Referee 1

The manuscript reports a new effort in developing an SMOS NRT SM product by using
a neural network approach. The NN algorithm uses six SMOS brightness tempera-
tures at incidence angles from 30 to 45 deg binned at 5 deg intervals for horizontal

and vertical polarizations and ECMWF IFS soil temperature at 0-7 cm depth. Snow
depth and soil temperature at 0-7 cm depth < 274K from ECMWF IFS are also used to
exclude certain (snow covered and frozen) situations.

The NRT SM product was compared to ESA SMOS L2 SM product and to the in-situ
data from the SCAN and the USCRN soil moisture networks in USA and satisfactory
statistics were reported. The used ECMWEF soil temperature is from the layer of 0-7
cm, and the in-situ soil moisture sensors are installed at 5 cm depth.

Major comments

The used methods, data and assumptions are described in sufficient details with results
of comparison reported and conclusions drawn. However in discussion of the results,
some more in depth analysis of the differences and uncertainties between the different
products would be very useful for the use of the current product.

We thank the referee for his/her interesting and constructive comments.

1. The depth of the retrieved SM SMOS NRT SM used ECMWF SM at 0-7 cm to

train the NN, thus its retrieved SM should represent SM at the same depth, while ESA
SMOS L2 SM represents that of the emission depth or sensing depth. In discussing the
differences in between both products and those to the in-situ SM which is measured by
sensors installed at 5 cm depth and represents an averaged SM around 5 cm, it would
be important to point out such issues. In particular it would be important to explain why
the correspondence is less good where very low correlation coefficients are reported
and where and when such cases occur.

Unfortunately there is a misunderstanding. ECMWF SM is not used to train the NN. The NN is
trained on SMOS L2 SM. In the new version of the manuscript we have explained better the
differences of the approach used to implement the NRT SM product with respect to Rodriguez-
Fernandez et al. (2015). This has been done in the first paragraph of Sect. 3.

Regarding the more general comment on the sensing depth, it is a well-known problem to validate
remote sensing data using ground measurements. In addition, this effect cannot easily be
disentangle of the spatial representativeness effect, that is, that remote sensing measurements are
representative of 40-50 km while the in situ measurements are point-like measurements. This spatial
representativeness can easily be a more significant effect than the sensing depth issue. In the new
version of the manuscript we added a discussion on both the sensing depth and the spatial
representativeness issue at the beginning of Sect. 4.2. In addition, we remind that the goal of this
paper, as stated in the title, is to present the algorithmic and "first validation results" for the SMOS
NRT SM product comparing to the Level 2 SMOS SM product. Therefore, spatial
representativeness or sensing depth issues will not affect the comparison. In any case, follow up and
more thoughtful validation studies of the SMOS NRT SM product are recommended, ideally from
independent teams of potential users of this new ESA operational product.

2. The effective soil temperature
SMOS NRT SM uses ECMWF 0-7 cm soil moisture as its effective soil temperature. Previous



studies have concluded that the model temperature at this depth is not the most adequate one to use
(e.g. Dente et al., 2014) and this would increase the uncertainties in particularly semi-arid and arid
areas (e.g. Lv et al., 2016). It is also noticed that the SMOS L2 SM uses the Wigneron soil effective
temperature. The authors need provide an analysis to settle this issue.

References:

Dente, L., et al. "Combined use of active and passive microwave satellite data to

constrain a discrete scattering model." Remote Sensing of Environment 155 (2014): 222-238.

Lv, Shaoning, et al. "A reappraisal of global soil effective temperature schemes." Remote Sensing
of Environment 183 (2016): 144-153.

First, as said above, the SMOS NRT SM does not use ECWMF 0-7 cm soil moisture. Second, the
goal of this study is not to modify the way the SMOS L2 SM algorithm deals with soil temperature,
but to find a statistical alternative providing results faster at at least of the same accuracy, and we
showed that the accuracy of the NRT is slightly increased with respect in situ measurements. In this
context, we are afraid that a discussion of the effect of soil temperature in the Tor Vergata model
(Dente et al.), would be out of the scope of this manuscript. However, following the referee
comment, in the new version we remind in Sect. 2.1.1 that he SMOS L2 SM uses the approach of
Choudhury et al. 1982 with the parametrization by Wigneron et al. to compute a soil effective
temperature, and that the temperature data used in the SMOS L2 SM algorithm comes from
ECMWF model simulations. Therefore, it is logical to use ECMWF 0-7 cm temperature as a
predictor in the input of a neural network trained on SMOS L2 SM. The evaluations after training,
show that adding this soil temperature to complement the SMOS brightness temperatures improve
the NN performances to capture the dynamics in the training data by ~ 3 %. In the corrected version
of the manuscript we have also clarified this point taking into account the referee comment and
adding those details in the first paragraph of Sect. 3.

Technical comments

While the manuscript is written in clear language, many typos need to be corrected.
Some are listed as follows:

P6L11: constrains -> constraints

P9L12: Levemberg-Marquard -> Levenberg-Marquardt

PIL18: this results -> these results

P11L5: please explain what is ‘short-scale dynamics’

P12L16: for of -> for

P12L5: patters -> patterns

P12L6: spacial -> spatial

P14L.24: shows —> show

P19L14: taken into account trough -> taken into account through

Thank you for this corrections. They have been taken into account.
Referee 2

This article details the performance of a neural network approach to soil moisture retrieval from
SMOS brightness temperature measurements and ECMWF temperature estimates. Comparisons are
made to the operational level 2 product and field measurements in northern America. A similar
performance to the operational product is demonstrated, with a considerably lower lead time. The
training and validation data appear to have been drawn from the same time period - June 2010-
2012. This prompts questions as to the applicability of the approach to data acquired at different



times — if the system is only trained and validated for a certain temporal range, how does it perform
on data outside that range? Five years of observations have been acquired since then, validation
using some of these would address whether changes on the Earth’s surface such as vegetation
growth have an impact on accuracy, and whether the neural network approach is reliable when
given inputs outside its trained range.

We fully agree with the reviewer. The evaluation period should be different to the training period.
That's is exactly what we did. The NN was trained using data from June 2010 to June 2012. A pre-
operational version of the NN was evaluated from May 2015 to November 2015 (Sect. 4). Taking
into account the good results. The NN NRT SM product become operational in January 2016. In the
corrected version of the manuscript the different periods are reminded in sect 2.1.2 .

Grammatical and spelling issues are detailed below. Figure 6(a) has either an outlier at the centre-
right of the figure which needs to be explained, or a cursor which should be removed.

Thanks. Actually it was a cursor. The figure has been corrected.

Spelling - accesible should be accessible, “equipement” should be “equipment” Usage “arboreous”
is not the right word; possibly “arboreal” was intended. p.8, 1.32 repetition of “water” p. 9, 1. 18
“this results” should be “these results” p.12 1.7 “well defined” should be “well-defined” p.16 1.14
remove additional “the”

Thank you. All those corrections have been done.

Referee 3

GENERAL COMMENTS

This is a well written and interesting paper describing a neural network approach for

retrieving soil moisture from SMOS in near-real-time. The results are highly relevant
for operational applications in hydrology, meteorology and other earth sciences. The

results are realistic and I recommend publication after minor revisions.

We thank the referee, Prof. Wagner, for his constructive comments that have allowed us to improve
significantly the manuscript, in particular putting the new SMOS NRT SM in the broader context of
other NRT SM processing chains such as the ASCAT one. We answer below the specific comments.

SPECIFIC COMMENTS
Page 3, lines 8-9: Explain why the NRT requirements cannot be met by the operational
SMOS Level 2 processor. Is it just a matter of timeliness?

Actually the limiting factor is not the L2 processing chain but the total LO-L1C-L2 processing
chain. The typical processing times to produce L1C brightness temperatures for a half-orbit is 1
hour. The .2 SM inversion can take up to 80 minutes if most of the grid points are land. However,
some computations of the processing chain are synchronized with the ocean salinity chain and data
handling and dissemination introduce overheads as well as the dissemination strategy was not
designed for NRT delivery. Therefore, the typical latency time from acquisition to SM
dissemination is around 6 hours. This has been explained in the new version (page 3, 2™
paragraph). In contrast, since NRT Tbs are received by ECMWF it was decided to use them with a
neural network algorithm for the NRT SM processing chain. A simplified version of the L2SM
algorithm could also have been used with the NRT Tb's meeting almost the NRT requirement, but
the NN is faster and much more simple to implement once the NN is trained.



Page 3: Please also discuss possible disadvantages of the neural network approach
already here. One topic is certainly the difficulties caused by changes in the sensor
characteristics and Level 1 algorithms. Refer to experiences from other operational
NRT services.

In the new version of the introduction we have cited the ASCAT NRT processing chain and that it is
actually used for data assimilation at ECMWEF. At the end of the same paragraph, we also comment
on the fact that ASCAT and SMOS NRT processing chains are based on models whose parameters
are fixed offline using a large amount of data and that those parameters should be updated if there
are significant changes in the input data.

Page 4, line 5: What exactly do you mean by “arboreous component”? Do you mean
the forest canopy?

We meant “trees”. We replaced “arboreous” by “trees”.
Page 4, line 16: “. . . was obtained by training . . .”
Done

Chapters 3.1 and 3.2: Please explain why the neural network relies on normalised data
instead of the absolute brightness temperature values.

The local normalized index (or linear expectation) were showed to improve the retrieval results by
Rodriguez-Fernandez et al. (2015). As explained in that paper, the use of those indexes as predictors
was inspired by the “change detection” approach used by scatterometers. In the new version of the
manuscript those informations are reminded explicitly in Section 3.1.

Page 8, line 23: 50 % is a very large value. Please explain.
Page 8, line 32: Here you allow no open water (0 %), which is in stark contrast to the
50 % threshold from above.

Thank you for pointing this out. Actually no additional filters regarding the water fraction were used
to train the NN. The sentence has been removed. The maximum of 50 % of open water was used
because it is the same value for ECMWF land products. Even with less than 50 % of open water the
SM retrievals can be overestimated. However, L2SM retrievals are needed to define the local linear
expectation index I, and the total number of L2SM retrievals with a free water fraction higher than
20 % is very low. Therefore, the same applies to the NRT NN retrieval. Still, SM values provided
for footprints with open water are less reliable but it was decided to keep the values to allow the
users to evaluate and decide by themselves. In the new version of the manuscript the readers are
directed to the sea land surface mask aggregated into the ISEA grid in order to filter out mixed
footprints if needed.

Page 8, bottom: Reformat list of put into table.

We guess that the referee remark was due to the double spacing of the “review” format for the
manuscript but we have reformatted the list into a Table.

Chapter 4.1: Please explain why you decided not to use more advanced metrics.



We are not sure what are the metrics that the referee was thinking of. However, this paper concerns
the presentation of the processor and the first evaluation results. In this context, we reckon that a
global evaluation comparing the means of the two data sets, the bias, the Pearson correlation,
RMSD and STDD, gives a good first idea of the properties of the new dataset. In addition, the
evaluation of those two datasets has been compared to in situ measurements using the former
metrics plus, in addition, the correlation of the anomalies time series to get further insight into the
abilities of each dataset to capture the short term dynamics. We do reckon that the manuscript
contains a good overview of quality metrics.

Discussion of Table 1 and Figure 5: The fact that the correlation R is overall slightly
better for NRT than the L2 processor is noteworthy. Please discuss this in more detail
and provide possible hypothesis why this is the case.

The reviewer is right. The NRT product shows a lower STDD and a higher R for the central two
quartiles of the distribution (green boxes in Fig. 5). This behaviour was already found in previous
studies such as Rodriguez-Fernandez et al. 2015. In the new version of the manuscript this result is
discussed and interpreted in Sect. 5.3. Provided that the training is done with a large number of
statistically representative samples, the NN will not be significantly affected by outliers or
inconsistent values during the training phase and the NN output will the most likely (in the sense of
the Bayes theorem) SM value taking into account a given set of input data. Thus, a good NN model
can show slightly better quality metrics when compared to in situ measurements than the dataset
used to as reference to train the NN.

Page 16, line 15: Explain what you mean by “similar”. What are the differences in
implementation to the approach introduced by Rodriguez-Fernandez (2015)?

The main differences are :

* the training data is SMOS L2 and not ECMWF models

* alimited number of incidence angles is used in order to increase the swath width.

* Input Tbs are NRT Tbs and not Level 3 Tbs
Taking into account a comment by reviewer 1, which apparently understood that the NN was
trained on ECMWEF as in Rodriguez-Fernandez et al. 2015, we have decided to better explain the
differences in Sect. 3 and to remove the sentence in the summary that could lead to
misunderstandings for people not reading the whole paper.
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Abstract. Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them,
operational hydrology and numerical weather prediction, for instance, need soil moisture information in near-real-time (NRT),
typically not later than 3 hours after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)
satellite is the first mission specifically designed to measure soil moisture from space. The ESA level 2 SM retrieval algorithm
is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM
product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal
and vertical polarizations and incidence angles from 30° to 45°. In addition, the NN uses surface soil temperature from the
European Centre for Medium Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on
SMOS Level 2 SM. The swath of the NRT SM retrieval is somewhat narrower (~ 915 km) than that of the L2 SM dataset
(~ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level
2 SM product. The NRT SM data shows a standard deviation of the difference with respect to the L2 data of < 0.05 m®*m~2 in
most of the Globe and a Pearson correlation coefficient higher than 0.7 in large regions of the Globe. The NRT SM dataset does
not show a global bias with respect the L2 dataset but can show local biases of up to 0.05 m3m~3 in absolute value. The two
SMOS SM products were evaluated against in situ measurements of SM from more than 120 sites of the SCAN (Soil Climate
Analysis Network) and the USCRN (United States Climate Reference Network) networks in North America. The NRT dataset
obtains similar but slightly better results than the L2 data. In summary, the neural network SMOS NRT SM product exhibits
performances similar to those of the Level 2 SM product but it has the advantage of being available in less than 3.5 hours after
sensing, complying with NRT requirements. The new product is processed at ECMWF and it is distributed by ESA and via the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) multicast service (EUMETCast).
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1 Introduction

Surface soil moisture (SM) represents less than 0.001 % of the global freshwater budget by volume but it plays an important
role in the water, carbon and energy cycles (Lahoz and De Lannoy, 2013). SM is the water reservoir for plants and agriculture
and it affects the evolution of diseases such as malaria (Montosi et al., 2012; Peters et al., 2014). The amount of moisture in
the soil is an important variable to understand the coupling of the continental surface and the atmosphere (Koster et al., 2004;
Seneviratne et al., 2006; Tuttle and Salvucci, 2016). Surface SM softens the effect of precipitations, affects the partitioning of
the water cycle (infiltration and run-off, and therefore the groundwater storage McColl et al. (2017)) and it can can also be used
to improve rainfall estimations (Pellarin et al., 2008; Crow et al., 2009; Brocca et al., 2016). SM measurements have been used
to perform data assimilation into land surface models (Xu et al., 2015; Blankenship et al., 2016; Lievens et al., 2016), SVAT
(Soil Vegetation Atmosphere Transfer) models (Martens et al., 2016; Ridler et al., 2014; Muifioz Sabater et al., 2007) and in
carbon-cycle models (Scholze et al., 2016). SM data assimilation can improve river discharge predictions, and remote sensing
measurements are useful in otherwise data-scarce catchments (Alvarez-Garreton et al., 2016; Chen et al., 2011; Pauwels et al.,
2002). SM measurements are useful to monitor landslide risks (Hawke and McConchie, 2011) and remotely sensed SM has
been used to compute landslide susceptibility maps (Ray et al., 2010).

Regarding flood forecasting, in the framework of the European Flood Awareness System (EFAS) the forecast accuracy
improves significantly (5-10%) when remotely sensed SM is assimilated in addition to discharge data (Wanders et al., 2014).
SM initial conditions are among the most important hydrological properties affecting flash flood triggering (Norbiato et al.,
2008; Ponziani et al., 2012). The assimilation of soil moisture products from the Advanced Scatterometer (ASCAT) has been
successfully used in the context of flash flood early warning systems in Mediterranean catchments (Cenci et al., 2016).

In addition to operational hydrology applications, operational numerical weather prediction also benefits from remotely
sensed SM data assimilation. Meteorological agencies such as the European Centre for Medium Range Weather Forecasts
(ECMWF) and the United Kingdom Met Office assimilate ASCAT surface SM into their operational numerical weather pre-
dictions models (de Rosnay et al., 2013; Dharssi et al., 2011). The approach has also been tested in off-line mode at Meteo
France (Barbu et al., 2014). To be useful for operational applications, remotely sensed data should be available in near-real-time
(typically less than 3-4 hours after sensing, hereafter NRT).

The Soil Moisture and Ocean Salinity (SMOS) European Space Agency (ESA) satellite (Kerr et al., 2010) is the first in-
strument that has been specifically designed to measure soil moisture from space. It carries an L-Band (1.4 GHz) radiometer
to perform full polarization and multi-angular (0° - 60°) measurements of the Earth thermal emission. ECMWF uses SMOS
NRT brightness temperatures (13,’s) in their operational Integrated Forecasting System (Muiloz Sabater et al., 2012). The ESA
SMOS operational Level 2 SM retrieval algorithm is based on a point-per-point iterative minimization of the difference of a
physical model and the satellite measurements (Kerr et al., 2012). The free parameters are the soil moisture content and the
1.4 GHz opacity, which is mainly due to the water content of the vegetation in between the soil surface and the sensor (which

some authors refer to as VOD, vegetation optical depth).



10

15

20

25

30

35

Many studies have evaluated the SMOS L2 SM dataset in comparison to other remote sensing datasets, models and in situ
measurements (Al Bitar et al., 2012; Wanders et al., 2012; Albergel et al., 2012; Bircher et al., 2013; Al-Yaari et al., 2014a, b;
Leroux et al., 2014; Louvet et al., 2015; Kerr et al., 2016). SMOS shows very good global performance although other remote
sensing and model products can show better performances at some sites. In any case, datasets from the only two instruments
specifically conceived to measure SM, SMOS and NASA’s Soil Moisture Active Passive (SMAP), compare very well with
each other (Jackson et al., 2016; Burgin et al., 2016).

As already mentioned, most operational users over land, in particular in numerical weather prediction and operational hydrol-
ogy, require SM information to be available in NRT, typically referring to less than 3-4 h after sensing. Thisrequirementeannot

1O NO ave NrOCALLO

proeessing-times—Heowever, For instance, ASCAT soil moisture data is distributed by the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) within 135 minutes after data acquisition (Wagner et al., 2013

which allows to assimilate the data by operational numerical weather prediction centers such as ECMWEF (de Rosnay et al., 2013) .

In the case of the current SMOS ground segment, the production of Level 1C 7},’s from raw data takes typically 1 hour
of processing time and the Level 2 SM inversion up to 80 minutes for a half-orbit. However, due to data handling
operations, the synchronization of some operations and the dissemination orchestration the total latency time from
data acquisition to SM dissemination is of the order of 6 hours. Therefore, this processing chain does not fulfil the
NRT requirements. However, as already mentioned, SMOS 7,’s are provided in NRT to ECMWEF. In addition, with

6 years of SMOS measurements available, statistical algorithms can be exploited to provide faster retrievals and neural net-
works have been shown to be a promising technique to generate a SM dataset from SMOS brightness—temperatares—1},’s
(Rodriguez-Fernandez et al., 2015). Based on the latter, a neural network processing chain to provide SMOS SM in NRT has
been implemented by ESA. The requirements are that the NRT dataset should display at least the same accuracy as the geo-

physical level 2 soil moisture data product, the data should be retrieved over a large swath, and the retrieval should rely on

a minimum of auxiliary data files. The-new-NRT-As the ASCAT NRT SM processing chain cited above, the SMOS NRT
SM chain handles model parameters derived off-line using a database with a large number of past observations. The
advantages are that the processing is robust and very fast. In case that significant changes in the Level 1 data used as

input are available, then the model parameters should be updated correspondingly.
The new SMOS NRT SM product is available from 2016 onwards and it is distributed through the World Meteorological Or-

ganization’s Global Telecommunication System (GTS) and the Eurepean-Organisation-for-the Exploitation-of Meteorologi
SateHites (EUMETSAT)-EUMETCastserviee- EUMET Cast service from EUMETSAT in NetCDF format. EUMETCast is a
dissemination system that uses commercial telecommunication geostationary satellites and research networks to multi-cast
data files to a wide user community.

This paper describes the SMOS NRT SM processing chain and discuss the first evaluation results. It is organized as follows.
Section 2 describes the data used for the implementation and the validation of the SMOS NRT SM product. Section 3 discusses
the NRT SM processing chain (more details are given in the Appendix). Section 4 contains a description of the methods used

to evaluate the NRT SM product. Section 5 presents the evaluation results. Finally, a summary is presented in Section 6.
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2 Data
2.1 SMOS satellite

SMOS (Mecklenburg et al., 2012; Kerr et al., 2010) measures the thermal emission from the Earth at a frequency of 1.4 GHz in
full-polarization and for incidence angles from 0° to ~ 60°. The full incidence angle range is aceesible-accessible in the center
of the swath. On the contrary, only angles in the 40°-45° range are accessible all across the swath. SMOS has 69 antennas
to perform interferometry and synthesize an aperture of ~ 7.5 m (Anterrieu and Khazaal, 2008). The spatial resolution on the
ground, defined as the projection of the full width at half maximum of the synthesized beam, is 43 km on average over the
field of view (Kerr et al., 2010). The satellite follows a sun-synchronous polar orbit with 6:00 am/pm equator overpass time for

ascending/descending half-orbits.

2.1.1 SMOS Level 2 soil moisture

The SMOS level 2 processor performs a detailed modelling of the Earth emission at 1.4 GHz at two polarizations
and a large number of incidence angles using the  — w (optical depth - single scattering albedo) approach to account

for interaction of L-band radiation with the vegetation (Wigneron et al., 2007) . The ground effective temperature is

computed from the soil temperature at a deep layer (~ 1 m) and the surface layer (a few cm’s) using the formulation of

Choudhury et al. (1982) with the parametrization by Wigneron et al. (2001) . The soil temperature for those two layers
is taken from ECMWF IFS model simulations.

For each grid node, the surface is modelled with 4 > 4 km? cells taking into account different land covers. Then the
processor computes the contributions of those cells within 123 x 123 km” accounting for the projection of the SMOS
synthesized antenna power pattern on the Earth surface to model SMOS:-like T7,’s. The vegetation optical depth (7)

and the SM content are free parameters that are allowed to vary to minimize the difference of the simulated 7;,’s and
SMOS Level 1C T3,’s. In the case of forest, two contributions to the opacity are taken into account: one from the arbereeus

componenttrees, which is estimated from the maximum Leaf Area Index (LAI, Ferrazzoli et al., 2002), and another from the
understory vegetation. Soil temperature is obtained from ECMWF Integrated Forecast System (IFS) data. For footprints with
mixed land cover, the SM content of the minor land cover is estimated from ECMWF IFS and its contribution to the 7}, is fixed.
For such cases, the SMOS SM retrieval is only performed for the dominant land cover class within the footprint (Kerr et al.,
2012). ESA Level 2 SM data are provided in an Icosahedral Equal Area (ISEA) 4H9 grid (Sahr et al., 2003) with a sampling
space of 15 km.

The version of the SMOS L2 SM dataset used in this study is v620, which became operational in May 2015. In order to have
enough data for a robust training of the NN, an additional dataset from 01/June/2010 to 30/June/2012 was reprocessed with the
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same version v620 of the L2 SM algorithm. The evaluation of the NRT SM product has been done from May 2015 to the time
of the NRT SM implementation (end of 2015).

2.1.2 SMOS near Real-Time soil moisture

The SMOS Near Real-Time SM product was obtained by training a neural network using SMOS T3,’s and soil temperature
from ECMWF models as input. Fhe-training-dataset-used-for-the-supervisedlearningphase-of-the-neural-network—was-the
SMOS-Level2-SM-—produet—SMOS Tj},’s are provided by ESA to ECMWF in NRT (less than 3 hours after sensing) — for
operational monitoring within the Integrated Forecast System (Muiioz-Sabater, 2015) .

‘The training dataset used for the supervised learning phase of the neural network was the SMOS Level 2 SM product.
The training was done using data from June 2010 to June 2012 and it is described in Sect. 3. The NRT SM processin

evaluation (presented in Sect. 5), the SMOS NRT SM product became operational in January 2016. The SMOS NRT
SM product is computed at ECMWF and delivered to ESA, where the data are sent to EUMETSAT for dissemination via

EUMETCast. SMOS NRT SM data can also be accessed via the SMOS online dissemination service from the ESA Earth
Online portal. The SMOS NRT SM data are provided in NetCDF files in the same ISEA 4H9 grid of other ESA SMOS
products. The version of the SMOS NRT SM data used in this study is version 100. More details on the NRT SM processor are

presented in Sect. 3 and in the Appendix.
2.2 Insitu soil moisture measurements

The SMOS NRT SM product was evaluated against in situ measurements of SM over a large number of sites. The same
evaluation was done with the Level 2 SM product. The in situ data used for those evaluations are described below.

The Soil Climate Analysis Network (SCAN) of the United States Department of Agriculture (Schaefer et al., 2007) has been
widely used to evaluate modelled and remote sensing soil moisture datasets and it contains over 100 sensors/sites. The sensors
are located in agricultural regions with a relatively homogeneous landscape in many cases. The sensors used in this study are
placed horizontally at 5 cm depth.

The United States Climate Reference Network (USCRN, Bell et al., 2013) is a network of climate monitoring stations with
sites across the U.S.A., managed and maintained by the National Oceanic and Atmospheric Administration (NOAA). This
network was designed with climate science in mind. The stations are placed in pristine environments expected to be free of
development for many decades. There are around 140 stations with sensors at different depths. The sensors used in this study
are horizontally installed at 5 cm.

The in situ data have been obtained directly from the teams operating both networks but these datasets are also available

from the International Soil Moisture Network Perigo-et-al-+2041-(Dorigo et al., 2011) .

3 The SMOS Near-Real-Time soil moisture processor
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Figure 1. Comparison of the NRT-NN SM product (a) and the Level 2 SM (b) for one orbit of day 27/May/2012. The corresponding NRT-NN

uncertainty is shown in panel (c), while the L2 SM uncertainty is shown in panel (d).
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Figure 2. Comparison of the NRT-NN SM product (a) and the Level 2 SM (b) for one orbit of day 27/May/2012.

NRT SMOS processor is based on a neural network approach to retrieve soil moisture from SMOS observations.
Rodriguez-Fernandez et al. (2015) showed that SMOS 73,’s binned in 5°-width incidence angle bins (the L3TB product, Al Bitar et .
as reference data to train the NN instead of ECMWEF modelled SM fields. They also showed that the additional input
dataset with a most significant impact on the retrieval is soil temperature. In the context of the ESA operational NRT
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Figure 3. Mean SM for the NRT (a) and the L2 (b) SMOS products. Pearson correlation (c), bias (d), root mean square of the difference (e)
and standard deviation (f) of the difference of the NRT SM and L2 SM.

NRT. Therefore, the ESA SMOS Level 2 SM dataset (Kerr et al., 2012) was used as reference dataset for the training

hase. Finally, taking into account operational constraints, the only complementary data used for the retrieval are soil
temperature estimations for the first layer (0-7 cm) of ECMWF models, which is the complementary dataset with a
most significant impact (~ 3%) on the retrieval (Rodriguez-Ferndndez et al., 2013) . This dataset was chosen because it

3.1 Input data

The input to the SMOS NRT SM processor are SMOS near-real-time 73,’s, which are distributed by ESA to ECMWF in BUFR

(Binary Universal Form for the Representation of meteorological data) format (Gutierrez-and-Canales-Molina; 2010;-de Rosnay-et-al5-2012

The T,’s are provided with the polarization referred to the antenna reference frame X'Y. Several quality checks are performed
to filter the 73,’s: T}, x and T}y should be in the expected physical range [80 K — 340 K] and the real and imaginary compo-

nents of the cross-polarised measurements (7}, xy) should be in the range [—50 K, 50 K], otherwise the T3,’s are considered
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to be corrupted or affected by RFI (Radio Frequency Interference from human-built equipement)—equipment). In order to

keep information on the possible residual RFI contamination, a RFI probability was computed for each observation
as the number of BUFR T3,’s measurements filtered out due to the RFI flags with respect to the total number of T},’s

measurements. The observed 7},’s are also filtered out if a specific BUFR flag indicates that the observation is located in a
zone affected by the aliased image of the Sun. The selected NRT 73,’s are transformed from the antenna-based XY reference
frame to the ground-based horizontal and vertical (H{ V') reference frame as described by 2-Al Bitar et al. (2017) .

In a second step the HV Tj,’s are averaged in 5°-width incidence angle bins. Three angle bins are actually used for training
and applying the neural network: 30°— 35°, 35°-40°, and 40°— 45°. As discussed by Rodriguez-Fernandez et al. (2016), using
these three angle bins is the best trade off of performances (which improve with a large angular signature) and swath-width
of the retrieval (which decreases with an increasing number of angle bins used). With this configuration SM is retrieved in
the central 914 km of the swath (the maximum possible swath is ~ 1150 km). A SM retrieval can only be done if there is a
well-defined value of the 73,’s for all the three angle bins and the two polarizations H and V. The current implementation of
the NRT SM processor does not perform any interpolation of the 73, versus incidence angle profiles.

Using the SMOS T3,’s measured at a time ¢ for a given latitude (\) and longitude (¢) grid point and for each polarization and

incidence angle bin, T}, , (t), a local normalized index can be computed as:

gmin Ty, (1) = 77"

pmin pmas b
I)\qg(t):SM)\db) —‘r[SM)\(; _SM)\¢ Tl:nam—Tl?{\i(Z (D
A A

min

Where T;"** and Tbmm are the maximum and minimum values of the T},’s in the local time (), ) series, SM T+~ and
SMT"™" are the associated SM in the SMOS Level 2 SM reference dataset. The index I is computed for each incidence
angle bin and polarization at the time ¢ of the SMOS acquisition and it contains a local information on the dynamic ranges
of both the measured 7;,’s and the reference SM. In the current version of the processor (v100), T;" azmin and SMTTT"

have been computed using data from 01/June/2010 to 30/June/2012 (the same period used to train the neural network, see

Sect. 3.2). This linear expectation index is inspired by the approach used to retrieve SM with the scatterometters
such as ASCAT (Wagner et al., 1999; Bartalis et al., 2007) and helps to improve the performances of the NN retrieval

(Rodriguez-Fernandez et al., 2015) .
The only auxiliary data used by the SMOS SM NRT processor are snow depth and soil temperature from the latest high-

resolution forecast produced by the ECMWEF IFS, with a typical latency of less than 1 h. The ECMWEF IFS soil temperature
in the 0-7 cm layer is used as input to the NN, as it increases the performances of the retrieval (Rodriguez-Ferndndez et al.,

2016). SMOS data from a given grid point are not used if snow is found in that point based on the latest ECMWF snow depth
forecast field or if the soil temperature forecast of the top soil 7 cm is below 274 K. Finally;-a-SM-retrieval-isnet-provided

more—than—-S0e he NO aotnrintic arad h a hicflte otrde—ep o oo-hieh—<o MO a ac ne
a H vaty

coastlines;for-instanee—The SMOS NRT SM dataset is a land-only product and a SM retrieval is not provided if more
than 50% of the SMOS footprint is covered by water. This filter avoids spurious soil moisture values near the coastlines
for instance. Of course, even if less than 50 % of the footprint surface is covered by water, the SM retrieval can still be
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affected by the free water. Users interested in regions close to the coast or to water bodies are advised to use the land-sea
mask available on the ESA SMOS Data Products portal. This mask was computed from the 1-km USGS (United States

Geological Survey) land-sea mask aggregated into the ISEA grid common to Level 1 and Level 2 SMOS products.

3.2 The neural network processor

The HV angle-binned T},’s have been collocated with ECMWF IFS forecasts for the soil temperature and snow cover and
finally they have been collocated with version 620 SMOS L2 SM data (Kerr et al., 2012) in the 01/June/2010 to 30/June/2012
period. As discussed above, a local normalized index I has been computed from extreme 7},’s and the associated L2 SM. In
addition to the filters discussed above (hard RFI, Sun tails, frozen or snow covered soil, water fraction), to compute the

extreme values tables and for the training of the NN, the following filters have also been applied:
— The latitude is limited to the [-60°,75°] range.

—A SMOS L2 SM value

associated to the maximum or minimum 73, is required (otherwise I cannot be defined).

— The SM uncertainty provided by Dax (Data Quality Index) parameter in L2 SM data files was required to be lower than

0.06 m*m~2 to use the most reliable data for the training.

The input vectors contain 7},’s and I indexes for H and V polarizations and the three angle bins from 30° to 45° and the
soil temperature from O to 7 cm from ECMWF IFS forecast. Therefore, input vectors have a total of 13 elements. All the 13
elements must be well-defined to train the NN and there must be a well-defined associated SM value.

One fifth of the vectors in the training data base were selected randomly to have ~ 3 x 10° vectors. A subset of 60% of those
vectors is used for the actual training, 20% is used for evaluation of the NN performances during the training and to avoid
over-training, the final 20% is used to test the performances of the trained NN a posteriori. Gradient back-propagation and
minimization with the Levemberg-Marquard-Levenberg-Marquardt algorithm has been used. One single hidden layer with 5
neurons has been used, as it has been shown by Rodriguez-Ferndndez et al. (2016) that it is enough to capture the relationship
between the input data and the reference SM and while keeping the NN as simple as possible. No signs of overtraining were
found and the training was stopped after 50 iterations when the mean squared difference was asymptotically approaching to
a minimum. When the trained NN was applied to the test subset and the NN output was compared to the SMOS L2 SM, the
Pearson correlation R was 0.86, the standard deviation of the difference (STDD) was 0.068 m?> / m? and the Root Mean Square
Error or Difference (RMSE) was also 0.068 m?/m?, which implies that there was not a significant bias in between both SM
datasets. This-These results show that the NN ability to capture the dynamics of the current L2 SM dataset is very good. The
evaluation results discussed in Sect. 5 below confirm that the quality of the SM-NRT-NN product fulfil the specifications of the
operational product.

NN NRT SM uncertainties were computed by error propagation through the neural network taking into account the error of

the 73,’s used as input as explained in the Appendix.

10



Table 1. SMOS Near Real-Time soil moisture processor output fields

Number of days since 1-Jan-2000
Seconds from midnight (all times are UT)

RFI probabilit

Table 2. Comparison to in situ measurements over the USCRN and SCAN networks. The columns are: the SM product, the mean number
of points in the time series, the mean and median Pearson correlation with respect to in situ measurements, the mean bias (mean in situ SM
minus mean SMOS SM), the RMS and STD of the difference time series averaged over all sites, and the Pearson correlation of the anomalies
time series (R, ). The statistics have been computed independently for the SM-NRT-NN and the SM-L2 product. The number of SM retrievals
is, on average, larger for the SM-L2. The two lower rows show the results using only times for which both the SM-NRT-NN and the SM-L2

products are simultaneously available.

SM Mean N, MeanR MedianR  mean Bias mean RMSD Mean STDD mean R,

L2 186 0.63 0.64 0.035 0.100 0.065 0.56
NRT 94 0.70 0.71 0.036 0.095 0.058 0.48
L2 88. 0.67 0.69 0.026 0.092 0.062 0.59
NRT 88. 0.71 0.72 0.031 0.091 0.056 0.56

3.3 SMOS NRT SM processor output

The SMOS NRT SM product is a land-only product, collocated and delivered in the ISEA 4H9 grid (Sahr et al., 2003) common
to other ESA SMOS products. The main characteristics of the product and the description of the fields are presented in Muiioz-

Sabater et al. (2016). The-processor-outputfields-are:-

The processor output fields are shown in Table 1. Figure 1 shows the NRT-NN SM product and its associated uncertainty
for a portion of an orbit of day 27/May/2012.

11
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4 Methods
4.1 Global evaluation

Several metrics have been used to evaluate the NRT SM dataset from 15/May/2015 to 25/November/2015 against the SMOS
L2 SM dataset. For all grid points ¢, the temporal means of both SM dataset, SM fi and SM i\;RT, have been computed as:

Siy, " = ZSMNRT ) 0)
and
e 1 &
SMyy = 3 D_SMi(h), (3)
=1

using only times (¢;) for which a well-defined value is present simultaneously in both datasets. This number is in principle
different for each A¢ grid point, but it will be noted as V; in the following instead of N4, to simplify the notation.

A bias map has been computed from the local (A and ¢) mean of each dataset as follows:

Biasys = SMy,  —SMyy. 4)

In order to compare the temporal dynamics of the two datasets, the Pearson correlation R has also been computed as follows:

Ny —_NRT L2
E(SMNRT() SMy, )(SMﬁ(ti)—SM,\qﬁ)

Ry = N“ : )
——NRT —L2
\/ > (SMYFT () ~ S0y, ) ¢ > (SMEZ(ti) — SM )2

=1

where the sum runs for all the points available at a given position A¢: N,.
The absolute values of the two datasets have been evaluated using the standard deviation of the difference as a metric. The

local time series difference D of the two datasets was defined as:
Dig(t) = SMYST (1) — SMZ(t) (6)

The standard deviation of the difference time series (STDD) has been computed as:

Ny Ny 2
—_— 1 1
STDDsy=1\/D3, ~Dxy = EE D§¢(ti)—(Nt§ Dw(ti)> )
=1 =1

In some studies, the STDD is calculated indirectly from the bias and the root mean squared difference (RMSD) and called
unbiased-RMSD (ubRMSD).

12
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Figure 4. Location of the in situ measurements sites used in this study.

4.2 Local evaluation against in situ measurements

Evaluating remote sensing measurements against in situ measurements is a difficult exercise. The spatial resolution of

coarse scale remote sensing observations (~ 40 km) is very different to point-like measurements by in situ sensors. The

large scale spatial representativeness of the in situ measurements is not guaranteed (see for instance Gruber et al., 2012) .

In addition, the depth of the microwave emitting layer can be different with respect to the sensing depth of the in

situ measurements. The goal of the current study is not to deal with this open issues but to compare two different

retrieval approaches using the same instrument, therefore spatial representativeness or sensing depth differences will
not affect the comparison. More detailed evaluations of SMOS SM retrievals can be found in the following references:

Al Bitar et al. (2017); Kerr et al. (2016); Leroux (2012); Van der Schalie et al. (2016); Jackson et al. (2012) .
The SMOS NRT SM and the SMOS L2 SM datasets have been evaluated against the in situ measurements discussed in Sect.

2 in a consistent manner. First, for each station available, a quality check of the data was performed. Sites with suspicious data
(e.g. measurements discontinuity, spurious jumps) were eliminated. The locations of the 127 retained stations is showed in Fig.
4.

The same metrics discussed in the previous section have been computed for the NRT SM dataset with respect to the in
situ measurements and for the L2 SM dataset with respect to the in situ measurements. The Pearson correlation was used to
compare temporal dynamics of two SM datasets. The long term (seasonal) dynamics were compared by computing the Pearson
correlation coefficient R of SM L2 and SM YT with respect to SM"5u site per site. In addition, the short-scale (1-30 days)

13
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dynamics were evaluated by computing site per site the Pearson correlation of the anomalies times series. Following Albergel

et al. (2009), the SM anomaly at given time ¢, SM, (t), was computed using a 31 day window centred at ¢ as follows:

SM(t) — Mean(SM(t — 15,t +15))

SM,(t) = STD(SM (t —15,t + 15))

®)

where SM (t—15,t+15) represents the ensemble of measurements in the 31-day window. The Pearson correlation coefficient
R computed with the anomalies time series will be referred to as R, in the following.

The metrics were computed independently for the NRT and the L2 datasets in a first step. In a second step, the metrics were
recomputed only using times for which both the NRT and the L2 were simultaneously available, and thus, using the same

number of points for the two time series.

5 Results: SMOS NRT soil moisture evaluation
5.1 Swath-level comparison to SMOS L2 SM

Figures 1a,c show the NRT-NN SM product and its associated uncertainty for ef-a portion of an orbit of day 27/May/2012. The
corresponding L2 SM and its associated uncertainty as given by the DOX (Data Quality Index) parameter (Kerr et al., 2012) are
also shown (Figs. 1b.d). As discussed in Sect. 3, the swath width of the NRT-SM retrieval is somewhat narrower than the L2
SM one but both maps show similar spatial structures and numerical values. The uncertainties have similar numerical values
as well, but the spatial patters-patterns are not the same. This is expected as the two retrieval algorithms are different. Finally,
it should be noted that the spaeial-spatial coverage can be different for both products as shown in Fig. 2:

— the NRT SM product can show circle-arc gaps when not all of the angle bins have a wel-defined-well-defined Tj, value,

while in contrast the L2 algorithm can perform an inversion even if some 73,’s have been filtered out.

— The NRT SM global retrieval algorithm can provide a SM estimate even when the local minimization of the L2 algorithm

does not converge. This can happen mainly in dense forest areas.
5.2 Global evaluation with respect to SMOS L2 SM

The SMOS NRT SM product has also been compared to the SMOS L2 SM product globally and over the period mentioned
in Sect. 4. Figs. 3a,b show the mean of the NRT and L2 SM products over the period of the study. Both maps show an overall
excellent agreement, although it is possible to appreciate a significant negative bias (—0.05 m*m~2) in the NRT SM product in
the regions with the highest L2 SM (tropical and boreal forest) . The typical number of points with both NRT-SM-NN and SM-
L2 in the evaluation period is ~ 100. The correlation of both products is high (> 0.7) over a large part of North-America, the
southernmost part of South-America, the Iberian peninsula, the Sahel and South-Africa, Australia and parts of central Eurasia.
The correlation is significantly lower over forest (both tropical and boreal) and in deserts such as the Sahara. In the Sahara the

low correlation is probably not significant because the SM values are very low and the variance is driven by the noise. Actually,

14
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Figure 5. Boxplots for (a) the Pearson correlation coefficient (R) of the NRT and L2 time series with respect to the in situ measurements
(b) Pearson correlation coefficient of the anomalies time series (Ry), (¢) Bias (mean in situ minus mean SMOS SM), and (d) STDD of the
two SMOS products in comparison to in situ measurements. The box contains the middle 50% of the data, the central bar represents the
median value of the distribution. The upper edge (hinge) of the box indicates the 75th percentile of the data set (g3), and the lower hinge
indicates the 25th percentile (¢1). The mean values are also shown as black crosses. The upper and lower bars represent the minimum and
maximum values of the distribution excluding outliers. Points are considered as outliers if they are larger than g3 + 1.5(g3 — ¢1) or smaller

than q1 — 1.5((]3 — ql).
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Figure 6. (2) Scatter plots showing the Pearson correlation coefficient of the NRT and L2 SM time series with respect to the in situ measure-
ments (R). The errorbars account for the 95% confidence intervals. The red symbols represents an averaged value. (b) Same as (a) but for the

anomalies time series (Rg).

Fig. 3f shows that the STDD is also very low in this region. Therefore, L2 SM and NRT SM have actually similar values. In
contrast, dense forest regions show a high STDD in addition to a low R. Therefore, both products show some differences in
these regions. Unfortunately, in situ measurements are not available to perform an independent evaluation of both dataset for
dense forest sites. In conclusion, both products show similar dynamics over large parts of the Globe. The Bias map (Fig. 3d)
shows that the NRT SM products shews-show a tendency to underestimate the L2 SM dataset, which is a expected behaviour
as it has been obtained using a regression technique and extreme values are under-represented in the reference dataset. The
most significant effect of the bias is to increase the RMSD (Fig. 3e) with respect to the STDD in parts of Europe and Canada.
However, one should note that both the RMSD and the STDD are lower than 0.04 m®m~2 over most of the Globe (all except
the reddish regions in Fig. 3e,f).
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5.3 Evaluation with respect to in situ measurements

The SMOS NRT SM product was evaluated against in situ measurements from the SCAN Schaefer et al. (2007) and USCRN
Bell et al. (2013) networks (Sect. 2). These networks of in situ measurements have been extensively used for the validation of
remote sensing data (Albergel et al., 2009; Rodriguez-Fernandez et al., 2015; Al Bitar et al., 2012; Albergel et al., 2012; Kerr
et al., 2016).

The quality metrics discussed in Sect. 4 have been computed site per site independently for the SMOS NRT. The same
evaluation was done for L2 products. The mean number of points in the time series from May 2015 to November 2015 is 186
for the L2 product while is only half of that value for the NRT product. The reason is a longer revisit time of the SM-NRT-NN
product due to the narrower swaths of the retrievals and the lack of retrievals if not all the 6 73,’s are well defined for both
polarizations and the three angle bins from 30° to 45°.

Table 2 summarizes the results in the form of averages over all the sites (for the Pearson correlation also the median value
is given). Both SMOS products show a similar mean bias with respect to the in situ measurements, while the mean STDD and
RMSD are slightly lower for the NRT SM product. In order to get further insight into the intrinsic quality differences of both
datasets, the same statistics have been computed but only using times for which both SMOS products are retrieved. The results
are also shown in Table 2. The differences in the evaluation of both products decreases, but the NRT product still shows a larger
correlation and lower STDD with respect to the in situ measurements than the L2 product.

Since the mean or median values alone do not show the full picture of the evaluation for more than 100 sites, Figs. 5a,b
show boxplots for the Pearson correlation coefficient of the time series (R) and the anomalies times series (R,,), respectively.
Figures 5c,d show boxplots for the bias and the STDD. As expected, there is a large variation from one site to another. The
bias and STDD distributions are similar for both products. The correlation is as high as almost 1 for some sites both for the

NRT SM and L2 SM (the maximum is slightly higher for the later). Interestingly, the lower values of the distribution of the

correlation are higher for the NRT product. In summary, the bias and R, distributions are very similar for both products
in Fig. 5). This behaviour was already found by Rodriguez-Fernandez et al. (2015) , who analysed different NN models
in situ measurements, the best NNs models showed a higher Pearson R and a lower STDD than those obtained for the
ECMWEF SM model simulations. These results can be understood because, provided that the training is done with a
large number of statistically representative samples, the NN will not be significantly affected by outliers or inconsistent

in the sense of the Bayes theorem) SM value takin

into account a given set of input data. Thus, a good NN model can show slightly better quality metrics when compared
to in situ measurements than the dataset used to as reference to train the NN.

Finally, Fig. 6 shows scatter plots of the correlation for the time series and for the anomalies time series taking into account
the respective confidence intervals. For most of the sites, both products show the same statistics with respect to the in situ

measurements and globally, the scatter plot points lie close to the 1:1 line.
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6 Conclusions

This paper describes the the-ESA SMOS NRT SM processor and the first evaluation of this new operational dataset. This

processor is based on a neural network algorithm simile ¢ et ig

network-that uses SMOS NRT brightness temperatures and ECMWF IFS soil temperature in the 0—7 cm layer as input. It has
been trained with SMOS Level 2 SM data as reference. The SMOS NRT brightness temperatures have been transformed from
the antenna reference frame to the ground reference frame to express the polarization as horizontal and vertical components.
In addition they have been binned in 5°-width incidence angle bins. Soil temperature and snow cover forecasts from ECMWF
IFS are used to filter out frozen soil or soil covered by snow. The uncertainties of the NRT SM data were estimated from the
input brightness temperature uncertainties.

The SMOS NRT SM product was evaluated with respect to the original SMOS Level 2 SM product using several months
of data. The NRT SM product compares well with the L2 product. The most significant difference is that the NRT SM dataset
shows local negative bias at the positions were the highest SM values were found (basically under tropical forest).

The SMOS NRT SM product was also evaluated with respect to in situ measurements of SM over the SCAN and USCRN
networks. The NRT product shows similar performances to those of the L2 product. Actually, the mean and median correlation
are slightly higher than those obtained for the L2 product. In addition, the standard deviation of the difference with respect to
the in situ measurements is lower for the NRT product than for the L2 product.

In summary, the SMOS NRT SM product shows similar performance to the Level 2 product but it has the advantage to be
available in NRT. NRT brightness temperatures are received by ECMWF from ESA in less than three hours after sensing. The
NRT SM production takes on average 15 minutes (the arrival of new NRT TBs is checked every 30 minutes and the actual NRT
SM production takes a few minutes). The SMOS NRT SM product is delivered to ESA and EUMETSAT for dissemination via
EUMETCast. Therefore, the SMOS NRT SM data are available for a large range of operational applications such as numerical

weather prediction, hydrological forecast and crop modelling.

Data availability. The datasets used in this study (Sect. 2) are publicly available. The SMOS L2 SM and NRT SM data can be downloaded
from ESA. The SMOS NRT SM data is also available via EUMETCast in NRT. The in situ measurements can be downloaded from the

International Soil Moisture Network (Dorigo et al., 2011) .

Appendix A: NRT SM algorithm

The SMOS NRT has been described qualitatively in Sect. 3. The current section describes the algorithm and the output un-
certainties calculation in detail. Complementary information can be found in Rodriguez-Fernidndez et al. (2016) and Muiioz-

Sabater et al. (2016).
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Al Neural network specification

The NN discussed in Sect. 3 has two layers. The first layer contains j = 1, ...,n11 nodes or neurons with an hyperbolic tangent
as activation function. The second layer contains a single neuron with a linear function as activation function. The number of
input elements n;, is 13: 6 T},’s (H and V for incidence angle bins from 30 to 45°), 6 index I (H and V for incidence angle
bins from 30 to 45°), and ECMWF soil Temperature. The inputs range should be re-normalized to have values in the [—1,1]
range. If for each input vector element, the minimum and maximum values found during the training phase are given by the

vectors v and v (i = 1,...,n,,,), the normalization can be computed as follows:

min

v;wrm -1 +2W, Vi=1...n;, (A1)
! ’

The normalized input, together with the first layer weights (Wp1) and bias By are used to compute the first layer outputs

vEL as follows:

ijl = tanh(z Wijl oo BJLll)7 Vi=1.nr (A2)

i=1

The output of the second layer is computed from the first layer outputs, and the second layer weights (Wp2) and bias B

as follows:
nri )

v =3 "Wi i+ Bro (A3)
j=1

The values of the weights Wy, and Wi, and the bias By, and By, are determined after the training phase. The exact values
for the operational NRT SM processor can be found in Mufioz-Sabater et al. (2016). Finally, to obtain the NN output (v°%?),

the output of the second layer has to be re-normalized as follows:

B UL2 _ UL2 L .

out __ 2 newMazx newMin 2 2 .

v = UnewMin + 2 — L2 (U - voldMin)’ (A4)
oldMaz — YoldMin

A2 Neural network output uncertainties

From the definition of I54(t) (Eq. 1) it is possible to compute the uncertainties from the 73,’s and SM uncertainties. First, Eq.

1 can be rewritten as:
Lg(t)=SME" 4 1sMT — s < 1 AS
(1) g T [ A Ao | x I, (t) (A5)

where I, , (t) is given by:

B Tb>\¢ (t) _ Tmzn

b/\¢
5L <t) - mazx min (A6)
A Tb)\d) - Tbkqg
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The uncertainties Alyg(t) and Ay, ,(t) can be computed from uncertainties in 7,’s, in the maximum and minimum 73,’s

and the associated SM values as follows:

max min 2
A2 (t) = [SMy5 —SMy (AL, () + (A7)
+ 1L, P (ASME ) ¢ (A8)
5 + L, ()2 (ASM ) (A9)

Where Al (t) is given by:

ATy, ,(t)?
AL, () = T% + (A10)
DA¢
(ATmafc)Q Tm ¢ 2
. bro < 2o )) N (A11)
TDW TD>\¢
AT min)2 T, t 2
N ( b ) (1+ nxg ( )) (A12)
TD,\¢ TD/\¢
10 as a function of the uncertainty of the local instantaneous measurement ATy, , () and the uncertainties of the local extreme

T,’s values (ATy"** and ATb’m").
Ao Ao
The uncertainties of the NN output given by Eqgs. A1-A4 can be estimated from the uncertainties in the input vector elements

(Aw;) as follows. First the uncertainties of the normalized input vector can be computed as:

. Av;
AU;LO',mZQM, VZZlnm (A13)
vrar — ol
15 Using those quantities, the uncertainty of the two layers neural network given by Eqgs. A2 and A3 can be expressed as:
2
MNin nrL1 ) . )
(AvP2)2 =3 " (Arerm)? (S WL, W (Al14)
i=1 j=1
where o7 is given by:
o7 =1—tanh*(> W 0P + BY,), Vj = 1..np, (A15)

i=1
It is worth noting that in the current implementation the neural network weights are assumed to be constant after training.
20 There exist some methods to estimate the additional output uncertainty that originates from the neural network weight un-

certainty that comes from the uncertainties in the reference data used for the training (see for instance Aires et al., 2004) but

20
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they are too complex to be implemented in the SMOS NRT SM operational processor. In contrast, some uncertainties in the
reference data used for the training have already been taken into account %fe&g#t\llrggngASMggm and ASM;;:MT in Eq.
A9.

Finally, the uncertainty after the normalization of the output can be written as:

L2
—v .
newMin AvL?_ (A16)
vl2 —plk2 !
oldMax oldMin

L2
UnewMazx

Avout —

Expressing the output uncertainty as Eq. A14 implies that the vector elements v; are independent. However, when using
index I as input as well as the actual T3,’s, some elements are not independent. Since the uncertainties in Eq. A14 are expressed

in quadratic form, Eq. A14 gives an upper limit to the output uncertainty.
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