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We are very grateful to one anonymous reviewer and Reik Donner for carefully reading and
commenting thoroughly on our manuscript. We received highly valuable and constructive com-
ments which very much helped to improve our work.

In the following, we go point by point through all the comments and reply to them. Reviewers'
comments are all repeated in this document, typeset in black. They are individually addressed,5

typeset in blue. Changes to the original manuscript as resulting from the reviewers comments
are repeated here to ease the comparison with the original version; they are typeset in blue italic.

Reviewer 1:

General Comments:

The authors have adequately answered the comments of the reviewers, although I still believe a10

POT approach would have been better in this case. Some minor errors can still be adjusted.

Remarks

• "data" is a plural noun...

Actually, "data" can be both used as plural and singular. In the �rst review we got a
comment to apply the singular form here.15

• Lines 146 to 152 and 164 to 168 contain repetitions, please avoid this and only mention
the R-package used once.

Thanks, changed.

• Lines 186 to 193 should be better explained. In this section, the constraint is wrong: before
and after the ">" sign, there is twice the same20

Thanks for the hint. We changed the text slightly and shortened the sentences to provide
a better understanding of this section, as follows:
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For a speci�c return period T = 1/(1−p), with p denoting the non-exceedance probability, a
parametric model can be �tted to the corresponding p-quantiles Qp,d from GEV distributions
for di�erent durations d [e.g., Koutsoyiannis et al., 1998]. This model we call IDF curve25

IDFT (d). The estimated IDF-curve IDFT1
(d) for return period T1 is independent of the

estimate of another curve IDFT2
(d) with return period T2 > T1. There is no constraint

ensuring IDFT2(d) > IDFT1(d) for arbitrary durations d. For example, for a given duration
d, the 50-year return level can exceed the 100-year return level. Consequently, this approach
easily leads to inconsistent (i.e. crossing) IDF-curves.30

• Lines 278 to 287 + Figure 7: I don't follow this: How relevant is this: it seems strange
to me to make such comparison (unless I didn't understand): how can you compare an
observation time series with a modelled one? The modelled time series is not a prediction
of the observed one. Probably, the authors wish to demonstrate something which I don't
quite follow...35

Yes, it is true, that the modelled time series is no prediction and a comparison here might
seem strange. With this, we want to highlight how extreme precipitation amounts are
generated in the model and if they are visually comparable to extreme events seen in an
observed time series. In Figure 7 we see that extreme events in the model are the result of
one long lasting cell with high intensity, which can be interpreted as one frontal convective40

event in Berlins summer from a meteorological point of view. Also other model simulations
showed the same reasons for extreme events, especially on short time scales (1 hour, 6
hours). This will not change the fact, that the model is not able to predict the rainfall,
only strengthens the fact, that it is able to capture the nature of Berlin's precipitation
patterns and thus a study to compare the IDF curves is legit. The question of how the45

extreme events are generated in the model came up by 'Reviewer 3' in the �rst review
phase, so we looked into it and added it to the manuscript.

• Line 368: what do you mean with "events short time scales"

We investigated the extreme event �Kyrill� and its return periods on di�erent time scales.
With the "events short time scales" we refer to the smaller aggregation times, e.g. 1 hour50

and 3 hours.

Reviewer 4:

General Comments:

• Please comment shortly on the speci�c selection of the weights for the di�erent moments
in Eqs. (1) and (2). Why do you speci�cally choose these values?55

We use the weights wi from OF1 to emphasize the �rst moment similarly to Cowpertwait
et al. [1996a], see Sect. 2. The mean precipitation sum is prioritised by a factor of 100
against all the other moments. With that we want to make sure the model is well able
to reproduce the mean amount of rainfall, which is typically a much needed quantity for
hydrological modelling. Of course, other combinations can be discussed and looked at in60

the future.

• Many of the �gures have far too tiny labels and should be replotted so that all the axis
labels and legends can be properly read.
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Thanks for the hint, all �gures except Figure 1 & 2 have been replotted.

• Section 5.3: If I understand correctly, �Kyrill� would represent a �dragon king� rather than65

a �black swan�, i.e., an extreme event that would be unprecedented given the (known)
distribution of extremes in the considered time series. Maybe it would be worth brie�y
referring to these (colloquial) terms (but this is just a suggestion)

Thanks for mentioning these metaphors and you are probably right about which �Kyrill�
is. Nevertheless, we will not refer to them in the �nal manuscript since they have not yet70

appeared in studies of the community read by the main author and thus might confuse
more than help with the understanding.

Remarks:

• P.2, l.46: �proportion dry� sounds very sloppy

Thanks, changed it to ...proportion of dry periods...75

• P.6, l.131: I recommend specifying here which variable �moments� refers to (i.e., moments
of precipitation sums).

Thanks, we adapted your recommendation.

• P.6, l.136: Please clarify if i=1 applies to the mean at a speci�c aggregation scale or at all
of them.80

Thanks, we clari�ed: Here, we use the mean at one hour aggregation time,...

• P.6, l.141: �with Latin Hypercube� is again too sloppy, please rephrase.

Thanks, we rephrased: ...using the Latin-Hypercube sampling algorithm...

• P.6, ll.164-165: This information seems to be partially redundant with ll.149-152, please
condense.85

Thanks, we condensed this section.

• P.7, l.187 and below: Please do not use the same symbol �T� for the return period as for
the empirical moments Ti in Section 2. This might confuse the reader.

Thanks, we changed the T for the moments to M throughout the manuscript.

• P.10, l.261: Why do you provide this information in an Appendix instead of just here?90

This is not a completely new information, because it is only the di�erence of the two graphs
which can be already seen in Figure 5 and all the interpretation can be made from this
Figure already. Since its not a new nor an important information, but only additional for
the interested reader we choose to place it in the appendix.

• P.12, ll.283-284: This sentence reads quite odd and should be rephrased.95

Thanks, we rephrased: As an example, we only show one single model simulation. Visual
inspection of several other simulated series support the main features.
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• Section 6: It is very unusual to write the complete conclusions section in present tense,
present perfect would be much more appropriate here.

Thanks, we adapted the suggestion.100

• P.18, ll.374-375: The end of the sentence �does change the GEV distribution� appears
grammatically misplaced.

Thanks, we used parenthesis instead of hyphen to help with understanding here.

• P.18, ll.381-383: Something seems to be wrong with this sentence, please check and rephrase.

Thanks, we changed it to: Quantiles from individual durations are smaller for short dura-105

tions than in the dd-GEV approach IDF curves, which is a challenge for the latter modeling
approach.

• P.18, ll.396-398: I hardly understand this short paragraph. Please cross-check and rephrase
if necessary.

Thanks, we reformulated this section as follows: In the estimation of OBL model parameters110

we limited the parameter space by using boundary constraints. Lower and upper parameter
limits have been set in a physically realistic range, see Tab. 2. For those parameter ranges,
numerical optimisation mostly converged into a global minimum. No constraints are applied
in the model variant with the third moment implemented in the OF.

• I did not �nd Tab. 2 being referenced in the text.115

Thanks, Tab. 2 is now being referenced in the Appendix A.
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Marked-up manuscript version

Abstract

For several hydrological modelling tasks, precipitation time series with a high (i.e. sub-
daily) resolution are indispensable. This data is, however, not always available and thus120

model simulations are used to compensate. A canonical class of stochastic models for sub-
daily precipitation are Poisson-cluster processes, with the original Bartlett-Lewis (OBL)
model as a prominent representative. The OBL model has been shown to well reproduce
certain characteristics found in observations. Our focus is on intensity-duration-frequency
relationship (IDF), which are of particular interest in risk assessment. Based on a high125

resolution precipitation time series (5-min) from Berlin-Dahlem, OBL model parameters
are estimated and IDF curves are obtained on the one hand directly from the observations
and on the other hand from OBL model simulations. Comparing the resulting IDF curves
suggests that the OBL model is able to reproduce main features of IDF statistics across
several durations but cannot capture rare events (here an event with a return period larger130

than 1000 years on the hourly time scale). HereIn this paper, IDF curves are estimated
based on a parametric model for the duration dependence of the scale parameter in the
Generalised Extreme Value distribution; this allows to obtain a consistent set of curves over
all durations. We use the OBL model to investigate the validity of this approach based on
simulated long time series.135

1 Introduction

Precipitation is one of the most important atmospheric variables. Large variations on spatial
and temporal scales are observed, i.e. from localised thunderstorms lasting a few tens of minutes
up to mesoscale hurricanes lasting for days. Precipitation on every scale a�ects everyday life:
short but intense extreme precipitation events challenge the drainage infrastructure in urban140

areas or might put agricultural yields at risk; long-lasting extremes can lead to �ooding [Merz
et al., 2014]. Both, short intense and long-lasting large-scale rainfall can lead to costly damages,
e.g. the �oodings in Germany in 2002 and 2013 [Merz et al., 2014], and are therefore the object
of much research.

Risk quanti�cation is based on an estimated frequency of occurrence for events of a given145

intensity and duration. This information is typically summarised in an Intensity-Duration-
Frequency (IDF) relationship [e.g., Koutsoyiannis et al., 1998], also referred to as IDF curves.
These curves are typically estimated from long observed precipitation time series, mostly with a
sub-daily resolution to include also short durations in the IDF relationship. These are indispens-
able for some hydrological applications, e.g., extreme precipitation characteristics are derived150

from IDF curves for planning, design and operation of drainage systems, reservoirs and other
hydrological structures. One way to obtain IDF curves is modelling block-maxima for a �xed
duration with the generalised extreme value distribution [GEV, e.g., Coles, 2001]. Here, we
employ a parametric extension to the GEV which allows a simultaneous modelling of extreme
precipitation for all durations [Koutsoyiannis et al., 1998, Soltyk et al., 2014].155

Due to a limited availability of observed high-resolution records with adequate length, sim-
ulations with stochastic precipitation models are used to generate series for subsequent studies
[e.g., Khaliq and Cunnane, 1996, Smithers et al., 2002, Vandenberghe et al., 2011]. The advan-
tages of stochastic models are their comparably simple formulation and their low computational
costs allowing to quickly generate large ensembles of long precipitation time series. A review160

of these models is given in, e.g., Onof et al. [2000] and Wheater et al. [2005]. A canonical
class of sub-daily stochastic precipitation models are Poisson cluster models with the original
Bartlett-Lewis (OBL) model as a prominent representative [Rodriguez-Iturbe et al., 1987, 1988,
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Onof and Wheater, 1994b, Wheater et al., 2005]. The OBL model has been shown to be able
to well reproduce certain characteristics found in precipitation observations [Rodriguez-Iturbe165

et al., 1987].
Due to the high degree of simpli�cations of the precipitation process, known drawbacks of

the OBL model include the inability to reproduce the proportion dry of dry periods as reported by
Rodriguez-Iturbe et al. [1988] and Onof [1992], and underestimation of extremes as found by, e.g.
Verhoest et al. [1997] and Cameron et al. [2000], especially for shorter durations. Futhermore,170

problems occur for return levels with associated periods lonter longer than the time series used
for calibrating the model [Onof and Wheater, 1993]. Several extensions and improvements to
the model have been made. Rodriguez-Iturbe et al. [1988] introduced the randomised parameter
Bartlett-Lewis model, allowing for di�erent types of cells. Improvements in reproducing the
probability of zero rainfall and capturing extremes have been shown for this model [Velghe et al.,175

1994]. A gamma-distributed intensity parameter and a jitter were introduced by Onof and
Wheater [1994b] for more realistic irregular cell intensities. Nevertheless, problems still remain
as Verhoest et al. [2010] discussed the occurrence of infeasible (extremely long lasting) cells and
a too severe clustering of rain events was found by Vandenberghe et al. [2011]. Including third-
order moments in the parameter estimation showed an improvement in the Neyman-Scott models180

model's extremes [Cowpertwait, 1998]. For the Bartlett-Lewis variant Kaczmarska et al. [2014]
found that a randomised parameter model shows no improvement in �t compared to the OBL
model for in which the skewness was included in the parameter estimation. Furthermore, an
inverse dependence between rainfall intensity and cell duration showed improved performance,
especially for extremes at short time scales [Kaczmarska et al., 2014]. Here, we focus on the185

OBL model with and without the third-order moment included. This model is still part of a
well-established class of precipitation models and the reduced complexity is appealing as it allows
to be used in a non-stationary context [Kaczmarska et al., 2015].

The OBL model and intensity-duration-frequency relationships are of particular interest to
hydrological modelling and impact assessment. In the following, we address the three research190

questions by means of a case study: 1) Is the OBL model able to reproduce the intensity-duration
relationship found in observations?, 2) How are IDF curves a�ected by very rare extreme events
which are unlikely to be reproduced with the OBL model for in a reasonably long simulation?
and 3) is the parametric extension to the GEV a valid approach to obtain IDF curves? For the
class of multi-fractal rainfall models, question 1) has been addressed by Langousis and Veneziano195

[2007].
Section 2 gives a short overview of the OBL model used here, Sect. 3 brie�y explains IDF

curves and how to obtain them from precipitation time series. This is followed by a description
of the data used (Sect. 4). The results section (Sect.5) starts with a description of the estimated
OBL model parameters for the case study area (Sect. 5.1), discussed discusses then the ability of this200

model to reproduce IDF cuves curves (Sect. 5.2) and the in�uence of a rare extreme (Sect. 5.3) and
closes with a comparison of the duration dependent GEV approach to IDF curves with individual
duration GEV quantiles (Sect. 5.4). Section 6 discusses results and concludes the paper.

2 Bartlett-Lewis rectangular pulse model

From early radar based observations of precipitation, a hierarchy of spatio-temporal structures205

was suggested by Pattison [1956] and Austin and Houze [1972]: intense rain structures (denoted
as cells) tend to form in the vicinity of existing cells and thus cluster in larger structures, so
called storms or cell clusters. Occurrence of these cells and storms (cell clusters) can be described
using Poisson-processes. This makes the Poisson-cluster process a natural approach to stochastic
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precipitation modelling.210

The idea of modelling rainfall with stochastic models exists since Le Cam [1961] modelled rain
gauge data with a Poisson-cluster process. Later, Waymire et al. [1984] and Rodriguez-Iturbe
et al. [1987] continued the development of this type of model. Poisson-cluster rainfall models are
characterised by a hierarchy of two layers of Poisson processes.

Similarly to various others studies [e.g., Onof and Wheater, 1994a, Kaczmarska, 2011, Kacz-215

marska et al., 2015], we choose the original Bartlett-Lewis (OBL) model, a popular representative
of Poisson-cluster models with a set of �ve physically interpretable parameters [Rodriguez-Iturbe
et al., 1987]. At the �rst level cell clusters (storms) are generated according to a Poisson-process
with a cluster generation rate λ and an exponentially distributed life-time with expectation 1/γ.
Within each cell cluster, cells are generated according to a Poisson process with cell generation220

rate β and exponentially distributed life-time with expectation 1/η, hence the term Poisson-
cluster process. Associated with each cell is a precipitation intensity being constant during cell
life-time, exponentially distributed with mean µx. The constant precipitation intensity in one
cell gave rise to the name rectangular pulse. Model parameters are summarised in the parameter
vector θ = {λ, γ, β, η, µx}. Scheme of the OBL model. A similar scheme can be found in Wheater et al. [2005]225

Simulations with the OBL model are in continuous-time on the level of storms and cells.
We aggregate the resulting cell rainfall series to hourly time series. Figure 1 shows a sketch

t
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Figure 1: Scheme of the OBL model. A similar scheme can be found in Wheater et al. [2005]

of the OBL model illustrating the two levels: start of cell-clusters (storms) are shown as red
dots, within each clusterscluster, cells (blue rectangular pulses) are generated during the clusters'
life-time starting from the cluster origin. The cells' lifetime is shown as horizontal and their230

precipitation intensity as vertical extension in Fig. 1; cells can overlap. This continuous-time
model yields a sequence of pulses (cells) with associated intensity, see Fig. 2 (top panel). Adding
up the intensity of overlapping pulses yields a continuous-time step-function (Fig. 2, middle
panel). Although time continuous, this function is not continuously di�erentiable in time due to
the rectangular pulses. Observational time series are typically also not continuously di�erentiable235
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Figure 2: Example realisation of the OBL model. The top layer shows the continuously simulated
storms and cells by them model. In the middle layer the cell intensities are combined with a step
function. The bottom layer shows the aggregated arti�cial precipitation time series. Used parameters:
λ = 4/120 h−1, γ = 1/15 h−1, β = 0.4 h−1, η = 0.5 h−1, µx = 1mm h−1
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as they are discretised in time. Summing up the resulting continuous series for discrete time
intervals makes it comparable with observations and renders unimportant the arti�cial jumps
from the rectangular pulses present in the continuous series, Fig. 2 (bottom layer). Example

realisation of the OBL model. Top layer shows the continuously simulated storms and cells by them model. In the

middle layer the cell intensities are combined with a step function. The bottom layer shows the aggregated arti�cial240

precipitation time series. Used parameters: λ = 4/120h−1,γ = 1/15h−1,β = 0.4h−1,η = 0.5h−1,µx = 1mm/h−1

An alternative to the Bartlett-Lewis process is the Neyman-Scott process [Neyman and Scott,
1952]. The latter is motivated from observations of the distribution of galaxies in space. In
the Neyman-Scott process cells are distributed around the centre of a cell cluster. Both are
prototypical models for sub-daily rainfall and are discussed in more detail in Wheater et al.245

[2005].
Due to known drawbacks of the OBL model, several improvements and extensions have

been made in the past: Rodriguez-Iturbe et al. [1988] introduced the random parameter model,
allowing for di�erent type types of cells, and additionally Onof and Wheater [1994b] used a jitter
and a gamma-distributed intensity parameter to account for a more realistic irregular shape of250

the cells. Cowpertwait et al. [2007] improved the representation of sub-hourly time scales by
adding a third layer, pulses, to the model. Non-stationarity has been addressed by Salim and
Pawitan [2003] and Kaczmarska et al. [2015]. Applications of these kind of models include the
implementing of copulas to investigate wet and dry extremes [Vandenberghe et al., 2011, Pham
et al., 2013], regionalisation [Cowpertwait et al., 1996a,b, Kim et al., 2013] and accounting for255

interannual variability [Kim et al., 2014].
Parameter estimation for the OBL model is by far not trivial. The canonical approach is a

method-of-moment-based estimation [Rodriguez-Iturbe et al., 1987] using the objective function

Z(θ;M) =

k∑
i=1

wi

[
1− τi(θ)

Mi

]2
. (1)

This function relates moments of precipitation sums τi(θ) derived from the model with parameters
θ to empirical moments TiMi from the time series. The set of k moments TiMi is typically chosen260

from the �rst and second moments obtained for di�erent durations hh. Here, we use the mean at
one hour aggregation time, the variances, the lag-1 auto-covariance function and the probability
of zero rainfall for h ∈ {1h, 3h, 12h, 24h}h ∈ {1 hour, 3 hours, 12 hours and 24 hours}, similar to Kim
et al. [2013], and thus end up with k = 13 moments TiMi. Their analytic counterparts τi(θ)
are derived from the model. The weights in the objective function were choosen chosen to be265

wi=1 = 100 and wi 6=1 = 1, similar to Cowpertwait et al. [1996a], emphasising the �rst moment
T1 M1 (mean) 100 times more than the other moments.

It turns out that Z(θ;T) Z(θ;M) has multiple local minima and optimization optimisation is not
straightforward. To avoid local minima, the optimization optimisation is repeated many times with
di�erent initial guesses for the parameters sampled from a range of feasible values in parameter270

space with using the Latin-Hypercube sampling algorithm [McKay et al., 1979]. As only positive
model parameters are meaningful, optimisation is performed on log-transformed parameters.
Similarly to Cowpertwait et al. [2007], we use a symmetric objective function

Z(θ;M) =

k∑
i=1

wi

{[
1− τi(θ)

Mi

]2
+

[
1− Mi

τi(θ)

]2}
. (2)

A few tests indicate that the symmetric version is robust and faster in the sense that fewer
iterations are needed to ensure convergence into the global minimum (not shown). Numerical275

optimization optimisation techniques based on gradient calculations, e.g. Nelder-Mead [Nelder and
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Mead, 1965] or BFGS [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970], are typically
used. For the current study, we use R's optim() function choosing L-BFGS-B as the underlying
optimization optimisation algorithm [R Core Team, 2016] and 100 di�erent sets of initial guesses for
the parameters sampled in a using the Latin-Hypercube wayalgorithm.280

Following studies by Cowpertwait [1998] and Kaczmarska et al. [2014], we include the third
moment in the parameter estimation using analytical expressions derived by Wheater et al.
[2006], replacing the probability of zero rainfall in the objective function. Thus, still 13 moments
are used to calibrate the OBL model. Due to comparability with other studies most of our
analyses will not include the third moment though. A comparison between IDF curves of the285

model calibrated with the third moment and with the probability of zero rainfall will be carried
out, to discuss the e�ect of including the third moment.

Models of this type su�er from parameter non-identi�ability, meaning that qualitatively di�er-
ent sets of parameters lead to minima of the objective function with comparable values [Verhoest
et al., 1997]. A more detailed view on global optimization optimisation techniques and comparisons290

between di�erent objective functions is given in Vanhaute et al. [2012].
All computations are carried out with R � an environment for statistical computing and graphics [R Core Team,

2016]. Optimization is done with optim(). As additional constraints in parameter estimation we used the boundary

extension of the BFGS algorithm with given parameter ranges. During this work the authors developed and
published the R-package BLRPM [Ritschel, 2017]. The package includes functions for simulation295

and parameter estimationand can be obtained from the author on request. .

3 Intensity-Duration-Frequency

Intensity-duration-frequency (IDF) curves show return levels (intensities) for given return periods
(inverse of frequencies) as a function of rainfall duration. Their formulation goes back to Bernard
[1932]. They are frequently used for supporting infrastructure risk assessment [e.g., Simonovic300

and Peck, 2009, Cheng and AghaKouchak, 2013]. IDF curves are an extension to classical
extreme value statistics. The latter aims at better characterising the tails of a distribution by
using parametric models derived from limit theorems [e.g., Embrechts et al., 1997]. There are
two main approaches: modelling block-maxima (e.g., maxima out of monthly or annual blocks)
with the generalised extreme value distribution (GEV) or modelling threshold excesses with the305

generalised Pareto distribution (GPD) [e.g., Coles, 2001, Embrechts et al., 1997]. We choose the
block-maxima approach with the general extreme value distribution

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
(3)

as parametric model for the block-maxima z. The GEV is characterised by the location parameter
µ, the scale parameter σ and the shape parameter ξ. These can be estimated from block-maxima
using a maximum-likelihood estimator [e.g., Coles, 2001]. Here, we use maxima from monthly310

blocks. To avoid mixing maxima from di�erent seasons, a set of GEV parameters is estimated
for all maxima from January, another set for all maxima from February and so on. For a given
month, GEV parameters are estimated for various durations, e.g. d ∈ {1h, 6h, 12h, 24h, 48h, . . .}.

An IDF curve for a given d ∈ {1 hour, 6 hours, 12 hours, 24 hours, 48 hours, . . .}. For a speci�c return
period T = 1/(1− p), with p denoting the non-exceedance probability, can then be constructed from a315

parametric model can be �tted to the corresponding p-quantiles Qp,d from GEVs GEV distributions
for di�erent durations d by means of �tting a parametric model [e.g., Koutsoyiannis et al., 1998]. As the [e.g.,
Koutsoyiannis et al., 1998]. This model we call IDF curve IDFT (d). The estimated IDF-curve
IDFT1

(d) for return period T1 is independent of the estimate of another curve IDFT2
(d) with
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return period T2 > T1, there . There is no constraint ensuring IDFT2 (d) > IDFT2 (d) IDFT2(d) >320

IDFT1
(d) for arbitrary durations d. Consequently, this approach easily leads to inconsistent (i.e.crossing) IDF-

curves. For exampleFor example, for a given duration d, the 50-year return level can exceed the
100-year return level.

Consequently, this approach easily leads to inconsistent (i.e. crossing) IDF-curves. To overcome
these problems and increase robustness in constructing IDF curves, Koutsoyiannis et al. [1998]325

suggested a duration-dependent scale parameter σd

σd =
σ

(d+ θ)η
, (4)

with θ, η and σ being independent of the duration d. The parameter η quanti�es the slope of
the IDF curve in the main region and θ controls the deviation of the power-law

behavior for short durations. Furthermore, location is reparametrised by µ̃ = µ/σd which is
now independent of the durations d as well as of the shape parameter ξ. This lead leads to the330

following formulation of a duration-dependent GEV distribution:

F (x; µ̃, σd, ξ) = exp

{
−
[
1 + ξ

( x
σd
− µ̃

)]−1
ξ

}
, (5)

which allows consistent modelling of rainfall maxima across di�erent durations d using a single
distribution at the cost of only two additional parameters. These parameters can be analogously
estimated by maximum-likelihood [Soltyk et al., 2014]. To avoid local minima when optimizing

optimising the likelihood, we repeat the optimization optimisation with di�erent sets of initial guesses335

for the parameters, sampled again according to a Latin-Hypercube scheme. This method of
constructing IDF curves is consistent in the sense that curves for di�erent return periods can not

cannot cross. We refer to this approach as the duration dependent GEV approach (dd-GEV).
During this work the authors developed and published the R-package IDF [Ritschel et al., 2017]. The
package includes functions for estimating IDF parameters based on the dd-GEV approach given a340

precipitation time series and plots the resulting IDF curves.
However, the data points for di�erent durations are dependent (as they are derived from

the same underlying high-resolution data set by aggregation) and thus the i.i.d. assumptions
required for maximum-likelihood estimation is not ful�lled. Consequently, con�dence intervals
are not readily available from asymptotic theory; they can be estimated by bootstrapping.345

4 Data

A precipitation time series from the station Botanical Garden in Berlin-Dahlem, Berlin, Germany
is used as a case study. A tipping-bucket records precipitation amounts at 1-min resolution. For
the analysis at hand, a 13 year time series with 1-min resolution from the years 2001-2013 is
available. The series is aggregated to durations d ∈ {1h, 2h, 3h, 6h, 12h, 24h, 48h, 72h, 96h}350

d ∈ {1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours} yielding 9 time
series with di�erent temporal resolution. IDF parameters are estimated using annual maxima
for each month of the year individually using all 9 duration series.

5 Results

5.1 Estimation of OBL model parameters355

Minimising the symmetric objective function (Eq. (2)) yields OBL model parameter estimates
individually for every month of the year, shown in Fig. 3 and explicitly given in Tab. 3 in Appendix
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Figure 3: OBL model parameter estimates for all months of the year obtained from the Berlin-Dahlem
precipitation time series. Top: cell-cluster generation rate λ and cluster lifetime 1/γ; middle: cell
generation rate β and cell lifetime 1/η; bottom: cell mean intensities µx.
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A. OBL model parameter estimates for all month of the year obtained from the Berlin-Dahlem precipitation time series.

Top: cell-cluster generation rate λ and cluster lifetime 1/γ; middle: cell generation rate β and cell lifetime 1/η; bottom:

cell mean intensities µx. The resulting OBL model parameters are reasonable compared to observed360

precipitation characteristics: During summer months, we observe very intensive cells (µ̂x between
4mm/h and 8mm/h). However, in June and August, storm duration is relatively short (γ̂ between
0.25/h and 0.35/h) which can be interpreted as short but heavy thunderstorms which are typically
observed in this region in summer [Fischer et al., 2017]. Vice versa, in winter small intensities and
long storm durations correspond to stratiform precipitation patterns, typically dominating the365

winter precipitation in Germany. The storm generation rate λ show shows only a minor seasonal
variation.

With the OBL model parameter estimates (Tab. 3, SectApp. A) 1000 realisations with the same
length as the observations (13 years) are generated. From both, the original precipitation series
and the set of simulated time series, we derived derive a set of statistics for model validation. The370

�rst moment T1 M1 � the mean � is very well represented (not shown) as it enters the objective
function with weight w1 = 100 compared to weights of 1 for the other statistics. Figure 4 shows
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Figure 4: Comparison of statistics derived from the observational record (red dots) and 1000 simulated
time series (box plots): a) variance at 6-hourly aggregation level and b) probability of zero rainfall at
12-hourly aggregation.

the variance for 6-hourly aggregation and the probability of zero rainfall; for all months the 6h-
variances of simulated and observed series are in good agreement. This is particularly noteworthy
as the 6-hourly aggregation was not used for parameter estimation. Comparison of statistics derived375

from the observational record (red dots) and 1000 simulated time series (box plots): a) variance at 6-hourly aggregation

level and b) probability of zero rainfall at 12-hourly aggregation. Similar to previous studies [e.g., Onof and
Wheater, 1994a], the model fails to reproduce the probability of zero rainfall, here for instance
shown for the 12-hourly aggregation. The model mainly overestimates it and therefore has
shortcomings in the representation of the time distribution of events [Rodriguez-Iturbe et al.,380

1987, Onof and Wheater, 1994a].
An important aspect for hydrological applications, is the model's ability to reproduce ex-

tremes on various temporal scales. This behaviour is investigated in the next section with the
construction of IDF curves.
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5.2 Intensity-Duration-Frequency curves from OBL model simulations385

Monthly block-maxima for every month in the year are drawn for various durations (1h, 3h, 6h,
12h, 24h, 48h, 72h, 96h) from the observational time series and 1000 OBL model simulations of
the same length. This is the basis for estimating GEV distributions for individual durations, as
well as for constructing dd-GEV IDF curves.

IDF curves for Berlin-Dahlem obtained from observation are shown as dotted lines in Fig. 5390

for January, April, July and October for the 0.5-quantile (2-year return period, red), 0.9-quantile
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Figure 5: IDF curves obtained via dd-GEV for a) January, b) April, c) July and d) October: 0.5
(red), 0.9 (green) and 0.99-quantiles (blue) corresponding to 2-yr, 10-yr, and 100-yr return periods,
respectively. Solid lines are derived directly from the Berlin-Dahlem time series. Coloured shadings
mark the central 90% range of variability of IDF curves obtained in the same manner with same
colour code but from 1000 OBL model simulations (Sect 5.1); the dotted lines mark the median of
these curves.

(10-year return period, green) and the 0.99-quantile (100-year return period, blue). IDF curves

obtained via dd-GEV for a) January, b) April, c) July and d) October: 0.5 (red), 0.9 (green) and 0.99-quantiles (blue)

corresponding to 2-yr, 10-yr, and 100-yr return periods, respectively. Solid lines are derived directly from the Berlin-

Dahlem time series. Coloured shading mark the central 90% range of variability of IDF curves obtained in the same395

manner with same colour code but from 1000 OBL model simulations (Sect 5.1); the dotted lines mark the median of

14



these curves.

Analogously, IDF curves are derived from 1000 simulations of the OBL model precipitation
series, cf. Sect. 5.1. The coloured shading in Fig. 5 give the range of variability (5% to 95%) for
these 1000 curves with the median highlighted as dotted line. Except for January, the curves400

obtained directly from the observational series can be found within the range of variability of
curves derived from the OBL model. The main IDF features from observations are well repro-
duced by the OBL model: the power-law-like behaviour (straight line in the double-logarithmic
representation) in July extending almost across the full range of durations shown, as well as the
�attening of the IDF curves for short durations for April and September. The relative di�erences405

in IDF curves given in Fig. 11 (Appendix B) suggest a tendency for the OBL model to underes-
timate extremes, particularly for large return levels and short durations, similar to results found
by, e.g. Verhoest et al. [1997] and Cameron et al. [2000].

Figure 6 shows the relative di�erence
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Figure 6: Relative di�erences between observed and simulated return levels obtained with includ-
ing the third moment (red) and with using the probability of zero rainfall (blue) in parameter
estimation for a) July 0.5 quantile and b) July 0.99 quantile. Dotted lines show the 0.05 and
0.95 quantile range of 1000 simulations.

∆ =
dd-GEVOBL − dd-GEVobs

dd-GEVobs
· 100% (6)

between IDF curves (dd-GEV) derived from the OBL model dd-GEVOBL including the third410

moment in parameter estimation (red lines) or alternatively using the probability of zero rainfall
to calibrate the model (blue lines), and directly from the observational time series dd-GEVobs for
July and two quantiles: a) 0.5 and b) 0.99 . Including the third moment in parameter estimation
slightly improves the model extremes for July for all durations and both short and long return
periods. Nevertheless, those promising results could not be found for all months (not shown)415

and thus we cannot conclude that including the third moment in parameter estimation improves
extremes in the OBL model in contrast to �ndings for the Neyman-Scott variant [Cowpertwait,
1998].

We interpret the di�erent behaviour for short durations (�attening vs continuation of the
straight line) for summer (July) and the remaining seasons as a result of di�erent mechanisms420

governing extreme precipitation events: while convective events dominate in summer, frontal and
thus more large scale events dominate in the other seasons.
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As an example, we show segments of time series including the maximum observed/simulated
rainfall in July for durations 1h, 6h and 24h as observed (RRobs) and simulated (RROBL) in
Fig. 7. Visualization of July extremes as observed (RRobs, left column) and simulated by the OBL model (RROBL,
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Figure 7: Visualisation of July extremes as observed (RRobs, left column) and simulated by the OBL
model (RROBL, right column). Shown are short segments including the maximum observed/simulated
rainfall (red vertical bars) at durations 1h (top row), 6h (middle row) and 24h (bottom row). Addi-
tionally, the middle column shows the simulated storms (red rectangles) and cells (blue rectangles)
corresponding to the extreme event of the simulated time series.

425

right column). Shown are short segments including the maximum observed/simulated rainfall (red vertical bars) at

durations 1h (top row), 6h (middle row) and 24h (bottom row). Additionally, the middle column shows the simulated

storms (red rectangles) and cells (blue rectangles) corresponding to the extreme event of the simulated time series.

Parts of the observed and simulated rainfall time series corresponding to the extreme events for
the three di�erent durations are shown in the left and right column, respectively. Additionally430

the middle column shows the simulated storms and cells generating this extreme event in the
simulated arti�cial time series. Note, that we show only one simulation as an example; visual As an example,
we only show one single model simulation. Visual inspection of several other simulated series share

support the main featuresand are not reproduced here. For all durations, the extremes are a result
of a single long-lasting cell with high intensity. In contrast to an analysis based on the random435
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parameter BL model [Verhoest et al., 2010], these cells are neither unrealistic unrealistically long
nor have an unrealistic unrealistically high intensity.

For January, IDF curves from observations and OBL model simulations exhibit large discrep-
ancies: for all durations, the 0.99-quantile (100-yr return level) is above the range of variability
from the OBL model and the 0.5-quantile (2-yr return level) is below for small durations. This440

implies, that the shape of the extreme value distribution characterised by the scale σ and shape
parameter ξ is di�ers between the two cases. This is likely due to the winter-storm Kyrill hitting
Germany and Berlin on January 18th and 19th in 2007 [Fink et al., 2009]. We suppose that
this rare event is not su�ciently in�uential to impact OBL model parameter estimation but
does a�ect the extreme value analysis. For the latter only the one maximum value per month is445

considered. In fact, the shape parameter ξ estimated from the observational time series shows a
large value compared to the other months; in contrast, this value is estimated to be around zero
from OBL model simulations. The following section investigates this hypothesis by excluding
the precipitation events due to Kyrill.

We furthermore �nd that the OBL model is generally able to reproduce the observed season-450

ality in IDF parameters, see Fig. 8. For all parameters, the direct estimation (blue) is mostly

with in within the range of variability of the OBL model simulations. For σ̂, θ̂ and η̂, the direct
estimation (blue line) features a similar seasonal pattern as the median of the OBL model (red

line). Whereas , whereas for ξ̂, the direct estimation is a lot more erratic than the median (red). As
the GEV shape parameter is typically di�cult to estimate [Coles, 2001], this erratic behaviour is455

not unexpected and 11 out of 12 months stay within the expected inner 90% range of variability.

5.3 Investigation of the impact of a rare extreme event

The convective cold front passage of Kyrill accounted for a maximum intensity of 24.8mm rainfall
per hour, whereas the next highest value of the remaining Januaries would be 4.9mm rainfall per
hour in 2002 and thus being more than 5 times lower than for Kyrill. We construct another data460

set without the extreme event due to Kyrill, i.e. without the year 2007. The intention of this
experiment is not to motivate removal of an �unsuitable� value. We rather want to show that
the OBL model is in generally able to reproduce extremes; it is, however, not �exible enough to
account for a single event with magnitude far larger than the rest of the time series. Based on the
model with parameters estimated from observations with and without the year 2007 (observed),465

we obtain return periods for the event �Kyrill� for di�erent durations and �nd this event to be
very rare, especially on short-time scales (1-3 hours), see Tab. 1. .

Duration [h] Probability of
exceedance

without Kyrill
[%]

Return period
without Kyrill

[years]

Probability of
exceedance

including Kyrill
[%]

Return period
including Kyrill

[years]

1 1.8× 10−6 560000 5.6× 10−4 1790
2 4.3× 10−5 23000 2.4× 10−3 420
3 2.2× 10−4 4400 5.4× 10−3 185
6 1.6× 10−3 630 1.6× 10−2 63
12 1.7× 10−3 590 2.0× 10−2 49
24 3.5× 10−3 280 3.5× 10−2 29
48 2.0× 10−2 50 9.5× 10−2 11

Table 1: Return period for the event Kyrill as estimated from the observational time series with
this particular event left out and inlcuded for parameter estimation.
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Figure 8: Seasonality of IDF model parameters estimated directly from the Berlin-Dahlem series
(blue line), and estimated from 1000 OBL model simulations (red). The red shadings give the
range of variability (5% to 95%) from the 1000 simulations with the median as solid red line.
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For this data set, we estimate the OBL model parameters and simulate again 1000 time series
with these new parameters. The simulated time series were also reduced in length by one year,
containing 12 years of rainfall in total. From those precipitation time series, we constructed
the dd-GEV IDF curves, see Fig. 9 (right). (right). Without the extreme events due to Kyrill,
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Figure 9: dd-GEV IDF curves for a) all Januaries (including 2007), b) Januaries excluding 2007
(di�erent scaling on the intensity axis). Shown are the 0.5 (red), 0.9 (green) and 0.99 (blue)
quantile from observations at Berlin-Dahlem (solid lines). The shaded ares are the respective
0.05 and 0.95 quantiles for the associated IDF curves obtained from 1000 OBL model simulations.

470

the OBL model performs in January as well as in the other month with respect to reproducing
the IDF relations. In particular, the spread between the 0.5-quantile (2-yr return level) and the
0.99-quantile (100-yr) return level is reduced and the absolute values of extreme quantiles as
well, cf. Fig. 9, left and right panel. Note the di�erent scales for the intensity-axes.

5.4 Comparing dd-GEV IDF curves to individual duration GEV475

In the frame of a model-world study, long time series simulated with the OBL model can be
used to investigate adequacy of the dd-GEV model conditional on the simulated series. To this
end, we compare the resulting IDF-curves to a GEV distribution obtained for various individual
durations. The basis is a set of 1000-year simulations with the OBL model with parameters
optimised for Berlin-Dahlem. For a series of this length, we expect to obtain quite accurate480

(low variance) results for both, the dd-GEV IDF curve and the GEV distributions for individual
durations. However, sampling uncertainty is quanti�ed by repeatedly estimating the desired
quantities from 50 repetitions. The resulting dd-GEV IDF curves are compared to the individual
durations GEV duration GEV distribution in Fig. 10 for January (left) and July (right). dd-GEV IDF

curves for a) January and b) July and associated quantiles of a GEV distribution estimated for individual durations.485

Shown are the 0.5- (red), 0.9- (green) and 0.99-quantile (blue); shaded areas/box plots represent the variability over the

50 repetitions (5% to 95%)

For most durations in January and July, the dd-IDF curves are close to the quantiles of the
individual duration GEV distributions. Notable di�erences appear for small durations and large
quantiles (return levels for long return periods); particularly in January the dd-GEV IDF model490

overestimates the 10-year and 100-year return levels (duration of 1h), in July, this e�ect seems
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Figure 10: dd-GEV IDF curves for a) January and b) July and associated quantiles of a GEV
distribution estimated for individual durations. Shown are the 0.5- (red), 0.9- (green) and 0.99-
quantile (blue); shaded areas/box plots represent the variability over the 50 repetitions (5% to 95%)

to be present as well but smaller in size. This is accompanied by a slight underestimation of the
dd-GEV IDF for durations of 2h to 6h in July and 3h to 6h in January, most visible for the 0.99-
quantile (100-yr return level). Both e�ects together suggest that the �attening of the dd-GEV
IDF for small durations is not su�ciently well represented. This could be due to de�ciencies in495

the model for the duration dependent scale parameter (Eq. (4)) but might also be a consequence
of an inadequate sampling of durations (d ∈ {1h, 6h, 12h, 24h, 48h, . . .}) to be used to estimate
the dd-GEV IDF parameters. This is a point for further investigation.

6 Discussion and conclusions

The original version of the Bartlett-Lewis rectangular pulse (OBL) model is optimized has been500

optimised for the Berlin-Dahlem precipitation time series. Subsequently IDF curves are have been
obtained directly from the original series and from simulation with the OBL model. Basis for
the IDF curves is has been a parametric model for the duration-dependence of the GEV scale
parameter which allows a consistent estimation of one single duration-dependent GEV using
all duration series simultaneously (dd-GEV IDF curve). Model parameters for the OBL model505

and the IDF curves are have been estimated for all months of the year and seasonality in the
parameters is visible. Typical small-scale convective events in summer and large-scale stratiform
precipitation patterns in winter are associated with changes in model parameters.

We show have shown that the OBL model is able to reproduce empirical statistics used for
parameter estimation; Mean, variance and autocovariance of simulated time series are in good510

agreement with observational values, whereas the probability of zero rainfall is more di�cult to
capture [cf. Rodriguez-Iturbe et al., 1987, Onof and Wheater, 1994a].

With respect to the �rst research question posed in the introduction, we investigate have inves-
tigated to what extent the OBL model is able to reproduce the intensity-duration relationship
found in observations. We show have shown that they do reproduce the main features of the IDF515

curves estimated directly from the original time series. However, a tendency to underestimate
return levels associated with long return periods is has been observed similar to Onof and Wheater
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[1993]. Including the third moment in parameter estimation did not show signi�cant improvements in

has not signi�cantly improved the OBL model's representation of extremes in contrast to �ndings
for the Neyman-Scott variant [Cowpertwait, 1998].520

Furthermore, IDF curves for January show a strong discrepancy between the OBL model
simulations and the original series. We hypothesize and investigate have hypothesised and have inves-
tigated that this is due to the Berlin-Dahlem precipitation series containing an extreme rainfall
event associated with the winter-storm Kyrill passing over Berlin during January 18th and 19th,
2007. This event is has been very rare in the sensethat on the events , that on short time scales525

it is only (e.g. 1 hour and 3 hours) such an event is probable to occur only once within a period
larger than 1000 years on average. This addresses the second research question: How are IDF
curves a�ected by very rare extreme events which are unlikely to be reproduced with the OBL
model for a reasonably long simulation? When Having excluded the year 2007 is excluded from the
analysis, the aforementioned discrepancy in January disappearshas disappeared. We conclude that530

an extreme event which is rare (return period of 23000 yrs) with respect to the time scales of
simulation (1000 × 13 yrs) has the potential to in�uence the dd-GEV IDF curve, as 1 out of 13
values per duration � (i.e. one maximum per year out of a 13 years time series� ) does change
the GEV distribution. However, its potential to in�uence mean and variance statistics used to
estimate OBL model parameters is minor.535

The third questions question addresses the validity of the duration dependent parametric model
for the GEV scale parameter which allows a consistent estimation of IDF curves. For a set of
long simulations (1000 years) with the OBL model, the comparison of IDF curves with the
duration-dependent GEV approach with quantiles from a GEV estimated from individual du-
rations suggest suggests a systematic discrepancy associated with the �attening of the IDF curve540

for short durations. Quantiles from individual durations are smaller for small durations as short
durations than in the dd-GEV IDF curves which challenges approach IDF curves, which is a challenge for
the latter modeling approach. However, instead of altering the duration dependent formulation
of the scale parameter σd (Eq. (4)), a di�erent sampling strategy for durations d used in the
estimation of the dd-GEV parameters might alleviate the problem. This is a topic for futher545

further investigation.
We do not �nd have not found the OBL model producing unrealistically high precipitation

amounts, as discussed for the random-η model [Verhoest et al., 2010]. Nevertheless, improvements
in reproducing the observed extreme value statistics (especially large return levels) could be made
by adding the third moment in parameter estimation, as previous studies a constraint between intensity and550

duration parameters in the model equations, as a previous study showed [Kaczmarska, 2011].
In summary, the OBL model is able to reproduce the general behaviour of extremes across

multiple time scales (durations) as represented by IDF curves. Very rare extreme events do not
have the potential to change the OBL model parameters but they do e�ect IDF statistics and
consequently modi�es modify the previous conclusion for these cases. A duration dependent GEV555

is a promising approach to obtain consistent IDF curves; its behaviour at small durations needs
further investigation.

A OBL model parameters

Estimation In the estimation of OBL model parameters follow the boundary constraints: we limited the
parameter space by using boundary constraints. Lower and upper parameter limits have been set in a560

physically realistic range, see Tab. 2. For those parameter ranges, numerical optimisation mostly
converged into a global minimum. For No constraints are applied in the model variant using with
the third moment implemented in the OF, no constraints are used.
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Parameter Lower boundary Upper boundary

λ 0.004 [h−1h−1] 1 [h−1h−1]

γ 0.01 [h−1h−1] 10 [h−1h−1]

β 0.01 [h−1h−1] 100 [h−1h−1]

η 0.01 [h−1h−1] 100 [h−1h−1]

µx 1× 10−9 [mm/hmm h−1] 100 [mm/hmm h−1]

Table 2: Boundary constrained used in OBL model parameter estimation.

Using a Latin-Hypercube approach, we generated 100 di�erent sets of initial guesses for
the parameters used in the numerical optimization of the symmetrized optimisation of the symmetrised565

objective function, Eq. (2). The estimation of OBL model parameters proved to be robust and
the majority of optimisations optimisation runs led to the same minimum of the objective function
which is then assumed to be the global minimum. Parameter estimates are given in Tab. 3.

λ̂ [h−1] γ̂ [h−1] β̂ [h−1] η̂ [h−1] µ̂x [mm h−1] Zmin

Jan 0.012 0.049 0.266 1.223 1.093 0.389
Feb 0.016 0.065 0.305 0.906 0.511 0.036
Mar 0.010 0.028 0.165 0.924 0.614 0.077
Apr 0.015 0.073 0.100 0.841 0.845 0.125
May 0.021 0.066 0.102 1.080 1.707 0.419
Jun 0.018 0.350 0.613 5.191 7.873 0.109
Jul 0.015 0.090 0.300 2.098 3.946 0.105
Aug 0.018 0.265 0.385 2.960 7.228 0.126
Sep 0.011 0.037 0.122 0.827 1.340 0.055
Oct 0.016 0.109 0.219 0.753 0.990 0.099
Nov 0.019 0.091 0.378 0.796 0.525 0.064
Dec 0.027 0.119 0.205 0.753 0.602 0.130

Table 3: Optimum of estimated OBL model parameters for individual month months of the year
for the Berlin-Dahlem precipitation series and corresponding value of the objective function Z

B Di�erence in IDF curves

Figure 11 shows the relative di�erence, see Eg. 6, between IDF curves (dd-GEV) derived from570

the OBL model dd-GEVOBL and directly from the observational time series dd-GEVobs. From

In the four panels in Fig. 11, the discrepancies of the OBL model can be highlightedseen. Apart
from the large discrepancies in January discussed in Sect. 5.3, the range of variability (colored
shadows in Fig. 11include ) includes also the zero di�erence line. However, the median over the
1000 OBL model simulations show shows a general tendency for the OBL model to underestimate575

extremes for large return periods (0.99-quantile) by 25-50%. The best agreement is achieved
for April. Relative di�erences (Eq. (6)) between simulated and observed IDF curves for a) January, b) April, c)

July and d) October in percent relative to the observational values. Shown are the 2-yr (0.5-quantile, red), the 10-yr

(0.9-quantile, green) and 100-yr return level (0.99- quantile, blue) di�erences. The dashed lines denotes the median over

all 1000 simulations and the surrounding coloured shading mark the range of variability (5% to 95%). Due to the usage580

of transparent colours, the three di�erent colours can overlap and mix, grey shadows thus correspond to the overlapping

of all three colours.
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Figure 11: Relative di�erences (Eq. (6)) between simulated and observed IDF curves for a) January,
b) April, c) July and d) October in percent relative to the observational values. Shown are the 2-
yr (0.5-quantile, red), the 10-yr (0.9-quantile, green) and 100-yr return level (0.99- quantile, blue)
di�erences. The dashed lines denotes the median over all 1000 simulations and the surrounding
coloured shading mark the range of variability (5% to 95%). Due to the usage of transparent colours,
the three di�erent colours can overlap and mix, grey shadows thus correspond to the overlapping of
all three colours.
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