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Abstract: Agricultural drought events can affect large regions across the World, implying the urge for a 11 

suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are 12 

considered a good metric to capture the occurrence of agricultural drought events, and they have 13 

become an important component of several operational drought monitoring systems. In the framework 14 

of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/) the suitability of three 15 

datasets as possible representation of root zone soil moisture anomalies has been evaluated: (1) soil 16 

moisture from the Lisflood distributed hydrological model (namely LIS), (2) remotely sensed Land 17 

Surface Temperature data from the MODIS satellite (namely LST), and (3) the ESA Climate Change 18 

Initiative combined passive/active microwave skin soil moisture dataset (namely CCI). Due to the 19 

independency of these three datasets, the Triple Collocation (TC) technique has been applied, aiming at 20 

quantifying the likely error associated to each dataset in comparison to the unknown true status of the 21 

system. TC analysis was performed on five macro-regions (namely North America, Europe, India, 22 

Southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual 23 

relationship between these datasets as well as an assessment of the accuracy of each method. Even if no 24 

definitive statement on the spatial distribution of errors can be provided, a clear outcome of the TC 25 

analysis is the good performance of remote sensing datasets, especially CCI, over dry regions such as 26 

Australia and Southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are 27 
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well monitored through meteorological ground station networks, such as North America and Europe. In 28 

a global drought monitoring system, the results of the error analysis are used to design a weighted-29 

average ensemble system that exploits the advantages of each dataset. 30 

 31 

1. Introduction 32 

 33 

Drought is a recurring natural extreme, triggered by lower than normal rainfall, often exacerbated 34 

by a strong evaporative demand due to high temperatures and strong winds. Drought events may occur 35 

in all climates and in most parts of the world, since drought is defined as a temporary deviation from the 36 

local normal condition. Due to the usually wide extension of the interested area, drought affects millions 37 

of people across the Globe each year (Wilhite, 2000). 38 

On the basis of the economic and natural sectors impacted by this phenomenon, a drought event is 39 

usually classified in meteorological, agricultural and hydrological drought, depending on the persistence 40 

of the water deficit within the hydrological cycle. Of particular interest for this study are the agricultural 41 

(or ecosystem) drought events, defined as prolonged periods with drier than usual soils that negatively 42 

affect vegetation growth and crop production, and, as a consequence, human welfare (Dai, 2011). 43 

Soil moisture is commonly seen as one of the most suitable variables to monitor and quantify the 44 

impact of water shortage on vegetated lands due to its effects on the terrestrial biosphere and the 45 

feedback into the atmospheric system, as highlighted by the inclusion of time-aggregated soil moisture 46 

anomalies (e.g., monthly) in numerous drought monitoring systems at regional to continental scales 47 

(i.e., European Drought Observatory, http://edo.jrc.ec.europa.eu; United States Drought Monitor, 48 

http://droughtmonitor.unl.edu; African Flood and Drought Monitor, 49 

http://hydrology.princeton.edu/adm/; among others). 50 

In the context of drought monitoring, the soil moisture dynamic over large areas is usually 51 

modelled through either distributed hydrological models or land-surface schemes of climate models 52 

(Crow et al., 2012; Sheffield et al., 2004), as well as by thermal or passive/active microwave remote 53 

sensing-derived quantities (see e.g., Anderson et al., 2007; Houborg et al., 2012; Mo et al., 2010). 54 
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Particularly, with regard to a global-scale monitoring, remote sensing-based approaches have the 55 

advantage of an intrinsic worldwide coverage, but the drawbacks, in the case of microwave sensors, of 56 

exploring only the first few centimeters of soil and a decreasing sensitivity with the increase of 57 

vegetation coverage (Jackson, 2006). In the case of thermal data, the lack of coverage during cloudy 58 

conditions and the nontrivial connection between thermal and soil moisture signals (Price, 1980) are 59 

other limitations. On the contrary, diagnostic models allow for a continuous monitoring of soil moisture 60 

at the desired soil depths, but the accuracy of the data is constrained by uncertainties in the 61 

parameterization of soil hydrological characteristics, as well as by the actual availability of near-real 62 

time reliable meteorological forcing data. Generally, the use of in-situ observations for large area 63 

monitoring is limited, mainly due to the lack of long records, the sparseness of recording stations and 64 

the high spatial heterogeneity of soil moisture fields. 65 

It follows that both satellite measurements and model predictions are subject to errors and 66 

uncertainties that need to be accounted for in their interpretation and application (Gruber et al., 2016). 67 

This also suggests that a monitoring system based on a single model is rarely capable to provide global 68 

reliable estimates, and a combination of different data sources is desirable in order to minimize the 69 

errors in the detection of drought events. Recently, Cammalleri et al. (2015) demonstrated the value of 70 

an ensemble of modelled soil moisture anomalies for drought monitoring over Europe, similarly to the 71 

findings of the U.S. National Land Data Assimilation System (NLDAS) (Dirmeyer et al., 2006). 72 

However, a key point in combining different modelled data is the need to estimate the affinity and 73 

divergence between the models across the modelling domain. 74 

In the most recent years, the Triple Collocation (TC) technique (Stoffelen, 1998) has been 75 

established as a practical approach to evaluate the unknown error variance (with respect to the truth) of 76 

three mutually independent measurement systems without knowing the “true” status of the system 77 

(Yilmaz and Crow, 2014). This technique has been widely applied in hydrology to estimate errors in 78 

soil moisture, as well as to evaluate precipitation and vegetation property indicators (Dorigo et al., 79 

2010; McColl et al., 2014). One key requirement in TC is the existence of linearity between the three 80 

estimates and the truth, which can fail in the case of strongly seasonal geophysical variables such as soil 81 
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moisture (Su et al., 2014). Luckily, drought monitoring systems are usually based on soil moisture 82 

anomalies rather than actual values, hence providing a partial remedy to this problem and making soil 83 

moisture anomalies directly suitable for this methodology (Miralles et al., 2010). However, since most 84 

of TC studies focused on soil moisture dynamics rather than standardized anomalies, specific analyses 85 

are required to evaluate the accuracy of each dataset across the spatial domain.  86 

In the frame of an operational monitoring of agriculture and ecosystem drought, the availability of 87 

soil moisture, or proxy datasets available in near-real time is crucial; within the Global Drought 88 

Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/), developed by the Joint Research Centre (JRC) of 89 

the European Commission, the soil moisture outputs of the Lisflood hydrological model and the land 90 

surface temperature (LST) anomalies derived from the Moderate-Resolution Imaging Spectroradiometer 91 

(MODIS) onboard the Terra satellite have been detected as suitable datasets for a near-real time 92 

monitoring. In particular, Cammalleri and Vogt (2016) have highlighted how monthly-average LST 93 

anomalies represent the best proxy of soil moisture variations across different climates in Europe when 94 

compared to other LST-derived quantities. 95 

As a third dataset for the TC analysis, the combined active/passive microwave soil moisture 96 

dataset produced by the European Space Agency (ESA) in the context of the Climate Change Initiative 97 

(CCI) is used; even if this dataset is not currently updated in near-real time, it represents a valuable 98 

reference dataset for a global consistent time-series of microwave-based soil moisture maps (also, near-99 

real time updating is foreseen in the framework of the Copernicus Climate Change Services). 100 

The agreement between anomaly time-series derived from these three products has not been fully 101 

investigated in the literature, especially at global scale; hence, given the independency of the three 102 

sources of data (hydrological model, thermal and microwave remote sensing) and the likely fulfilling of 103 

the main TC key hypothesis (i.e., independency between the errors of the three datasets), the TC 104 

approach seems suitable for quantifying the spatial distribution of the errors associated to each dataset. 105 

Following these considerations, the overall goal of this study is twofold. First, the agreement 106 

between the monthly anomalies of the three datasets is evaluated, in order to identify the macro-areas 107 

where a reliable monitoring of soil moisture extreme conditions can be performed according to these 108 
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three datasets available globally and suitable for use in a near-real time monitoring system. Second, the 109 

TC analysis is performed over those macro-areas to quantify the spatial distribution of the expected 110 

random errors for each model compared to the unknown true status. Ultimate objective of the error 111 

analysis reported in this study is to provide information on the accuracy of the datasets that can be 112 

injected into a weighted-average ensemble procedure for a near-real time detection of the occurrence of 113 

ecosystem drought events, contributing to the future development of a robust agricultural drought 114 

monitoring index within the GDO system. 115 

   116 

2. Methods 117 

 118 

Drought events are commonly defined as prolonged periods during which a given drought 119 

indicator significantly deviates from the usual condition for the specific site and period (e.g., soil 120 

moisture content is lower than the climatology). Following this definition, this study will focus on 121 

standardized z-score values in order to make the different datasets directly comparable (i.e., minimizing 122 

the differences related to seasonality, soil depth, etc.). Specifically, monthly z-score values, or 123 

anomalies, are evaluated as: 124 

��,�,� = ��,�	
�,�
��,�          (1) 125 

where xi,k is the monthly average variable for the i-th month at the k-th year, µx,i and σx,i are the long-126 

term average and standard deviation of the variable x for the i-th month, respectively. The baseline 127 

period adopted to compute the twelve µ and σ monthly reference values should be of 15-30 years in 128 

order to ensure a stable benchmark. The three datasets used here, as described in the next section, are 129 

the root zone soil moisture data from the Lisflood model (x = LIS), the ESA Climate Change Initiative 130 

skin soil moisture microwave combined product (x = CCI) and the thermal remote sensing derived Land 131 

Surface Temperature (x = LST); in the case of LST data, the sign of the anomalies is reversed due to the 132 

expected inverse relationship between soil moisture and LST. 133 
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The monthly aggregation period is chosen to ensure a statistical robustness of the computed 134 

anomalies, as well as to minimize the presence of missing data in the remote sensing datasets due to 135 

sub-optimal acquisition conditions (e.g., cloudy days for LST). The transition from daily data to 136 

monthly aggregated values also ensures a reduction in the likely discrepancies among the three datasets 137 

introduced by the differences in the explored soil depth, since the phase shift in time-aggregated 138 

quantities is usually less marked (Campbell and Norman, 1998). Additionally, the anomalies computed 139 

according to Eq. (1), characterized by a null average and a unitary standard deviation, allow for a direct 140 

comparison of the different datasets thanks to the removal of potential biases. In the particular case of a 141 

regression analysis between two standardized anomaly quantities, the Pearson correlation coefficient, R, 142 

represents not only a measure of the linear dependency of the two random variables but also the slope of 143 

the linear relationship and a proxy of the difference and biases of the two datasets. In this respect, R can 144 

be seen as a good synthetic descriptor of the relationship between two standardized z-score datasets. 145 

The statistical significance of the existence of a positive correlation can be evaluated by means of the 146 

Student’s t-test (2 sided) by computing the R value corresponding to a significance level p = 0.05. 147 

Analysis of the correlation among the datasets is interesting in the framework of the triple 148 

collocation (TC) technique and its basic hypotheses. In TC, a first key hypothesis is the existence of 149 

linearity between the ‘true’ status of the system and the three models; this is formally expressed as: 150 

 �� = �+���� + ��        (2) 151 

where zΘ is the unknown true dataset of soil moisture anomalies, αx and βx are the systematic slope and 152 

bias parameters for the dataset x with respect to the truth, and εx is the additive zero-mean random noise. 153 

It follows that the absence of a statistical significant linear relation between all three models openly 154 

violates this hypothesis. 155 

Other key underling hypotheses of TC are the stationarity of both signals and errors, the 156 

independency between the errors and the signal (error orthogonality) and the independence between the 157 

errors of the three datasets (zero-cross correlation) (Gruber et al., 2016). Finally, operational limitations 158 

regard the minimum sample size of each dataset, which is commonly assumed equal to 100 values 159 
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(Scipal et al., 2008; Dorigo et al., 2010), even if some other authors suggest much larger sample sizes 160 

for a lower relative uncertainty (Zwieback et al., 2012). 161 

Under these assumptions, Stoffelen (1998) proposed a formulation to estimate each model error 162 

variance, σ2
εx, based on a combination of the covariance between the datasets. In this approach, known 163 

as the covariance notation (Gruber et al., 2016), the error variance values are computed without a 164 

common (arbitrary) reference dataset as: 165 

���� = ��� − ������
���

���� = ��� − ������
���

���� = ��� − ������
���

         (3) 166 

where, for the sake of simplicity, LIS, LST and CCI were renamed 1, 2, 3, respectively. The first term 167 

on the right side of Eqs. (3) represents the single model data variance, whereas the second term 168 

represents the so-called sensitivity of the model to variations in the true status, which is a function of the 169 

covariance terms between the three models. The advantage of this formulation is to directly estimate the 170 

unscaled error variances, which can (eventually) be scaled to a common data space, if needed. 171 

In the case of the application of the covariance notation to standardized quantities (with zero mean 172 

and unitary standard deviation), the error variance values computed through Eqs. (3) are expressed as 173 

dimensionless multiples of standard deviation, and a transformation to a common data space is not 174 

needed. 175 

Different performance metrics can be derived from the covariance notation, including relative 176 

error variance metrics such as the fractional root-mean-squared-error (fRMSE, Draper et al., 2013) and 177 

the correlation coefficient of each model with the underlying true signal (McColl et al., 2014). 178 

However, these metrics can be derived from each other by means of simple relationships (see Gruber et 179 

al., 2016) and they are analogous to the absolute error variance values in the case of z-scores that have 180 

known unitary dataset variance. 181 

 182 

3. Data and Materials 183 

 184 
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3.1 Lisflood model soil moisture 185 

 186 

Root zone soil moisture dynamics are simulated by means of the Lisflood model (de Roo et al., 187 

2000), a GIS-based distributed hydrological rainfall-runoff-routing model designed to reproduce the 188 

main hydrological processes that occur in large and trans-national European river catchments. The 189 

model simulates all the main hydrological processes occurring in the land-atmosphere system, including 190 

infiltration, actual evapotranspiration, soil water redistribution in three sub-layers (surface, root zone 191 

and sub-soil), surface runoff rooting to channel, and groundwater storage and transport (Burek et al., 192 

2013). 193 

Static maps used by the model are related to topography (i.e., digital elevation model, local drain 194 

direction, slope gradient, elevation range), land use (i.e., land use classes, forest fraction, fraction of 195 

urban area), soil (i.e., soil texture classes, soil depth), and channel geometry (i.e., channel gradient, 196 

Manning’s roughness, bankfull channel depth, channel length, bottom width and side slope). Root zone 197 

depth is defined for each modelling cell on the basis of soil type and land use, where the soil-related 198 

hydraulic properties are obtained from the ISRIC 1-km SoilGrids database (Hengl et al., 2014), whereas 199 

topography data are obtained from the Hydrosheds database (Lehner et al., 2008). 200 

Daily meteorological forcing maps are derived from the European Centre for Medium-range 201 

Weather Forecasts (ECMWF) data as spatially resampled and harmonized by the JRC Monitoring 202 

Agricultural ResourceS (MARS) group. The dataset includes daily average air temperature, potential 203 

evapotranspiration (for soil, water and reference surfaces) and total rainfall at 0.25 degree spatial 204 

resolution, which were resampled on the model grid using the nearest neighbors algorithm. 205 

The model run used in this study includes daily maps at 0.1 degree resolution between 1989 and 206 

2015; the grid domain of this dataset is used as reference for the other two, whereas the baseline for the 207 

anomalies computation is defined by the period 2001-2015 in order to match the LST data availability. 208 

Monthly data to be used in Eq. (1) are computed as a simple average of all the data available for each 209 

month, given that no gaps can be found in this dataset due to its continuous nature as hydrological 210 
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model. However, some areas where masked out due to the minimum or null temporal dynamic of soil 211 

moisture, such are Greenland and the Sahara desert. 212 

 213 

3.2 Land Surface Temperature dataset 214 

 215 

The use of the land surface temperature (LST) anomalies as a proxy of soil moisture anomalies is 216 

based on the well-known role of LST in the surface energy budget as a control factor for the partitioning 217 

between latent and sensible heat fluxes. In recent years, the existence of a connection between soil 218 

moisture and LST has been analyzed, mainly through the thermal inertia and the triangle methods (e.g., 219 

Carlson 2007; Verstraeten et al., 2006), as well as a direct proxy (see e.g., Park et al., 2014; Srivastava 220 

et al., 2016). In a study over the pan-European domain, Cammalleri and Vogt (2016) have demonstrated 221 

the good agreement between monthly LST and LIS-based root zone soil moisture z-score values during 222 

summer time, where LST outperforms other LST-based indicators such as the day-night difference and 223 

the surface-air gradient. 224 

Following these findings, this study adopts the dataset collected by the Moderate-Resolution 225 

Imaging Spectroradiometer (MODIS) sensor on board of the Terra satellite 226 

(http://terra.nasa.gov/about/terra-instruments/modis) as a source of monthly-scale long records of LST 227 

maps. In particular, the MOD11C3 Monthly CMG (Climate Modelling Grid) LST product is used in 228 

this study, which is constituted by monthly composited and averaged temperature and emissivity maps 229 

at a spatial resolution of 0.05 degrees over a regular latitude/longitude grid; data for the period 2001–230 

2015 are used, as the only fully completed years at the time of the analysis. 231 

This monthly composite product is obtained as an average of the clear-sky data in the MOD11C1 232 

products on the calendar days of the specific month, which are derived after a re-projecting and a re-233 

sampling of the MOD11B1 product. Details on the algorithms used to obtain the daily MOD11B1 maps 234 

can be found in Wan et al. (2002); in summary, a double screening procedure is applied, based on: i) the 235 

difference between the two independent LST estimates of the day/night algorithm (Wan and Li, 1997) 236 
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and the generalized split-window algorithm (Wan and Dozier, 1996), and ii) the histogram of the 237 

difference between daytime and nighttime LSTs. 238 

LST monthly maps were spatially co-registered to the Lisflood 0.1 degree regular 239 

latitude/longitude grid by means of a simple average of the values within each cell, and anomaly maps 240 

were computed according to Eq. (1) by using only the data for which LST > 1 °C; this threshold value 241 

(commonly used in snowmelt and snow/rainfall discrimination procedures; WMO, 1986) allows 242 

removing the data that are likely affected by snow/frost from the analysis. 243 

 244 

3.3 Microwave combined dataset 245 

 246 

The ESA Climate Change Initiative (CCI) aims at developing a multi-satellite soil moisture 247 

dataset by combining data collected in both past and present by passive and active microwave 248 

instruments (Liu et al., 2012; Wagner et al., 2012). The current version of the dataset (v03.2) combines 249 

data from nine different sensors (SMMR, ERS-1/2, TMI, SSM/I, AMSR-E, ASCAT, WindSat, AMSR2 250 

and SMOS) between 1978 and 2015. 251 

Satellite-based microwave estimates of soil moisture are usually related to the first few 252 

centimeters of soil column (i.e., skin layer), which is quite closely related to the soil moisture content in 253 

the root zone (Paulik et al., 2014), except for very dry conditions in sandy soils. Additionally, numerous 254 

validations against land surface models have highlighted good performance across the globe, with 255 

notable exceptions over densely vegetated areas (e.g., Loew et al., 2013). 256 

The algorithm adopted to merge the different data sources is the one developed by Liu et al. 257 

(2012), which is a three-step procedure that: i) merges the original passive microwave products, ii) 258 

merges the original active microwave products, and iii) blends the two merged products into a single 259 

final dataset. The merging procedure of passive datasets includes pixel-scale separation between 260 

seasonality and anomalies, rescaling of the data based on the piece-wise cumulative distribution 261 

function (CDF) and merging of the dataset using a common reference seasonality. For the active 262 

microwave instruments, the CDFs are directly used to rescale the data under the assumption that active 263 
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datasets have an identical dynamic range, this mainly due to the limited overlap between datasets. The 264 

final blending of the two merged datasets is obtained by adopting a common resolution of 265 

approximately 25 km and daily frequency, as well as by using the GLDAS-1-Noah model 266 

(ftp://agdisc.gsfc.nasa.gov/data/s4pa/) as a reference dataset for the CDF matching.      267 

In this study, the daily blended dataset is spatially resampled to a 0.1 degree regular 268 

latitude/longitude grid (the same used in Lisflood simulations) by means of the nearest neighbor 269 

algorithm, and successively aggregated to monthly time scale by simply averaging the data (only if at 270 

least 8 daily values were available in the specific month). Monthly average maps were converted into z-271 

score maps by using the baseline period 2001-2015 (the timeframe available for the LST dataset). 272 

Monthly aggregated z-score values of skin soil moisture are analyzed, jointly with the other two 273 

datasets, under the assumption that time-aggregation and normalization procedures minimize some of 274 

the discrepancies that are likely present between skin and root zone daily time-series.    275 

 276 

4. Results and Discussion 277 

 278 

Considering the assumption of linearity between each one of the datasets and the unknown true 279 

status of the system in TC, a preliminary analysis on the linear correlation between the three anomaly 280 

products has been performed in order to detect the macro-areas where the TC procedure can be applied 281 

without violating this basic hypothesis. The correlation analysis was performed by using only the 282 

monthly anomalies that were available for all three datasets, with at least a sample size of 100 values 283 

(max sample size = 12 months × 15 years = 180), and by defining a minimum correlation threshold 284 

(R0.05) that ensures a statistical significance of the linear relationship on the basis of the Student’s t-test 285 

(at p = 0.05). 286 

The map in Fig. 1 reports in grey the areas where all three datasets are significantly linearly 287 

correlated according to the described criteria, representing the areas where the first basic hypothesis of 288 

the TC is not clearly violated. It is worth to point out that some areas are excluded from the analysis by 289 

the lack of data in LIS (low temporal variability, as over Greenland and the Sahara desert), LST (due to 290 
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the minimum temperature threshold or low temporal variability) or CCI (densely vegetated areas, such 291 

as the Amazon forest and the Congo basin). These results suggest to focus the successive detailed 292 

analysis on five macro-regions (demarked by the boxes in Fig. 1) that have consistent positive 293 

correlation values for all the three datasets; these areas are named, from now on, as: 1) NA (including 294 

the contiguous U.S. and Mexico), 2) EU (Southern and Central Europe), 3) SA (Southern countries of 295 

the African continent and Madagascar), 4) IN (Indian subcontinent), and 5) AU (Australia)*. 296 

The correlation coefficient maps over those regions, obtained by inter-comparing the three 297 

datasets, are reported in Figs. 2 to 4, where the cells in red and yellow are the ones with negative or not-298 

significant correlation, respectively, whereas the blue scale represents the cells with increasing 299 

significant linear correlation (from light to dark tones). The comparison between LIS and LST (Fig. 2) 300 

shows an overall good agreement between the two datasets, with only minor areas characterized by 301 

negative/not-significant correlation values; notably, low correlation can be observed over the Great 302 

Lakes and Rocky mountain areas in the U.S., over the Alps in Europe, North Angola and Western 303 

Himalaya. Similar results can be observed in Fig. 3, where LIS and CCI datasets are compared; this 304 

comparison shows an increasing number of negative values in the Western U.S., the Alps, and Southern 305 

Turkey, but overall high correlation values across most of the five regions. Finally, the comparison 306 

between LST and CCI reported in Fig. 4 shows an increase of areas with low/not-significant correlation 307 

in the Eastern and Western U.S. and both North- and South-Eastern Europe and the Alps, whereas a 308 

high correlation can be observed all over the other regions. 309 

On average, the data in Table 1 summarize the results obtained for all the regions together, as well 310 

as for each region independently, showing how CCI and LST are the two datasets best correlated to 311 

each other overall, even if this result is mainly driven by the results over AU, SA and IN macro-areas. 312 

The data of the LIS model are similarly correlated to the ones of LST and CCI, with a more uniform 313 

distribution of the results across the various sub-regions. Another outcome of this analysis is that the 314 

area with the lowest average correlation between the three datasets is the EU, probably due to the high 315 

heterogeneity of this region at the 0.1 degree spatial scale. 316 

                                                             
*
 Consider the countries and boundaries reported here only as indicative of the interested areas, and they may not in any 

circumstances be regarded as stating an official position of the European Commission. 
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Some of the discrepancies observed in Figs. 2 to 4 can be explained by the differences in both 317 

horizontal and vertical resolution of the three raw datasets. LIS is characterized by an higher spatial 318 

resolution (5-km) compared to CCI (25-km) and a vertical resolution that encompasses the full root 319 

zone against the skin soil moisture of the latter; LST has the same spatial resolution of LIS but a vertical 320 

resolution that varies as function of the vegetation coverage between skin (for bare soil) to root zone 321 

(for full vegetation coverage). The impact of such differences is partially reflected in the observed 322 

results, with CCI-LST better related over shallow soil in homogeneous areas, and LIS-LST better in 323 

agreement over sparse agricultural areas in Europe. Overall, it seems that the adopted expedients (i.e., 324 

monthly average, standardization) successfully minimized these issues, given that the results in Table 1 325 

shows a substantial and similar agreement of the three datasets in the main areas. 326 

Additionally, the obtained results seem to suggest that it is reliable to adopt LST anomalies as 327 

proxy of soil moisture anomalies, since there is a clear consistency of LST anomalies with the other two 328 

datasets. Similar results were obtained by Fang et al. (2016) over the continental United States, where 329 

the outputs of the thermal-based ALEXI (Atmosphere Land EXchange Inverse) model compare well 330 

with soil moisture anomalies from CCI and Noah land-surface model. This consideration allows 331 

applying the TC analysis to the LST dataset as well, whereas most of the studies in the literature focus 332 

on land modelled and microwave soil moisture datasets (i.e., Dorigo et al., 2010; Gruber et al., 2016; Su 333 

et al., 2014) with only few notable exceptions including thermal data (e.g., Hain et al., 2011; Yilmaz et 334 

al., 2012). 335 

The outputs of the correlation analysis were used to detect the cells suitable for the TC technique; 336 

since a key hypothesis of the technique is the existence of a linear relation between each model and the 337 

(unknown) truth, a necessary condition (even if not sufficient) is the existence of linear relationships 338 

among the three datasets. As outcome of the correlation analysis, around 10% of the five macro-areas 339 

were removed from the TC analysis due to the absence of this basic condition. 340 

The maps in Figs. 5 to 7 show the main outcome of the TC analysis, which is the spatial 341 

distribution of the error variance (dimensionless, showing the multiple of model standard deviation) for 342 

each model, as detailed by Eqs. (3). The blank areas in those maps correspond to the cells where no 343 



14 

 

significant linear correlation was observed between all three datasets. The results for LIS (Fig. 5) show 344 

how the highest errors are observed over the Western U.S., Northern Cape in South Africa and 345 

Western/Southern Australia, whereas low errors are observed over the Eastern U.S. On the opposite, the 346 

LST dataset displays the highest errors over the latter area (Fig. 6), whereas the lowest errors are 347 

observed over Queensland in Australia, Eastern Cape in South Africa and Lesotho. The maps in Fig. 7 348 

show that the CCI dataset has consistent patterns of low error variance values over most of Australia, 349 

Western India and Central U.S. 350 

Overall, on the one hand, it seems evident how CCI tends to outperform the other two methods 351 

over dry areas such as Australia and South Africa, but on the other hand, a region like the U.S. is almost 352 

equally subdivided among the three datasets, where LIS performs better in the East, LST in the West 353 

and CCI in the center. Differences among products can be partially explained by the differences in the 354 

soil layer monitored by each dataset, i.e., microwave system capturing skin soil moisture whereas 355 

Lisflood models the full root zone; indeed, even if the use of monthly anomalies allows minimizing 356 

some of the discrepancies, skin soil moisture remains more reliable for dry/bare areas (Das et al., 2015). 357 

Even if these considerations partially explain the agreement/disagreement of the three datasets, it is not 358 

straightforward to pinpoint in detail climate and/or vegetation derived patterns in the spatial distribution 359 

of the TC outputs.  360 

These findings are summarized in the data reported in Table 2, where the average error variance 361 

for each model and macro-area is reported aside its spatial standard deviation. The data in Table 2 362 

confirm that CCI has an overall better performance (lower errors) than LIS and LST, which perform 363 

quite closely, mainly thanks to the very low error variance observed over Australia and, to a minor 364 

extend, Southern Africa. The LIS model shows to perform better over NA and EU regions, likely due to 365 

the better meteorological forcing datasets available over those regions compared to the other macro-366 

areas (due to denser ground networks). The LST dataset seems to perform moderately well over all five 367 

macro-regions, with the only notable exception of EU; however, it rarely outperforms the other two 368 

datasets, constituting a “second-best” option in most of the cases. It is also worth to point out that the 369 

CCI dataset is often masked-out over those regions where the error of microwave techniques are likely 370 
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high, whereas the data of the other two datasets are mostly produced globally; hence, a possible 371 

explanation of the better performance of CCI compared to LIS and LST may be linked to this 372 

preliminary screening of the data. 373 

The outcome that LIS slightly outperforms the other two datasets over NA is in agreement with 374 

the results reported by Hain et al. (2011), where the Noah land-surface model slightly outperforms (on 375 

average) the microwave and thermal datasets over Contiguous U.S. However, it should be pointed out 376 

how the spatial distribution of the error estimates for LIS differs from the ones reported for Noah, likely 377 

due to the differences in both meteorological forcing and modelling approaches. Some qualitative 378 

analogies can also be observed with the results reported in Pierdicca et al. (2015), which show smaller 379 

average errors at daily time scale over Europe for the ERA-LAND modelled datasets compared to two 380 

microwave-based datasets, even if both the temporal scale and the adopted methodology of the latter 381 

differ from the ones used in our study. This previous study seems to confirm that land modelling 382 

approaches are more reliable, on average, over these regions, likely due to the reliability of 383 

meteorological forcing and model parameterizations, even if there can be significant differences among 384 

the performances of different land-surface models. 385 

Over AU sub-region, the spatial distribution of the errors in CCI are quite in agreement with the 386 

results reported in Su et al. (2014) for two microwave datasets, with larger errors along the South-East 387 

Australian coast. This result supports the assumption that microwave data are more reliable over dry 388 

bare soil areas, which is further highlighted by the results obtained in SA and IN sub-regions. The 389 

subdivision of the NA domain in three main regions is similar to the one observed by Gruber et al. 390 

(2016) in comparing ASCAT and AMSR-E microwave datasets, suggesting key differences in the soil 391 

moisture behavior over these three sub-regions. Overall, the spatial patterns of microwave and land 392 

model errors show similarities with the ones observed by Dorigo et al. (2010), even if no thermal data 393 

were included in their analysis. 394 

The error variance values can also be interpreted as the correlation coefficient of each dataset with 395 

the underlying true signal, following the definition of McColl et al. (2014). In fact, for the special case 396 

of anomalies with unitary variance (σ2
x = 1), the TC-derived Rx of each dataset is simply equal to 397 
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�1 − ���� , which ranges on average over all five regions (not shown) between 0.91 (for CCI in AU) to 398 

0.66 (for LST over EU); these values show a good capability of the datasets to capture, on average, 399 

temporal variations in soil moisture anomalies.  400 

In order to provide a simple synthetic representation of the likely best model for each area, the 401 

map in Fig. 8 depicts for each cell the dataset with the lowest error variance by associating different 402 

colors to the three datasets (red for LIS, blue for LST and green for CCI). Even if this approach is rather 403 

simplistic, as it cannot account for two products performing really close over some areas, the major 404 

relevant features, like the predominance of the CCI model over Australia, are made evident by these 405 

maps. 406 

The maps in Fig. 8 confirm CCI as the dataset with the lowest error variance values over most of 407 

AU, SA and IN, whereas the three datasets almost equally split the other two macro-areas; this is even 408 

more evident in the data reported in Table 3, where the percentage of sub-areas where each model is the 409 

best is reported. These data confirm the good performance of CCI over AU, SA and IN macro-regions, 410 

whereas the NA territory is almost equally divided among the three datasets and LIS outperforms both 411 

LST and CCI over 50% of EU domain. In the latter, the areas where the LIS dataset outperforms the 412 

other two datasets partially resemble the results obtained by Pierdicca et al. (2011) for the ERA-LAND 413 

model; however, the present study includes also remote sensing thermal data and not only microwave-414 

derived datasets. Overall, the CCI dataset outperforms the other two datasets in about 50% of cells, with 415 

the remaining almost equally split between LIS and LST. 416 

Finally, the spatial distribution of the weighting factor of each dataset, computed according to the 417 

least square theory (Yilmaz et al., 2012), is represented in Figs. 9 to 11. The color scale of the figures 418 

was designed to represent in a neutral color the cells that have a weighing factor close to the one for a 419 

simple-average (1/3), in green scale the weights greater than a simple-average (larger contribute) and in 420 

orange the weights lower than the simple-average (smaller contribute). The visual intercomparison of 421 

the three maps further emphasizes the good performance of the CCI product over AU and SA, the best 422 

performance of LIS over the Eastern US and EU, and the good results obtained for LST in Western US 423 
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and Northern AU. It is worth noticing that the use of a weighted average based on the TC error analysis 424 

does not seem to bring advantages over large areas of central US, EU and Eastern IN where the 425 

weighting factors are close to the ones for a simple arithmetic average. The behavior of the weighting 426 

factors over the five macro-areas can be synthetized by the frequency diagram in Fig. 12. This plot 427 

shows the high fraction of weighting factors > 0.4 for the CCI dataset, representing a predominant 428 

contribution on the ensemble mean of this product over the others, whereas LST has a peak of 429 

frequency center around 1/3 (arithmetic average) and LIS has a hint of bi-modal distribution. These 430 

data, together with the map in Fig. 8, confirm the fact that CCI outperforms the other two datasets in 431 

50% of the domain, whereas LST is often the second-best option behind either CCI or LIS.    432 

   433 

5. Summary and Conclusions 434 

 435 

Three datasets have been compared as proxy of the unknown true status of soil moisture 436 

anomalies in the context of the global drought monitoring system under development by the JRC of the 437 

European Commission. Key assumption of the study is the inability of a single dataset to accurately 438 

capture the soil moisture dynamic over the large range of variability of conditions that can be observed 439 

at continental to global scale.  440 

The inter-comparison between the three datasets, namely the outputs of the Lisflood hydrological 441 

model (LIS), the MODIS-based land surface temperature (LST) and the combined active/passive 442 

satellite microwave (CCI) data, confirms some inconsistencies between the three datasets over certain 443 

areas, as well as the difficulties in comparing the three datasets over peculiar areas (e.g., Sahara desert, 444 

Amazon rainforest) due to the lack of coverage from one or more datasets. Generally, the three datasets 445 

seem comparable over most of the globe, thanks to the use of time-aggregation and standardization 446 

procedures that remove temporal inconsistencies and biases among the series. Focusing the analysis 447 

only on the areas where the three datasets are substantially in agreement (following a linear regression 448 

analysis), five macro-regions were detected as suitable for further investigations according to the Triple 449 

Collocation (TC) technique. This analysis allows quantifying the likely random error associated with 450 
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each model (with regard to the true status) even in absence of an observation of the “truth”, under the 451 

hypothesis that certain criteria are met. 452 

The main outcome of the TC analysis further confirms the need of a multi-source approach for a 453 

reliable assessment of soil moisture anomalies over those five regions, given that no model outperforms 454 

the others (in terms of expected error variance) for the entire study domain. Emblematic are the results 455 

over North America, where each model outperforms the others in one sub-region, like the LIS approach 456 

in Eastern U.S., LST in the Southern-Western domain and CCI in Central U.S. Even if no clear insight 457 

on the general patterns of the errors can be provided as outcome of the study, overall, the obtained 458 

results seem suggesting that remote sensing datasets perform better over dry areas and sparsely 459 

monitored areas (e.g., Australia and Southern Africa), whereas the LIS dataset seems more reliable over 460 

NA and EU where dense networks of meteorological ground stations are deployed. 461 

It has been highlighted how some differences among the datasets can also be related to the depth 462 

of the soil layer monitored by each dataset, i.e., the microwave system capturing skin soil moisture 463 

whereas Lisflood models the full root zone; indeed, even if the use of monthly anomalies allows 464 

minimizing some of the discrepancies and biases, our results confirm that skin soil moisture remains 465 

more reliable for areas where the effects of vegetation coverage is minimal (Das et al., 2015), whereas 466 

hydrological models are more suited for agricultural and densely vegetated regions. However, the three 467 

datasets seems to be overall comparable in terms of average performances, supporting the success of the 468 

adopted homogenization procedures. Some analogies between the obtained results and the ones already 469 

available in the literature have been found, but the inclusion of thermal data into the analysis enlarges 470 

the understanding of the mutual relationship between the different datasets. 471 

The results of this study represent a robust starting point for the development of a global drought 472 

monitoring system based on such anomaly datasets, which can exploit the main findings of the TC 473 

analysis in order to develop a suitable ensemble product over the investigated regions. The error 474 

characterization derived from TC was used to estimate the weighing factors of an ensemble mean 475 

procedure, based on the least squares framework reported in Yilmaz et al. (2012). Currently, an 476 



19 

 

operational implementation of such ensemble product is foreseen for the GDO system as soon as the 477 

CCI product becomes available in near-real time. 478 

Further analyses are required to be able to extend the test to the areas currently not included in this 479 

study, especially the ones where the three datasets are available but provide inconsistent or contrasting 480 

results. In this context, the analysis of further global datasets may help in unveil the reasons behind such 481 

discrepancies. 482 

483 
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Tables 597 

 598 

Table 1. Summary of the Pearson correlation coefficient values (average ± standard deviation) observed 599 

for all the regions. 600 

Comparison ALL NA EU SA IN AU 

LIS vs. LST 0.44 ± 0.09 0.41 ± 0.08 0.39 ± 0.07 0.48 ± 0.09 0.44 ± 0.07 0.50 ± 0.10 

LIS vs. CCI 049 ± 0.10 0.47 ± 0.09 0.42 ± 0.08 0.48 ± 0.10 0.48 ± 0.08 0.58 ± 0.11 

CCI vs. LST 0.56 ± 0.13 0.49 ± 0.14 0.37 ± 0.09 0.63 ± 0.09 0.52 ± 0.10 0.68 ± 0.07 

 601 

 602 

Table 2. Summary of the TC error variance analysis, reporting the spatial average (± standard 603 

deviation) values observed over each macro-region. 604 

Model ALL NA EU SA IN AU 

LIS 0.48 ± 0.13 0.42 ± 0.14 0.44 ± 0.12 0.54 ± 0.11 0.49 ± 0.10 0.54 ± 0.14 

LST 0.44 ± 0.13 0.46 ± 0.15 0.56 ± 0.10 0.37 ± 0.10 0.48 ± 0.09 0.38 ± 0.11 

CCI 0.36 ± 0.18 0.46 ± 0.16 0.54 ± 0.12 0.30 ± 0.14 0.38 ± 0.16 0.17 ± 0.10 

 605 

 606 

Table 3. Fraction of each macro-area (as percentage) where one model outperforms the other two.   607 

Model ALL NA EU SA IN AU 

LIS 25.5 39.2 50.0 10.6 28.2 4.3 

LST 25.7 28.8 23.1 36.0 20.3 18.6 

CCI 48.8 32.0 26.9 53.4 51.5 77.1 

  608 
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Figures 609 

 610 

 611 

Fig. 1. Map of the areas where all the three models are positively significantly linearly correlated (cells 612 

in grey) according to the Student’s t-test at p = 0.05. The boxes delimitate the macro-regions selected 613 

for the successive analyses.  614 

  615 
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 616 

Fig. 2. Spatial distribution of the Pearson correlation coefficient (R) between Lisflood soil moisture 617 

anomalies (LIS) and land surface temperature anomalies (LST) over the five selected macro-regions. 618 

Values in red and yellow are negatively correlated or not significant at p = 0.05, respectively. 619 

  620 
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 621 

Fig. 3. Spatial distribution of the Pearson correlation coefficient (R) between Lisflood (LIS) and ESA 622 

Climate Change Initiative (CCI) soil moisture anomalies over the five selected macro-regions. Values in 623 

red and yellow are negatively correlated or not significant at p = 0.05, respectively. 624 
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 626 

Fig. 4. Spatial distribution of the Pearson correlation coefficient (R) between ESA Climate Change 627 

Initiative soil moisture anomalies (CCI) and land surface temperature anomalies (LST) over the five 628 

selected macro-regions. Values in red and yellow are negatively correlated or not significant at p = 0.05, 629 

respectively. 630 
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 632 

Fig. 5. Spatial distribution of the error variance for the Lisflood (LIS) dataset over the five selected 633 

macro-regions. 634 
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 636 

Fig. 6. Spatial distribution of the error variance for the land surface temperature (LST) dataset over the 637 

five selected macro-regions. 638 
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 640 

Fig. 7. Spatial distribution of the error variance for the ESA Climate Change Initiative (CCI) dataset 641 

over the five selected macro-regions. 642 
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 644 

Fig. 8. Maps representing the best performing (lowest error variance) dataset for each cell according to 645 

the TC analysis. 646 
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 648 

Fig. 9. Maps representing the ensemble mean weighting factor for the LIS dataset according to the error 649 

maps derived from the TC analysis. 650 
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 652 

Fig. 10. Maps representing the ensemble mean weighting factor for the LST dataset according to the 653 

error maps derived from the TC analysis. 654 
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 656 

Fig. 11. Maps representing the ensemble mean weighting factor for the CCI dataset according to the 657 

error maps derived from the TC analysis. 658 
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 660 

Fig. 12. Frequency distribution of the ensemble mean weighting factor for each dataset computed 661 

according to the TC analysis. The black dotted line represents the value corresponding to a simple 662 

arithmetic average (1/3). 663 

 664 


