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Abstract. This study proposes a stochastic framework for a linear lumped 9 

rainfall-runoff problem at the catchment scale. An autoregressive (AR) model is adopted 10 

to account for the temporal variability of the rainfall process. For a stochastic description, 11 

solutions of the surface flow problem are derived in terms of first two statistical moments 12 

of the runoff discharge through the nonstationary Fourier-Stieltjes representation 13 

approach. The closed-form expression for the variance of runoff discharge allows to 14 

assessing the impacts of rainfall and storage parameters, respectively, on the discharge 15 

variability. It is found that the temporal variability of the runoff discharge induced by a 16 

random rainfall process persists longer for smaller values of the storage or rainfall 17 

parameters.  18 

 19 

1 Introduction 20 

 21 

Rainfall-runoff models simulate the processes of converting rainfall to runoff. They 22 

are used for a variety of applications in hydrology (e.g., Beven, 2012; Falahi et al., 2012), 23 
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for example, to predict the peak flow used in drainage design purposes, to estimate flows 24 

of ungauged catchments, to assess the effects of climate changes. The quantitation of 25 

rainfall-runoff processes is essential for providing a basis of water resources management 26 

and planning in river basins. 27 

Rainstorm is the major input into the generation of surface runoff and the production 28 

of runoff is, therefore, dependent on the characteristics of rainfall events. Rainfall 29 

processes are generally recognized as being affected by complex natural events. The 30 

details of the processes cannot be described precisely. Moreover, to carry out 31 

rainfall-runoff calculations detailed information about landscape properties and 32 

hydrologic states must be known in the whole catchment. In general, such information is 33 

not available due to the heterogeneity in associated parameters. Therefore, there is a great 34 

deal of uncertainty about the runoff prediction using a deterministic model. As such, the 35 

analysis of rainfall-runoff processes is often taken by means of a stochastic framework 36 

(e.g., Córdova and Rodríguez-Iturbe, 1985; Goel et al., 2000; Lee et al., 2001; Moore, 37 

2007; Bartlett et al., 2016). 38 

Much of stochastic research in rainfall-runoff modellings focused on development of 39 

the probability distribution of state variables (such as rainfall and flow discharge). In 40 

most cases, due to a complex non-linear behavior in general, the analytical solution for 41 

the probability distribution function does not exist. Alternatively, to take the advantage of 42 

closed-form expressions, the purpose of this study is to derive analytical solutions, 43 

namely the first two moments of runoff discharge, for a linear lumped rainfall-runoff 44 

problem. The first moment (ensemble mean) is used as an unbiased estimate of a system 45 

state, and the second moment (ensemble variance) is used as a measure of uncertainty by 46 
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applying the mean model. Those expressions will be obtained using the nonstationary 47 

Fourier-Stieltjes representation approach along with the assumption of an AR rainfall 48 

model (e.g., Foufoula­Georgiou and Lettenmaier, 1987; Thyregod et al., 1999; Srikanthan, 49 

and McMahon, 2001; Rebora et al. 2006; Hannachi, 2014). 50 

 51 

2 Mathematical Statement of the Problem 52 

 53 

The physical-based equation in modeling the rainfall-runoff process is the equation of 54 

conservation of mass. If the control volume is extended to the scale of a catchment, the 55 

continuity equation for the free surface flow then takes on the lumped form of the 56 

storage equation as (e.g., Brutsaert, 2005; Beven, 2012) 57 

QER
dt

dS
tt   (1) 58 

where S is catchment storage, Rt and Et denote the rainfall and evapotranspiration at time 59 

t, respectively, and Q is the discharge from the catchment. The lumped model attempts to 60 

relate the forcing (rainfall input) to the model output (runoff) without considering the 61 

spatial variability. Therefore, all variables and parameters in Eq. (1) represent spatial 62 

averages over the entire catchment area, and, as such, only their temporal variability is 63 

retained. That is, in a lumped system model, the flow is evaluated as a function of time 64 

alone at a particular location in large catchments. 65 

Since there are two unknowns, namely Q and S, for only one equation, further 66 

knowledge of the relation of Q to S is needed in order to solve Eq. (1). In most practical 67 

applications, S in Eq. (1) is specified as an arbitrary function of Q. As such, the changes 68 

in S with time may be expressed as  69 
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dt

dQ

dQ

dS

dt

dS
  (2) 70 

Given Eqs. (1) and (2), it follows that  71 

dQdS
ER

dQdS

Q

dt

dQ tt

//


  (3) 72 

This study will concentrate only on the case of S being a linear function of Q (e.g., 73 

Kaseke and Thompson, 1997; Botter et al., 2007; Suweis et al., 2010, Guinot et al., 74 

2015):  75 

KQS   (4) 76 

where the constant K is termed as the storage parameter. Consequently, Eq. (1) can be 77 

cast in the form 78 

K
ER

K

Q

dt

dQ tt   (5) 79 

It is assumed in the following analysis that Rt is a temporal stochastic process (random 80 

field). We also assume that evapotranspiration has a negligible effect on Q as compared 81 

to that of rainfall (Rt >> Et). Since the temporal random heterogeneity of Rt appears as a 82 

forcing term which generates the random variations in Q, the differential Eq. (5) is then 83 

viewed as a stochastic differential equation. The probabilistic structure of random Q is 84 

determined by its temporal statistical moments. In the present study, we are interested 85 

mainly in developing the first two moments of Q. The mean (unbiased estimate of) 86 

runoff discharge may also be interpreted as the solution predicted by the deterministic 87 

model. The second moment (variance) of catchment discharge derived below can then be 88 

used to characterize the uncertainty in applying the deterministic (or mean) model. The 89 

variance can be viewed as an index of large-scale discharge variability as well. 90 
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Due to its linearity, Eq. (5) may be split into two sub-equations: a mean equation 91 

governing the temporal behavior of mean catchment discharge,  92 

K

R

K

Q

dt

Qd
  (6a) 93 

and an equation for the perturbations describing the discharge perturbation produced as a 94 

result of the input rainfall perturbation, 95 

K

r

K

q

dt

dq
  (6b) 96 

In Eq. (6), Q and R indicate the means of Q and Rt, respectively, and q (= Q-Q ) and r 97 

(= Rt - R ) are zero-mean perturbations.  98 

Spectral representation theorem provides a very useful way of evaluating the 99 

variance of perturbations. To carry out the calculation, the perturbed-form Eq. (6b) must 100 

be solved in Fourier space. Since r(t) in Eq. (6b) is a noise force contributing to the 101 

variations in q, the solution of Eq. (6b) requires knowledge of the temporal distribution of 102 

rainfall field. The section that follows attempts to develop the spectrum of r(t) which will 103 

be achieved by solving an AR model for temporal rainfall processes through the 104 

nonstationary spectral approach. 105 

 106 

3 Spectral Solution for the Rainfall field 107 

 108 

The AR model specifies linear dependence of the output variable partly on its own 109 

previous values and partly on the random disturbance (or white noise) (e.g., Priestley, 110 

1981; Vanmarcke, 1983). In other words, the AR model uses a linear equation with 111 

constant coefficients to define the relation between an output process and an input white 112 
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noise process.  113 

Throughout this study, it is assumed that the temporal distribution of rainfall field can 114 

be described by the AR model proposed by Vanmarcke (1983). Following Vanmarcke 115 

(1983), the random rainfall perturbation field r(t) without directional preference may be 116 

expressed in the form  117 

)()1()1()( ][ ttrtratr   (7a) 118 

where a is a constant parameter and  is a stationary purely random (white noise) process. 119 

Subtracting 2ar(t) from both sides and rearranging terms yields (Vanmarcke,1983)  120 

)()()21()1()(2)1( ][ ttratrtrtra   (7b) 121 

In continuous time, the natural analogue of the linear Eq. (7b) is a linear differential 122 

equation, of the form  123 

)(2

2

2

tr
dt

rd    (8) 124 

where 2 = (1-2a)/a. In addition, the initial conditions are specified as  125 

0)0( r  (9a) 126 

0)0( r
dt

d
 (9b) 127 

Eq. (8) along with Eq. (9) permits one to determine the spectrum of r(t).  128 

Whenever the random field is stationary, there always exists an unique 129 

representation of the process in terms of a Fourier-Stieltjes integral as (e.g., Lumley and 130 

Panofsky, 1964)  131 

)()(  






 dZt e ti  (10) 132 
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where Z() is an orthogonal process (i.e., the random amplitudes dZ are uncorrelated) 133 

and  denotes the frequency. Without the restriction that the r(t) process must be 134 

stationary, the perturbed quantities r(t) may be presented as (Priestley, 1965)  135 

)();()(  






 dZttr e ti
r  (11) 136 

In Eq. (11), r(-) is referred to as the modulating function by Priestley (1965). 137 

Introducing Eqs. (10) and (11) into Eqs. (8) and (9), respectively, produces 138 

1)(2 22

2

2

 





r
rr

dt

d
i

dt

d
 (12) 139 

with  140 

0);0(  r  (13a) 141 

0
);0(


dt

d r    (13b) 142 

The system of equations admits the solution as follows:  143 

][
22

1
1

);(
22

ee ii
r

ii
t 








 

 






  (14) 144 

where  = t and  = t. Using Eq. (14), Eq. (11) implies 145 

)(]
22

[
1

)(
22























 dZ

ii
tr eeei  (15) 146 

It follows from using the representation theorem for r(t) that the variance of r(t), r
2, 147 

admits a representation of the form  148 
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








   dSdStttrtrEt rrrrr )()();();()]()([)( **2  (16) 149 

where E[-] indicates the ensemble average of the quantity, * denotes the complex 150 

conjugate, S () is the spectrum of (t), and Srr(t;) is the evolutionary spectrum of r(t), 151 

quantified corresponding to Eqs. (14) and (16) as  152 

)(
2

1
)2cosh(

2

1
)sinh()sin(

2
)cosh()cos(21

)1(

1
);( ][

2

2

2

2

224













 StSrr








  (17) 153 

In Eq. (17),  = /. The evolutionary spectrum referred by Priestley (1965) has the same 154 

physical interpretation as the spectrum of a stationary process that it describes the energy 155 

of a signal distributed with frequency. The latter is determined by the behavior of the 156 

process over all time, while the former represents specifically the spectral content of the 157 

process in the neighborhood of the time instant t.  158 

As defined above, (t) represents a white noise process which consists of a sequence 159 

of uncorrelated random variables. The corresponding spectrum for such a process is  160 

IS   )(  (18) 161 

I in Eq. (18) is constant for all frequency. The variance of the rainfall field resulting 162 

from Eqs. (16)-(18) is now given by  163 

It tr 



 3
2

2
)(   (19) 164 

where t= sinh(2)-2.  165 

It follows from Eqs. (17)-(19) that for a given r
2, the evolutionary spectrum of the 166 

rainfall response to white noise input can be rewritten as 167 
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



 2

22

3

)1(

2
);( rtrr tS


  (20) 168 

with  169 

][
2

2

2

2

2

1
)2cosh(

2

1
)sinh()sin(

2
)cosh()cos(21

1



















t

t
 (21) 170 

The dependence of Srr(t;) in Eq. (20) on rainfall parameter  is depicted in Fig. 1 at 171 

different times. The reduction of the temporal rainfall spectrum with  is clearly 172 

observed in the figure. This reflects that a larger  produces shorter persistence of 173 

rainfall perturbations, which, in turn, leads to less deviations of the rainfall perturbation 174 

from the mean rainfall profile and, consequently, less variability of the rainfall process. It 175 

can be shown that the variance of rainfall in Eq. (19) will decrease with a large. 176 

The results presented in this section will be employed in the derivation of solutions 177 

for the flow discharge problem in terms of its moments. 178 

 179 

4 Moments of discharge 180 

 181 

We consider the case where initially, there is no discharge from the catchment, implying 182 

that  183 

0)0( Q  (22a) 184 

0)0( q  (22b) 185 

The solution of Eqs. (6a) and (22a) for the mean runoff discharge is in the form  186 

  

t

tyt ee KK Rdy
K

R
tQ

0

)1()( //)(  (23) 187 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-19, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



10 

It is easy to see from Eq. (23) that the mean discharge decreases with a larger storage 188 

parameter.  189 

We proceed to derive the variance of catchment discharge. A similar procedure to 190 

the above, applying the nonstationary spectral representation for the perturbed quantities 191 

q(t)  192 

)();()(  






 dZttq ei
q  (24) 193 

and Eq. (11) into Eqs. (6b) and (22b), leads to the following results  194 

K
i

Kdt

d r
q

q  


  )
1

(  (25a) 195 

with  196 

0);0(  q
 (25b) 197 

The solution to this problem is  198 

 




t

rq dyyyt
K

Ki

K
t

0

);()(
1

exp
1

);( ][ 
 

  199 

][ )(
1

2
11)(2

1
21

22
eee i

i

Ki

ii 































  (26) 200 

where 1 = exp(-)-exp(-), 2 = exp(-)-exp(),  = K, and  = t/K. Eqs. (24) and (26) 201 

provide the framework required to express the discharge perturbation q(t). 202 

The variance of runoff discharge q
2(t) can now be obtained as follows:  203 










   dSdSttqtqEt qqqq )()();()]()([)(
2

2 *  (27) 204 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-19, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



11 

where the evolutionary spectrum of q(t) is given by  205 
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)(1)cos(2
1

4 }]2[
22

2







 S
K

ee 


   (28) 208 

The discharge variance follows from Eq. (27) through the application of Eqs. (18) and 209 

(28):  210 









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

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])( 2
2

122 )1(
4 ee  
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
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with  213 

eeee 

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
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)1()1(2)( 2
2212 eee      (30b) 215 

Finally, using the relation (19) leads to  216 
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The result of this type can be used directly to evaluate the uncertainty in the mean runoff 219 

discharge model when applying it to the field situations. 220 

Figs. 2a and 2b display the runoff discharge variance in Eq. (31) as functions of the 221 

storage parameter K and rainfall parameter, respectively, for various time scales. It is 222 
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seen from Fig. 2a that the discharge variability increases with a decrease in K for a 223 

given. This can be attributed to that persistence of random discharge fluctuations is 224 

reduced by a large K, which leads to smaller deviations of the discharge fluctuations. A 225 

similar conclusion has been made for the case of response of the Brownian particle 226 

motion to a stationary random noise forcing. Note that Eq. (6b) is in fact a generalized 227 

Langevin equation (e.g., van Kampen, 1981; Gardiner, 1985) arising in the analysis of 228 

Brownian motion, where K corresponds to a particle mass. It has been reported from the 229 

literature that the velocity variability of the Brownian particle is reduced by a large 230 

particle mass. That is, velocity fluctuations in stationary flow fields persist shorter with a 231 

larger particle mass.  232 

In addition, Fig. 2b shows the reduction in the variability of the runoff discharge field 233 

with  for a fixed value of K. It is evident from Eq. (26) that in a linear system, the 234 

variability of output process correlates positively with that of input process. The larger 235 

the rainfall parameter, the smaller the variability of the rainfall field (Fig. 1), and, 236 

consequently, the smaller the variability of runoff discharge (Fig. 2b). In other words, the 237 

runoff processes in response to rainstorms characterized by a small rainfall parameter 238 

exhibit a relatively smoother data profile.  239 

 240 

5 Concluding remarks 241 

 242 

In this work, the catchment-scale rainfall-runoff process is modeled by a linearized model 243 

and analyzed by means of a stochastic framework. In our derivation, the temporal 244 

distribution of the random rainfall process is described by an AR model. The closed-form 245 
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solutions to the linear lumped rainfall-runoff model are expressed in terms of first two 246 

statistical moments through the nonstationary Fourier-Stieltjes representation. The first 247 

moment (mean) is used as an unbiased estimate of runoff discharge, while the second 248 

moment (variance) gives a quantitative measure of the uncertainty by applying the mean 249 

rainfall-runoff model to the field situations.  250 

The analysis of the closed-form solutions clearly demonstrates that an introduction of 251 

a large rainfall parameter leads to the reduction in the variability of the rainfall process. 252 

The smaller the storage or rainfall parameters, the more persistence of the random 253 

fluctuations in runoff discharges and, in turn, the larger deviations from the mean, which 254 

results in larger variability of the runoff process.  255 
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Figure 1. The dependence of Srr(t;) in Eq. (20) on rainfall parameter  at different 319 

times. 320 
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 326 

Figure. 2 The dependence of q
2 in Eq. (31) on (a) storage parameter K and (b) rainfall 327 

parameter  at different times.  328 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-19, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 January 2017
c© Author(s) 2017. CC-BY 3.0 License.


