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Abstract. This study proposes a stochastic framework for a lumped rainfall-runoff 9 

problem at a catchment scale under the assumption of a linear relationship between the 10 

runoff discharge and the catchment storage. Both the rainfall and discharge are treated as 11 

random fields. An autoregressive (AR) model is adopted to account for the temporal 12 

variability of the rainfall process. For a stochastic description, solutions of the surface 13 

flow problem are derived in terms of first two statistical moments (namely, mean and 14 

variance) of the runoff discharge through the nonstationary Fourier-Stieltjes 15 

representation approach. The mean solution is an unbiased estimator of runoff discharge, 16 

and the variance can be used to characterize the uncertainty of mean model. The 17 

closed-form expression for the variance of runoff discharge may also be viewed as an 18 

index of temporal variability, allowing to assessing the impacts of the rainfall and 19 

catchment storage on the discharge variability. It is found that the temporal variability of 20 

the runoff discharge induced by a random rainfall process persists longer for smaller 21 

values of the storage or rainfall parameters. 22 

 23 
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1 Introduction 24 

 25 

Rainfall-runoff models simulate the processes of converting rainfall to runoff. They 26 

are used for a variety of applications in hydrology (e.g., Beven, 2012; Falahi et al., 2012), 27 

for example, to predict the peak flow used in drainage design purposes, to estimate flows 28 

of ungauged catchments, to assess the effects of climate changes. The quantitation of 29 

rainfall-runoff processes is essential for providing a basis of water resources management 30 

and planning in river basins. 31 

Rainstorm is the source to the generation of surface runoff and the production of 32 

runoff is, therefore, dependent on the characteristics of rainfall events. Rainfall processes 33 

are generally recognized as being affected by complex natural events. The details of the 34 

processes cannot be described precisely. Moreover, to carry out rainfall-runoff calculations 35 

detailed information about landscape properties and hydrologic states must be known in 36 

the whole catchment. The parameter values of the rainfall-runoff models may vary at 37 

different points of the catchment. It therefore requires a large quantity of measurements 38 

for accurate predictions of the hydrological response of the catchment. The number of 39 

measurement sites in most catchments, however, is likely to be small and therefore the 40 

amount of information is rather limited. Thus, it is very difficult to make an accurate 41 

prediction of catchment response based on insufficient measurements. As such, there is a 42 

great deal of uncertainty about the runoff prediction using a deterministic model. As such, 43 

the analysis of rainfall-runoff processes is often taken by means of a stochastic 44 

framework (e.g., Córdova and Rodríguez-Iturbe, 1985; Goel et al., 2000; Lee et al., 2001; 45 

Moore, 2007; Bartlett et al., 2016). 46 
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Much of stochastic research in rainfall-runoff modellings focused on development of 47 

the probability distribution of state variables (such as rainfall and flow discharge). In 48 

most cases, due to a complex non-linear behavior in general, the analytical solution for 49 

the probability distribution function does not exist. Alternatively, to take the advantage of 50 

closed-form expressions, the purpose of this study is to derive analytical solutions, 51 

namely the first two moments of runoff discharge, for a linear lumped rainfall-runoff 52 

problem. The first moment (ensemble mean) is used as an unbiased estimate of a system 53 

state, and the second moment (ensemble variance) is used as a measure of uncertainty by 54 

applying the mean model. Those expressions will be obtained using the nonstationary 55 

Fourier-Stieltjes representation approach along with the assumption of an AR rainfall 56 

model (e.g., Foufoula‐Georgiou and Lettenmaier, 1987; Thyregod et al., 1999; Srikanthan, 57 

and McMahon, 2001; Rebora et al. 2006; Hannachi, 2014). 58 

 59 

2 Stochastic Formulation 60 

 61 

The physical-based equation in modeling the rainfall-runoff process is the equation of 62 

conservation of mass. If the control volume is extended to the scale of a catchment, the 63 

continuity equation for the free surface flow then takes on the lumped form of the 64 

storage equation as (e.g., Brutsaert, 2005; Beven, 2012) 65 

QER
dt

dS
tt −−=  (1) 66 

where S is catchment storage, Rt and Et denote the rainfall and evapotranspiration at time t, 67 

respectively, and Q is the discharge from the catchment. The lumped model attempts to 68 

relate the forcing (rainfall input) to the model output (runoff) without considering the 69 
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spatial variability. Therefore, S, Q, Rt and Et in Eq. (1) represent spatial averages over the 70 

entire catchment area, and, as such, only their temporal variability is retained. That is, in a 71 

lumped system model, the flow is evaluated as a function of time alone at a particular 72 

location in large catchments. 73 

Since there are two unknowns, namely Q and S, for only one equation, further 74 

knowledge of the relation of Q to S is needed in order to solve Eq. (1). In most practical 75 

applications, S in Eq. (1) is specified as an arbitrary function of Q (e.g., Lamb and Beven, 76 

1997; Kirchner, 2009; Brauer et al. 2013). As such, the changes in S with time may be 77 

expressed as  78 

dt

dQ

dQ

dS

dt

dS
=  (2) 79 

Given Eqs. (1) and (2), it follows that  80 

dQdS

ER

dQdS

Q

dt

dQ tt

//

−
=+  (3) 81 

This study will concentrate only on the case of S being a linear function of Q (e.g., 82 

Kaseke and Thompson, 1997; Botter et al., 2007; Suweis et al., 2010, Guinot et al., 83 

2015):  84 

KQS =  (4) 85 

where the constant K is termed as the storage parameter. Early work on a linear storage 86 

parameter of this type was reported by Nash (1957, 1959) and Dooge (1959). 87 

Consequently, Eq. (1) can be cast in the form 88 

K

ER

K

Q

dt

dQ tt −
=+  (5) 89 

Note that the origin of deterministic modeling of rainfall-runoff processes dates back 90 
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to the unit hydrograph concept developed by Sherman (1932). Introduction of the theory 91 

of linear systems with the unit hydrograph concept leads to the theory of the 92 

instantaneous unit hydrograph (IUH) by Nash (1957) under the assumption that 93 

watershed behavior can be associated with a cascade of linear reservoirs and then the 94 

generalized unit hydrograph theory by Dooge (1959) under the assumption that basin 95 

response can be represented by a cascade of linear channels and linear reservoirs in 96 

series. There were also attempts to quantify the runoff discharge involved the concept of 97 

IUH (e.g., Rodriguez-Iturbe and Valdes, 1979; Pegram and Diskin, 1987; Chutha and 98 

Dooge, 1990; Bhunya et al., 2003). On the other hand, single linear reservoir models 99 

have also been used for, for example, modeling discharge from glacierized 100 

catchments (e.g., Hannah and Gurnell, 2001), evaluating the interception process during 101 

rainfall (e.g., Hashino et al., 2002), quantifying the impact of changes in land use (e.g., 102 

Buytaert et al., 2004), computing the temporal rates of sediment discharge from a rainfall 103 

event (e.g., Tyagi et al., 2008), and describing streamflows forced by rainfall sequences 104 

(e.g., Suweis et al., 2010). 105 

An ungauged basin is one with inadequate records of hydrological observations at 106 

the appropriate spatial and temporal scales which are acceptable for practical 107 

applications. It therefore may not be possible to make accurate predictions of the 108 

response of ungauged catchment areas at the required resolution. In such circumstances 109 

of scarce available data, lumped conceptual models in prediction of runoff are preferred 110 

over the distributed hydrological models (e.g., Littlewood, 2002; Khan et al., 2011; 111 

Prieto Sierra et al., 2013). In addition, linearity involved in modelling of the 112 

rainfall-runoff response of a catchment increases with the catchment area (Minshall, 113 
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1960; Wang et al., 1981; Sivapalan et al. 2002), implying that the assumption of a linear 114 

reservoir prevails in large catchments. 115 

It is assumed in the following analysis that Rt is a temporal stochastic process 116 

(random field). We also assume that evapotranspiration has a negligible effect on Q as 117 

compared to that of rainfall (Rt >> Et) (e.g., Jothityangkoon and Sivapalan, 2001; Dooge, 118 

2005; Botter et al., 2009). Since the temporal random heterogeneity of Rt appears as a 119 

forcing term which generates the random variations in Q, the differential Eq. (5) is then 120 

viewed as a stochastic differential equation. The probabilistic structure of random Q is 121 

determined by its temporal statistical moments. In the present study, we are interested 122 

mainly in developing the first two moments of Q. The mean (unbiased estimate of) 123 

runoff discharge may also be interpreted as the solution predicted by the deterministic 124 

model. The second moment (variance) of catchment discharge derived below can then be 125 

used to characterize the uncertainty in applying the deterministic (or mean) model. The 126 

variance can be viewed as an index of large-scale discharge variability as well. 127 

Due to its linearity, Eq. (5) may be split into two sub-equations: a mean equation 128 

governing the temporal behavior of mean catchment discharge,  129 

K

R

K

Q

dt

Qd
=+  (6a) 130 

and an equation for the perturbations describing the discharge perturbation produced as a 131 

result of the input rainfall perturbation, 132 

K

r

K

q

dt

dq
=+  (6b) 133 

In Eq. (6), Q and R indicate the means of Q and Rt, respectively, and q (= Q-Q ) and r 134 

(= Rt - R ) are zero-mean perturbations.  135 
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Spectral representation theorem provides a very useful way of evaluating the 136 

variance of perturbations. To carry out the calculation, the perturbed-form Eq. (6b) must 137 

be solved in Fourier space. Since r(t) in Eq. (6b) is a noise force contributing to the 138 

variations in q, the solution of Eq. (6b) requires knowledge of the temporal distribution of 139 

rainfall field. The section that follows attempts to develop the spectrum of r(t) which will 140 

be achieved by solving an AR model for temporal rainfall processes through the 141 

nonstationary spectral approach. 142 

 143 

3 Spectral Solution for the Rainfall field 144 

 145 

The AR model specifies linear dependence of the output variable partly on its own 146 

previous values and partly on the random disturbance (or white noise) (e.g., Priestley, 147 

1981; Vanmarcke, 1983). In other words, the AR model uses a linear equation with 148 

constant coefficients to define the relation between an output process and an input white 149 

noise process.  150 

Throughout this study, it is assumed that the temporal distribution of rainfall field can 151 

be described by the AR model proposed by Vanmarcke (1983). Following Vanmarcke 152 

(1983), the random rainfall perturbation field r(t) without directional preference may be 153 

expressed in the form  154 

)()1()1()( ][ ttrtratr ξ+++−=  (7a) 155 

where a is a constant parameter and ξ is a stationary purely random (white noise) process. 156 

Subtracting 2ar(t) from both sides and rearranging terms yields (Vanmarcke,1983)  157 

)()()21()1()(2)1( ][ ttratrtrtra ξ−=−−++−−  (7b) 158 
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In continuous time, the natural analogue of the linear Eq. (7b) is a linear differential 159 

equation, of the form  160 

)(2

2

2

tr
dt

rd ξα =−  (8) 161 

where α2
 = (1-2a)/a. In addition, the initial conditions are specified as  162 

0)0( =r  (9a) 163 

0)0( =r
dt

d
 (9b) 164 

Eq. (8) along with Eq. (9) permits one to determine the spectrum of r(t).  165 

Whenever the random field is stationary, there always exists an unique 166 

representation of the process in terms of a Fourier-Stieltjes integral as (e.g., Lumley and 167 

Panofsky, 1964)  168 

)()( ωξ
ξ

ω∫
∞

∞−

= dZt e ti  (10) 169 

where Zξ(ω) is an orthogonal process (i.e., the random amplitudes dZξ are uncorrelated) 170 

and ω denotes the frequency. Without the restriction that the r(t) process must be 171 

stationary, the perturbed quantities r(t) may be presented as (Priestley, 1965)  172 

)();()( ωωΛ ξξ
ω∫

∞

∞−

= dZttr e ti
r

 (11) 173 

In Eq. (11), Λrξ(-) is referred to as the modulating function by Priestley (1965). 174 

Introducing Eqs. (10) and (11) into Eqs. (8) and (9), respectively, produces 175 

1)(2 22

2

2

=+−+ Λαω
Λ

ω
Λ

ξ

ξξ

r

rr

dt

d
i

dt

d
 (12) 176 
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with  177 

0);0( =ωΛ ξr
 (13a) 178 

0
);0(

=
dt

d r
ωΛ ξ

 (13b) 179 

The system of equations admits the solution as follows:  180 

][
22

1
1

);(
22

ee ii

r

ii
t τητη

α

ωα

α

ωα

ωα
ωΛ ξ

−−− −
+

+
+−

+
=  (14) 181 

where η = αt and τ = ωt. Using Eq. (14), Eq. (11) implies 182 

)(]
22

[
1

)(
22

ω
α

ωα

α

ωα

ωα
ξ

ηητ∫
∞

∞−

−
−

+
+

+−
+

= dZ
ii

tr eeei  (15) 183 

It follows from using the representation theorem for r(t) that the variance of r(t), σr
2, 184 

admits a representation of the form  185 

∫∫
∞

∞−

∞

∞−

=== ωωωωωΛωΛσ ξξξξ
dSdStttrtrEt

rrrrr
)()();();()]()([)( **2  (16) 186 

where E[-] indicates the ensemble average of the quantity, * denotes the complex 187 

conjugate, Sξξ (ω) is the spectrum of ξ(t), and Srr(t;ω) is the evolutionary spectrum of r(t), 188 

quantified corresponding to Eqs. (14) and (16) as  189 

)(
2

1
)2cosh(

2

1
)sinh()sin(

2
)cosh()cos(21

)1(

1
);( ][

2

2

2

2

224
ω

γ

γ
η

γ

γ
ητ

γ
ητ

γω
ω ξξStS rr

−
+

+
+−−

+
=  (17) 190 

In Eq. (17), γ = α/ω. The evolutionary spectrum referred by Priestley (1965) has the same 191 

physical interpretation as the spectrum of a stationary process that it describes the energy 192 

of a signal distributed with frequency. The latter is determined by the behavior of the 193 

process over all time, while the former represents specifically the spectral content of the 194 
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process in the neighborhood of the time instant t.  195 

As defined above, ξ(t) represents a white noise process which consists of a sequence 196 

of uncorrelated random variables. The corresponding spectrum for such a process is  197 

IS ξξξ
ω =)(  (18) 198 

Iξ in Eq. (18) is constant for all frequency. The variance of the rainfall field resulting 199 

from Eqs. (16)-(18) is now given by  200 

It tr ξΓ
α

π
σ

3

2

2
)( =  (19) 201 

where Γt = sinh(2η)-2η. It can be shown that the rainfall variance increases with time. 202 

It follows from Eqs. (17)-(19) that for a given σr
2, the evolutionary spectrum of the 203 

rainfall response to white noise input can be rewritten as 204 

σΨγω

γ

π
ω 2

22

3

)1(

2
);( rtrr tS

+
=  (20) 205 

with  206 

][
2

2

2

2

2

1
)2cosh(

2

1
)sinh()sin(

2
)cosh()cos(21

1

γ

γ
η

γ

γ
ητ

γ
ητ

Γ
Ψ

−
+

+
+−−=

t

t
 (21) 207 

The dependence of Srr(t;ω) in Eq. (20) on rainfall parameter α is depicted in Fig. 1 at 208 

different times. The reduction of the temporal rainfall spectrum with α is clearly 209 

observed in the figure. This reflects that a larger α produces shorter persistence of 210 

rainfall perturbations, which, in turn, leads to less deviations of the rainfall perturbation 211 

from the mean rainfall profile and, consequently, less variability of the rainfall process. It 212 

can be shown that the variance of rainfall in Eq. (19) will decrease with a largeα. 213 

The results presented in this section will be employed in the derivation of solutions 214 

for the flow discharge problem in terms of its moments. 215 
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 216 

4 Moments of discharge 217 

 218 

We consider the case where initially, there is no discharge from the catchment, implying 219 

that  220 

0)0( =Q  (22a) 221 

0)0( =q  (22b) 222 

The solution of Eqs. (6a) and (22a) for the mean runoff discharge is in the form  223 

∫ −−− −==

t

tyt ee KK Rdy
K

R
tQ

0

)1()( //)(  (23) 224 

It is easy to see from Eq. (23) that the mean discharge decreases with a larger storage 225 

parameter.  226 

We proceed to derive the variance of catchment discharge. A similar procedure to 227 

the above, applying the nonstationary spectral representation for the perturbed quantities 228 

q(t)  229 

)();()( ωωΛ ξξ
τ∫

∞

∞−

= dZttq ei
q

 (24) 230 

and Eq. (11) into Eqs. (6b) and (22b), leads to the following results  231 

K
i

Kdt

d r
q

q Λ
ΛωΛ ξ

ξ
ξ =++ )

1
(  (25a) 232 

with  233 

0);0( =ωΛ ξq
 (25b) 234 
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The solution to this problem is  235 

∫ −
+

−=

t

rq
dyyyt

K

Ki

K
t

0

);()(
1

exp
1

);( ][ ωΛ
ω

ωΛ ξξ
  236 

][ )(
1

2
11)(2

1
21

22
ee

e i
i

Ki

ii τµ
τ

ω

α
λ

β

ωα
λ

β

ωα

ωαα

−−
−

−
+

+
+

+
−

−

−

+
=  (26) 237 

where λ1 = exp(-µ)-exp(-η), λ2 = exp(-µ)-exp(η), β = αK, and µ = t/K. Eqs. (24) and (26) 238 

provide the framework required to express the discharge perturbation q(t). 239 

The variance of runoff discharge σq
2(t) can now be obtained as follows:  240 

∫∫
∞

∞−

∞

∞−

=== ωωωωωΛσ ξξξ
dSdSttqtqEt

qqqq
)()();()]()([)(

2
2 *  (27) 241 

where the evolutionary spectrum of q(t) is given by  242 

)()( )cos(
11

41
1

2
)1()(

1

4

1
);( 122

2

12

22
2

12

22

2222

[][{ τλ
ω

ωα

β

α
λ

β

ωα
λ

β

ωα

ωαα
ω µηµ −

+

+

−
−+−

−

−
+

−

+

+
= −− eee

K

K
tSqq

 243 

][] )sin(
1

)1(
)cos(

11
4

)1(
)sin(

1

)1(
222222

2

2

22

22

122
)( τλ

ω

βω
τλ

ω

ωα

β

α
λ

β

ωατλ
ω

βω
µ

KK

K

K
e

+

+
−−

+

−

+
−

+

+
+

+

−
+ −  244 

)(1)cos(2
1

4 }]2[
22

2

ωτ
ω

α
ξξ

µµ S
K

ee +−
+

+ −−  (28) 245 

The discharge variance follows from Eq. (27) through the application of Eqs. (18) and 246 

(28):  247 

β

φ

ββ

λβ

β

φλ

β

λ

α

π
σ

ηµ
η

ξ 2

2

2

1

2

11

2

1

3

2

1)1)(1(

)31(

)1(2)1(

1

2
)( )([

−
−

+−

+
−

+
+−

−
=

−−
− ee

eIt
q

 248 

])( 2

2

122
)1(

4 ee µη βλ
β

β −− −
−

+  (29) 249 

with  250 
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ee
e

e µηη
η

µβ
βφ −−− +−+

+
++= 2

2
2

22

41
21

1
 (30a) 251 

)1()1(2)( 2
2212 eee

µηµ ηηλλληφ −− −−++++=  (30b) 252 

Finally, using the relation (19) leads to  253 

β

φ

ββ

λβ

β

φλ

β

λ

Γ

σ
σ

ηµ
η

2

2

2

1

2

11

2

1

2

2

1)1)(1(

)31(

)1(2)1(
)( )([

−
−

+−

+
−

+
+−

−
=

−−
− ee

e
t

r

q
t  254 

])( 2

2

122
)1(

4 ee µη βλ
β

β −− −
−

+  (31) 255 

The result of this type can be used directly to evaluate the uncertainty in the mean runoff 256 

discharge model when applying it to the field situations. 257 

Figs. 3a and 3b display the runoff discharge variance in Eq. (31) as functions of the 258 

storage parameter K and rainfall parameterα, respectively, for various time scales. It is 259 

seen from Fig. 3a that the discharge variability increases with a decrease in K for a 260 

givenα. This can be attributed to that persistence of random discharge fluctuations is 261 

reduced by a large K, which leads to smaller deviations of the discharge fluctuations. A 262 

similar conclusion has been made for the case of response of the Brownian particle 263 

motion to a stationary random noise forcing. Note that Eq. (6b) is in fact a generalized 264 

Langevin equation (e.g., van Kampen, 1981; Gardiner, 1985) arising in the analysis of 265 

Brownian motion, where K corresponds to a particle mass. It has been reported from the 266 

literature that the velocity variability of the Brownian particle is reduced by a large 267 

particle mass. That is, velocity fluctuations in stationary flow fields persist shorter with a 268 

larger particle mass.  269 

In addition, Fig. 3b shows the reduction in the variability of the runoff discharge field 270 

with α for a fixed value of K. It is evident from Eq. (26) that in a linear system, the 271 
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variability of output process correlates positively with that of input process. The larger 272 

the rainfall parameter, the smaller the variability of the rainfall field (Fig. 1), and, 273 

consequently, the smaller the variability of runoff discharge (Fig. 3b). In other words, the 274 

runoff processes in response to rainstorms characterized by a small rainfall parameter 275 

exhibit a relatively smoother data profile. The figure also indicates that the ratio of 276 

variabilities of runoff discharge to rainfall decreases with time for a fixed value ofβ. This 277 

refers to the fact that the growth rate of discharge variability with time is less than that of 278 

rainfall variability. 279 

Quantitation of runoff discharge is the primary information for water resource 280 

management and planning in river basins. The quantitation generally involves a 281 

prediction over a relative large time scale, where direct measurements are not possible in 282 

many field cases. Under such conditions, there will be a great deal of uncertainty in 283 

applying the solution of the mean model (or the deterministic model). The temporal 284 

distributions of normalized mean runoff discharge (Q / R ) predicted by Eq. (23) and its 285 

uncertainty (one standard deviation) estimated based on Eq. (29) shown in Figure 3 286 

indicate that the uncertainty grows as the runoff discharge increases with time. 287 

The consideration of a non-linear relationship between the discharge and the 288 

catchment storage will complicate the mathematical procedure. In general, an analytical 289 

solution to Eq. (25) doesn’t exist. The runoff discharge variability of a non-linear 290 

reservoir modelling system will therefore be assessed numerically. It is expected that the 291 

discharge variability behavior of a non-linear reservoir modelling system will be 292 

qualitatively similar to that of a linear reservoir modelling system, although not 293 

quantitatively 294 
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 295 

5 Concluding remarks 296 

 297 

In this work, the catchment-scale rainfall-runoff process is modeled by a linearized model 298 

and analyzed by means of a stochastic framework. In our derivation, the temporal 299 

distribution of the random rainfall process is described by an AR model. The closed-form 300 

solutions to the linear lumped rainfall-runoff model are expressed in terms of first two 301 

statistical moments through the nonstationary Fourier-Stieltjes representation. The first 302 

moment (mean) is used as an unbiased estimate of runoff discharge, while the second 303 

moment (variance) gives a quantitative measure of the uncertainty by applying the mean 304 

rainfall-runoff model to the field situations.  305 

The analysis of the closed-form solutions clearly demonstrates that an introduction of 306 

a large rainfall parameter leads to the reduction in the variability of the rainfall process. 307 

The smaller the storage or rainfall parameters, the more persistence of the random 308 

fluctuations in runoff discharges and, in turn, the larger deviations from the mean, which 309 

results in larger variability of the runoff process.  310 
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Figures 432 

 433 

Figure 1. The dependence of Srr(t;ω) in Eq. (20) on rainfall parameter α at different 434 

times.  435 
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 437 

 438 

Figure 2. The dependence of σq
2 in Eq. (31) on (a) storage parameter K and (b) rainfall 439 

parameter α at different times.  440 
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 442 

Figure 3. Normalized mean runoff discharge profiles along with one standard deviation 443 

intervals as a function of dimensionless time.  444 


