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Abstract. SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated

into the Community Land Model (CLM), improving soil moisture simulations over the Australian continent. Therefore the data

assimilation system DasPy is coupled to the Local Ensemble Transform Kalman Filter (LETKF) as well as to the Community

Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of

brightness temperature anomalies, making use of 6 years of SMOS data (2010 - 2015). Mean correlation R increases moderately5

from 0.61 to 0.68 when the root-zone is included in the updates. A slightly reduced improvement is achieved when restricting

the assimilation to the upper soil layers. Furthermore, the long-term assimilation impact is analysed by looking at a set of

quantiles computed at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined

via their relative occurrence, adding great importance to assimilation induced quantile changes. Although now still limited,

longer L-band radiometer time series will become available and make model output improved by assimilating such data more10

usable for extreme event statistics.

1 Introduction

The potential to improve land surface simulations of soil moisture by assimilating satellite measurements is well known (Mo-

hanty et al., 2017; Chen et al., 2014; Jia et al., 2009; De Lannoy et al., 2007; Parada and Liang, 2004). Launched in November

2009, the Soil Moisture and Ocean Salinity (SMOS) spacecraft is the first mission specifically designed to map soil moisture15

from space (Kerr et al., 2001; Mecklenburg et al., 2016). The on-board passive Imaging Radiometer with Aperture Synthesis

(MIRAS) instrument, sensitive at 1.4 GHz, measures multi-angular top of atmosphere brightness temperatures at horizontal

(H) and vertical (V) polarisation influenced by, among others, surface soil moisture. These brightness temperatures are ingested

into a complex retrieval algorithm resulting in soil moisture estimates (Kerr et al., 2012) readily usable for analysis, input for

higher level products or data assimilation. When assimilating these products, which roughly represent the top 5 centimetres of20

the soil column, into the according model layers (Montzka et al., 2012; Reichle, 2008), the assimilation impact in deeper layers

will depend on model physics (Montzka et al., 2011; Montaldo et al., 2001). Alternatively, deeper layers can be updated directly

by making use of the relationship, i.e. covariance, between observable and unobservable layers by applying methods such as

the various implementations of the Kalman Filter (Kalman et al., 1960). For plants, these deeper layers act as the root zone,
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in which soil moisture has a profound effect on biochemical processes, thus limiting the effect of data assimilation not only to

soil moisture (Vereecken et al., 2016). Examples for assimilating SMOS soil moisture retrievals are, among others, given by

Martens et al. (2016), showing that an evapotranspiration model can benefit from assimilating these data over Australia and

Lievens et al. (2015b), concluding that the positive assimilation impact on soil moisture can improve streamflow simulations,

as shown for the Murray-Darling basin. The impact on both streamflow and evaporation is evaluated by Ridler et al. (2014) for5

western Denmark. More recently, Scholze et al. (2016) have assimilated SMOS retrievals together with CO2 measurements to

constrain the global carbon cycle.

Apart from assimilating the retrieved soil moisture products, it is also possible to directly assimilate the brightness temper-

atures which should, in theory, eliminate a number of problems. For instance, the SMOS Level 2 and Level 3 soil moisture10

retrievals in essence solve minimisation problems between simulated brightness temperatures and the observed satellite signal

(Kerr et al., 2012). The simulated top of atmosphere signal is thereby dependent on both static and dynamic ancillary data,

which is based on input and output of a specific land surface model, e.g. in the case of SMOS retrievals the European Centre for

Medium-Range Weather Forecasts HTESSEL land surface model (Balsamo et al., 2009). When using a modified or different

land surface model it can thus be beneficiary to directly assimilate the brightness temperatures as this allows for a consistent use15

of auxiliary information for the land surface model and the radiative transfer model (Han et al., 2013). Nevertheless, similar to

when assimilating soil moisture retrievals and having to deal with potentially large biases between retrieved and modelled soil

moisture, large biases are also common between modelled and observed brightness temperatures due to the many uncertainties

involved. The source of such uncertainties, among others, may lie in the atmospheric forcings, the land surface representa-

tion or the land surface model itself (Drusch et al., 2009; Barella-Ortiz et al., 2015). Since assimilation is expected to correct20

random errors only and most assimilation algorithms rely on unbiased observations, i.e. bias-blind, it is necessary to remove

the bias prior to assimilation (Yilmaz and Crow, 2013). Calibrating the radiative transfer model to closely match the observed

time series is one possible solution, as shown by Drusch et al. (2009), De Lannoy et al. (2013) and Lievens et al. (2015a),

with the alternative being the rescaling of the measurements to mimic more closely the forward simulations (Lievens et al.,

2015b). Case studies for assimilation and how to deal with the bias are given by Muñoz-Sabater (2015) and Muñoz-Sabater25

et al. (2012), both evaluating the assimilation of SMOS brightness temperatures into the ECMWF soil moisture analysis, or

by Lievens et al. (2016) who assimilate the soil moisture products as well as brightness temperatures into the Variable Infil-

tration Capacity (VIC) model for the Murray-Darling basin. Similarly, De Lannoy and Reichle (2016b) compare brightness

temperature and soil moisture assimilation over the U.S. and De Lannoy and Reichle (2016a) describe the assimilation of only

brightness temperatures into the GEOS-5 Catchment Land Surface Model.30

Taken as a whole, studies directly assimilating real brightness temperatures over large scales remain limited and the concept

still needs to be further explored, particularly using different qualitative land surface models. Furthermore, the assimilation

impact is often evaluated by solely comparing soil moisture time series to a limited number of in-situ measurements. One

study looking more at the long-term assimilation effect, albeit using active microwave data, was carried out by Draper and35
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Reichle (2015), highlighting the fact that despite the required unbiased nature of a bias-blind assimilation system, assimila-

tion can correct for longer-term behaviour and thus be beneficial for monitoring extreme events, such as droughts. Within this

study, we specifically look at model state biases that might be introduced into the model over longer time periods, e.g. due to

the way model physics potentially react differently to positive or negative increments, model and atmospheric perturbations

or unresolved seasonal discrepancies between model and observation. Model state biases can also be more complex in nature5

than a simple shift of the mean value away from the open loop run and introduce varying changes at different quantile levels

within the cumulative distribution functions (CDFs). Such changes can be of great importance in the context of hydrological

monitoring systems, since absolute soil moisture values are difficult to compare between grid cells due to e.g. differences in

land cover and soil texture. Looking at the relative occurrence of a specific value is more useful, especially when trying to

identify spatial patterns, such as areas suffering from extreme conditions like droughts or possible flooding. Examples for10

existing hydrological monitoring systems are for instance the US. drought monitor (Svoboda et al., 2002), the African Flood

and Drought Monitor (Sheffield et al., 2014) or the German Drought Monitor (Samaniego et al., 2013), with all of them using

soil moisture quantiles at grid cell level to characterise different levels of severity. With longer L-band time series becoming

available, modelled soil moisture time series improved by assimilation will become sufficiently long for computing the relative

occurrence of events and existing monitoring systems, now often relying on purely modelled data, might subsequently benefit15

from using such data.

Within this study we assimilate 6 full years of SMOS brightness temperatures at H polarisation over Australia from January

2010 until December 2015 into the Community Land Model (version 4.5, Oleson et al. (2013)), and evaluate the assimilation

impact both in terms of correlation improvements towards in-situ measurements as well in terms of induced model biases and20

quantile changes. The CLM is therefore coupled to the Community Microwave Emission Model (CMEM, version 5.1, Drusch

et al. (2009)) forward operator within the data assimilation system DasPy (Han et al., 2015a). The increments are computed

with the Local Ensemble Transform Kalman Filter (Han et al., 2015b; Miyoshi and Yamane, 2007; Hunt et al., 2007). The

observation bias problem between forward simulations and observed brightness temperatures is encountered by assimilating

anomalies. Remaining differences in mean and variance are resolved by quantile mapping the entire observation anomaly time25

series towards the offline computed forward simulation anomalies at each grid point. The assimilation impact is evaluated by

comparing open loop and assimilation results to in-situ measurements extracted from the International Soil Moisture Network

(ISMN) (Dorigo et al., 2011) for two main assimilation experiments: In the first experiment (DA1) brightness temperature

assimilation is restricted to the upper three CLM soil layers corresponding to a depth of 9 cm. The upper six model layers,

reaching 50 cm, are updated in the second experiment (DA2). These two experiments enable us to examine to what extent30

CLM model physics are sufficient to propagate upper level increments to the root-zone in comparison to directly applying the

increments in this depth. For these two experiments the soil texture perturbations applied for the ensemble generation were

incrementally reduced with layer depth, avoiding to large updates in deep layers. Although the analysis is not focused on it,

we have included a third experiment (DA0) using homogeneous soil texture perturbations across all layers, highlighting the

problem of large increments in lower layers when the ensemble spread is too large. For the quantile analysis the quantiles at35
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1 % steps are computed at each model grid-point, enabling the sufficient empirical estimation of the CDFs. As an example to

highlight the effects of quantile changes, we show a very dry event defined at the 10 % quantile level and to what extent its

classification changes for the open loop run and the data assimilation.

2 The Community Land Model

The Community Land Model (CLM) is the land surface component of the Community Earth System Model (CESM) and can5

be run either in coupled mode together with the other CESM components or offline using precomputed atmospheric forcings

(Oleson et al., 2013). CLM provides global surface datasets which can be interpolated to pre-defined or custom resolutions

and grid types both globally as well as regionally including single point simulations. For this continental scale study, we

replace many of the surface datasets with more recent and higher resolution data, creating a consistent surface dataset at 0.25

degree resolution. The model is run at 30-minute time steps, with hourly outputs, allowing for the sufficiently correct temporal10

alignment of model and satellite observations.

2.1 Surface Datasets

Each grid cell within CLM is divided into land units covering a percentage of the total grid cell area. Possible land units consist

of vegetation, wetlands, lakes, glaciers and urban areas. Vegetated land units have a single set of soil properties but can be

populated by several Plant Functional Types (PFTs), again defined over their percentage of coverage in respect to the entire15

grid cell (Bonan et al., 2002). We have updated the model PFTs with information from the Moderate Resolution Imaging

Spectroradiometer (MODIS) MCD12Q1 (version 5) land cover products, provided at 500 m resolution in sinusoidal projection

and containing a classification of each grid cell describing the dominant plant functional type. On the basis of WorldClim

climate data (Hijmans et al., 2005) these plant functional types are reclassified to the CLM compatible PFTs (Bonan et al.,

2002). PFTs were then aggregated to the model resolution computing the percentage of 500 m pixels of each Plant Functional20

Type per grid cell. Monthly Leaf Area Index (LAI) values for each PFT within a grid cell were computed by averaging the

MODIS 8-daily MCD15A3H (version 6) LAI product, also provided at 500 m resolution in sinusoidal projection, over the

assimilation period (2010 - 2015) to derive the monthly climatology and to replace the original climatological LAI values

of CLM. The high-resolution LAI values were up-scaled to model resolution by mapping the 500 m pixels to the 500 m

reclassified PFT values within each grid cell and subsequently averaging these per PFT. Stem Area Index (SAI) values were25

also computed on the basis of the high-resolution MODIS LAI data and likewise up-scaled to model resolution replacing

the standard CLM values. Urban and lake areas were extracted from the MODIS land cover information MCD12Q1. Mean

topographic height and standard deviation for each grid cell were downscaled from the 3 arc-second HydroSHEDS digital

elevation model (Lehner et al., 2008). Soil texture, namely clay and sand fractions as well as organic matter content, were

obtained from the global International Soil Reference and Information System (ISRIC) soil database (Hengl et al., 2014) and30

mapped to the 10 CLM soil layers by nearest-neighbour interpolation according to their respective depths. The ISRIC database

provided information on organic matter as the gravimetric percentage of the fine scale soil fraction and we assumed that the
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coarse scale soil fraction contains no organic matter. Bulk density was used to compute the organic matter content required by

CLM assuming 0.58 g organic matter per kilogram. The rational for creating high-resolution datasets for CLM closely followed

the approaches described in detail in Ke et al. (2012) and Han et al. (2012), similarly replacing the CLM standard datasets.

2.2 ERA-Interim atmospheric forcing

CLM provides forcings (CRUNCEP) not available for the required time period. However, the rolling release of ERA-Interim5

reanalysis data (Dee et al., 2011) with a time lag of only a few months enables the assimilation of relatively new satellite

measurements, in this case SMOS, and thus ERA-Interim atmospheric data were used to force the CLM land surface model

over Australia.

The variables 2 m air temperature, 2 m pressure, short-wave incoming radiation and total precipitation were extracted and

specific humidity was computed from the ERA-Interim 2 m dew point temperature and 2 m air temperature. 2 m wind speed10

was derived from the provided wind speed components in lateral and longitudinal direction. As ERA-Interim is produced by

assimilating a multitude of observations into an atmospheric model, some of these variables are the result of the analysis step

and others of the forecast step and the data needed to be handled respectively. Forecasts for flux variables are provided bi-

daily at 0:00 and 12:00 UTC for 3, 6, 9 and 12 hour forecast periods and in accumulated form. For example, the precipitation

forecast for a 6-hour time window is the accumulated precipitation over 6 hours. In order to obtain a precipitation estimate15

for the hours 3 - 6, the precipitation forecast for the first 3-hour window needs to be subtracted. This disaggregation was

performed for all flux variables to obtain 3-hourly forcing estimates. Analysis variables are valid as instantaneous estimates

and no disaggregation had to be performed in their case. The atmospheric forcings were bi-linearly interpolated from 0.75

degrees spatial resolution to 0.25 degrees model resolution. A similar approach for creating atmospheric forcing data based on

ERA-Interim, but with additional corrections through ancillary data, is described in Weedon et al. (2014). Time interpolation20

from 3-hourly to 1-hourly timesteps is performed at CLM runtime applying an appropriate interpolation algorithm to each

variable. Incoming radiation is interpolated using a cosine function simulating the position of the sun and for precipitation a

nearest neighbour interpolation is used. For the remaining variables linear interpolation is applied.

3 Assimilation system

The assimilation experiments are performed with the open-source multivariate data assimilation system DasPy. Mainly coded25

in Python, its modular design in principle allows to couple it to different models, observation operators and assimilation

algorithms. The version used within this study is coupled to the Community Land Model and the Community Microwave

Emissions Model (CMEM, de Rosnay et al. (2009)) observation operator. Furthermore, the system uses the Local Ensemble

Transform Kalman Filter (LETKF) implementation by Miyoshi and Yamane (2007) for computing the actual increments.

Several studies have been performed using DasPy, including the assimilation of synthetic brightness temperatures within the30

Babaohe River Basin in northwestern China (Han et al., 2012) and in the Rur catchment in Germany (Han et al., 2015c). The

system allows for dual state parameter estimation as shown in Han et al. (2014).
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DasPy has been developed with a focus on High-Performance Computing and parallelism is achieved through Paral-

lelPython, OpenMP, the Message Parsing Interface (MPI) and MPI4Python. Ensemble members can be distributed across

different nodes with the core assimilation system, including the LETKF, being confined to one node. Some of the operations

are implemented in C++ within the Python environment, using Weave, to further optimise performance. The LETKF itself is a

fully parallel Fortran implementation called through F2PY (Fortran2Python).5

3.1 Local Ensemble Transform Kalman Filter

The Local Ensemble Transform Kalman Filter (Hunt et al., 2007) is one of the implementations of the Ensemble Kalman

square root filter and is deterministic as opposed to stochastic, thus not introducing random noise into the observations. The

LETKF has the advantage over other non-localised implementations, that the analysis performed for each grid point is limited

to a local domain, which makes it computationally more efficient and less susceptible to long-range spurious correlations.10

Although we are using Level 3 data with the antenna pattern already partially accounted for, the original SMOS footprint is

43 km and thus covers more than a single model grid cell, which would encourage assimilation in 3D. However, mostly for

reasons of simplicity and the already performed inverse distance observation regridding, partially accounting for this, we here

only assimilate observations directly covering a grid cell.

Mathematically, the LETKF can be described as follows. Model states for each ensemble k from a total of K ensembles are15

propagated over time by the model M starting at a previous analysis time step n− 1, e.g. a previous analysis step within the

data assimilation scheme, xa
n−1, resulting in a new background estimate of the state vector xb consisting of the soil moisture

states for all ensembles at the current time step n.

xb
n,k = Mn(xa

n−1,k) (1)

The background ensemble perturbations Xb at the current time step can be computed as:20

Xb = [xb
1− x̄b|...|xb

k − x̄b] (2)

The individual ensemble states xb are propagated into observation space using a forward operator H , in this case CMEM.

yb
k = H(xb

k) (3)

and the forward simulation perturbations are defined as:

Y b = [yb
1− ȳb|...|yb

k − ȳb] (4)25

Within the ensemble space the analysis error covariance P̃ a is computed through

P̃ a = [(K − 1)I + (Y b)T R−1Y b]−1 (5)

allowing for the computation of W̄ a as the mean weighting vector

w̄a = P̃aY bT R−1(y0− ȳb) (6)
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resulting in the analysis mean x̄a.

x̄a = x̄b + Xbw̄a (7)

The analysis perturbations are defined as Xa

Xa = Xb + W a (8)

with5

W̃ a =
√

(K − 1)P̃ a (9)

where the analysis error covariance P a is given by:

P a = XbP̃ a(Xb)T (10)

3.2 Ensemble generation

Model uncertainty is simulated by running the model in ensembles with perturbations applied either to the atmospheric forc-10

ings, surface dataset, model parameters or possible combinations of these. In order to account for the model uncertainty in

this study, CLM is run with 32 ensembles with spatially-uncorrelated perturbations added to some of the ERA-Interim forcing

data, namely air temperature, shortwave radiation and precipitation. Shortwave radiation is perturbed with multiplicative noise

with a standard deviation of 0.3, while for temperature additive noise with a standard deviation of 2.5 K is applied. Finally

precipitation is perturbed with multiplicative log-normal noise with a standard deviation of 0.5. In order to avoid ensemble col-15

lapse during dry periods also soil texture is perturbed once at model startup with spatially correlated multiplicative noise and

a standard deviation of 10 percent for clay and sand for the top two soil layers, while constraining the sum of soil and clay to

a maximum of 98 percent. For the lower layers, the top layer multiplicative factor is rescaled by using the inverse relationship

between each soil layers thickness and the summed soil layer thickness of the two top layers (see Table 1). This should insure

that increments in lower soil layers do not result in very large changes in soil water in absolute terms, since soil layer thickness20

greatly increases towards lower layers. Because CLM derives hydraulic properties based on soil texture, it is to be noted that

as a consequence each ensemble member runs with slightly modified model physics. As stated, for demonstration purpose a

third experiment (DA0), was performed, using homogeneous texture perturbations for all soil layers.

3.3 Observation Operator

Forward simulations from the model space to the observation space are performed with the Community Microwave Emission25

Model (CMEM, version 5.1). Model output at each observation time, with the observation time rounded to the full hour, serve

as input in order to simulate brightness temperatures as measured by the satellite. SMOS ascending and descending orbits have

a local overpass time of approximately 6 am and 6 pm. Forward simulations are thus computed at 08:00 UTC on the same day

and 20:00 UTC on the previous day for descending and ascending acquisitions respectively, assuming an average time shift
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of -10 hours for the entire Australian continent. This greatly decreases the number of analysis steps, since individual orbits

within one day can be assimilated at once, and it is still assumed to provide a sufficiently correct temporal alignment between

observations and model forward simulations.

CMEM requires time invariant information such as soil layer depth, sand, clay and water fractions, surface height as well

as the dominant vegetation type covering the grid cell. Plant functional types are reclassified to ECOCLIMAP vegetation5

classes and the dominant type for low and high vegetation is then used by the CMEM (Champeaux et al., 2005). Based on

this reclassification the LAI information is assigned to the dominant ECOCLIMAP low vegetation classes accordingly. For

the offline forward simulations, CLM was run with LAI as daily output in order to make use of the model-internal LAI

interpolation, creating a smooth LAI time series based on the monthly surface dataset. This also ensures that the LAI values

used for the CMEM forward simulation are the same as those used within CLM during assimilation. LAI values for high10

vegetation classes are fixed within CMEM and not taken from the CLM input data. Other dynamic fields used in the forward

simulations are soil moisture and soil temperature for all defined soil layers and 2 m air temperature. CMEM supports different

types of sub-modules for specific calculations. Within this study, the Mironov model (Mironov et al., 2004) is chosen for the

dielectric constant computation. Vegetation temperature is computed directly by CLM and used as an input without the need

of an approximation, e.g. through air temperature. Effective temperature is obtained through the Wigneron model (Wigneron15

et al., 2001) and applied in the dielectric model. For smooth surface emissivity, soil roughness and vegetation opacity, the

Fresnel, Choudhury (Choudhury et al., 1979) and Wigneron (Wigneron et al., 2007) models are used respectively. Finally,

atmospheric contributions are estimated applying the Pellarin methodology (Pellarin et al., 2003). For all modules the standard

parameters for CMEM 5.1 remained unchanged and the forward observation model was not calibrated.

3.4 Observations and anomaly computation20

SMOS daily brightness temperatures at horizontal H polarisation and 42.5 incidence angle provided by Centre Aval de Traite-

ment des Donées (CATDS) are used in the study and processed for the years 2010 - 2015 (version 310). The data are rigorously

filtered by using ancillary data from the corresponding Level 3 Soil Moisture products (version 300), excluding measurements

with a probability of Radio Frequency Interference (RFI) greater than 0.2 and a Data Quality Index (DQX) value greater than

0.07. Measurements with a number of activated science flags, namely strong topography, snow, flooding, urban areas, coastal25

zone and precipitation, are not considered either. The filtered observation data are regridded from the Equal-Area Scalable

Earth Grid 2 (EASE2) 25 km grid to the 0.25 degree rectangular model grid using inverse-distance interpolation. Based on

these data we compute the climatology for each day for the years 2010 - 2015 by averaging along a 7-day moving window

across the 6 years, producing separate climatologies for ascending and descending orbits, and thus removing seasonal differ-

ences between forward simulations and observations (see e.g. De Lannoy and Reichle (2016a)). Anomalies are then computed30

between the climatologies and the original SMOS time series. Brightness temperature forward simulations based on an open

loop run with 32 ensembles are performed and the ensemble mean climatology is derived the same way as the observation

climatology. SMOS anomalies are then quantile matched to the ensemble average forward simulation anomalies to account for

the differences in variance. The full approach of anomaly computation and quantile matching is taken in order to account for
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seasonal mean differences between simulations and observations and to remove the bias, without requiring more aggressive

CDF-matching techniques at seasonal level. The original brightness temperature simulations over the entire period exhibited

a mean warm bias of 21 K for the ascending orbit and 26 K for the descending orbit. Anomaly correlations prior to quantile

matching are 0.21 and 0.39 and after quantile matching 0.38 and 0.60 for ascending and descending orbits respectively. Based

on the scaling factor between the standard deviation of the original and CDF-matched SMOS anomalies the observation vari-5

ance is recomputed. The unscaled observation variance R = 5 K2 was defined, accounting for 4 K instrument error and an

assumed mean error of 3 K for the forward simulations and representativeness error. This can be seen as a low estimate and

was based on the assumption that the brightness temperature binning around the 42.5 degree incidence angle should slightly

reduce the instrument error. During assimilation at each time step the current forward simulation is subtracted from the pre-

computed forward simulation climatology to compute on-the-fly anomalies and compared to the precomputed SMOS anomaly.10

The difference between the two is the innovation between model and observations in observation space and is used within the

LETKF algorithm. The assumption is made that the forward simulation climatology does not significantly change during the

assimilation run. In total there are 2063 and 2044 observations for the ascending / descending orbits respectively.

4 Data assimilation and results

Two main data assimilation runs are carried out to assess the impact of the brightness temperature assimilation. The rescaled15

observed brightness temperatures are representative for the top layer and lower layers are updated making use of the covariances

between the ensembles of the topmost CLM layer and the ensembles of all subsequent layers. Within the first experiment

(DA1) the top 3 CLM layers, reaching a depth of 9 cm, are updated. The assimilation was not restricted to the top two layers,

corresponding to the depth where SMOS is mainly sensitive, since the assimilation impact would have been further diminished,

as discussed later on. The top 6 layers, later also referred to as the root zone, are updated within experiment two (DA2).20

Both experiments are validated by comparing the assimilation impact to an open loop run in respect to in-situ soil moisture

observations. In-situ stations are available for a number of depths, mostly 5 cm and 8 cm, thus corresponding well to DA1, as

well as 30 cm and a limited number of deeper depths, thus corresponding well to DA2. In addition to the in-situ validation,

quantile shifts in respect to the open loop run are analysed, highlighting the long-term effects of the data assimilation. A set

of quantiles is computed at each grid cell allowing for the empirical estimation of the cumulative distribution functions, since25

varying quantile shifts, both positive or negative, are possible at different quantile levels. For the quantile analysis, a third

experiment (DA0) was added using homogeneous soil texture perturbations, as opposed to texture perturbations decreasing

with layer depth, showing how sensitive the quantile analysis and the entire assimilation is from these perturbations. Finally,

the implications of quantile changes were showcased for one specific dry event and placed within the context of hydrological

monitoring systems.30
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4.1 Correlation with in-situ observations

For validation purposes the CLM soil moisture model output is compared to in-situ measurements obtained from the Inter-

national Soil Moisture Network (ISMN Dorigo et al. (2011)), which were additionally quality checked both visually and in

an automatic way to remove erroneous soil moisture behaviour, e.g. identical values over long periods. For each in-situ mea-

surement the weighted average of the corresponding CLM soil moisture is computed, using layer thickness as weights, prior5

to the comparison. When taking into account only measurements with at least one year of data, not necessarily consecutive,

correlations improve from 0.613 for the open loop run to 0.640 and 0.681 for DA1 and DA2 respectively for top layer soil

moisture (number of stations, n = 17). Bottom layer soil moisture improvements are lower with average correlation coefficients

of 0.626 and 0.648 for DA1 and DA2, compared to 0.601 for the open loop run (n = 30). Upper soil moisture behaviour thus

improves by also updating deeper layers and deeper layer soil moisture is slightly enhanced through only assimilating top level10

soil moisture with the assimilation effects only being propagated through model physics. Overall, updating the top 6 CLM

layers results in the largest improvements. Figure 1 shows Taylor diagrams for the validation results of experiment DA2. The

Taylor diagrams further show a slightly decreased normalised standard deviation of the assimilation results in respect to the

in-situ measurements when compared to the open loop time series in respect to the in-situ data. In terms of standardised RMSE

it is less conclusive, and RMSE is slightly reduced by assimilation for some stations and slightly increased for some others.15

These findings correspond well to experiment DA 1, not shown here.

4.2 Soil moisture increments

In a bias-blind assimilation system it can be expected that, especially over longer time periods, the mean increments should

be very close to zero. Figure 2 and Figure 4 show the mean soil moisture increments over the assimilation period 2010 - 2015

for the experiments DA 0, DA 1 and DA 2, separately for the ascending and descending orbits. Distinctive areas of mean20

positive increments for the ascending orbit are located in the North, South-West and South-East of Australia, seemingly being

linked to the occurrence of vegetation. Nevertheless, the positive bias does not exceed 0.5 % soil moisture and the remaining

parts of Australia either show no mean increments bias or slightly negative values. These patterns are still visible for the

descending orbit or the root-zone soil moisture but are on overall weaker, except for DA 0 with little differences between

top layer and deep layer increments. Interesting to highlight, is the fact that top layer deviations from zero are strongest for25

the assimilation experiment DA1 compared to DA 0 and DA2, with the latter two updating both top layer soil as well as

the root-zone. A possible interpretation might be that the assimilation into deeper layers results in a longer lasting effect,

potentially moving the model closer to subsequent observations and thus reducing subsequent increments. Figure 3 and 5 show

the increment standard deviations, which are substantially stronger for the ascending orbit. Top layer increments are larger for

DA 1 followed by DA 2 and then DA 0. Deep layer increments are much larger for DA 0 when compared to DA 2. For the30

ensemble generation, precipitation is the most dominant dynamic factor and leads to immediate increased ensemble spread, and

thus a larger background error, for the very shallow soil layers, thereby also increasing the observation impact. This impact on

the ensemble spread will however be dampened and temporally lagged for deeper layers. The static soil texture perturbations,
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although their effect are also dynamically dependent on the current soil moisture state, lead to model uncertainty not directly

induced by the forcing perturbations. Soil texture perturbations decrease with layer depth for DA 1 and DA 2 (see perturbation

scaling shown in Table 1) and lead to the reduced covariance between top layer and deep layers, which results in decreasing

increments for lower layers. It is thereby important to note that in terms of absolute soil moisture, large increments in low

layers remove or add vastly larger amounts of water than similar increments in shallow layers and will exhibit strong effects5

on all above layers (see soil thickness in Table 1). As an example, removal of water in a deep lying layer will lead to increased

percolation in all above lying layers, resulting in a sudden drying out of the top soil layers. Small biases inherent in the data

assimilation system thus might be largely exaggerated when allowing to large deep layer updates. This is visible for DA 0

where homogeneous soil texture perturbations were applied across all layers and increments are not significantly reduced for

the root-zone (Figure 3). Concluding on the relationship between increment bias and increment standard deviation, it seems10

that there is either a decreased increment bias at the expense of larger deep layer increments, or vice versa. Finally, regarding

the spatial patterns of the increments, areas with very low increments in all layers, especially along the east coast, are either

based on a lack of observations, as these were filtered due to the active vegetation science flags, or the fact that the high LAI

values for high vegetation prescribed within the forward operator mask any signal from soil moisture.

4.3 Soil moisture quantiles15

In addition to looking at the increments, we compute a set of quantiles at 1 % intervals for each CLM soil layer and each

grid point both for the assimilation experiments and the open loop run. Although in principle the assimilation system should

be designed bias-free with similar positive and negative increments, the previous section showed that small increment biases

exist, potentially resulting in long term effects in the resulting analysis. Figures 6, 7 and 8 show the 10 % quantile, thus very

dry conditions, for the top 9 CLM layers and to which extent it shifts for each grid cell when compared to the open loop run.20

For experiment DA 1 (Figure 7), assimilation has a small impact on the topmost soil layer with the quantile increasing by up

to 5 % for spatially limited areas. Much smaller changes are visible for deeper layers but with changes nevertheless reaching

layers that are not directly updated. For experiment DA 2 (Figure 8), whilst also updating layers 3 - 6, slightly larger impacts

on the quantiles in deeper layers can be observed with more areas showing an increased 10 % quantile. For the largest part,

the patterns, at least for upper layers, reflect well the patterns identified in Figure 4, showing the mean increments, although in25

deeper layers also some independent patterns emerge that cannot be directly explained by any increments bias. Figure 6 shows

the impact on the 10 % quantile for the experiment DA 0, using homogeneous soil texture perturbations across all layers. Here,

much larger effects are visible especially within the root-zone soil, increasing the quantiles over wide areas of the Australian

inland by up to 5 %. Hard to pinpoint the exact mechanisms for this behaviour, it does highlight the potential implications

of updating thick soil layers. The complex nature of these shifts at throughout the entire CDFs is shown in Figure 9. The30

continental average empirical cumulative distribution functions are plotted for the soil layers 1 - 6 for the open loop run as

well as DA1 and DA2. As shown for the 10 % quantile, lower quantiles are increased on average through data assimilation,

whereas a small decrease in the upper quantile values can be observed resulting in an overall decrease of the standard deviation

of the soil moisture analysis. As stated, we want to place these findings within the context of possible applications of such
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datasets, e.g. hydrological monitoring systems, which directly make use of grid cell quantiles and empirical CDFs. Draper

and Reichle (2015) have shown that data assimilation is able to correct modelled soil moisture also at longer time intervals

from sub-seasonal to seasonal scale. The correction of the short term behaviour, i.e. daily, of soil moisture and all connected

fluxes is of importance for e.g. land-atmosphere feedbacks, but would have an negligible effect when analysing phenomena that

spread across larger spatial scales and time intervals. These long term effects however, might be the result of the accumulated5

small updates during the assimilation run instead of large increments, that would drastically change the soil moisture regime.

Further, when classifying an event, such as a drought defined at a specific quantile level, there will be a twofold impact from

the assimilation, namely the change in soil moisture itself as well as the shifted quantile. The latter is expected to have the

larger effect on such event statistics, since the soil moisture analysis nominally will fluctuate around the open loop simulations

and not show a consistent bias. We highlight a sample drought event on the East coast to show to which extent it’s classification10

changes through the assimilation impact. Figure 10 therefore shows root zone soil moisture at or below the 10 % quantile level

for the open loop run as well as the data assimilation experiment DA 2 for soil moisture conditions in early 2010, thus at the

beginning of the assimilation period. Due to the higher 10 % quantile for DA 2, as seen in Figure 8 and 9, the spatial extent

of the cluster for DA 2 is reduced but the spatial patterns of soil moisture remain largely the same. At some time periods, not

shown here, a higher degree of noise is visible within the assimilation dataset. This is likely due to the fact that non-spatially15

correlated noise was applied to the meteorological forcings, resulting in a heterogeneous background error field for grid points

even when e.g. being affected by the same large scale precipitation event. An alternative to spatially correlated noise would

be to further increase the ensemble size from 32 to a significantly higher number, which however will also require larger

computational resources. Additionally, when trying to extract meaningful statistics on the occurrence events, such as droughts,

by extracting these as clusters of grid cells over the spatial and temporal domain, it might be especially important to clean up20

the dataset in the case of data assimilation using simple filter algorithms, such as applied by Herrera-Estrada et al. (2017).

5 Conclusion and Discussion

The Community Land Model was set up for the Australian continent and we have substituted the surface datasets with higher

resolution and more recent data. Further, we have replaced the offline forcing data with ERA-Interim reanalysis data. The

assimilation over 6 full years, from 2010 – 2015, of SMOS brightness temperatures improved soil moisture simulations when25

compared to in-situ measurements in the order of 11 %, which is similar to the impact in other studies. The CLM model

remained uncalibrated, as this is tremendous task for large areas and calibration towards soil moisture simulations is difficult

for the lack of in-situ measurements, but given the results, we are confident that this specific CLM setup could be applied to

larger areas or at global scale. CLM model physics alone did propagate assimilation effects into the root zone when restricting

assimilation to the top three layers, improving the correlation with in-situ measurements both for the root zone and surface30

soil moisture. However, the improvements were largest when directly updating both surface soil moisture and root zone soil

moisture. CLM layer thickness greatly increases with depth which translates into identical increments in relative soil moisture

being very different in terms of absolute soil moisture. To thus restrict too large updates within the root zone we scaled the soil
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texture perturbations. The scaling factor for each layer was based on the ratio between layer thickness and the layer thickness

of the top two layers, corresponding to the assumed depth were SMOS is sensitive, namely ca. 5 centimetres.

Mean increments showed distinctive patterns with slight positive biases up to 1 % soil moisture in areas covered by vegeta-

tion. Although this might be due to a problem with the uncalibrated forward operator or with the fixed high vegetation class

LAI values within the forward operator, a further possible cause is the use of climatological LAI data for CLM. The use of5

such data is common practise within current land data assimilation systems. However, due to the abundance of vegetation data

we encourage future studies to look into possible improvements by using non-climatological LAI. In fact, the climatological

LAI data is often aggregated from monthly or sub-monthly LAI values and could be easily replaced with the non-aggregated

data. Climatological LAI might especially pose a problem for the monitoring of extreme events, such as droughts, since these

would likely result in lower LAI values again influencing the forward simulations. With climatological LAI data these feedback10

processes will not be modelled. The potential of the direct brightness temperature assimilation, allowing for the consistent use

of data across model and forward simulations, should be made full use of. Within assimilation systems where the forward

operator is calibrated, it is also likely that the problem of equifinality for the forward operator parameters could thereby be

reduced.

Long term assimilation effects were analysed by estimating the cumulative distribution functions for each grid cell prior15

to and after assimilation. On average, lower quantiles are shifted towards wetter conditions and higher quantiles are slightly

shifted to drier conditions, although the very high quantiles remained unchanged, overall resulting in a reduced analysis vari-

ability. This highlights the fact, that although in principle the assimilation experiment was set up using unbiased observations,

analysis biases with non-linear behaviour may still be introduced. An additional experiment using homogeneous soil texture

perturbations across all layers was carried out showing much larger analysis biases compared to the open loop run at the 1020

% quantile level, highlighting the problem of too large updates within the root zone and the general sensitivity towards model

perturbations.

The reduction of analysis variability by the assimilation might be partly attributed to the anomaly rescaling and to disentangle

wished for systematic enhancements from erroneously introduced analysis is a challenge. There is still not the one perfect

approach to rescale the observations to mach the model or to calibrate the forward observation and looking at long term CDF25

changes induced by the assimilation should be part of evaluating these different approaches, also keeping the final application

of the analysis data in mind.

Longer L-band time series are becoming available through the continuation of existing missions as well as new ones, such

as the Soil Moisture Active Passive Mission (SMAP, Entekhabi et al. (2010)). This in the long run opens up more application

possibilities, since soil moisture datasets enhanced by assimilating will allow for the computation of more stable grid cell30

CDFs. This will be especially useful within the context of hydrological monitoring systems, where it is important to identify

the relative occurrence of certain soil moisture levels and to monitor patterns both over space and time. Within this study we

have shown that the impact on CDFs will have an effect on the quantile based classification of a drought event and change the

spatial extent of the affected area.
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Especially for droughts these datasets are beneficial, since the assimilation can update the root zone soil moisture, which is

of vital importance for plant growth and thus for monitoring agricultural drought. Many drought monitoring systems currently

rely on precipitation based indices, e.g. the Palmer Drought Severity Index (PSDI, Palmer (1965)), due to the high correlation

of soil moisture with precipitation over longer time spans. However,this correlation can be much smaller on small time spans

and soil moisture is influenced by a multitude of factors within the land surface complex, which a land surface model is better5

able to represent across user-required time steps and spatial resolutions (Sheffield et al., 2004). But also in the case of floods

an improved root-zone representation will be beneficial for predicting how much precipitation is required to saturate top layer

soil.

On overall, within this study we have attempted to show the possible complex behaviours induced by long-term assimilation

and implications for the use of assimilation improved soil moisture simulations. Yet, it is clear that more studies should be10

carried out, bridging the gap between technical assimilation studies and the application. For instance, we have shown assimila-

tion induced quantile changes for one specific data assimilation setup. The systematic analysis of various observation rescaling

techniques and the impact on recorded drought and flood events should be part of future studies.
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Table 1. CLM soil layer depths and relative layer thickness in respect to sum of the two top layers. The relative thickness was used as a

scaling factor for the soil perturbations, effectively decreasing ensemble spread and error covariance for lower levels.

Layer Depth [m] 0.018 0.045 0.09 0.17 0.290 0.493 0.829 1.383 2.296 3.802

Perturb. scaling 1 1 1 0.60 0.36 0.22 0.13 0.08 0.05 0.03
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Figure 1. Taylor diagram showing assimilation impact on top layer soil moisture, defined as 8 cm soil depth, (left) and lower level soil

moisture (right) in terms of correlation coefficient R, standard deviation and normalised RMSE. The colours correspond to the in-situ

measurement sites but are not comparable between both panels.
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Figure 2. Mean of all increments for experiment DA 0 for top-layer soil moisture (left) and root zone soil moisture (right) for ascending

(above) and descending orbits (below).
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Figure 3. Standard deviation of all increments for experiment DA 0 for top-layer soil moisture (left) and root-zone soil moisture (right) for

ascending (above) and descending orbits (below). Increments for the root-zone soil moisture are fairly similar to the top soil layers, due to

the homogeneous texture perturbations applied across all layers.
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Figure 4. Mean of all increments for experiment DA 1 / DA 2 for top-layer soil moisture and root zone soil moisture for ascending (above)

and descending orbits (below). Biases are strongest for the ascending orbit and distinctive spatial patterns are visible. Biases are strongly

reduced both for deeper layers and descending orbits.
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Figure 5. Standard deviation of all increments for experiment DA 1 / DA 2 for top-layer soil moisture and root zone soil moisture for

ascending (above) and descending orbits (below). Increments are strongest for the ascending orbit and for top-layer soil moisture and even

stronger when restricting assimilation to these layers, as in DA 1. Increments are very low or zero for the forested areas along the coastline,

either due to the absence of observations or the high LAI values masking any soil moisture signal within the forward operator.
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Figure 6. Differences in relative soil moisture [%/100] between open loop and DA0 experiment (DA 0 - OL) for the 10 % quantile. The

individual panels correspond to the top 9 CLM soil layers.
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Figure 7. Differences in relative soil moisture [%/100] between open loop and DA1 experiment (DA 1 - OL) for 10 % quantile. The

individual panels correspond to the top 9 CLM soil layers titled with their depth.
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Figure 8. Differences in relative soil moisture [%/100] between open loop and DA2 experiment (DA2 - OL) for the 10 % quantile. The

individual panels correspond to the top 9 CLM soil layers.
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Figure 9. Cumulative distribution functions (CDFs) for the upper 6 CLM soil layers for experiments DA1 and DA2, based on quantiles

computed for all data across the model domain. CDFs for open loop simulations are shown in black and assimilation results in red. Both

panels show changes in CDF behaviour for the layers being updated in the respective experiments, i.e. layers 1-3 for DA1 and layers 1-6

for DA2. Soil moisture increases systematically with soil depth allowing for the easy identification of the layers within the plot. The dashed

vertical line marks the 10 % quantile, corresponding to figures 7 and 8.
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Figure 10. Sample drought event for February 2010, showing only the root zone soil moisture below the 10 % quantile level for the open

loop (above) and experiment DA2 (below). The different spatial extent and differences in soil moisture itself, depending on the dataset used,

at three different days are clearly visible.
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