waterfowl was greater on impoundments than on seasonally flooded 

wetlands (Connor and Gabor, 2006). Changes in the water table depth of even less than 10 cm (predicted to decline 375 

from 7 cm to 28 cm among the studied wetlands) may have profound effects on habitat choice and species 

composition, and provide conditions which favor certain species or communities over those currently dominant in a 

given wetland (Reddy and DeLaune, 2008). Brent geese switch habitats within a water level span of 30 cm (Clausen, 

2000). An equation linking decay coefficient for a specific habitat type and the water table depth was illustrated 
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Bouma et al. (2014). Temperature increase of 2 °C (projected to be 4 °C in this study) in Florida would influence co-380 

occurring mangrove and salt marsh plants (Coldren et al., 2016). This supports the hypothesis that wildlife habitats 

are at risk due to changing water table depth across the SE US.  

4.4 Uncertainty 

Although the models developed by this study are efficient for simulating the historic and future water levels at 

multiple wetlands, the models do not account the full physical processes that govern wetland hydrological cycles. 385 

For example, an increase in atmospheric CO2 concentration is likely to increase plant water use efficiency and thus 

the ET and water balance of wetlands (Brummer et al., 2012). The empirical models do not explicitly simulate 

lateral water loss/gain from net groundwater flow (Johnston et al., 2005) and thus may cause simulation errors for 

certain wet periods. Thus, there is uncertainty regarding the hydrological response to extreme events such as 

extreme droughts or floods. In addition, wetlands are not isolated, thus a landscape approach is needed to accurately 390 

model wetland hydrology.  Although water table dynamics are also affected by site-specific factors such as 

ditching/drainage, subsurface flow due to topographic differences and local landscape hydrology, they were not 

considered explicitly as explanatory variables in our model. For example, in the AR wetland, future water table 

changes will also be impacted by the local hydrological change due to sea level rise (Miao, 2013). Our main 

objective was to evaluate the potential impacts of climate change on wetland hydrology as forced primarily by 395 

changes in P and PET. We assume that the effects of other local site characteristic factors are nonetheless taken into 

account indirectly by the coefficients (i.e., intercepts) of the models.  

In addition to the uncertainty associated with hydrological model structure, there are uncertainties associated 

with future climate change data. The GCM precipitation/temperature projections are inherently inaccurate for small 

scale studies, in spite of model bias corrections that have been implemented, and multiple models are used in this 400 

application. Compared to previous studies using hypothetical climate change data or climate data from a single 

GCM, our approach of assembling climate data from 20 GCMs and applying separate models to multiple wetlands 

represents perhaps a more robust way to project hydrological response. Hypothetical or stochastically generated 

climate conditions were used in most previous modeling studies (Chen et al., 2016). Climate data from single GCMs 

(Greenberg et al., 2015; Wang et al., 2015) have been used in wetland hydrological response modeling, but using 405 

several GCMs (Chen et al., 2012; Meinshausen et al., 2011) could provide a more realistic assessment. However, 

different GCMs and future scenarios produce very different climate projections. The differences are even greater 

when applied to localized areas (Alo and Wang et al., 2008). Multiple and overall GCM data may provide a better 

full-scale estimate of climate changes (Hessami et al., 2008).  

5 Conclusions 410 

The empirical models developed in this study are able to simulate water table level dynamics for different types 

of wetlands across the SE US. With the antecedent water table, precipitation, and potential evapotranspiration as the 

main predictors of the water table level, the developed models are simple but powerful tools to provide useful 
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wetland hydrology information under a range of climatic and management conditions. Under future climate change, 

the decrease in water availability is predicted to be a dominant factor for all five wetlands, resulting in a drier future 415 

in the study region, especially for isolated wetlands in late 21
st
 century. This study confirms the hypothesis that 

climate change may have a significant but varying influence on the hydrology of different forested wetlands in the 

SE US.   

This may serve as a basis for future regional studies to understand the interaction between wetland hydrology 

and climate and to quantify the role of wetlands in regulating regional water and energy balances. Further studies are 420 

needed to explore the physical mechanisms of how climate change affects wetland water table dynamics and 

associated ecological processes. Process-based ecohydrological models are needed to fully account for the impacts 

of climate change on vegetation dynamics and associated hydrological changes, and also to better understand the 

wetland-upland interactions, and wetlands-sea level rise interactions.     
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Tables 

Table 1 Characteristics of the studied wetlands.   

Wetland Coordinate Climate (mean T 

and P) 

Soil Vegetation 

 

wetland type References 

AR 35°47’ N, 

75°54’ W 

17 ℃ in July, 7 ℃ in 

Jan; 1298 mm 

(1971-2010) 

Muck and fine sand Black gum, swamp tupelo, bald 

cypress, fetterbush, bitter 

gallberry, red bay 

Natural lower 

coastal plain forested wetland 

(Miao et al., 2013; Moorhead 

and Brinson, 1995) 

LP 35°48’ N, 

76°40’ W 

27 ℃ in July, 7 ℃ in 

Jan; 1320 mm 

(1945-2008) 

Organic and loamy sand 

  

Hardwoods, loblolly pine from 

1992 

Artificially managed lower 

coastal plain forested wetland  

(Sun et al., 2010; Tian et al., 

2012; Tian et al., 2015, 

Diggs, 2004) 

FL 29°48’ N, 

82°24’ W 
27℃ in July, 14 ℃ 

in Jan; 1330 mm 

(1992-1996) 

Organic sandy soil, 

impermeable blue- 

greenclays  

Flat woods: Pond cypress, slash 

pine, swamp tupelo (wetland); 

slash pine, saw palmetto, 

gallberry shrubs (upland) 

Cypress swamps and depression 

wetlands 

 

 

(Lu, 2006; Lu et al., 2009; 

Sun et al., 1998; Sun et al., 

2000) 

SC 33°06’ N, 

81°06’ W 
27℃ in July, 13 ℃ 

in Jan; 1193 mm 

(1951-2004) 

Loamy sand, deep sandy soils Bottomland hardwood trees 

(water oak, willow oak, swamp 

tupelo) 

Carolina bay (Pyzoha et al., 2008; Sun et 

al., 2006) 

 670 
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Table 2 Raw data summary. 

                                                       

Wetlands 

Data types 

AR LP SC FL − UP FL − WET                   

Observation 

data 

Meteorological 

data 

07/02/2009–

01/01/2011 

01/01/2005–

12/31/2012 

01/01/1997–

12/31/2002 

01/01/1992–

12/31/1996 

01/01/1992–

31/12/1996 

Interval 30 min Daily, with some 

data missing 

Daily Daily Daily 

Water table data 03/19/2009–

12/31/2011 

01/01/2005–

12/31/2012 

 

01/01/1997–

12/31/2002 

01/01/1992–

12/31/1996 

01/01/1992–

31/12/1996 

Interval Daily Daily Daily Daily Daily 

Validation 

data 

Model 

development 

Year 

2009–2010 2009–2012 1997–2000 1993–1994 1993–1994 

Validation year 2011 2005–2008 2001–2002 1992, 

1995–1996 

1992, 

1995–1996 

Interval 15 days 15 days 15 days 15 days 15 days 

Prediction 

data 

Meteorological 

data 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

01/01/1950–

12/31/2099 

      

Interval 30 min 30 min 30 min 30 min 30 min 

References Data collection 

methods 

Miao et al., 

2013 

Noormets et al., 

2010; 

Sun et al., 2010; 

Tian et al., 2015 

Sun et al., 2006 Lu et al. 2009;  

Sun et al., 2000 

Lu et al. 2009;  

Sun et al., 2000 
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Table 3 Results for regressions of water table for five wetlands in the southeastern United States. 675 

wetland α𝑖0 β𝑖1  γ𝑖1  R2 p   

AR (i=1) -1.24 0.1137 0.7698 0.81 <0.001 

LP (i=2) -19.55 0.3750 0.8530 0.83 <0.001 

FL–UP 

(i=3) 

-23.17 0.3963 0.7206 0.69 <0.001 

FL–WET 

(i=4) 

-1.36 0.2360 0.8707 0.78 <0.001 

SC (i=5) -3.79 0.1454 0.8164 0.72 <0.001 

Note: i is the number of the wetlands, i=1, 2, 3, 4, 5, t denoted the time periods, α𝑖0is the intercept estimate, β𝑖𝑛 is the coefficient 

estimate of the variable 𝑋𝑛 of the i wetland, γ𝑖1 is the coefficient estimate of the antecedent water table at t-1 time step of the i 

wetland, R2 is the coefficient of determination, and p is the associated probability value.  

 

Table 4 Annual changes of variables from baseline scenario to scenario RCP 8.5 of five wetlands in the southeastern 680 
United States. 

Wetland 
WT changes 

(cm) 

Baseline annual WT 

(cm) 

P 

(mm) 

PET 

(mm) 

P minus PET 

(mm) 

AT 

(Deg C) 

AR -4 0 37 221 -184 3.9 

LP  -19 -100 63 238 -175 4.3 

FL–UP -17 -73 -21 267 -289 4.0 

FL–WET  -22 2 -21 267 -289 4.0 

SC -7 -16 60 266 -207 4.3 

Note: WT is water table, P is precipitation, PET is potential evapotranspiration, AT is air temperature.  
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Table 5 A summary of 15-day water table fluctuations in growing season under future RCP 8.5 scenario of five wetlands 

in the southeastern United States 

Wetlands Lowest WT 

(cm) 

PB of 

No surface water 

PR85 of 

No surface water 

PB of 

Saturated soil 

PR85 of 

Saturated soil 

AR -17 49 % 62 % 100 % 100 % 

LP -164 100 % 100 % 0% 0 % 

FL–UP -124 100 % 100 % 0% 0 % 

FL–WET -46 40 % 93 % 100 % 63 % 

SC -42 100 % 100 % 100 % 57 % 

Note: WT is water table, PB is the probability in baseline period, PR85 is the probability in RCP 8.5 period (2080-2099, future 685 
scenario F4). The wetlands being ineffective to store surface water in this table was for WT<0 cm in 15 days, and the soil was 

considered saturated still for water table >-30 cm in 15 days during growing season. 
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Figures 

 690 

Fig. 1 Study area, where the star symbol marks the study site location. Wetland AR: wetland of Alligator River National 

Wildlife Refuge in North Carolina; wetland LP: wetland of loblolly pine plantation in North Carolina; wetland SC: 

wetland in South Carolina; wetlands in Florida: wetland FL–UP (upland in Florida) and FL–WET.   

 

   695 
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Fig. 2 Comparison of observed and simulated mean water table in five wetlands in the southeastern United States, WT is 700 

water table. 
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 705 

Fig. 3 Scatter plots of the observed and predicted mean water table in five wetlands in the southeastern United States 

(unit: cm), Dashed lines are 1:1 line. 
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Fig. 4 Total annual precipitation minus potential evapotranspiration of 20 GCMs in five wetlands in the southeastern 710 

United States (unit: mm). 

Note: Baseline: 1980–1999, historical run of GCMs;  

Mid 20-4.5: 2040–2059, RCP 4.5; Late 20-4.5:2080–2099, RCP 4.5;  

Mid 21-8.5: 2040–2059, RCP 8.5, Late 21-8.5:2080–2099, RCP 8.5; 

 715 
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Fig. 5 Mean predicted annual water table of 20 GCMs in five wetlands in the southeastern United States (unit: cm). 720 

Note: Baseline: 1980–1999, historical run of GCMs;  

Mid 20-4.5: 2040–2059, RCP 4.5; Late 20-4.5:2080–2099, RCP 4.5;  

Mid 21-8.5: 2040–2059, RCP 8.5, Late 21-8.5:2080–2099, RCP 8.5; 
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Fig. 6 Exceedance probability of the mean predicted water table in the growing season of 20 GCMs in five wetlands in the 

southeastern United States (unit: cm). 

Note: Baseline: 1980–1999, historical run of GCMs;  730 

Mid 20-4.5: 2040–2059, RCP 4.5; Late 20-4.5:2080–2099, RCP 4.5;  

Mid 21-8.5: 2040–2059, RCP 8.5, Late 21-8.5:2080–2099, RCP 8.5; 


