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We are very grateful to three anonymous reviewers for carefully reading and commenting
thoroughly on our manuscript. We received highly valuable and constructive comments which
very much helped to improve our work and led to new insights. We additionally got plenty ideas
for further investigations.

In the following, we go point by point through all the comments and reply to them. Reviewers'5

comments are all repeated in this document, typeset in black. They are individually addressed,
typeset in blue. Changes to the original manuscript as resulting from the reviewers comments
are repeated here to ease the comparison with the original version; they are typeset in blue italic.

Due to some comments from the reviewers, we decided to exchange the abbreviation BLRPM
to OBL model in order to distinguish the original Bartlett-Lewis model (OBL) from a modi�ed10

version (MBL).

Reviewer 1:

General Comments:

This paper investigates the ability of the original Bartlett-Lewis model for estimating extreme
rainfall at various levels of aggregation. Unfortunately, the paper is not very novel. It is already15

known for a long period that the Bartlett-Lewis (BL) models have problems in reproducing
extremes, especially at shorter aggregation levels. It is not clear why the authors chose for the
Original Bartlett-Lewis (OBL) model, while the Modi�ed Bartlett-Lewis (MBL) model or one of
the later versions (e.g. Onof and Wheather, 1994) that were further optimized for addressing the
problem of the undergeneration of extremes. An important part of the paper is dealing with the20

fact that using a short time series for calibration may have an important impact on the statistics
described by the observed extremes: the highest extreme may have a much larger return period
than the one estimated from the time series. This, of course, is not surprizing, and the shorter
the time series used, the higher the potential becomes of facing with extremes that have true
return periods much larger than the length of the time series. Yet, this example may be of25

interest for the scienti�c community, especially for young researchers starting in the domain of
stochastic hydrology. Therefore, I believe this part of the paper may be of interest, though not
very novel.
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Remarks:

Yet, I would like to give some suggestions that may improve this section:30

Mayor (1) using the model with 12 extremes, calculate the return period of the highest extreme
that was omitted (i.e. the one in year 2007) to frame how extreme this event in 2007 was?

We added the following sentence and table to Section 5.3: Based on the model with parameters
estimated from observations without the year 2007 (observed), we obtain return periods for the
event �Kyrill� for di�erent durations and �nd this event to be very rare, especially on short time35

scales (1-3 hours), see Tab. 3.

Duration [h] Probability of
exceedance

without Kyrill
[%]

Return period
without Kyrill

[years]

Probability of
exceedance

including Kyrill
[%]

Return period
including Kyrill

[years]

1 1.8× 10−6 560000 5.6× 10−4 1790
2 4.3× 10−5 23000 2.4× 10−3 420
3 2.2× 10−4 4400 5.4× 10−3 185
6 1.6× 10−3 630 1.6× 10−2 63
12 1.7× 10−3 590 2.0× 10−2 49
24 3.5× 10−3 280 3.5× 10−2 29
48 2.0× 10−2 50 9.5× 10−2 11

Table 1: Return period for the event Kyrill as estimated from the observational time series with
this particular event left out and included for parameter estimation for di�erent durations.

Mayor (2) Why not redo the same exercise with the Peak-Over-Threshold method, where
the threshold is put quite low to ensure a larger number of extremes? This may reduce the
uncertainty on the IDF curves as more data are used to �t the parametric model?

The POT approach might have given us a larger number of extremes. However, we are not sure40

to what extend the consistent estimation using all durations simultaneously can be performed for
the GPD as it can be (and we do it here) for the GEV. Koutsoyiannis et al. [1998] suggested the
duration dependent GPD as well as a model for IDF curves but explicitly states that parameter
estimation would have to be carried out via annual maxima and the asymptotic equality of GEV
and GPD for extremes, rendering the GPD based approach less interesting for us. Our argument45

here is that uncertainty can be reduced due to borrowing strength from neighbouring durations
by using the duration dependent GEV approach.

Minor

• Line 11-12: here it is not clear what is meant with a singular event. Context is not
su�ciently provided.50

Thanks for the hint! Singular is indeed unclear here. We replace occurrences of singular
in the text by rare in the sense given in Tab. 3 or . . . rare event (here an event with a
return period larger than 1000 years on the hourly time scale) before the table is introduced
in section 5.3.
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• Line 73: mention what version of the BL models is used (i.e. the Original BL model)55

We added original and (OBL) to line 73 and change the notation OBL model instead of
BLRPM throughout the text.

• Line 147: remove the footnote after the equation as it reads as if (1-p) is put to the power
�1�. The text in the footnote can easily be introduced in the sentence.

We changed the sentence to An IDF curve for a given return period T = 1/(1 − p), with60

p denoting the non-exceedance probability,. . .

• Lines 227-228: please introduce a �gure to illustrate this.

Thanks for the hint. It should (and does now) read in the text For January, IDF curves
from observations and OBL model simulations . . . and not February. The �gure for
January is provided.65

• Line 232: True, but this is a typical problem occurring for too short time series used for
extreme value analysis: �tting a distribution to 13 points is questionable!

Here we expect that using the simultaneous �t to 9 durations makes this approach more
robust. We �t one duration dependent GEV to 117 extreme values (13 years multiplied by
9 durations). They are, however, clearly not independent.70

• Line 299: �which may not be reproduced by the BLRPM�: this may be reproducible! Only,
its occurrence may be very low causing that this event was never modelled during the short
time series generated! What is the return period of this �singular� event based on the model
built from all extremes excluding this event?

From Tab. 3, one can see that the return period for a comparable event (for 2h duration)75

is several thousand years. However, we do only simulate 1000 years and probabilities of
getting such a strong event in this short time period are low. We suggest a better formu-
lation for this sentence in the introduction: 2) How are IDF curves a�ected by very rare
extreme events which are unlikely to be reproduced with the OBL model for a reasonably
long simulation? and the conclusion 2) How are IDF curves a�ected by very rare extreme80

events which are unlikely to be reproduced with the OBL model for a reasonably long simu-
lation? When the year 2007 is excluded from the analysis, the aforementioned discrepancy
in January disappears. We conclude that an extreme event which is rare (return period of
23000 yrs) with respect to the time scales of simulation (1000 × 13 yrs) has the potential
to in�uence the dd-GEV IDF curve as 1 out of 13 values per duration � i.e. one maximum85

per year out of a 13 years time series � does change the GEV distribution.

• Line 330: de�ne �relative di�erence�

To de�ne this term, we changed the beginning of the paragraph to: Figure 11 shows the
relative di�erence

∆ =
dd-GEVOBL − dd-GEVobs

dd-GEVobs

· 100% (1)

between IDF curves (dd-GEV) derived from the OBL model dd-GEVOBL and directly from90

the observational time series dd-GEVobs.
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• Appendix A: please provide information to the reader of what should be learned from the
�gures presented in the appendix. Nor the appendix or the text su�ciently elaborates on
this.

Appendix A is referred to twice in the text and gives an overview on estimated OBL95

model parameters. We consider the information in the table as necessary for reproducible
research.

With the Figures in Appendix B, we suggest another way of looking at di�erences in IDF
curves which aims to provide a better understanding of model de�ciencies in terms of over-
or underestimation of return levels. We changed the sentence referring to Appendix B in100

Sec. 5.2 to The relative di�erences in IDF curves given in Fig. 11 (Appendix B) suggest a
tendency for the OBL model to underestimate extremes, particularly for large return levels
and short durations, similar to results found by, e.g. Verhoest et al. [1997] and Cameron
et al. [2000].

Reviewer 2:105

General Comments:

This paper demonstrates the use of original Bartlett-Lewis models for simulating rainfall series
having precipitation extremes on multiple time scales. I believe it is an interesting paper that
con�rms some of the problems already indicated for the model used. More is needed in terms
of discussion and a clearer extreme-value analysis, possibly involving the examination of other110

cell intensity distributions and proposed a new version of the model, which they called the
Modi�ed Bartlett Lewis (MBL) model. The original Bartlett Lewis model is proved e�cient to
explain the rainfall characteristics at all time intervals considered (1hr to 24hr) as explained by
several authors such as Rodriguez-Iturbe et al. (1988) and Onof (1992), a major de�ciency is
its inability to reproduce the proportion of dry periods correctly. To overcome this problem,115

Rodriguez-Iturbe et al. (1988) proposed a new version of the model, which they called the
Modi�ed Bartlett Lewis (MBL) model. Although several studies have pointed out limitation of
the original model and suggested some improvements. Onof and Wheater (1994a), for example,
introduced a two-parameter gamma distribution as opposed to the original Bartlett Lewis model
which considers a single parameter exponential distribution to describe the depth of a cell in120

order to better capture extreme events. However, the problem of underestimation of the extreme
values still persists, particularly for lower aggregation levels, as described by Verhoest et al.(1997).
Vandenberghe et al. (2010) found that the models demonstrated a too severe clustering of rain
events.

Comments:125

I would recommend the paper to be published after addressing some of the following remarks. I
believe that this work could be improved by better demonstrating the advantages of the origi-
nal and modi�ed models compared to other rainfall generators (for instance, rectangular pulses
models better maintain statistics at di�erent aggregation levels), but also give an overview of
drawbacks of the model. For instance, Onof and Wheater (1994) introduced a gamma distribu-130

tion for the depth of a cell in order to better capture extreme events. Verhoest et al. (2010)
discusses that problems still remain as infeasible cells (extremely long) sometimes occur. Van-
denberghe et al. (2011) found that the models demonstrated a too severe clustering of rain
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events. Cameron et al. (2000) and Verhoest et al. (1997) found that these models generally
underestimate the extreme values, especially for lower aggregation levels. Onof and Wheater135

(1993) reported problems for return periods greater than the length of the dataset. According to
Cowpertwait (1998) this problem could be overcome if higher order properties would be included
in the �tting procedure. Besides of being in mentioned above, the authors could validate whether
the same problems occur for their simulations.

We are grateful for this comprehensive overview on the de�cits associated with the original140

Bartlett-Lewis model (OBL) and modi�ed versions. We used the OBL to gain an understanding
of this type of stochastic precipitation models with the aim to use it in a non-stationary con-
text in future research. Drawbacks of the OBL and also of modi�ed versions are discussed in
the literature, as mentioned by the reviewer. These de�cits of the OBL might vanish (at least
partially) if used in a non-stationary context where model complexity is increased as parameters145

are linked to large scale �ow variables. This is, however, not a point to be discussed here.
Besides gaining experience for our future research plans, the manuscript we presented con-

tributes to a) the analysis of extreme precipitation over a range of time scales in a consistent way
using duration-dependent IDF curves (to our knowledge, this has been only brie�y touched in
Verhoest et al. [1997], and to b) the question whether the duration-dependent GEV is suitable150

to obtain IDF curves for these kind of models.
In the revised manuscript we introduce a paragraph reporting on the above mentioned issues

in section 1:
Due to the high degree of simpli�cations of the precipitation process, known drawbacks of

the OBL model include the inability to reproduce the proportion dry as reported by Rodriguez-155

Iturbe et al. [1988] and Onof [1992], and underestimation of extremes as found by, e.g. Verhoest
et al. [1997] and Cameron et al. [2000], especially for shorter durations. Furthermore, problems
occur for return levels with associated periods longer than the time series used for calibrating the
model [Onof and Wheater, 1993]. Several extensions and improvements to the model have been
made. Rodriguez-Iturbe et al. [1988] introduced the randomised parameter Bartlett-Lewis model,160

allowing for di�erent types of cells. Improvements in reproducing the probability of zero rainfall
and capturing extremes have been shown for this model [Velghe et al., 1994]. A gamma-distributed
intensity parameter and a jitter were introduced by Onof and Wheater [1994b] for more realistic
irregular cell intensities. Nevertheless, problems still remain as Verhoest et al. [2010] discussed
the occurrence of infeasible (extremely long lasting) cells and a too severe clustering of rain165

events was found by Vandenberghe et al. [2011]. Including third-order moments in the parameter
estimation showed an improvement in the Neyman-Scott models extremes [Cowpertwait, 1998].
For the Bartlett-Lewis variant Kaczmarska et al. [2014] found that a randomised parameter model
shows no improvement in �t compared to the OBL model for which the skewness was included
in the parameter estimation. Furthermore, an inverse dependence between rainfall intensity170

and cell duration showed improved performance, especially for extremes at short time scales
[Kaczmarska et al., 2014]. Here, we focus on the OBL model with and without the third-order
moment included. This model is still part of a well-established class of precipitation models and
the reduced complexity is appealing as it allows to be used in a non-stationary context [Kaczmarska
et al., 2015].175

As mentioned in Section 5.2 of the manuscript, we found the OBL model to underestimate
extremes merely for return levels with associated return periods much longer than our observed
time series. We report this result now with a reference to Onof and Wheater [1993]. We cannot
con�rm a signi�cant underestimation associated with short durations as reported by Cameron
et al. [2000] and Verhoest et al. [1997], only the tendency is visible in Fig. 11, as is reported in180

Section 5.2. Small di�erences are present; we related those, however, to a problem of estimating
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a consistent IDF for short durations, see Sect. 5.4.
In a 1000 year simulation with the OBL, we could not �nd any infeasible cells as mentioned

by Verhoest et al. [2010]. They discovered the problem for the modi�ed version of the BL model.
In our manuscript, we report in the discussion that in our long OBL simulation, this problem185

does not occur.
Motivated by this reviewer comment, we included the third moment in our objective function,

following Cowpertwait [1998] and using the analytical expression derived by Wheater et al. [2006],
which � as the reviewer mentions � should overcome some problems of the OBL, see Sect. 2 where
we added following paragraph:190

Following studies by Cowpertwait [1998] and Kaczmarska et al. [2014], we include the third
moment in the parameter estimation using analytical expressions derived by Wheater et al. [2006],
replacing the probability of zero rainfall in the objective function. Thus, still 13 moments are used
to calibrate the OBL model. Due to comparability with other studies most of our analyses will
not include the third moment though. A comparison between IDF curves of the model calibrated195

with the third moment and with the probability of zero rainfall will be carried out, to discuss the
e�ect of including the third moment.

Compared to using the known problematic probability of zero rainfall [Onof and Wheater,
1994a], we could not �nd a systematic improvement related to extremes. This is discusses in the
revised version in section 5.2. as follows:200

Figure 8 shows the relative di�erence

∆ =
dd-GEVOBL − dd-GEVobs

dd-GEVobs

· 100% (2)

between IDF curves (dd-GEV) derived from the OBL model dd-GEVOBL including the third
moment in parameter estimation (red lines) or alternatively using the probability of zero rainfall
to calibrate the model (blue lines), and directly from the observational time series dd-GEVobs for
July and two quantiles: a) 0.5 and b) 0.99 . Including the third moment in parameter estimation205

slightly improves the model extremes for July for all durations and both short and long return
periods. Nevertheless, those promising results could not be found for all months (not shown)
and thus we cannot conclude that including the third moment in parameter estimation improves
extremes in the OBL model in contrast to �ndings for the Neyman-Scott variant [Cowpertwait,
1998].210

Section 2.1) line 109: ...the weights, (wi; i = 1, 2, ..., k) which allow more important weight
to be given to �tting some sample moments relative to others. Try to give weights given by
wi = 1/V ar(Ti(y)) where V ar(Ti(y)) represents the ith diagonal elements of the covariance ma-
trix of the summary statistics.
Vanhaute et al. [2012] investigated di�erent objective functions speci�ed in the following (rewrit-
ten using a notation consistent with our manuscript):

Z(θ;T) =

k∑
i=1

wi [τi(θ) − Ti]
2

(OF1)

Z(θ;T) =

k∑
i=1

{[
1− τi(θ)

Ti

]2
+

[
1− Ti

τi(θ)

]2}
(OF2) (3)

Z(θ;T) =

k∑
i=1

1/Var[Ti] [τi(θ) − Ti]
2

(OF3)
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Figure 1: Relative di�erences between observed and simulated return levels obtained with includ-
ing the third moment (red) and with using the probability of zero rainfall (blue) in parameter
estimation for a) July 0.5 quantile and b) July 0.99 quantile. Dotted lines show the 0.05 and
0.95 quantile range of 1000 simulations.

with the moments τi(θ) derived from model parameters θ and the empirical moments Ti esti-
mated from the time series.

Here, we use an objective function based on OF2, using a ratio between analytic and empirical
moments. In this formulation, �rst and second order properties are normalised by their charac-215

teristic order of magnitudes and are thus comparable. A scaling with variances as suggested by
the reviewer is thus not necessary for this particular case. Additionally, we use the weights wi
from OF1 to emphasize the �rst moment similarly to Cowpertwait et al. [1996a], see Sect. 2.
We are, however, aware of objective functions like OF1 with weights being the variances of the
moments as proposed by the reviewer and also by Kaczmarska et al. [2015] for the non-stationary220

setting; An approach we plan to pursue in the future.

Section 2 2) Give more info on the boundary constraints identi�ed for the parameters of orig-
inal model that contribute to the stability in the parameter estimates. For the original model,
the values of λ that are only considered ranges from 0.01 to 0.05.

Thanks, that is de�nitively needed for reproducible research. We add the following to Appendix225

A:
Estimation of OBL model parameters follow the boundary constraints: For those parameter

Parameter Lower boundary Upper boundary
λ 0.004 [h−1] 1 [h−1]
γ 0.01 [h−1] 10 [h−1]
β 0.01 [h−1] 100 [h−1]
η 0.01 [h−1] 100 [h−1]
µx 1× 10−9 [mm/h] 100 [mm/h]

Table 2: Boundary constrained used in OBL model parameter estimation.
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ranges, numerical optimisation mostly converged into a global minimum. For the model vari-
ant using the third moment in the OF, no constraints are used.

Section 5 Results: 1. From results listed in Table 1, it is interesting to observe the higher230

number of storms with high cell intensity and this is contrary to our prior knowledge about less
storm arrivals in dry periods like June. The occurrence of heavy rain in a short duration often
induces �ush �oods in the city area. Form data, it is found the values of cell arrival based on the
original model is smaller with high rainfall intensities, particularly for June. This implies that
there is a substantial enough cell overlap which could bring extreme rainfall events. Thus, the235

occurrence of these realistic rainfall cells, whereas, at the hourly time scale, the annual maxima
do not generally result from this model.

Thank you for pointing us to this interesting observations, we include the following in Section
5.1: During summer months, we observe very intensive cells (µ̂x between 4mm/h and 8mm/h).
However, in June and August, storm duration is relatively short (γ̂ between 0.25/h and 0.35/h)240

which can be interpreted as short but heavy thunderstorms which are typically observed in this
region in summer [Fischer et al., 2017]. This passage replaces following sentences in Section 5.1
in the original manuscript:

Large mean intensities µ̂x and short mean cell life-times 1/η̂ in summer correspond to precip-
itation being dominated by convective events. Similar, the mean cluster life-time 1/γ̂ decreases245

in summer, whereas the mean cell generation rate β̂ increases.

2. Please check how the extreme events of the original model look like and compare this to
the extremes of the historical series. From this you may conclude what is the problem rather
than guessing that it has to do with the nature of the rainfall (maybe it is a shortcoming of the250

model instead! E.g. Verhoest et al. (2010))

We checked extreme events of the OBL model and visually compare them to the extremes of
the historical site. We add the following �gure and text to the manuscript to section 5.2. As
an example, we show segments of time series including the maximum observed/simulated rainfall
in July for durations 1h, 6h and 24h as observed (RRobs) and simulated (RROBL) in Fig. 7.255

Parts of the observed and simulated rainfall time series corresponding to the extreme events for
the three di�erent durations are shown in the left and right column, respectively. Additionally
the middle column shows the simulated storms and cells generating this extreme event in the
simulated time series. Note, that we show only one simulation as an example; visual inspection
of several other simulated series share the main features and are not reproduced here. For all260

durations, the extremes are a result of a single long-lasting cell with high intensity. In contrast
to an analysis based on the random parameter BL model [Verhoest et al., 2010], these cells are
neither unrealistic long nor have an unrealistic high intensity.

Reviewer 3:

General Comments265

1. The focus on IDF curves as a characteristic of mechanistic models appears to be novel and
of wide relevance to hydrological modelling, climate impact assessment and risk estimation. The
focus on short duration (5 minute) extremes is also of particular relevance. I therefore think
this research is suitable for this publication and would be of general interest to its readership.
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Figure 2: Visualization of July extremes as observed (RRobs, left column) and simulated by
the OBL model (RROBL, right column). Shown are short segments including the maximum
observed/simulated rainfall (red vertical bars) at durations 1h (top row), 6h (middle row) and
24h (bottom row). Additionally, the middle column shows the simulated storms (red rectangles)
and cells (blue rectangles) corresponding to the extreme event of the simulated time series.
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2. The paper addresses three research questions which are clearly set out in the introduction.270

Each question is then addressed in turn in the discussion and conclusions. The questions are as
follows:

I. �Is the OBL model able to reproduce the intensity-duration relationship found in
observations?� The authors use a depth-dependent GEV distribution (dd-GEV) to estimate
extremes across di�erent durations � it is assumed that �across di�erent durations� means �across275

di�erent temporal scales�. Optimisation of the dd-GEV parameters is performed using random
sampling from a Latin-Hypercube which appears to be a new method for calibrating these models
and is referred to as the depth-dependent GEV approach. This approach is used to construct IDF
curves from the observations, and 1000 OBL model realisations of the same length. Typically
when we want to estimate extremes from a rainfall model we would sample annual maxima280

directly from long duration simulations without then using a second extreme value model such
as GEV or GP. However, in this case it seems appropriate to apply the dd-GEV for two reasons:
1. to enable direct comparison with the IDF curves from observations, and 2. because the dd-
GEV method uses extremes across di�erent scales in �tting. That said, it is not clear from the
methodology set out in 5.2 at what scales rainfall has been simulated; is it the same as those285

used in �tting (i.e., 1, 3, 12, and 24 hrs)? This could be made clearer by the authors.

As the reviewer wrote, we use a parametric approach to obtain a consistent IDF curve based
on a block-maxima approach and a duration-dependent GEV. This idea is based on work by
Koutsoyiannis et al. [1998] and later taken up by Soltyk et al. [2014]. The main advantage is to
exploit the smoothness in the IDF curve for a more robust estimation. Parameter estimation is290

carried out by numerically optimising an objective function based on an approximation to the
likelihood; the problem of local minima is taken care of by using a latin-hypercube resampling
of initial guesses for the parameter optimisation.

From continuous cell simulation, rainfall series have been obtained by aggregating cell rainfall
to 1h (minimum duration) and further on to match the duration used for the observed series.295

We thus include the following sentences at the end of Sect. 2 and augment a sentence at the
beginning of Sect. 5.2, respectively

Simulations with the OBL model are in continuous-time on the level of storms and cells. We
aggregate the resulting cell rainfall series to hourly time series.

Monthly block-maxima for every month in the year are drawn for various durations (1h, 3h,300

6h, 12h, 24h, 48h, 72h, 96h) from the observational time series and 1000 OBL model simulations
of same length.

The authors note in Section 5.2 (lines 220-2) and in the conclusion (lines 292-3) that the OBL
model tends to under-estimate the extremes. The under-estimation of extremes by mechanistic305

rainfall models (both Bartlett-Lewis and Neyman-Scott variants), especially at �ne temporal
scales, is a known issue and the authors' �ndings are entirely consistent with this. The discussion
would be greatly improved by drawing a broader interpretation of the results with comparison
with other studies that show under-estimation of extremes by mechanistic models. In particular,
is there something to be gained by estimating �ne-scale extremes in this way?310

Motivated already by the �rst comment of reviewer 2, we related our �ndings to a broader
spectrum of literature, see our answer above.

For users, an IDF curve gives a broad and immediate overview about how much (intensity)
rain over a period of time (duration) is likely (frequency) to fall. Previous studies mainly focus on
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Gumbel plots in reference to extreme value analysis. Therefore we believe the presented frame-315

work using consistent IDF curves based on a duration-dependent GEV together with stochastic
precipitation models can contribute to the community.

II. �How are IDF curves a�ected by a singular extreme event which might not be
reproducible with the BLRPM?� BL model parameters are estimated using central mo-
ments of the rainfall data therefore it is very likely that this one single extreme will not have320

as much in�uence on the estimation of BL model parameters as it does on dd-GEV parameters
from observations. And indeed, the authors show that the problem with January disappears
when this event is taken out. The reader is however left with the impression that the implication
is that this event is treated as suspicious information, i.e. that it is �ne to take out this largest
observation because it is so abnormally larger than any other observed hourly rainfall depth. I325

don't think that the authors meant this to be the case, but it should be clari�ed in the text that
the section in which this largest value is taken out does not carry the implication that it is OK
to take out the largest value because the event is in some sense `abnormal'.

Thanks for pointing this potential problem out! We did not intend to motivate other researchers
to take out a �suspicious� date as the winter storm Kyrill in January 2007. Instead we wanted330

to demonstrate the OBL model's inability to capture characteristics of an event which is much
larger in magnitude than the majority of the other events. On the other hand, we showed that
the model is generally able to reproduce extreme precipitation events if they are well represented
in the underlying data. We augment the �rst paragraph of Sect. 5.3: The convective cold front
passage of Kyrill accounted for a maximum intensity of 24.8mm rainfall per hour, whereas the335

next highest value of the remaining Januaries would be 4.9mm rainfall per hour in 2002 and
thus being more than 5 times lower than for Kyrill. We construct another data set without the
extreme event due to Kyrill, i.e. without the year 2007. The intention of this experiment is not
to motivate removal of an �unsuitable� value. We rather want to show that the OBL model is in
generally able to reproduce extremes; it is, however, not �exible enough to account for a single340

event with magnitude far larger than the rest of the time series. . . .

This issue brings us to an important problem with the authors' analyses: the data set of 13
years (then reduced to 12 years) is rather short to be doing extreme-value analysis (typically, a
peak-over-threshold approach would normally be preferred for such a short dataset. Perhaps the345

authors' aim is to bring out the greater usefulness of making use of a rainfall model when the
data set is not long enough, in which case this should be stated.

We admit that an extreme value analysis would bene�t from a longer time series, which is
unfortunately not available for this case study. With respect to the POT approach, please see
our answer to reviewer 1, Mayor comment 2. It is not our aim to use the OBL model as a relief350

of the short data series problem. As mentioned in the last comment/answer, we also need a
long series to estimate OBL parameters in a way that extremes with a long return period are
su�ciently well reproduced.

III. �Is the parametric extension of the GEV a valid approach to obtain IDF curves?�
Here the authors test the validity of the dd-GEV approach to estimating IDF curves by com-355

paring IDF curves obtained from 50 realizations of 1000 years duration from the BL models with
GEV estimates from the same simulations. There is an important underlying hypothesis here,
namely that the BL model has now been adopted as an accurate representation of the distribu-
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tion of rainfall (in particular extremes), but we know that this is not true from the problems
identi�ed in the analysis of BL's IDF curves. So it is important to qualify the scope of this third360

research question to make it clear that it is an analysis conditional upon a hypothesis that is
only approximately true.

Thanks for the hint! Indeed, we do not take the OBL as a representative for the observed rainfall
but as a tool to obtain long arti�cial series to be used in a model-world study. We change the
�rst sentence in Sect. 5.4 to: In the frame of a model-world study, long time series simulated365

with the OBL model can be used to investigate adequacy of the dd-GEV model conditional on the
simulated series.

This issue also has a bearing upon the interpretation of the results. For instance, when they
identify an under-estimation of 10 and 100 year hourly extremes in January and July, the au-370

thors conclude that this is due to poor representation of the dd-GEV IDF curves at these scales
which is described as �attening. However, this result is also consistent with the known issue
of mechanistic models under-estimating �ne-scale (hourly and sub-hourly) extremes yet there is
no discussion to this e�ect. It is potentially encouraging that the estimation of �ne-scale ex-
tremes with dd-GEV IDF curves from BL model simulations does not show the underestimation375

ordinarily obtained from mechanistic models, therefore the authors could explore this in their
discussion.

Please note, that we now take a single �xed set of parameters to simulate 50 very long (1000yrs)
series of rainfall surrogates. Based on these series, we compare two strategies for estimating
return levels for di�erent durations: the duration-dependent GEV (dd-GEV) and individual380

duration GEV approach. Problems of the OBL to represent observed extremes do not play a
role here. However, we suggest that the observed e�ect for short durations indeed needs to be
explored in a further analysis.

A further issue potentially lies in the estimation of con�dence intervals. There may be over-385

con�dence in the extreme value estimates and IDF curves presented in Figure 8. Con�dence
intervals are estimated from 50 realisations from the BL models. However, GEV extreme value
estimates from each realisation would have an associated credible interval which is not shown.
It is possible that if this were, then there would be greater overlap in estimation by the two
methods and the marginal di�erences would not be statistically signi�cant.390

Here, we assume that the reviewer uses the term �credible intervals� for the statistical uncertainty
intervals, typically associated with any estimator, e.g., here for estimated GEV parameters (or
the return levels derived from them). These intervals represent sampling uncertainty, i.e. the
uncertainty due to having a particular sample and not the full population available. These
estimates can and will vary if another � equally likely but di�erent � sample had been observed.395

It is exactly this e�ect which we cover with presenting various samples � i.e. various pseudo-
observations � to the GEV estimator. We can do so only in this model-world experiment where
we have the model to generate these series. This way of presenting sampling uncertainty is
equivalent (at least in interpretation) to the uncertainty intervals based on asymptotic properties
of the maximum-likelihood estimator. The latter are typically associated with the GEV or other400

estimators. However, these asymptotic properties do not hold for the dd-GEV approach and we
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need a di�erent approach to quantify sampling uncertainty: in this model-world study, we have
the possibility to obtain more than one sample and can thus estimate the sampling uncertainty
directly from di�erent samples.

Speci�c Comments:405

• V. The authors state on lines 44-5 that �Due to the high degree of simpli�cation of the
precipitation process, the model is known to have di�culties in the extremes.� It is not
clear that this is why mechanistic models have a tendency to under-estimate short duration
extremes, and many hypotheses have been put forward to address this exact problem in
the literature since their inception in the late 1980s. The authors make a valid point, but410

it could be enhanced with some references and broader discussion.

References will be included here as discussed above in an answer to reviewer 2.

• IX. On line 73 the authors highlight that they have chosen to use the original 5 parameter
BL model. It would be good to give some justi�cation for using this model variant over
the randomised versions of the models, especially given that Kaczmarska, Isham & Onof,415

(2014) present a new randomised model with enhanced estimation of �ne-scale (sub-hourly)
extremes.

We used the original BL model to gain an understanding of this type of stochastic precipi-
tation models as we plan to use it in a non-stationary setting Kaczmarska et al. [2015], see
also our answer to reviewer 2, �rst comment.420

• XI. On line 87 the authors refer to a �time continuous step function�. Should this be
�continuous-time�?

Thanks, changed.

• XII. On line 94 the authors comment that the Neyman-Scott model is �...motivated from
observations of the distribution of galaxies in space�. This sounds fascinating although its425

relevance to rainfall simulation is perhaps somewhat removed. This statement should be
reformulated with an appropriate reference.

Neyman and Scott developed a model to represent galaxies that tend to cluster. Later the
very same model was found to be useful in other contexts, such as rainfall. We decide to
leave this original reference in the text as it shows the origins of this model. References to430

Poisson-cluster models for rainfall are to be found in various places in our manuscript.

• XIII. The sentence on lines 97-9 requires further elaboration.

Similar to an answer to a comment of reviewer 2, we extended this part as follows: Due to
known drawbacks of the OBL model several improvements and extensions have been made
in the past: Rodriguez-Iturbe et al. [1988] introduced the random parameter model, allowing435

for di�erent type of cells, and additionally Onof and Wheater [1994b] used a jitter and a
gamma-distributed intensity parameter to account for a more realistic irregular shape of the
cells. Cowpertwait et al. [2007] improved the representation of sub-hourly time scales by
adding a third layer, pulses, to the model. Non-stationarity has been addressed by Salim
and Pawitan [2003] and Kaczmarska et al. [2015]. Applications of these kind of models440

include the implementing of copulas to investigate wet and dry extremes [Vandenberghe
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et al., 2011, Pham et al., 2013], regionalisation [Cowpertwait et al., 1996a,b, Kim et al.,
2013] and accounting for interannual variability [Kim et al., 2014].

• XIV. Figure 2:What is the meaning of the red? Is it the duration of the cell generating
time (the time during which the storm is active)? And how does it contrast with the blue?445

The top part of the �gure represents a typical OBL simulation of cell clusters, drawn in
red, and cells, drawn in blue. The red color corresponds to the life time of the cell cluster
or usually referred to as storm. Hereby the vertical extensions of the storm has no physical
meaning and only serves for better illustration. During its life time the storm generates
rainfall cells (blue). Horizontally illustrated is the cell's life time and during its life time450

its constant intensity is illustrated by the vertical extension of the cell.

• XV. In Section 2 the authors introduce the BL models and their chosen calibration strategy.
On lines 108-10 they highlight their choice of weights with wi = 100 being applied to the
�rst moment Ti (mean). In my experience the mean is usually very well represented by the
BL model therefore it is unclear why the authors should want to up-weight this moment so455

much compared with the others. Given that the authors appear to be using a Generalised
Method of Moments, it might be better to weight the summary statistics by the inverse of
their observed variance (see )

As the same point has been risen by reviewer 2, we refer to our answer above.

• XVI. In lines 123-6 the authors discuss non-identi�ability of model parameters although460

they don't mention if they've checked this for their own calibrations. This could be done
by estimating parameter uncertainty or producing pro�le objective functions on model
parameters.

We did check the non-identi�ability and came to the conclusion the symmetrised objective
function is less likely to lead the optimization algorithm into local minima. In �ve out of six465

cases the numerical optimization lead to the same (and likely the global) minimum with
same parameter values. To our understanding, pro�le objective functions would inform
about sampling uncertainty for the given minimum of the OF.

• XVII. Line 151: The notation should read IDFT2(d) > IDFT2(d).

Thanks for the hint!470

• XVIII. Line 160: What is meant by `such a shape parameter ? Is the claim that is also
independent of the scale (duration )? Is that true?

After re-parametrising the GEV parameters to µ̃ = µ/σd, µ̃ and the shape parameter ξ
are approximately independent of the duration d [Koutsoyiannis et al., 1998]. Please note,
that these are only approximations but in the mentioned study it has been shown, that475

these approximations seem to be well justi�ed.

• XIX. It's not clear from the information provided exactly how equation 5 is derived. If this
is derived in a previous publication this should be clearly stated and referenced.

Given equations (3) and (4), one can introduce the duration dependent scale parameter σd
into equation (3). It results:480

F (x; µ̃, σd, ξ) = exp

{
−
[
1 + ξ

( x
σd
− µ̃

)]−1
ξ

}
. (4)
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Please note, that in the �rst version of this manuscript the tilde over µ was missing. This
derivation has been made by Koutsoyiannis et al. [1998] and used, e.g. by Soltyk et al.
[2014]. This is mentioned in the manuscript.

• XX. Line 164: It is not clear why there are two extra parameters. It would seem that you
are placing several GEV �ts (one for each scale) with 3 parameters each, by one �t with 4485

parameters (?)

Introducing the duration-dependent scale parameter σd into the GEV framework leads
to two additional parameters (θ and η) and a total of �ve parameters. These additional
parameters describe the dependence of the scale parameter σd on the duration d. As
the reviewer mentions, it is indeed possible with this formulation to estimate the IDF490

relationships over all durations consistently with one single model. Bene�t of this approach
is a) consistency, in the sense that di�erent quantiles cannot cross along the duration axis,
and b) strength in parameter estimation is borrowed from neighbouring durations.

• XXI. In Section 4 it would be useful to identify the gauge resolution. It would also be
useful to provide a sentence justifying the choice of gauge location.495

The gauge resolution is one minute, see Sect. 4. The location is chosen due to its vicinity to
our institute and interest in local rainfall characteristics, as well as the easy data availability.

• XXIII. Line 178: explain why a data set with 13 years only was chosen

As mentioned we were interested in local rainfall characteristics in the vicinity of our
workplace. Therefore we chose a time series from our weather station in botanical garden500

Berlin. Also we were interested in the question if a short time series like this can be used
for this kind of studies and if it would be su�ciently long enough to gain information about
its extreme value distribution. It is known that long rainfall time series with such a high
temporal resolution are sparse and many stations do not have long records and thus it is
an interesting problem if extreme value distributions can already be obtained from short505

series. Thus, this study helps in investigating this issue.

• XXV. In Section 5.2, line 210 the authors point the reader to a dotted line in Fig. 5 for
IDF curves from observations. In the �gure legend, the dotted line is for the IDF curves
from BLRPM simulations. This needs to be corrected.

Thanks for the hint, this mistake was corrected.510

• XXVI. In Section 5.2, line 227 the authors point the reader to February in their discussion
of IDF curves in Fig. 5. I think the authors mean January as curves are only presented for
January, April, July and October. The authors do the same on line 293 in the conclusions.

Yes, February was put wrongly here and January was meant. This is corrected in the
revised manuscript.515

• XXXII.In the conclusions on lines 314-7 the authors state that they do not �nd the BLRPM
producing unrealistically high precipitation amounts as discussed for the random-η model
by Verhoest et al., (2010). The generation of unrealistically high extremes by the modi�ed
(random-η) model is speci�c to that model and is therefore not relevant here as the authors
have used the original 5 parameter model.520
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To our knowledge the occurrence of unrealistically high extremes as mentioned by Verhoest
et al. (2010) was never investigated for the OBL model and thus we gave it a check. This
point was also raised by Reviewer 2, see our answer above.
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Marked-up manuscript version

Abstract525

For several hydrological modelling tasks, precipitation time-series
::::
time

:::::
series

:
with a high (i.e.

sub-daily) resolution are indispensable. This data is, however, not always available and thus
model simulations are used to compensate. A canonical class of stochastic models for sub-daily
precipitation are Poisson-cluster processes, with the

:::::::
original

:
Bartlett-Lewis rectangular pulse

model (BLRPM)
::::::
(OBL)

::::::
model as a prominent representative. The BLRPM

::::
OBL

::::::
model has been530

shown to well reproduce certain characteristics found in observations. Our focus is on intensity-
duration-frequency relationship (IDF), which are of particular interest in risk assessment. Based
on a high resolution precipitation time-series

::::
time

:::::
series

:
(5-min) from Berlin-Dahlem, BLRPM

::::
OBL

::::::
model

:
parameters are estimated and IDF curves are obtained on the one hand directly from

the observations and on the other hand from BLRPM
::::
OBL

::::::
model

:
simulations. Comparing the535

resulting IDF curves suggests that the BLRPM
::::
OBL

::::::
model

:
is able to reproduce main features

of IDF statistics across several durations but cannot capture singular
::::
rare events (here an event

of magnitude 5 times larger than the second larges event
::::
with

::
a
::::::
return

::::::
period

::::::
larger

:::::
than

:::::
1000

::::
years

:::
on

::::
the

::::::
hourly

:::::
time

:::::
scale). Here, IDF curves are estimated based on a parametric model

for the duration dependence of the scale parameter in the General
::::::::::
Generalised

:
Extreme Value540

distribution; this allows to obtain a consistent set of curves over all durations. We use the
BLRPM

::::
OBL

::::::
model

:
to investigate the validity of this approach based on simulated long time

series.

1 Introduction

Precipitation is one of the most important atmospheric variables. Large variations on spatial545

and temporal scales are observed, i.e. from localised thunderstorms lasting a few tens of minutes
up to mesoscale hurricanes lasting for days. Precipitation on every scale a�ect

:::::
a�ects

:
everyday

life: short but intense extreme precipitation events challenge the drainage infrastructure in urban
areas or might put agricultural yields at risk; long-lasting extremes can lead to �ooding [Merz
et al., 2014]. Both, short intense and long-lasting large-scale rainfall can lead to costly damages,550

e.g. the �oodings in Germany in 2002 and 2013 [Merz et al., 2014], and are therefore subject of

:::
the

::::::
object

::
of

:::::
much

:
research.

Risk quanti�cation is based on an estimated frequency of occurrence for events of a given
intensity and duration. This information is typically summarised in an Intensity-Duration-
Frequency (IDF) relationship [e.g., Koutsoyiannis et al., 1998], also referred to as IDF curves.555

These curves are typically estimated from long observed precipitation time-series
:::
time

::::::
series,

mostly with a sub-daily resolution to include also short durations into
:
in

:
the IDF relationship.

These are indispensable for some hydrological applications, e.g., extreme precipitation charac-
teristics are derived from IDF curves for planning, design and operation of drainage systems,
reservoirs and other hydrological structures. One way to obtain IDF curves is modelling block-560

maxima for
:
a

:
�xed duration with the generalised extreme value distribution [GEV, e.g., Coles,

2001]. Here, we employ a parametric extension to the GEV which allows a simultaneous mod-
elling of extreme precipitation for all durations [Koutsoyiannis et al., 1998, Soltyk et al., 2014].

Due to a limited availability of observed high-resolution records with adequate length, simula-
tions with stochastic precipitation models are used to generate series for subsequent studies [e.g.,565

Khaliq and Cunnane, 1996, Smithers et al., 2002, Vandenberghe et al., 2011]. The advantage

::::::::::
advantages of stochastic models are their comparably simple formulation and their low compu-
tational costs allowing to quickly generate large ensembles of long precipitation time-series

::::
time
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:::::
series. A review of these models is given in, e.g., Onof. et al. [2000]

:::
and

:
Wheater et al. [2005]. A

canonical class of sub-daily stochastic precipitation models are Poisson cluster models with the570

:::::::
original Bartlett-Lewis rectangular pulse model (BLRPM)

::::::
(OBL)

::::::
model

:
as a prominent repre-

sentative [Rodriguez-Iturbe et al., 1987, 1988, Onof and Wheater, 1994b, Wheater et al., 2005].
The BLRPM

:::::
OBL

::::::
model

:
has been shown to

::
be

::::
able

:::
to

:
well reproduce certain characteristics

found in precipitation observations [Rodriguez-Iturbe et al., 1987].
Due to the high degree of simpli�cation

:::::::::::::
simpli�cations

:
of the precipitation process, the model575

is known to have di�culties in extremes
::::::
known

::::::::::
drawbacks

::
of

:::
the

:::::
OBL

::::::
model

:::::::
include

:::
the

::::::::
inability

::
to

:::::::::
reproduce

::::
the

::::::::::
proportion

:::
dry

:::
as

::::::::
reported

:::
by Rodriguez-Iturbe et al. [1988]

:::
and

:
Onof [1992]

:
,

:::
and

:::::::::::::::
underestimation

::
of

::::::::
extremes

::
as

::::::
found

:::
by,

:::
e.g.

:
Verhoest et al. [1997]

::::
and Cameron et al. [2000]

:
,

::::::::
especially

::::
for

::::::
shorter

::::::::::
durations.

::::::::::::
Futhermore,

:::::::::
problems

:::::
occur

::::
for

::::::
return

:::::
levels

:::::
with

::::::::::
associated

::::::
periods

::::::
lonter

:::::
than

::::
the

::::
time

::::::
series

:::::
used

:::
for

::::::::::
calibrating

::::
the

::::::
model

:
[Onof and Wheater, 1993]

:
.580

::::::
Several

::::::::::
extensions

::::
and

:::::::::::::
improvements

:::
to

::::
the

::::::
model

:::::
have

::::
been

:::::::
made.

:
Rodriguez-Iturbe et al.

[1988]
:::::::::
introduced

::::
the

:::::::::::
randomised

:::::::::
parameter

::::::::::::::
Bartlett-Lewis

::::::
model,

::::::::
allowing

:::
for

::::::::
di�erent

::::::
types

::
of

::::
cells.

:::::::::::::
Improvements

:::
in

::::::::::
reproducing

::::
the

::::::::::
probability

::
of

::::
zero

:::::::
rainfall

:::
and

:::::::::
capturing

::::::::
extremes

:::::
have

::::
been

::::::
shown

:::
for

::::
this

::::::
model [Velghe et al., 1994]

:
.
::
A
::::::::::::::::::
gamma-distributed

::::::::
intensity

:::::::::
parameter

::::
and

::
a

::::
jitter

:::::
were

::::::::::
introduced

:::
by

:
Onof and Wheater [1994b]

::
for

:::::
more

::::::::
realistic

::::::::
irregular

::::
cell

:::::::::
intensities.585

Nevertheless, it
::::::::
problems

::::
still

:::::::
remain

:::
as

:
Verhoest et al. [2010]

::::::::
discussed

::::
the

::::::::::
occurrence

:::
of

::::::::
infeasible

::::::::::
(extremely

:::::
long

:::::::
lasting)

:::::
cells

::::
and

::
a
::::
too

::::::
severe

:::::::::
clustering

:::
of

::::
rain

:::::::
events

::::
was

::::::
found

::
by

:
Vandenberghe et al. [2011]

:
.
::::::::::
Including

::::::::::
third-order

:::::::::
moments

:::
in

::::
the

::::::::::
parameter

::::::::::
estimation

::::::
showed

:::
an

::::::::::::
improvement

:::
in

::::
the

:::::::::::::
Neyman-Scott

:::::::
models

::::::::
extremes

:
[Cowpertwait, 1998]

:
.
::::
For

::::
the

:::::::::::::
Bartlett-Lewis

::::::
variant

:
Kaczmarska et al. [2014]

:::::
found

:::::
that

:
a
:::::::::::
randomised

:::::::::
parameter

::::::
model

::::::
shows590

::
no

::::::::::::
improvement

:::
in

::
�t

:::::::::
compared

:::
to

:::
the

:::::
OBL

::::::
model

:::
for

::::::
which

:::
the

:::::::::
skewness

::::
was

::::::::
included

::
in

::::
the

:::::::::
parameter

::::::::::
estimation.

:::::::::::::
Furthermore,

:::
an

:::::::
inverse

:::::::::::
dependence

::::::::
between

:::::::
rainfall

::::::::
intensity

::::
and

::::
cell

:::::::
duration

:::::::
showed

:::::::::
improved

::::::::::::
performance,

:::::::::
especially

:::
for

::::::::
extremes

::
at

:::::
short

:::::
time

:::::
scales

:
[Kaczmarska

et al., 2014].
:::::::
Here,

:::
we

:::::
focus

:::
on

::::
the

:::::
OBL

:::::::
model

::::
with

:::::
and

:::::::
without

::::
the

:::::::::::
third-order

::::::::
moment

::::::::
included.

:::::
This

::::::
model

:
is still part of a well-established class of precipitation models and thus595

subject to investigation in this paper
:::
the

:::::::
reduced

:::::::::::
complexity

::
is

:::::::::
appealing

::
as

::
it

::::::
allows

::
to

:::
be

:::::
used

::
in

:
a
::::::::::::::
non-stationary

:::::::
context

:
[Kaczmarska et al., 2015].

The BLRPM
::::
OBL

::::::
model

:
and intensity-duration-frequency relationships are of particular

interest to hydrological modelling and impact assessment. In the following, we address the three
research questions by means of a case study: 1) Is the BLRPM

::::
OBL

::::::
model able to reproduce the600

intensity-duration relationship found in observations?, 2) How are IDF curves a�ected by singular

::::
very

::::
rare

:
extreme events which might not be reproducible with the BLRPM

:::
are

:::::::
unlikely

:::
to

:::
be

::::::::::
reproduced

::::
with

::::
the

:::::
OBL

::::::
model

::::
for

::
a

::::::::::
reasonably

::::
long

::::::::::
simulation? and 3) is the parametric

extension to the GEV a valid approach to obtain IDF curves? For the class of multi-fractal
rainfall models, question 1) has been addressed by Langousis and Veneziano [2007].605

Section 2 gives a short overview the BLRPM variant
:
of
::::
the

:::::
OBL

::::::
model

:
used here, Sect. 3

brie�y explains IDF curves and discusses a parametric model to estimate
::::
how

::
to

::::::
obtain

:
them

from precipitation time series. This is followed by a description of the data used (Sect. 4). The
results section (Sect.5) starts with a description of the BLRPM parameter estimatess

:::::::::
estimated

::::
OBL

::::::
model

:::::::::::
parameters for the case study area (Sect. 5.1), investigates the capability

::::::::
discussed610

::::
then

:::
the

::::::
ability

:
of this model to reproduce IDF curves

:::::
cuves

:
(Sect. 5.2) and discusses the in�uence

of a singular
::::
rare

:
extreme (Sect. 5.3) It

:::
and

:
closes with a comparison of singular duration GEV

quantiles with the duration dependent GEV approach to IDF curves
::::
with

:::::::::
individual

:::::::::
duration

::::
GEV

:::::::::
quantiles

:
(Sect. 5.4). Section 6 discusses results and concludes the paper.
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2 Bartlett-Lewis rectangular pulse model615

From early radar based observations of precipitation, a hierarchy of spatio-temporal structures
was suggested by Pattison [1956] and Austin and Houze [1972]: intense rain structures (denoted
as cells) tend to form in the vicinity of existing cells and thus cluster in larger structures, so
called storms or cell clusters. Occurrence of these cells and storms (cell clusters) can be described
using Poisson-processes. This makes the Poisson-cluster process a natural approach to stochastic620

precipitation modelling.
The idea of modelling rainfall with stochastic models exists since Le Cam [1961] modelled rain

gauge data with a Poisson-cluster process. Later, Waymire et al. [1984] and Rodriguez-Iturbe
et al. [1987] continued the development of this type of model. Poisson-cluster rainfall models are
characterised by a hierarchy of two layers of Poisson processes.625

Similarly to various others studies [e.g., Onof and Wheater, 1994a, Kaczmarska, 2011, Kacz-
marska et al., 2015], we choose the

:::::::
original Bartlett-Lewis rectangular pulse model (BLRPM)

::::::
(OBL)

::::::
model, a popular representative of Poisson-cluster models with

:
a set of �ve physically

interpretable parameters [Rodriguez-Iturbe et al., 1987]. At the �rst level cell clusters (storms)
are generated according to a Poisson-process with a cluster generation rate λ and an exponen-630

tially distributed life-time with expectation 1/γ. Within each cell cluster, cells are generated
according to a Poisson process with cell generation rate β and exponentially distributed life-time
with expectation 1/η, hence the term Poisson-cluster process. Associated with each cell is a
precipitation intensity being constant during cell life-time, exponentially distributed with mean
µx. The constant precipitation intensity in one cell gave rise to the name rectangular pulse.635

Model parameters are summarised in the parameter vector θ = {λ, γ, β, η, µx}. :::::::::::
Simulations

t

cluster generation (Poisson process N(t;λ))

cluster life
time

~ Exp(γ)cell generation N(t;β)
Poisson process

cell lifetime
~ Exp(η)

in
te

ns
ity

~
 e

xp
(1

/µ
x)

Figure 3: Scheme of the Bartlett-Lewis rectangular pulse
::::
OBL

:
model. A similar scheme can be

found in Wheater et al. [2005]

::::
with

:::
the

:::::
OBL

::::::
model

::::
are

::
in

:::::::::::::::
continuous-time

::
on

::::
the

:::::
level

::
of

::::::
storms

::::
and

:::::
cells.

::::
We

:::::::::
aggregate

::::
the

::::::::
resulting

:::
cell

:::::::
rainfall

:::::
series

:::
to

::::::
hourly

:::::
time

::::::
series.

:
Figure 3 shows a sketch of the BLRPM

:::::
OBL
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:::::
model

:
illustrating the two levels: start of cell-clusters (storms) are shown as red dots, within

each clusters, cells (blue rectangular pulses) are generated during the clusters' life-time starting640

from the cluster origin. The cells' lifetime is shown as horizontal and their precipitation intensity
as vertical extension in Fig. 3; cells can overlap. This continuous time

::::::::::::::
continuous-time model

yields a sequence of pulses (cells) with associated intensity, see Fig. 4 (top panel). Adding up the
intensity of overlapping pulses yields a time continuous

::::::::::::::
continuous-time

:
step-function (Fig. 4,

middle panel). Although time continuous, this function is not continuously di�erentiable in645

time due to the rectangular pulses. Observational time series are typically also not continuously
di�erentiable as they are discretised in time. Summing up the resulting continuous series for
discrete time intervals makes it comparable with observations and renders unimportant the arti-
�cial jumps from the rectangular pulses present in the continuous series, Fig. 4 (bottom layer).
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Figure 4: Example realisation of the BLRPM
::::
OBL

:::::::
model. Top layer shows the con-

tinuously simulated storms and cells
::
by

::::::
them

:::::::
model. The plot in

::
In

:
the middle layer

combines the cell intensities to continuous-time
:::
are

:::::::::
combined

:::::
with a step function. The bot-

tom layer shows the
:::::::::
aggregated

:::::::::
arti�cial

:
precipitation series summed up for discrete time

intervals
:::::
series. Parameters used for this simulation

::::
Used

:::::::::::
parameters: λ = 4/120, h−1,γ = 1/15,

h−1,β = 0.4
:::::::::::::
λ = 4/120h−1,h−1

:::::::::::
γ = 1/15h−1,η = 0.5

::::::::::
β = 0.4h−1,h−1

::::::::::
η = 0.5h−1,µx = 1mm/h

−
1.

650

An alternative to the Bartlett-Lewis process is the Neyman-Scott process [Neyman and Scott,
1952]. The latter is motivated from observations of the distribution of galaxies in space. In
the Neyman-Scott process cells are distributed around the centre of a cell cluster. Both are
prototypical models for sub-daily rainfall and are discussed in more detail in Wheater et al.
[2005].655

Several studies already investigated
:::
Due

:::
to

:::::::
known

::::::::::
drawbacks

::
of

::::
the

:::::
OBL

:::::::
model,

:::::::
several

20



::::::::::::
improvements

::::
and

:::::::::
extensions

:::::
have

::::
been

:::::
made

::
in

::::
the

::::
past:

:
Rodriguez-Iturbe et al. [1988]

:::::::::
introduced

:::
the

:::::::
random

::::::::::
parameter

:::::::
model,

::::::::
allowing

:::
for

::::::::
di�erent

:::::
type

:::
of

:::::
cells,

::::
and

:::::::::::
additionally

:
Onof and

Wheater [1994b]
:::
used

::
a
::::::
jitter

::::
and

::
a

:::::::::::::::::
gamma-distributed

::::::::
intensity

::::::::::
parameter

:::
to

:::::::
account

::::
for

::
a

::::
more

::::::::
realistic

::::::::
irregular

:::::
shape

:::
of

:::
the

:::::
cells.

:
Cowpertwait et al. [2007]

::::::::
improved

::::
the

:::::::::::::
representation660

::
of

::::::::::
sub-hourly

::::
time

::::::
scales

:::
by

:::::::
adding

::
a

:::::
third

:::::
layer,

:::::::
pulses,

:::
to

:::
the

:::::::
model.

::::::::::::::::
Non-stationarity

::::
has

::::
been

:::::::::
addressed

:::
by Salim and Pawitan [2003]

:::
and

:
Kaczmarska et al. [2015]

:
.
:::::::::::
Applications

:::
of these

kind of precipitation models and some applications are known
::::::
models

:::::::
include

:::
the

:::::::::::::
implementing

::
of

:::::::
copulas

::
to

::::::::::
investigate

::::
wet

::::
and

::::
dry

::::::::
extremes

:
[Vandenberghe et al., 2011, Pham et al., 2013]

:
,

:::::::::::::
regionalisation

:
[Cowpertwait et al., 1996a,b, Kim et al., 2013]

:::
and

:::::::::::
accounting

:::
for

:::::::::::
interannual665

:::::::::
variability

:
[Kim et al., 2014].

Parameter estimation for the BLRPM
::::
OBL

::::::
model

:
is by far not trivial. The canonical ap-

proach is a method-of-moment-based estimation [Rodriguez-Iturbe et al., 1987] ) using the ob-
jective function

Z(θ;T) =

k∑
i=1

wi

[
1− τi(θ)

Ti

]2
. (5)

This function relates moments τi(θ) derived from the model with parameters θ to empirical670

moments Ti from the time series. The set of k moments Ti is typically chosen from the �rst
and second moments obtained for di�erent aggregation times

::::::::
durations

:
h. Here, we use the

mean, the variances, the lag-1 auto-covariance function and the probability of zero rainfall for
h ∈ {1h, 3h, 12h, 24h}, similar to Kim et al. [2013], and thus end up with k = 13 moments
Ti. Their analytic counterparts τi(θ) are derived from the model. The weights in the objective675

function were choosen to be wi=1 = 100 and wi 6=1 = 1, similar to Cowpertwait et al. [1996a],
emphasising the �rst moment T1 (mean) 100 times more than the other moments.

It turns out that Z(θ;T) has multiple local minima
:::
and

:::::::::::
optimization

::
is
::::
not

::::::::::::::
straightforward.

To avoid those, the optimisation
::::
local

::::::::
minima,

:::
the

::::::::::::
optimization

:
is repeated many times with

di�erent initial guesses for the parameters . These initial guesses are sampled from a range of680

feasible values in parameter space in a
::::
with Latin-Hypercube fashion [McKay et al., 1979]. As

only positive model parameters are meaningful, optimisation is performed on log-transformed
parameters. Similarly to Cowpertwait et al. [2007], we use a symmetric objective function

Z(θ;T) =

k∑
i=1

wi

{[
1− τi(θ)

Ti

]2
+

[
1− Ti

τi(θ)

]2}
. (6)

A few tests indicate that this objective function
:::
the

::::::::::
symmetric

:::::::
version is robust and faster

in convergence
:::
the

:::::
sense

:::::
that

:::::
fewer

:::::::::
iterations

:::
are

:::::::
needed

:::
to

::::::
ensure

:::::::::::
convergence

::::
into

::::
the

::::::
global685

::::::::
minimum

:
(not shown). Numerical optimisation

:::::::::::
optimization techniques based on gradient cal-

culations, e.g. Nelder-Mead [Nelder and Mead, 1965] or BFGS [Broyden, 1970, Fletcher, 1970,
Goldfarb, 1970, Shanno, 1970], are typically used. We

:::
For

::::
the

:::::::
current

:::::
study,

:::
we

:
use R's optim()

function choosing L-BFGS-B as the underlying optimisation algorithm allowing to set additional
constraints in parameter space.

:::::::::::
optimization

:::::::::
algorithm

:
[R Core Team, 2016]

:::
and

:
100 di�erent690

sets of initial guesses for the parameters sampled in a Latin-Hypercube wayare used.
:

::::::::
Following

:::::::
studies

:::
by

:
Cowpertwait [1998]

:::
and

:
Kaczmarska et al. [2014],

:::
we

:::::::
include

::::
the

:::::
third

:::::::
moment

:::
in

:::
the

::::::::::
parameter

::::::::::
estimation

::::::
using

:::::::::
analytical

:::::::::::
expressions

:::::::
derived

:::
by

:
Wheater et al.

[2006]
:
,
::::::::
replacing

::::
the

::::::::::
probability

::
of

::::
zero

:::::::
rainfall

::
in

:::
the

:::::::::
objective

::::::::
function.

::::::
Thus,

::::
still

::
13

:::::::::
moments

:::
are

::::
used

:::
to

:::::::::
calibrate

:::
the

:::::
OBL

:::::::
model.

:::::
Due

:::
to

:::::::::::::
comparability

:::::
with

:::::
other

:::::::
studies

:::::
most

:::
of

::::
our695

:::::::
analyses

::::
will

::::
not

:::::::
include

:::
the

:::::
third

::::::::
moment

::::::::
though.

:::
A

::::::::::
comparison

::::::::
between

::::
IDF

:::::::
curves

::
of

::::
the

:::::
model

::::::::::
calibrated

::::
with

::::
the

:::::
third

:::::::
moment

::::
and

:::::
with

:::
the

::::::::::
probability

:::
of

::::
zero

:::::::
rainfall

:::
will

:::
be

:::::::
carried

:::
out,

:::
to

:::::::
discuss

:::
the

:::::
e�ect

:::
of

::::::::
including

::::
the

:::::
third

:::::::
moment.
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Models of this type su�er from parameter non-identi�ability, meaning that qualitatively dif-
ferent sets of parameters lead to minima of the objective function with comparable values [Ver-700

hoest et al., 1997]. A more detailed view on global optimisation
:::::::::::
optimization techniques and

comparisons between di�erent objective functions is given in Vanhaute et al. [2012].
The

:::
All

::::::::::::
computations

:::
are

:::::::
carried

::::
out

::::
with

::
R

:
�

::
an

::::::::::::
environment

:::
for

:::::::::
statistical

::::::::::
computing

::::
and

:::::::
graphics

:
[R Core Team, 2016]

:
.
:::::::::::::
Optimization

::
is

:::::
done

:::::
with

::::::::
optim().

::::
As

:::::::::
additional

:::::::::::
constraints

::
in

:::::::::
parameter

:::::::::::
estimation

:::
we

:::::
used

:::
the

:::::::::
boundary

::::::::::
extension

::
of

::::
the

::::::
BFGS

:::::::::
algorithm

:::::
with

::::::
given705

:::::::::
parameter

:::::::
ranges.

:::::::
During

::::
this

:::::
work

:::
the

::::::::
authors

:::::::::
developed

:::
the

:
R-package BLRPMprovides .

:::::
The

:::::::
package

::::::::
includes functions for simulation and parameter estimation and is available form the

authors
:::
can

:::
be

::::::::
obtained

:::::
from

:::
the

:::::::
author on request.

3 Intensity-Duration-Frequency

Intensity-duration-frequency (IDF) curves show return-levels
::::::
return

:::::
levels (intensities) for given710

return-periods
::::::
return

:::::::
periods (inverse of frequencies) as a function of rainfall duration. Their

formulation goes back to Bernard [1932]. They are frequently used for supporting infrastructure
risk assessment [e.g., Simonovic and Peck, 2009, Cheng and AghaKouchak, 2013]. IDF curves
are an extension to classical extreme value statistics. The latter aims at better characterising the
tails of a distribution by using parametric models derived from limit theorems [e.g., Embrechts715

et al., 1997]. There are two main approaches: modelling block-maxima (e.g., maxima out of
monthly or annual blocks) with the generalised extreme value distribution (GEV) or modelling
threshold excesses with the generalised Pareto distribution (GPD) [e.g., Coles, 2001, Embrechts
et al., 1997]. We choose the block-maxima approach with the general extreme value distribution

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
(7)

as parametric model for the block-maxima z. The GEV is characterised by the location parameter720

µ, the scale parameter σ and the shape parameter ξ. These can be estimated from block-
maxima using a maximum-likelihood estimator [e.g., Coles, 2001]. Here, we use maxima from
monthly blocks. To avoid mixing maxima from di�erent seasons, a set of GEV parameters is
estimated for all maxima from January, another set for all maxima from February and so on.
For a given month, GEV parameters are estimated for various durations(or aggregation times),725

e.g. d ∈ {1h, 6h, 12h, 24h, 48h, . . .}. An IDF curve for a given return-period
:::::
return

:::::::
period

T = 1/(1− p)1 ,
:::::
with

::
p

::::::::
denoting

:::
the

::::::::::::::
non-exceedance

:::::::::::
probability,

:
can then be constructed from

p-quantiles Qp,d from GEVs for di�erent durations d by means of �tting a parametric model [e.g.,
Koutsoyiannis et al., 1998]. As the estimated IDF-curve IDFT1

(d) for return-period
::::::
return

::::::
period

T1 is independent of the estimate of another curve IDFT2
(d) with return-period

:::::
return

:::::::
period730

T2 > T1, there is no constraint ensuring IDF2(d) > IDF1(d)
:::::::::::::::::::
IDFT2(d) > IDFT2(d)

:
for arbitrary

durations d. Consequently, this approach easily leads to inconsistent (i.e. crossing) IDF-curves.
For example for a given duration d, the 50-year return-level

::::::
return

::::
level

:
can exceed the 100-year

return-level
:::::
return

:::::
level.

To overcome these problems and increase robustness in constructing IDF curves, Koutsoyian-735

nis et al. [1998] suggested a duration-dependent scale parameter σd

σd =
σ

(d+ θ)η
, (8)

1p denotes the non-exceedance probability.
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with θ, η and σ being independent of the duration d. The parameter η quanti�es the slope of
the IDF curve in the main region and θ controls the deviation of the power-law behaviour

::::::::
behavior for short durations. Furthermore, location is re-parametrised

:::::::::::::
reparametrised

:
by

µ̃ = µ/σd which is now independent of
:::
the durations d , such is

::
as

::::
well

::
as

::
of

:
the shape parameter740

ξ. This lead to a parametric
:::
the

::::::::
following formulation of a duration-dependent GEV distribution

F (x;µ, σd, ξ) = exp

{
−
[
1 + ξ

( x
σd
− µ

)]−1
ξ

}
.

This formulation
:
:
:

F (x; µ̃, σd, ξ) = exp

{
−
[
1 + ξ

( x
σd
− µ̃

)]−1
ξ

}
::::::::::::::::::::::::::::::::::::::

(9)

:::::
which

:
allows consistent modelling of rainfall maxima across di�erent durations d using a single

distribution at the cost of only two additional parameters. These parameters can be analogously
estimated by maximum-likelihood [Soltyk et al., 2014]. To avoid local minima when optimising745

:::::::::
optimizing

:
the likelihood, we repeat the optimisation

:::::::::::
optimization

:
with di�erent sets of initial

guesses for the parameters, sampled
::::
again

:
according to a Latin-Hypercube schemeanalogously

to the BLRPM parameter estimation. This method of constructing IDF curves is consistent in
the sense that curves for di�erent return-periods cannot

:::::
return

:::::::
periods

::::
can

::::
not cross. We refer

to this approach as the duration-dependent
:::::::
duration

::::::::::
dependent

:
GEV approach (dd-GEV).750

However, the data points for di�erent durations are dependent (as they are derived from
the same underlying high-resolution data set by aggregation) and thus the i.i.d. assumptions
required for maximum-likelihood estimation is not ful�lled. Consequently, con�dence intervals
are not readily available from asymptotic theory; they can be estimated by bootstrapping.

4 Data755

A precipitation time series from the station Botanical Garden in Berlin-Dahlem, Berlin, Germany
is used as a case study. A tipping-bucket registers

::::::
records

:
precipitation amounts at 1-min reso-

lution. For the analysis at hand, a 13 year time series with 1-min resolution from the years 2001-
2013 is available. The series is aggregated to durations d ∈ {1h, 2h, 3h, 6h, 12h, 24h, 48h, 72h}
yielding 8

:::::::::::::::::::::::::::::::::::::
d ∈ {1h, 2h, 3h, 6h, 12h, 24h, 48h, 72h, 96h}

:::::::
yielding

::
9 time series with di�erent tempo-760

ral resolution. IDF parameters are estimated using annual maxima for each month of the year
individually using all 8

:
9 duration series. .

5 Results

5.1 Estimation of OBL model parameters

Minimising the symmetric objective function (Eq. (6)) yields BLRPM
::::
OBL

::::::
model

:
parameter765

estimates individually for every month of the year, shown in Fig. 5 and explicitly given in
Tab. 5 in Appendix A. The resulting BLRPM

:::::
OBL

::::::
model

:
parameters are reasonable com-

pared to observed precipitation characteristics: Large mean intensities µ̂x and short mean cell
life-times 1/η̂ in summer correspond to precipitation being dominated by convective events.
Similar, the mean cluster life-time 1/γ̂ decreases in summer, whereas the mean cell generation770

rate β̂ increases
::::::
During

:::::::
summer

::::::::
months,

:::
we

:::::::
observe

::::
very

::::::::
intensive

:::::
cells

:::
(µ̂x::::::::

between
:::::::
4mm/h

::::
and

::::::::
8mm/h).

:::::::::
However,

::
in

::::
June

::::
and

::::::::
August,

:::::
storm

::::::::
duration

::
is

:::::::::
relatively

:::::
short

::
(γ̂

::::::::
between

::::::
0.25/h

::::
and
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Figure 5: BLRPM
::::
OBL

::::::
model

:
parameter estimates for all month of the year obtained from the

Berlin-Dahlem precipitation time series. Top: cell-cluster generation rate λ and cluster lifetime
1/γ; middle: cell generation rate β and cell lifetime 1/η; bottom: cell mean intensities µx.
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::::::
0.35/h)

::::::
which

::::
can

::
be

:::::::::::
interpreted

::
as

:::::
short

::::
but

:::::
heavy

:::::::::::::
thunderstorms

::::::
which

:::
are

::::::::
typically

:::::::::
observed

::
in

::::
this

::::::
region

::
in

::::::::
summer

:
[Fischer et al., 2017]. Vice versa, in winter small intensities and long

storm durations correspond to stratiform precipitation patterns, typically dominating the winter775

precipitation in Germany. The storm generation rate λ show only a minor seasonal variation.
With the BLRPM

::::
OBL

::::::
model parameter estimates (Tab. 5, Sect. A) 1000 realisations with the

same length as the observations (13 years) are generated. From both, the original precipitation
series and the set of simulated time series, we derived a set of statistics for model validation.
The �rst moment T1 � the mean � is very well represented (not shown) as it enters the objective780

function with weight w1 = 100 compared to weights of 1 for the other statistics. Figure 6 shows
the variance for 6-hourly aggregation and the probability of zero rainfall; for all months the 6h-
variances of simulated and observed series are in good agreement. This is particularly noteworthy
as the 6-hourly aggregation was not used for parameter estimation. Similar to previous studies

a) Variance 6h b) Probability Zero 12h
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Figure 6: Comparison of statistics derived from the observational record (red dots) and 1000
simulated time-series

::::
time

::::::
series (box plots): a) variance at 6-hourly aggregation level and b)

probability of zero rainfall at 12-hourly aggregation.

[e.g., Onof and Wheater, 1994a], the model fails to reproduce the probability of zero rainfall, here785

exemplary
::
for

::::::::
instance shown for the 12-hourly aggregation. The model mainly overestimates it

and therefore has shortcomings in the representation of the time distribution of events [Rodriguez-
Iturbe et al., 1987, Onof and Wheater, 1994a].

An important aspect for hydrological applications, is the model's ability to reproduce ex-
tremes on various temporal scales. This behaviour is investigated in the next section with the790

construction of IDF curves.

5.2 Intensity-Duration-Frequency curves from OBL model simulations

Monthly block-maxima for every month in the year are drawn for various durations
:::
(1h,

::::
3h,

:::
6h,

::::
12h,

:::::
24h,

::::
48h,

::::
72h,

:::::
96h)

:
from the observational time series and 1000 BLRPM

:::::
OBL

::::::
model

simulations of same length, .
::
This is the basis for estimating GEV distributions for individual795

durations, as well as for constructing dd-GEV IDF curves.
IDF curves for Berlin-Dahlem obtained from observation are shown as dotted lines in Fig. 7

for January, April, July and October for the 0.5-quantile (2-year return-period
::::::
return

::::::
period,
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red), 0.9-quantile (10-year return-period
:::::
return

:::::::
period, green) and the 0.99-quantile (100-year

return-period
:::::
return

::::::
period, blue). Analogously, IDF curves are derived from 1000 simulations
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Figure 7: IDF curves obtained via dd-GEV for a) January, b) April, c) July and d) Octo-
ber: 0.5 (red), 0.9 (green) and 0.99-quantiles (blue) corresponding to 2-yr, 10-yr, and 100-
yr return-periods

::::::
return

:::::::
periods, respectively. Solid lines are derived directly from the Berlin-

Dahlem time series. Coloured shading mark the central 90% range of variability of IDF curves
obtained in the same manner with same colour code but from 1000 BLRPM

::::
OBL

::::::
model

:
simu-

lations (Sect 5.1); the dotted lines mark the median of these curves.

800

of the BLRPM
::::
OBL

:::::::
model precipitation series, cf. Sect. 5.1. The coloured shading in Fig. 7

give the range of variability (5% to 95%) for these 1000 curves with the median highlighted as
dotted line. Except for January, the curves obtained directly from the observational series can be
found within the range of variability of curves derived from the BLRPM

::::
OBL

::::::
model. The main

IDF features from observations are well reproduced by the BLRPM
::::
OBL

::::::
model: the power-law-805

like behaviour (straight line in the double-logarithmic representation) in July extending almost
across the full range of durations shown, as well as the �attening of the IDF curves for short
durations for April and September. There is, however,

:::
The

::::::::
relative

::::::::::
di�erences

::
in

::::
IDF

:::::::
curves

:::::
given

::
in

::::
Fig.

::
13

::::::::::
(Appendix

:::
B)

:::::::
suggest

:
a tendency for the BLRPM

::::
OBL

::::::
model

:
to underestimate

extremes, particularly for large return-levels and long durations, as can be seen from plots of810
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relative di�erences in
:::::
return

::::::
levels

:::
and

:::::
short

::::::::::
durations,

::::::
similar

:::
to

::::::
results

:::::
found

::::
by,

:::
e.g.

:
Verhoest

et al. [1997]
:::
and

:
Cameron et al. [2000].

:

::::::
Figure

:
8
: :::::
shows

:::
the

:::::::
relative

:::::::::
di�erence

:
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Figure 8:
:::::::
Relative

::::::::::
di�erences

::::::::
between

:::::::::
observed

::::
and

::::::::::
simulated

::::::
return

::::::
levels

:::::::::
obtained

:::::
with

::::::::
including

::::
the

:::::
third

::::::::
moment

::::::
(red)

::::
and

:::::
with

::::::
using

:::
the

:::::::::::
probability

:::
of

::::
zero

::::::::
rainfall

::::::
(blue)

:::
in

:::::::::
parameter

::::::::::
estimation

:::
for

:::
a)

:::::
July

:::
0.5

::::::::
quantile

::::
and

:::
b)

:::::
July

::::
0.99

:::::::::
quantile.

::::::::
Dotted

::::
lines

::::::
show

:::
the

::::
0.05

::::
and

::::
0.95

::::::::
quantile

:::::
range

::
of
:::::
1000

:::::::::::
simulations.

:

∆ =
dd-GEVOBL − dd-GEVobs

dd-GEVobs

· 100%
:::::::::::::::::::::::::::::::::

(10)

:::::::
between

:
IDF curves (Fig. 13) in Appendix B

::::::::
dd-GEV)

:::::::
derived

:::::
from

:::
the

:::::
OBL

:::::
model

::::::::::::
dd-GEVOBL

::::::::
including

:::
the

:::::
third

:::::::
moment

:::
in

:::::::::
parameter

::::::::::
estimation

::::
(red

:::::
lines)

::
or

:::::::::::
alternatively

:::::
using

:::
the

::::::::::
probability815

::
of

::::
zero

::::::
rainfall

:::
to

::::::::
calibrate

:::
the

::::::
model

:::::
(blue

::::::
lines),

::::
and

:::::::
directly

:::::
from

:::
the

::::::::::::
observational

::::
time

::::::
series

::::::::::
dd-GEVobs :::

for
:::::
July

::::
and

::::
two

:::::::::
quantiles:

:::
a)

::::
0.5

::::
and

:::
b)

::::
0.99 .

::::::::::
Including

::::
the

:::::
third

::::::::
moment

:::
in

:::::::::
parameter

::::::::::
estimation

:::::::
slightly

::::::::
improves

::::
the

::::::
model

::::::::
extremes

:::
for

:::::
July

:::
for

:::
all

:::::::::
durations

::::
and

:::::
both

::::
short

::::
and

:::::
long

::::::
return

::::::::
periods.

::::::::::::
Nevertheless,

:::::
those

::::::::::
promising

::::::
results

::::::
could

:::
not

:::
be

::::::
found

:::
for

:::
all

::::::
months

:::::
(not

::::::
shown)

::::
and

:::::
thus

::
we

:::::::
cannot

::::::::
conclude

::::
that

:::::::::
including

:::
the

:::::
third

::::::::
moment

::
in

::::::::::
parameter820

:::::::::
estimation

:::::::::
improves

::::::::
extremes

:::
in

:::
the

:::::
OBL

::::::
model

:::
in

::::::::
contrast

::
to

::::::::
�ndings

:::
for

:::
the

::::::::::::::
Neyman-Scott

::::::
variant

:
[Cowpertwait, 1998].

We interpret the di�erent behaviour for short durations (�attening vs continuation of the
straight line) for summer (July) and the remaining seasons as a result of di�erent mechanisms
governing extreme precipitation events: while convective events dominate in summer, frontal and825

thus more large scale events dominate in the other seasons.
For Februaray

::
As

:::
an

:::::::::
example,

:::
we

::::::
show

:::::::::
segments

::
of

:::::
time

::::::
series

:::::::::
including

::::
the

::::::::::
maximum

:::::::::::::::::
observed/simulated

:::::::
rainfall

:::
in

:::::
July

:::
for

:::::::::
durations

::::
1h,

:::
6h

:::::
and

::::
24h

:::
as

::::::::
observed

::::::::
(RRobs):::::

and

::::::::
simulated

:::::::::
(RROBL)::

in
::::
Fig.

::
9.

::::::
Parts

::
of

:::
the

::::::::
observed

::::
and

::::::::
simulated

:::::::
rainfall

::::
time

::::::
series

::::::::::::
corresponding

::
to

:::
the

::::::::
extreme

::::::
events

:::
for

::::
the

:::::
three

::::::::
di�erent

:::::::::
durations

:::
are

:::::::
shown

::
in

::::
the

:::
left

::::
and

:::::
right

::::::::
column,830

:::::::::::
respectively.

::::::::::::
Additionally

:::
the

:::::::
middle

:::::::
column

::::::
shows

:::
the

::::::::::
simulated

::::::
storms

::::
and

:::::
cells

::::::::::
generating

:::
this

::::::::
extreme

:::::
event

:::
in

:::
the

:::::::::
simulated

:::::
time

::::::
series.

::::::
Note,

::::
that

:::
we

:::::
show

:::::
only

:::
one

::::::::::
simulation

:::
as

:::
an

::::::::
example;

:::::
visual

::::::::::
inspection

::
of

:::::::
several

:::::
other

:::::::::
simulated

::::::
series

:::::
share

:::
the

:::::
main

::::::::
features

::::
and

:::
are

::::
not

::::::::::
reproduced

:::::
here.

::::
For

:::
all

:::::::::
durations,

::::
the

:::::::::
extremes

:::
are

::
a
:::::
result

:::
of

::
a

:::::
single

:::::::::::
long-lasting

::::
cell

:::::
with
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Figure 9:
::::::::::::
Visualization

::
of

:::::
July

:::::::::
extremes

::
as

:::::::::
observed

:::::::
(RRobs,::::

left
::::::::
column)

::::
and

::::::::::
simulated

:::
by

:::
the

:::::
OBL

::::::
model

:::::::::
(RROBL,:::::

right
::::::::
column).

::::::::
Shown

:::
are

::::::
short

::::::::
segments

:::::::::
including

::::
the

::::::::::
maximum

:::::::::::::::::
observed/simulated

:::::::
rainfall

::::
(red

:::::::
vertical

::::::
bars)

::
at

:::::::::
durations

:::
1h

::::
(top

::::::
row),

:::
6h

:::::::
(middle

:::::
row)

::::
and

:::
24h

::::::::
(bottom

:::::
row).

::::::::::::
Additionally,

:::
the

:::::::
middle

:::::::
column

::::::
shows

:::
the

:::::::::
simulated

::::::
storms

:::::
(red

::::::::::
rectangles)

:::
and

:::::
cells

:::::
(blue

::::::::::
rectangles)

:::::::::::::
corresponding

::
to

::::
the

:::::::
extreme

:::::
event

:::
of

:::
the

:::::::::
simulated

:::::
time

::::::
series.
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::::
high

::::::::
intensity.

:::
In

::::::::
contrast

:::
to

:::
an

:::::::
analysis

::::::
based

:::
on

:::
the

::::::::
random

:::::::::
parameter

::::
BL

::::::
model [Verhoest835

et al., 2010]
:
,
:::::
these

::::
cells

::::
are

::::::
neither

::::::::::
unrealistic

::::
long

::::
nor

:::::
have

::
an

::::::::::
unrealistic

::::
high

:::::::::
intensity.

:

:::
For

:::::::
January, IDF curves from observations and BLRPM

::::
OBL

::::::
model simulations exhibit large

discrepancies: for all durations, the 0.99-quantile (100-yr return-level
::::::
return

::::
level) is above the

range of variability from the BLRPM
::::
OBL

::::::
model and the 0.5-quantile (2-yr return level) is below

for small durations. This implies, that the shape of the extreme value distribution characterised840

by the scale σ and shape parameter ξ is di�ers between the two cases. This is likely due to
the winter-storm Kyrill hitting Germany and Berlin on January 18th and 19th in 2007 [Fink
et al., 2009]. We suppose that this singular

:::
rare

:
event is not su�ciently in�uential for BLRPM

::
to

::::::
impact

:::::
OBL

::::::
model

:
parameter estimation but does a�ect the extreme value analysis. For the

latter only the one maximum value per month is considered. In fact, the shape parameter ξ845

estimated from the observational time-series
::::
time

::::::
series

:
shows a large value compared to the

other months; in contrast, this value is estimated to be around zero from BLRPM
:::::
OBL

::::::
model

simulations. The following section investigates this hypothesis by excluding the precipitation
events due to Kyrill.

We furthermore �nd that the BLRPM
:::::
OBL

:::::
model

:
is generally able to reproduce the observed850

seasonality in IDF parameters, see Fig. 10. For all parameters, the direct estimation (blue) is

mostly with in the range of variability of the BLRPM
::::
OBL

::::::
model

:
simulations. For σ̂, θ̂ and η̂,

the direct estimation (blue line) features a similar seasonal pattern as the median of the BLRPM

::::
OBL

::::::
model

:
(red line). Whereas for ξ̂, the direct estimation is a lot more erratic than the median

(red). As the GEV shape parameter is typically di�cult to estimate [Coles, 2001], this erratic855

behaviour is not unexpected and 11 out of 12 month
::::::
months

:
stay within the expected inner 90%

range of variability.

5.3 Investigation of the impact of a rare extreme event

The convective cold front passage of Kyrill accounted for a maximum intensity of 24.8mm rainfall
per hour, whereas the next highest value of the remaining Januaries would be 4.9mm rainfall per860

hour in 2002 and thus being more than 5 times lower than for Kyrill. We construct another data
set without the extreme event due to Kyrill, i.e. without the year 2007.

::::
The

::::::::
intention

:::
of

::::
this

::::::::::
experiment

::
is

:::
not

::
to

::::::::
motivate

::::::::
removal

::
of

:::
an

::::::::::::
�unsuitable�

:::::
value.

::::
We

:::::::
rather

:::::
want

::
to

:::::
show

:::::
that

:::
the

:::::
OBL

::::::
model

::
is

::
in

::::::::
generally

:::::
able

::
to

:::::::::
reproduce

:::::::::
extremes;

::
it
:::
is,

::::::::
however,

::::
not

::::::
�exible

:::::::
enough

:::
to

:::::::
account

:::
for

:
a
::::::
single

:::::
event

::::
with

::::::::::
magnitude

:::
far

:::::
larger

:::::
than

:::
the

::::
rest

::
of

:::
the

:::::
time

::::::
series.

::::::
Based

::
on

::::
the865

:::::
model

:::::
with

::::::::::
parameters

:::::::::
estimated

:::::
from

:::::::::::
observations

:::::
with

::::
and

:::::::
without

:::
the

:::::
year

::::
2007

:::::::::::
(observed),

::
we

:::::::
obtain

::::::
return

:::::::
periods

::::
for

:::
the

::::::
event

:::::::
�Kyrill�

::::
for

::::::::
di�erent

:::::::::
durations

::::
and

::::
�nd

::::
this

::::::
event

:::
to

::
be

:::::
very

::::::
rare,

:::::::::
especially

:::
on

::::::::::
short-time

:::::
scales

:::::
(1-3

:::::::
hours),

:::
see

:::::
Tab.

::
3.

::
.
::
For this data set, we

estimate the BLRPM
::::
OBL

::::::
model

:
parameters and simulate again 1000 time series with these

new parameters. The simulated time-series
::::
time

::::::
series were also reduced in length by one year,870

containing 12 years of rainfall in total. From those precipitation time series, we constructed the
dd-GEV IDF curves, see Fig. 11 (right). Without the extreme events due to Kyrill, the BLRPM

::::
OBL

::::::
model

:
performs in January as well as in the other month with respect to reproducing the

IDF relations. In particular, the spread between the 0.5-quantile (2-yr return-level
:::::
return

:::::
level)

and the 0.99-quantile (100-yr) return level is reduced and the absolute values of extreme quantiles875

as well, cf. Fig. 11, left and right panel. Note the di�erent scales for the intensity-axes.

5.4 Comparing dd-GEV IDF curves to individual duration GEV

Long
::
In

::::
the

::::::
frame

::
of

::
a
::::::::::::
model-world

::::::
study,

::::
long

:
time series simulated with the BLRPM can

also
::::
OBL

::::::
model

::::
can

:
be used to investigate adequacy of the dd-GEV model

:::::::::
conditional

:::
on

::::
the
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Figure 10: Seasonality of IDF model parameters estimated directly from the Berlin-Dahlem series
(blue line), and estimated from 1000 BLRPM

::::
OBL

::::::
model

:
simulations (red). The red shadings

give the range of variability (5% to 95%) from the 1000 Simulations
::::::::::
simulations with the median

as solid red line.
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Duration [h] Probability of
exceedance

without Kyrill
[%]

Return period
without Kyrill

[years]

Probability of
exceedance

including Kyrill
[%]

Return period
including Kyrill

[years]

:
1
: ::::::::::

1.8× 10−6
::::::
560000

: ::::::::::
5.6× 10−4

::::
1790

:

:
2
: ::::::::::

4.3× 10−5
:::::
23000

: ::::::::::
2.4× 10−3

:::
420

:

:
3
: ::::::::::

2.2× 10−4
::::
4400

: ::::::::::
5.4× 10−3

:::
185

:

:
6
: ::::::::::

1.6× 10−3
:::
630

: ::::::::::
1.6× 10−2

::
63

:

::
12

: ::::::::::
1.7× 10−3

:::
590

: ::::::::::
2.0× 10−2

::
49

:

::
24

: ::::::::::
3.5× 10−3

:::
280

: ::::::::::
3.5× 10−2

::
29

:

::
48

: ::::::::::
2.0× 10−2

::
50

: ::::::::::
9.5× 10−2

::
11

:

Table 3:
::::::
Return

::::::
period

:::
for

::::
the

:::::
event

::::::
Kyrill

::
as

:::::::::
estimated

:::::
from

:::
the

::::::::::::
observational

:::::
time

:::::
series

:::::
with

:::
this

:::::::::
particular

::::::
event

:::
left

::::
out

::::
and

::::::::
inlcuded

:::
for

:::::::::
parameter

:::::::::::
estimation.
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Figure 11: dd-GEV IDF curves for a) all Januaries (including 2007), b) Januaries excluding 2007
(di�erent scaling on the intensity axis). Shown are the 0.5 (red), 0.9 (green) and 0.99 (blue)
quantile from observations at Berlin-Dahlem (solid lines). The shaded ares are the respective
0.05 and 0.95 quantiles for the associated IDF curves obtained from 1000 BLRPM

:::::
OBL

::::::
model

simulations.
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::::::::
simulated

::::::
series. To this end, we compare resulting IDF-curve

:::
the

:::::::::
resulting

::::::::::
IDF-curves

:
to a880

GEV distribution obtained for various individual durations. The basis is a set of 1000-year
simulation with the BLRPM

::::::::::
simulations

:::::
with

::::
the

:::::
OBL

::::::
model

:
with parameters optimised for

Berlin-Dahlem. For a series of this length, we expect to obtain quite accurate (low variance)
results for both, the dd-GEV IDF curve and the GEV distributions for individual durations.
However, sampling uncertainty is quanti�ed by repeatedly estimating the desired quantities from885

50 repetitions. The resulting dd-GEV IDF curves are compared to the individual durations GEV
in Fig. 12 for January (left) and July (right). For most durations in January and July, the dd-
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Figure 12: dd-GEV IDF curves for a) January and b) July and associated quantiles of a GEV
distribution estimated for individual durations. Shown are the 0.5- (red), 0.9- (green) and 0.99-
quantile (blue); shaded areas/box plots represent the variability over the 50 repetitions (5% to
95%)

IDF curves are close to the quantiles of the individual duration GEV distributions. Notable
di�erences appear for small durations and large quantiles (return-levels

:::::
return

::::::
levels

:
for long

return periods); particularly in January the dd-GEV IDF model overestimates the 10-year and890

100-year return-levels
:::::
return

::::::
levels (duration of 1h), in July, this e�ect seems to be present as

well but smaller in size. This is accompanied by a slight underestimation of the dd-GEV IDF for
durations of 2h to 6h in July and 3h to 6h in January, most visible for the 0.99-quantile (100-yr
return-level

:::::
return

:::::
level). Both e�ects together suggest that the �attening of the dd-GEV IDF

for small durations is not su�ciently well represented. This could be due to de�ciencies in the895

model for the duration dependent scale parameter (Eq. (8)) but might also be a consequence of
an inadequate sampling of durations (d ∈ {1h, 6h, 12h, 24h, 48h, . . .}) to be used to estimate the
dd-GEV IDF parameters. This is a point for further investigation.

6 Discussion and conclusions

A
::::
The

:::::::
original

:::::::
version

::
of

:::
the

:
Bartlett-Lewis rectangular pulse model (BLRPM)

::::::
(OBL)

::::::
model is900

optimized for the Berlin-Dahlem precipitation time series. Subsequently IDF curves are obtained
directly from the original series and from simulation with the BLRPM

::::
OBL

::::::
model. Basis for the

IDF curves is a parametric model for the duration-dependence of the GEV scale parameter which
allows a consistent estimation of one single duration-dependent GEV using all duration series
simultaneously (dd-GEV IDF curve). Model parameters for the BLRPM

::::
OBL

::::::
model

:
and the905
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IDF curves are estimated for all months of the years
::::
year

:
and seasonality in the parameters is

visible. Typical small-scale convective events in summer and large-scale stratiform precipitation
patterns in winter are associated with changes in model parameters.

We show that the BLRPM
:::::
OBL

::::::
model

:
is able to reproduce empirical statistics used for

parameter estimation; Mean, variance and autocovariance of simulated time-series
::::
time

::::::
series910

are in good agreement with observational values, whereas the probability of zero rainfall is more
di�cult to capture [cf. Rodriguez-Iturbe et al., 1987, Onof and Wheater, 1994a].

With respect to the �rst research question posed in the introduction, we investigate to what
extend the BLRPM

::::::
extent

:::
the

:::::
OBL

:::::
model

:
is able to reproduce the intensity-duration relationship

found in observations. We show that they do reproduce the main features of the IDF curves esti-915

mated directly from the original time series. However, a tendency to underestimate return-levels

:::::
return

::::::
levels

:
associated with long return-periods is observed

:::::
return

::::::::
periods

::
is

::::::::
observed

:::::::
similar

::
to Onof and Wheater [1993]

:
.
:::::::::
Including

:::
the

:::::
third

::::::::
moment

::
in
::::::::::
parameter

::::::::::
estimation

:::
did

::::
not

:::::
show

:::::::::
signi�cant

:::::::::::::
improvements

::
in

:::
the

:::::
OBL

::::::::
model's

:::::::::::::
representation

::
of

:::::::::
extremes

::
in

::::::::
contrast

::
to

::::::::
�ndings

::
for

::::
the

:::::::::::::
Neyman-Scott

:::::::
variant [Cowpertwait, 1998].920

Furthermore, IDF curves for February
:::::::
January

:
show a strong discrepancy between the BLRPM

::::
OBL

::::::
model

:
simulations and the original series. We hypothesize and investigate that this is due

to the Berlin-Dahlem precipitation series containing an extreme rainfall event associated with
the winter-storm Kyrill passing over Berlin during January 18th and 19th, 2007. This event is
singular

::::
very

::::
rare

:
in the sense that the maximum hourly precipitation rate during these two days925

exceeds the second largest rate found in the time series by a factor of 5.
::
on

:::
the

::::::
events

:::::
short

:::::
time

:::::
scales

::
it

::
is

:::::
only

::::::::
probable

::
to

::::::
occur

::::
once

:::::::
within

:
a
:::::::
period

::::::
larger

::::
than

:::::
1000

::::::
years.

:
This addresses

the second research question: How are IDF curves a�ected by singular
::::
very

::::
rare

:
extreme events

which might not be reproducible with the BLRPM
::
are

::::::::
unlikely

::
to

:::
be

:::::::::::
reproduced

::::
with

::::
the

:::::
OBL

:::::
model

:::
for

::
a
::::::::::
reasonably

::::
long

::::::::::
simulation? When the year 2007 is excluded from the analysis, the930

aforementioned discrepancy in January disappears. We conclude that such a singular extreme
event

::
an

::::::::
extreme

:::::
event

::::::
which

::
is

::::
rare

:::::::
(return

::::::
period

::
of

::::::
23000

::::
yrs)

::::
with

:::::::
respect

::
to

::::
the

::::
time

::::::
scales

::
of

:::::::::
simulation

::::::
(1000

::
×

:::
13

::::
yrs)

:
has the potential to in�uence the dd-GEV IDF curve as 1 out of

13 values per duration � i.e. one maximum per year out of a 13 years time series � does change
the GEV distribution. However, its potential to in�uence mean and variance statistics used to935

estimate BLRPM
::::
OBL

::::::
model

:
parameters is minor.

The third questions addresses the validity of the duration dependent parametric model for
the GEV scale parameter which allows a consistent estimation of IDF curves. For a set of
long simulations (1000 years) with the BLRPM

::::
OBL

::::::
model, the comparison of IDF curves with

the duration-dependent GEV approach with quantiles from a GEV estimated from individual940

durations suggest a systematic discrepancy associated with the �attening of the IDF curve for
short durations. Quantiles from individual durations are smaller for small durations as the dd-
GEV IDF curves which challenges the latter modeling approach. However, instead of altering
the duration dependent formulation of the scale parameter σd (Eq. (8)), a di�erent sampling
strategy for durations d used in the estimation of the dd-GEV parameters might alleviate the945

problem. This is a topic for futher investigation.
We do not �nd the BLRPM

:::::
OBL

:::::
model

:
producing unrealistically high precipitation amounts,

as discussed for the random-η model [Verhoest et al., 2010]. Nevertheless, improvements in
reproducing the observed extreme value statistics (especially large return levels) could be made
by adding the third moment in parameter estimation, as previous studies showed [Kaczmarska,950

2011].
In summary, the BLRPM

::::
OBL

::::::
model

:
is able to reproduce the general behaviour of extremes

across multiple time scales (durations) as represented by IDF curves. Singular
::::
Very

::::
rare

:
extreme

events do not have the potential to change the BLRPM
::::
OBL

::::::
model parameters but they do e�ect
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IDF statistics and consequently modi�es the previous conclusion for these cases. A duration955

dependent GEV is a promising approach to obtain consistent IDF curves; its behaviour at small
durations needs further investigation.

A OBL model parameters

::::::::::
Estimation

::
of

:::::
OBL

::::::
model

:::::::::::
parameters

::::::
follow

:::
the

::::::::::
boundary

::::::::::
constraints:

:: ::
For

::::::
those

::::::::::
parameter

:::::::::
Parameter

: ::::::
Lower

:::::::::
boundary

::::::
Upper

:::::::::
boundary

:
λ
: ::::

0.004
:
[
:::
h−1]

:
1 [

:::
h−1]

:
γ
: ::::

0.01
:
[
:::
h−1]

::
10

:
[
::::
h−1]

:
β
: ::::

0.01
:
[
:::
h−1]

:::
100 [

:::
h−1]

:
η
: ::::

0.01
:
[
:::
h−1]

:::
100 [

:::
h−1]

::
µx: ::::::::

1× 10−9 [
::::::
mm/h]

:::
100 [

:::::
mm/h]

Table 4:
:::::::::
Boundary

::::::::::
constrained

:::::
used

::
in

:::::
OBL

::::::
model

::::::::::
parameter

::::::::::
estimation.

::::::
ranges,

:::::::::
numerical

::::::::::::
optimisation

::::::
mostly

::::::::::
converged

::::
into

:
a
::::::
global

::::::::::
minimum.

::::
For

:::
the

::::::
model

:::::::
variant960

:::::
using

:::
the

:::::
third

::::::::
moment

::
in

::::
the

::::
OF,

::
no

:::::::::::
constraints

:::
are

:::::
used.

:

Using a Latin-Hypercube approach, we generated 100 di�erent sets of initial guesses for the
parameters used in the numerical optimization of the symmetrized objective function, Eq. (6).
The estimation of BLRPM

::::
OBL

:::::::
model parameters proved to be robust and the majority of

optimisations led to the same minimum of the objective function which is then assumed to be965

the global minimum. Parameter estimates are given in Tab. 5.

λ̂ [h−1] γ̂ [h−1] β̂ [h−1] η̂ [h−1] µ̂x [mm h−1] Zmin
Jan 0.012 0.049 0.266 1.223 1.093 0.389
Feb 0.016 0.065 0.305 0.906 0.511 0.036
Mar 0.010 0.028 0.165 0.924 0.614 0.077
Apr 0.015 0.073 0.100 0.841 0.845 0.125
May 0.021 0.066 0.102 1.080 1.707 0.419
Jun 0.018 0.350 0.613 5.191 7.873 0.109
Jul 0.015 0.090 0.300 2.098 3.946 0.105
Aug 0.018 0.265 0.385 2.960 7.228 0.126
Sep 0.011 0.037 0.122 0.827 1.340 0.055
Oct 0.016 0.109 0.219 0.753 0.990 0.099
Nov 0.019 0.091 0.378 0.796 0.525 0.064
Dec 0.027 0.119 0.205 0.753 0.602 0.130

Table 5: Optimum of estimated BLRPM
::::
OBL

::::::
model

:
parameters for individual month of the

year for the Berlin-Dahlem precipitation series and corresponding value of the objective function
Z
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B Di�erence in IDF curves

Figure 13 shows the relative di�erence

∆ =
dd-GEVOBL − dd-GEVobs

dd-GEVobs

· 100
::::::::::::::::::::::::::::::::

(11)

between IDF curves (dd-GEV) derived from the BLRPM
::::
OBL

::::::
model

:::::::::::
dd-GEVOBL:

and directly
from the observational time series

::::::::::
dd-GEVobs. From the four panels in Fig. 13, the discrepancies970

of the BLRPM
::::
OBL

::::::
model

:
can be highlighted. Apart from the large discrepancies in January

discussed in Sect. 5.3, the range of variability (colored shadows in Fig. 13 include the zero
di�erence line. However, the median over the 1000 BLRPM

::::
OBL

::::::
model simulations show general

tendency for the BLRPM
::::
OBL

::::::
model

:
to underestimate extremes for large return periods (0.99-

quantile) by 25-50%. The best agreement is achieved for April.975
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Figure 13: Relative di�erences
::::
(Eq.

:::::
(11))

:
between simulated and observed IDF curves for a)

January, b) April, c) July and d) October in percent relative to the observational values. Shown
are the 2-yr (0.5-quantile, red), the 10-yr (0.9-quantile, green) and 100-yr return-level

:::::
return

:::::
level

(0.99- quantile, blue) di�erences. The dashed lines denotes the median over all 1000 simulations
and the surrounding coloured shading mark the range of variability (5% to 95%). Due to the
usage of transparent colours, the three di�erent colours can overlap and mix, grey shadows thus
correspond to the overlapping of all three colours.
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