
Responses to comments from Reviewer 1

We thank the referee for the helpful comments. Due to the numerous changes in the manuscript, the new version is uploaded

as a separate file.

Major Comments

This paper presents a data assimilation (DA) study where the SMOS brightness temperature is assimilated into the CLM model,

forced with ERA-Interim surface meteorological fields, over the Australia area. The CMEM model is taken as the observation

operator to simulate the 42.5 o incidence angle brightness temperature in H polarization and the LETKF algorithm from the

DasPy package is used to perform the filter update.

The model ensemble is generated by perturbing both model parameters and forcing inputs. Three sets of DA experiments are

carried out (DA1, DA2, DA0) with different numbers of soil layers included in the filter update and different ways to perturb

the soil parameters. The filter updates are performed over brightness temperature anomalies (with seasonal cycle removed),

which is different from most other studies. CDF matching is performed on the anomalies. Validations are carried out against

ISMN in-situ observations. The results and analysis are focused on the soil moisture increments during the filter update and

low soil moisture quantiles

This is a very carefully designed and carried out data assimilation study with its main novelty in assimilating brightness tem-

perature anomalies. The investigation and results are significant and the quality of both the research and its presentation is very

good – I see no major issues with the choices of the processing methods along the entire chain of DA procedures. The DA

improvement, as measured by soil moisture skills (against ISMN), is reported as moderate, which is consistent with similar

studies. The discussions are relatively weak, especially on the effects of DA at different temporal scales. Draper and Reichle,

2015 decomposes the soil moisture time series into dynamics at different time scales (long-term, seasonal, and short-term) for

the analysis. It is not exactly clear how (and why) the anomaly assimilation (which has the seasonal signals removed) changes

the way the DA behaves at seasonal to longer time scales. Some time series plots and related analysis are needed to help on

this. Also, the study area is very large and heterogeneous in terms of soil and vegetation – should there be any stratification

on the analysis of the results, e.g., statistics over different types of soil/vegetation? I think the paper can be published in HESS

with minor revisions.

We have discussed this quite a bit and in the end did not include details on the temporal effects of the data assimilation. The

paper is already quite extensive. However, we can gladly do this if the referee further suggest to do so. In that case we would

suggest something on the increments, as shown in the two example figures below. We did not include any time series of soil

moisture itself, since this would be for one specific location and thus not convey too much information. A land cover map has

been added to the publication and patterns seen in the increments and quantiles are related to some features in Australia.
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Figure 1. Standard deviation of increments (left) and increment bias (right).

Addition from 29th August:

We have included a land cover map based on the MODIS plant functional types used for the CLM model. Some of the results

and patterns are set into relationship with land cover / vegetation. We have further added a map showing the seasonal differ-

ences in the assimilation impact.

Details: Page 9, line 6-7: the unites for observation errors are confusing – should they all be K
2 if they are all variances? Or

they should all be in K if they are the standard deviation? My guess is that they are all in K because 4
2 + 3

2 = 5
2.

Thank you for pointing this out. Yes, we have clarified this.

Figures 2, 4, 6, 7, 8: Maps here contain both negative and positive values and the sign of the data also matters. So it’ll be much

easier for the readers if a particular color (e.g. white) is used for the 0 values and two different sets of color shades (e.g. one

set of warm shades and one set of cool shades) are used for positive and negative values. We have adjusted the colourbars and

expanded the mid green as the neutral zone.

Figures 6, 7, 8: What is [%/100]? Should it be just [%]? Change "0.1 quantile" to "10 % quantile".

We have changed the figures accordingly.
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Responses to comments from Reviewer 2

We thank Luigi Renzullo for the very in-depth review, providing feedback both on major points as well as numerous details.

For clarity our responses are added to his original comments and highlighted in colour.

The changes to the manuscript are attached in an extra file, since changes are pretty extensive.

GENERAL COMMENTS

The paper explores a very interesting idea of assimilating brightness temperature observations, as opposed to derived soil

moisture products, into a land surface model. However, no compelling argument is provide as to why this might be ’better’

than assimilating the derived soil moisture product. Nor is there any real examination to the improvements, or otherwise, to

the model performance. Most troubling however is the lack of evaluation against local information about the continental water

balance to see if the patterns the authors have identified may be corroborated with either independent data or research. Why

choose Australia as a case study but ignore the very many articles about data assimilation for water balance over the country?

More detail critique is provided in the following. I recommend major revision and another review.

We have reworked the relevant text passages within the introduction, highlighting the advantages of the assimilation of bright-

ness temperature as opposed to soil moisture products. The CLM land surface model used in this study provides all necessary

dynamic information required for the brightness temperature forward simulations, e.g. soil temperature, vegetation temperature

etc. Furthermore, the static surface datasets within of the model are also used within the forward simulations. In contrast to this,

soil moisture products are based on retrievals using output and surface datasets from other models, thus introducing inconsis-

tencies. However, brightness temperature assimilation does have its own issues, e.g. shortcomings in the forward simulations

and biases between simulated and observed brightness temperatures.

We have compared the modelled soil moisture to in-situ stations over Australia and evaluated the assimilation performance in

terms of the correlation coefficient R and the Root Mean Square Error (RMSE), as done in other studies. The validation has

been expanded, giving some more detail on the in-situ measurements and citing the relevant publications. We have included

maps showing the Murrumbidgee basin where most of the in-situ measurements are located as well as the Australian land

cover classification used by the model. Spatial patterns for the increments and also quantile evaluation are put into context of

the Australian landscape.

We have added some lines in the introduction about why Australia was chosen as a study area and highlighted the main soil

moisture assimilation studies that we have found.

MAJOR ITEMS: * Most concerning is that there appears to be no interest in gaining new insight about Australian hydrology

or indeed assessing the validity of the model estimates beyond soil moisture. No papers referencing Australian sources on the

continent’s hydrology or water cycle, so how do you know if the results are any good. There are clearly patterns in the results

that may or may not be known to Australian research community. A simple first check is to see if the results accord with those

from http://www.bom.gov.au/water/landscape/. The limited evaluation against in situ data in the Murrumbidgee catchment is

weak, including no mention of the sites locations, the depth measublue, nor what is measublue (e.g. volumetric water content

or wetness, neutron count etc).

Please see above response. Further we would like to add that the study strongly focuses on soil moisture, and therefore the

wider Australian water balance has not been discussed. We have compared the spatial patterns of the soil moisture simulations

to the above link and now mention this. A quick check did reveal that for instance evaporation fluxes change by roughly 5 %,

* Should mention in the introduction that while L-band on SMOS may be the first ’ded- icated’ mission for soil moisture,

there has been a long history of data assimilation development in C-band soil moisture retrievals (AMSR-E,-2 and ASCAT
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for example) and SMAP is yet another L-band mission that is providing global coverage. Moreover you would be wise to cite

work from research who have performed assimilation with an Australian focus (you are not the first) and you cannot ignore the

rich legacy of work conducted in understanding Australian hydrology.

We have included example studies on the use of ASCAT and AMSR-E in the introduction as well as studies focusing on Aus-

tralia.

* Simulations appear to be made for layers 0-9 cm, however the L-band sees emissions from at (at best) 0-5cm. Comment on

this disparity and the impact, if any, on simulated brightness temperatures.

For all experiments the forward simulations use model output from the 10 CLM layers. These reach far deeper than where

L-band emissions mostly originate from, as stated up to roughly 5 cm. The forward operator accounts for this and the simula-

tions therefore are also only sensitive to model output of 0-5cm. We have clarified this within the description of the experiments.

SPECIFIC ITEMS: P1,L17: Change to ’ . . . sensitive to 1.4 GHz electromagnetic emissions, measures . . . multi angular

top-of-atmosphere . . .’

We have changed this.

P1,L18: Delete ’influenced by, among others, surface soil moisture.’ Sentence is too long and ’among others’ doesn’t make

sense. Among other what?

We have shortened the sentence accordingly.

P1,L22: I suggest including the key reference by Kumar et al. 2009 in the list which describes the mechanisms how top layer

soil moisture assimilation can improve root-zone estimates in LSM’s. [Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T.,

& Peters-Lidard, C. D. (2009). Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations. Journal

of Hydrometeorology, 10(6), 1534–1547. https://doi.org/10.1175/2009JHM1134.1]

The citation has been included.

P2,L11: Suggest rewording the sentence to: ". . . retrievals represent the optimum fits between simulated brightness tempera-

tures and the . . . "

The sentence has been changed.

P2,L19: Modify: "Sources of uncertainty include atmospheric forcing, . . ."

We have changed this.

P2,L32-33: Not clear what is meant here. Elaborate on the link between brightness temperature and ’qualitative’ models. Why

would this even be a consideration?

We have removed the term ’qualitative’ as we agree it was not clear. We simply meant that brightness temperature assimilation

should be tested with different land surface models

P3,L2: "Within this" should be the start of a new paragraph.

A new paragraph has been inserted.

P3,L2-35: Very lengthy introduction to what this paper is about. Strongly suggest restructuring to be more clear in the lead

up to Section 2 about what the objectives of this paper are. The paragraph should start: "In this paper we . . " and itemise the

objectives. This will help the reader link the findings with the objective of the work.

We have revised the introduction and moved some parts to the conclusion part of the paper (relevance of findings for drought

monitoring systems, ellaborations on the use of CDFs and quantiles for extreme event characterisations in a shortened form).
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P3,L19: Why Australia? This needs to be clearly articulated.

We have added some sentences on the motivation of choosing Australia as a study area.

P3,L26-28: If the results will be evaluated over Australia then you should cite "Smith et al. (2012)". Yes, these data are part

of ISMN, but should cite the official source. [Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M., Pipunic,

R. C., ... Richter, H. (2012). The Murrumbidgee soil moisture monitoring network data set. Water Resources Research, 48(7),

1–6. https://doi.org/10.1029/2012WR011976]

The citation has been included.

P3,L33: Change "avoiding to large" to "minimising the impact of potential large".

The sentence has been altered.

P4,L6: So did you use coupled or uncoupled mode? Why mention these if you’re not going to specify here why.

We do not mention the coupled mode anymore

P4,L9: What are these more recent higher resolution data sets? Explain that these will be described in Section 2.1 and 2.2.

Why 0.25 degree? What is CLM normally run at? 0.25 degrees is quite coarse for continental studies, makes me think why not

extend to the whole world. That way t=you can use the whole ISMN and not just the tiny little southeast corner of Australia?

We have included the reference to the relevant section. The 0.25 degree resolution matches the SMOS observatiosn well, which

is now stated in the text. CLM itself can be run at many resolutions, although usually coupled global simulations are quite a bit

coarser than 0.25 degrees, e.g. 0.5 or 0.75 degrees. The motivation of using Australia has been included, see above.

P4,L13-32: How do you know if the derived surface information is accurate for Australia? What local information/expertise

have you consulted? There is A LOT of research work (none of which are cite here) that shows these MODIS products are not

representative of truth in Australia, (let alone the soils information). I would accept that a global study may use inferior infor-

mation because it is the only data available with global coverage, but because this investigation focuses on Australia, it must

be addressed! If accuracy is not an issue for this investigation (because assimilation compensates for the model deficiencies,

including parameterisation) than you should state it explicitly here.

We agree we should have consulted more local expertise. However, despite focusing on Australia we did have future global

applications in mind choosing the datasets. We have included a study on the validation of LAI within the Murrumbidgee area in

the Assimilation and results section, linking visible patterns to possible LAI errors. Selecting MODIS data was also motivated

by the fact that a clear rational exists in using these data as CLM Plant Functional Types and LAI values. The soil data used

incorporates local information, albeit into a global product. Concerning the forcing datasets, we have consulted local expertise

but did not find forcings at the requried spatial and temporal resolution.

P5,L26: Change to ’. . . allows the coupling of different . . .’

We have changed this.

P6,L15: Is that "K ensembles" or "K ensemble members"? Clarify.

Changed to "K ensemble members."

P6,L22: I recommend "mapped" instead of "propagated". Propagated is only relevant to mapping through time (or space).

We have changed this.

P7,L29: The UTC to local time conversion may work for eastern Australia but not central or western Australia. How big an

impact do you think a 2 hour error in timing will make on simulations?

We have included that the assumed error is justifiable, since the 2 hour mismatch is smaller than the temporal resolution of the

forcings. We do agree the approach is not optimal.
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P8,L16-17: Modelled brightness temperature can be extremely sensitive to choices in h, the roughness parameter. How have

you dealt with this? Perhaps through the bias correction? Explain.

We have included that the roughness parameter is important, but calibrating the forward simulations towards the observations

might actually deteriorate the sensitivity towards soil moiture. We therefore keep the original parameters for good variability

and remove the bias through CDF-matching.

P8,L24: Is RFI an issue over Australia? If so, where will it be most likely. If not, then say so.

Australia is largely unaffected by RFI, we have added this information

P10,L2-3: You need to be more specific. These are the OzNet network in the southeast of Australian in a catchment called the

Murrumbidgee, I presume. If so, confirm and cite the relevant work (Smith et al, 2012). If not, then you need to explaining

where the in situ data are located, how deep they measure, etc.

We have added the reference and also added a brief description of the sites location and depths. The OzNet sites location is

now shown in a map.

P10,L18-19: I would have thought the innovations would be close to zero on average (in fact that is one of the tests to see if

your filter is operating optimally). Do you mean innovation or increment? Clarify. Also, what are the units on the increment?

They appear to highlight dryland agricultural areas, e.g. western Australian wheat belt. Can you comment on the patterns and

their connection to the surface parameterisation?

We argue that for most parts the increments are close to zero but that deviations do exist. They are given in vol % soil moisture,

which has been added to the graphics. Within the text we now refer to the possible error in the LAI values or other possible

reasons, such as irrigation for limited areas.

P11,L19: Please comment on the strong positive features in Fig. 6 in the 0.8 - 2.3 m layers. They are clearly linked to features

in the landscape. What can you say about them?

We have linked the patterns to Lake Eyre and the Nullarbor plain, they are the result of strong increments accumulating in the

lower layers. The Nullarbor plain for instance is very dry, and adding water in the deep layers with low temporal variability

will lead to strong quantile changes.

P11,L34-P12,L1: A more relevant way to "place these findings in the context of" hydrological monitoring systems is to com-

pare with actual modelling system output. A simple web search shows you can gain a lot of information about water balance in

Australia from http://www.bom.gov.au/water/landscape/ I strongly urge you to consider locally relevant information to assess

your results.

We have included the site, stating that CLM output was compared to the AWRA-L simulations to check for consistency.

P12,L10-13: How do you know it was a drought event? What other independent corroborating evidence supports this?

We now refer to the event as being relatively dry, it is to highlight the influence of quantile changes without making any quan-

titative evaluations on real droughts. This could be interesting for future research.

P12,L23-24: You should mention the coupling to CMEM, as CLM does not estimate brightness temperatures.

We now mention CMEM.

P13,L5-7: Agree with revisiting the use of LAI climatology. Recommend further than you examine the usefulness in Australia.

Quite likely a next study, restricted to a more local area. We will consult local expertise upfront.

Figure 1: Why cant the two panels be compablue? They should be able to be compablue. The point need to be identified,

otherwise why have them a s separate shapes and colours?
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This has been corrected for.

Figure2 2-8,10: Why no label on the colour bar? Insert units. (’Unitless’ is acceptable)

Done

Figure 10: Where are we looking. Consider a location diagram/inset or mention: "central coast of New South Wales." for ex-

ample.

The proposed text has been added.
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Responses to comments from reviewer 3

We thank the referee for his comments and hope to have answered them as best possible. Since the changes to the manuscript

are extensive, the new version is uploaded as a separate file.

This study investigated the benefit of integrating SMOS brightness temperature and the Community Land Model over Aus-

tralia. Three different scenarios were performed to update different layers of soil moisture by the LETKF method. The results

were evaluated using ground soil moisture measurements. Personally, I think this paper was well written. The organization was

reasonable and the experimental design was clear. However, there were still some major issues need to be addressed before it

can be considered for publication. A more systematic literature review on remote sensing data - land surface model assimilation

need to be conducted. There are two groups of remotely sensed soil moisture (or brightness temperature) assimilation studies,

one for soil moisture estimation typically through land surface models, and the other for runof and streamflow prediction nor-

mally through catchment hydrologic models. The current introduction mixed these two together, with a lack of detailed review

on remote sensing constrained land surface modelling. The contribution of this study should be better articulated based on the

review of the current progress on this topic. The authors discussed extensively on bias issue in the Introduction and Results

sections, which I agree is an important issue; however, I did not see what is new in this study in addressing this issue. The

CDF matching is a traditional approach with the advantage of removing relative bias. However, the problem is that it does

not estimate and disaggregate the relative bias into model one and observational one. I did not see how this study addressed

this issue. The design of the different DA experiments were not well justified. Technically, there is no problem to update all

soil moisture layers through cross covariance, which should maximize the benefit of assimilating remotely sensed surface soil

moisture by addressing the gross error accumulated in the deep soil moisture. So what was the point of just update the first

9 cm? It may be argued that updating only surface soil moisture could test the ability of the CLM to update the deep soil

moisture by the model dynamics itself; however, I do not think a Kalman filter is the best choice to answer this question. The

error in deep soil moisture is an accumulation of the error from the surface soil moisture and a smoother to assimilate the RS

data to update both current and past surface soil moisture will have a better capacity on testing the capability of the model

to update deep soil moisture through model dynamics. Besides, more in-depth analysis and discussions need to be added. For

instance, what is the implication of the results from this study on the issues such bias? Whether the results is reasonable (and

being improved after data assimilation) for the whole Australia? Also, I would suggest the authors to be careful in using the

words “assimilate” and “update”. It should be very clear through the paper that RS surface soil moisture was “assimilated”

while different layers in the model were “updated”. P2L31: Based on the review above, I cannot get to the conclusion that TB

assimilation is under researched compared with soil moisture retrieval assimilation. P7L10-15: Why 32 ensembles? Why no

spatial correlation was considered while most of the errors are known to be spatially correlated? How these error parameters are

estimated/determined? 50% of rainfall is a lot, I reckon. P10L1-5: A bit of details on the soil moisture measurements quality

control.

Literature review: We have added some assimilation case studies, some specifically focusing on the study area. Also, while

referencing these we now mention the model that has been used. We agree that catchment models vs land surface models can

be quite different but don’t see a big problem in referencing these together, since the assimilation steps are usually quite similar.

CDF-matching: We agree that the introduction was too long (as also pointed out by referee 2). We have therefore shortened

and streamlined it towards the objectives of the study. Quite some detail on observation rescaling has been removed, or when

appropriate moved to other parts, since it might have caused the false impression of the issue being resolved within this study

or that this study heavily focuses on it.

Experiment design: We hope to have clarified the design of the experiments within the introduction as well as the assimilation

and results section. Concerning the udating into different layers, we argue that errors in the upper layers are actually best fed

into the deeper layers through model physics. The experiment DA 2 however shows, that directly updating the root-zone leads

to further improvements. Due to the high temporal variability of upper soil layers we believe the Kalman filter is the method

of choice for close to surface soil moisture. We agree that for lower layers a smoother might be an interesting option, such as
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is used for the assimilation of GRACE data.

Analysis and Discussion: We have added more in-depth discussions on the in-situ validation, patterns in the increments as well

as the quantile analysis. A land cover map as well as maps to show the in-situ validation within the Murrumbidgee catchment

have been added. We have clarified that the consistent improvement of correlation with in-situ measurements makes us believe

that the results are valid for all Australia, although the problem of sparse in-situ measurement sites remains.

Assimilate vs Update: We have substituted the wording "assimilate" with "updating" where appropriate.

We have changed the sentence stating that TB assimilation is under researched to that it is relatively new in practical terms.

Number of Ensembles: We have added that around 30 Ensembles is common for land data assimilation studies.

Spatial noise: The assimilation was performed in 1D, thus not requiring spatially correlated perturbations. This has been added

in the text. The relevant references have been added from which the perturbation factors were taken, including the rainfall

perturbations.

Quality control: We have removed the sentence, the quality control was carried out globally and actually no sites in Australia

were affected.
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SMOS brightness temperature assimilation into the Community

Land Model

Dominik Rains1, Xujun Han2, Hans Lievens1,3, Carsten Montzka2, and Niko E.C. Verhoest1

1Ghent University, Laboratory of Hydrology and Water Management, Ghent, Belgium
2Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich, Germany
3Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Correspondence to: Dominik Rains (Dominik.Rains@ugent.be)

Abstract. SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated

into the Community Land Model (CLM) , improving soil moisture simulations over the Australian continent
✿✿✿✿✿

across
✿✿✿✿✿✿✿✿

Australia.

Therefore the data assimilation system DasPy is coupled to the Local Ensemble Transform Kalman Filter (LETKF) as well

as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable

the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010 - 2015). Mean correlation R5

increases moderately from 0.61 to 0.68 when
✿✿✿✿✿

(11%)
✿✿

for
✿✿✿✿✿

upper
✿✿✿✿

soil
✿✿✿✿✿

layers
✿✿

if the root-zone is included in the updates. A slightly

reduced improvement is achieved when restricting the assimilation
✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

of
✿✿✿✿

5%
✿

is
✿✿✿✿✿✿✿✿

achieved
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation

✿

is
✿✿✿✿✿✿✿✿

restricted
✿

to the upper soil layers. Furthermore, the
✿✿✿✿✿✿✿✿

Root-zone
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿

improve
✿✿

by
✿✿✿

7%
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

updating
✿✿✿✿

both
✿✿

the
✿✿✿

top
✿✿✿✿✿✿

layers

✿✿✿

and
✿✿✿✿✿✿✿✿

root-zone
✿✿✿

and
✿✿✿

by
✿✿✿

4%
✿✿✿✿✿

when
✿✿✿✿

only
✿✿✿✿✿✿✿

updating
✿✿✿

the
✿✿✿

top
✿✿✿✿✿✿

layers.
✿✿✿✿✿

Mean
✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿

and
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

experiments.
✿✿✿✿

The long-term assimilation impact is analysed by looking at a set of quantiles computed at each grid cell.10

Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding

great importance to assimilation induced
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

assimilation-induced
✿

quantile changes. Although now still limited
✿✿✿

still
✿✿✿✿✿

being
✿✿✿✿✿✿✿

limited

✿✿✿

now, longer L-band radiometer time series will become available and make model output improved by assimilating such data

more usable for extreme event statistics.
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The potential to improve land surface simulations of soil moisture by assimilating
✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿

satellite measure-

ments is well known (Mohanty et al., 2017; Chen et al., 2014; Jia et al., 2009; De Lannoy et al., 2007; Parada and Liang, 2004).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Parada and Liang, 2004; De Lannoy et al., 2007; Jia et al., 2009; Chen et al., 2014; Mohanty et al., 2017).
✿✿✿✿

Soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

products

✿✿✿✿✿

based
✿✿

on
✿✿✿✿

data
✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

missions
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿

used,
✿✿✿

e.g.
✿✿✿✿✿✿✿

ASCAT
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Brocca et al., 2010, 2012; Dharssi et al., 2011; Draper et al., 2011),

✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Reichle et al., 2007; Yang et al., 2007; Draper et al., 2009a) or
✿✿

a
✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Draper et al., 2012; Renzullo et al., 2014).20

Launched in November 2009, the Soil Moisture and Ocean Salinity (SMOS) spacecraft is the first mission specifically de-

signed to map soil moisture from space (Kerr et al., 2001; Mecklenburg et al., 2016). The on-board
✿

,
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

one
✿✿✿✿✿

being

✿✿

the
✿✿✿✿✿✿✿

similar
✿✿✿✿✿✿

SMAP
✿✿✿✿✿✿✿

mission
✿✿✿✿✿✿✿

launched
✿✿✿

in
✿✿✿✿

2015
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Entekhabi et al., 2010b).
✿✿✿✿

The passive Imaging Radiometer with Aperture Syn-

thesis (MIRAS) instrument , sensitive at
✿✿✿✿✿✿✿

on-board
✿✿✿✿✿✿

SMOS,
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿

1.4 GHz
✿✿✿✿✿✿✿✿✿✿✿✿✿

electromagnetic
✿✿✿✿✿✿✿✿✿

emissions, measures multi-

1



angular top of atmosphere brightness temperatures at horizontal (H) and vertical (V) polarisationinfluenced by, among others,

surface soil moisture. These brightness temperatures are ingested into a complex retrieval algorithm resulting in soil moisture

estimates (Kerr et al., 2012) readily usable for analysis, input for higher level products or data assimilation. When assim-

ilating these products, which roughly represent the top 5 centimetres of the soil column, into the according model layers

(Montzka et al., 2012; Reichle, 2008)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Reichle, 2008; Montzka et al., 2012), the assimilation impact in deeper layers will de-5

pend on model physics (Montzka et al., 2011; Montaldo et al., 2001)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Montaldo et al., 2001; Kumar et al., 2009; Montzka et al., 2011).

Alternatively, deeper layers can be updated directly by making use of
✿✿✿

one
✿✿✿

of
✿✿✿

the
✿✿✿

key
✿✿✿✿✿✿✿✿✿✿

advantages
✿✿

of
✿

the relationship, i.e.

covariance, between observable and unobservable layers by applying methods such as the various implementations of the

Kalman Filter (Kalman et al., 1960),
✿✿✿✿✿✿

deeper
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

unobserved
✿✿✿✿✿✿

layers
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿

directly. For plants, these deeper layers

act as the root zone, in which
✿✿✿✿✿

where
✿

soil moisture has a profound effect on biochemical processes, thus limiting the effect of10

data assimilation not only to soil moisture (Vereecken et al., 2016). Examples for assimilating SMOS soil moisture retrievals

are, among others, given by Martens et al. (2016a), showing that an
✿✿

the
✿✿✿✿✿✿✿✿

GLEAM evapotranspiration model can benefit from

assimilating these data over Australiaand Lievens et al. (2015b), concluding
✿

,
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lievens et al. (2015b),
✿✿✿

who
✿✿✿✿✿✿✿✿

conclude
✿

that the

positive assimilation impact on soil moisture can improve streamflow simulations
✿✿

for
✿✿✿✿

the
✿✿✿✿

VIC
✿✿✿✿✿

model, as shown for
✿✿

in the

Murray-Darling basin. The impact on both streamflow and evaporation is evaluated by Ridler et al. (2014) for western Den-15

mark. More recently,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Leroux et al. (2016) assimilate
✿✿✿✿✿✿

SMOS
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

products
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿

DHSVM
✿✿✿✿✿✿

model,
✿✿✿✿✿✿✿✿✿

improving
✿✿✿✿✿

water

✿✿✿✿

table
✿✿✿✿✿

depth
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

streamflow
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿✿✿

thereby
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿

reducing
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

by
✿✿✿

the
✿✿✿

use
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncorrected
✿✿✿✿

near

✿✿✿✿✿✿✿

real-time
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

forcings.
✿

Scholze et al. (2016) have assimilated SMOS retrievals together with CO2
✿✿✿✿

CO2 measurements

to constrain the global carbon cycle.

20

Apart from assimilating the retrieved soil moisture products, it is also possible to directly assimilate the brightness temper-

atures,
✿

which should, in theory, eliminate a number of problems. For instance, the SMOS Level 2 and Level 3 soil moisture

retrievals in essence solve minimisation problems
✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿✿✿✿

optimum
✿✿✿

fits between simulated brightness temperatures and

the observed satellite signal (Kerr et al., 2012). The simulated top of atmosphere signal is thereby dependent
✿✿✿✿✿✿

thereby
✿✿✿✿✿✿✿

depends

on both static and dynamic ancillary data , which is based on input and output of a specific land surface model, e.g. in the case25

of
✿✿✿

for SMOS retrievals the European Centre for Medium-Range Weather Forecasts HTESSEL land surface model (Balsamo

et al., 2009). When using a modified or different land surface modelit can thus
✿

,
✿✿

it
✿✿✿

can
✿

be beneficiary to directly assimilate

the brightness temperatures as this allows for a consistent use of
✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿

use
✿✿✿✿✿✿✿✿✿

consistent
✿

auxiliary information for the land

surface model and the radiative transfer model(Han et al., 2013). Nevertheless, similar to when
✿

.
✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿

assimilating

soil moisture retrievalsand having to deal with potentially large biases between retrieved and modelled soil moisture, large30

biases are also common between modelled and observed brightness temperatures due to the many uncertainties involved. The

source of such uncertainties, among others, may lie in the atmospheric forcings, the land surface representation or the land

surface model itself (Drusch et al., 2009; Barella-Ortiz et al., 2015). Since assimilation is expected to correct random errors

only and most assimilation algorithms rely on unbiased observations, i.e. bias-blind, it is necessary to remove the bias prior to

assimilation (Yilmaz and Crow, 2013). Calibrating the radiative transfer model to closely match the observed time series is one35
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possible solution, as shown by Drusch et al. (2009), De Lannoy et al. (2013) and Lievens et al. (2015a), with the alternative

being the rescaling of the measurements to mimic more closely the forward simulations (Lievens et al., 2015b). Case studies

for assimilation and how to deal with the bias ,
✿✿✿

the
✿✿✿✿✿✿✿✿

auxiliary
✿✿✿✿

data
✿✿✿✿

used
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

model
✿✿✿

are
✿✿✿✿✿

likely
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

correlated
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

data

✿✿✿✿

used
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

retrievals.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

inevitably
✿✿✿✿✿

leads
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlated
✿✿✿✿✿

errors
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

retrievals,
✿✿✿✿✿

which
✿✿✿✿

may
✿✿✿✿

have
✿✿

a

✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(De Lannoy and Reichle, 2016a).
✿✿✿✿✿

Some
✿✿✿✿✿✿✿✿✿

examples
✿✿

of
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature5

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

studies are given by Muñoz-Sabater (2015) and Muñoz-Sabater et al. (2012), both evaluating the assimilation of

SMOS brightness temperatures into the ECMWF soil moisture analysis, or by Lievens et al. (2016) who assimilate the soil

moisture products as well as brightness temperatures into the Variable Infiltration Capacity (VIC) model for the Murray-Darling

basin. Similarly, De Lannoy and Reichle (2016b) compare brightness temperature and soil moisture assimilation over the U.

S. and De Lannoy and Reichle (2016a) describe the assimilation of only brightness temperatures into the GEOS-5 Catchment10

Land Surface Model.

✿✿✿✿✿✿✿✿✿✿✿✿✿

Jia et al. (2009),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Muñoz-Sabater (2015),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

De Lannoy and Reichle (2016a) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lievens et al. (2016). Taken as a whole, studies

directly assimilating real brightness temperatures over large scales remain limited and the concept still needs to be further

explored, particularly using different qualitative land surface models. Furthermore, the
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿✿

L-band
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures

✿✿

in
✿✿✿✿✿✿✿

practical
✿✿✿✿✿

terms
✿

is
✿✿✿✿✿

quite
✿

a
✿✿✿✿

new
✿✿✿✿✿✿

concept
✿✿✿✿✿✿

which
✿✿✿

still
✿✿✿✿✿

needs
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

exploring.
✿✿✿✿

The assimilation impact is often evaluated by solely15

✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿✿

evaluated
✿✿

by
✿

comparing soil moisture time series to a limited number of in-situ measurements. One study looking

more at the long-term assimilation effect, albeit using active microwave data, was carried out by Draper and Reichle (2015),

highlighting the fact that despite the required unbiased nature of a bias-blind assimilation system, assimilation can correct for

longer-term behaviour and thus be beneficial for monitoring extreme events
✿✿✿✿✿

Given
✿✿✿

the
✿✿✿✿✿✿

proven
✿✿✿✿✿✿✿

positive
✿✿✿✿✿

impact
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

increased

✿✿✿✿✿✿✿✿✿

availability
✿✿

of
✿✿✿✿✿✿

longer
✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

systems, such as droughts.
✿✿

for
✿✿✿✿✿✿✿✿

droughts20

✿✿

or
✿✿✿✿✿✿

floods,
✿✿✿

are
✿✿✿✿✿

likely
✿✿

to
✿✿✿✿✿✿✿

benefit
✿✿✿✿

from
✿✿✿✿✿

these
✿✿✿✿

data.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿

little
✿✿

is
✿✿✿✿

still
✿✿✿✿✿✿

known
✿✿✿✿✿

about
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

impacts,
✿✿✿✿

e.g.
✿✿✿

on

✿✿✿✿✿✿✿✿

quantiles,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿

often
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿

drought
✿✿✿✿✿✿✿✿✿✿

monitoring.

Within this study, we specifically look at model state biases that might be introduced into the model over longer time periods,

e.g. due to the way model physics potentially react differently to positive or negative increments, model and atmospheric25

perturbations or unresolved seasonal discrepancies between model and observation. Model state biasescan also be more

complex in nature than a simple shift of the mean value away from the open loop run and introduce varying changes at

different quantile levels within the cumulative distribution functions (CDFs). Such changes can be of great importance in the

✿✿✿✿✿✿✿✿

assimilate
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿

at
✿✿

H
✿✿✿✿✿✿✿✿✿✿

polarisation
✿✿✿✿

over
✿✿✿✿✿✿✿✿

Australia
✿✿✿✿✿

from
✿✿✿✿✿✿✿

January
✿✿✿✿

2010
✿✿✿✿

until
✿✿✿✿✿✿✿✿✿

December
✿✿✿✿✿

2015
✿✿✿✿

into
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿

Land
✿✿✿✿✿✿

Model
✿✿✿✿✿✿✿

(version
✿✿✿✿

4.5,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Oleson et al. (2013))
✿✿✿

and
✿✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

impact
✿✿✿✿

both
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿✿✿✿✿

correlation30

✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿✿✿✿✿

towards
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

and
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿

induced
✿✿✿✿✿✿

model
✿✿✿✿✿✿

biases,
✿✿✿

i.e.
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿

quantiles,
✿✿✿

for
✿✿✿

the

✿✿✿✿

state
✿✿✿✿✿✿✿

variable
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.
✿✿✿

We
✿✿✿✿✿

place
✿✿✿

the
✿✿✿✿✿✿✿

findings
✿✿✿✿✿✿

within
✿✿✿

the
✿

context of hydrological monitoring systems, since absolute soil

moisture values are difficult to compare between grid cells due to e. g.differences in land cover
✿✿✿✿✿

which
✿✿✿✿✿✿

mostly
✿✿✿

use
✿✿✿✿✿

CDFs
✿✿✿

as

✿

a
✿✿✿✿✿

basis
✿✿

to
✿✿✿✿✿✿

classify
✿✿✿✿✿

areas
✿✿✿

of
✿✿✿✿✿✿✿

interest.
✿✿

A
✿✿✿✿

good
✿✿✿✿✿✿✿✿

overview
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

systems
✿✿

is
✿✿✿✿✿

given
✿✿✿

by

3



✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Van Dijk and Renzullo (2011).

✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿

Australia
✿✿

as
✿

a
✿✿✿✿✿

study
✿✿✿

site
✿✿

as
✿✿✿

we
✿✿✿✿✿✿✿

consider
✿✿

it
✿✿

as
✿✿✿

an
✿✿✿✿

ideal
✿✿✿

test
✿✿✿✿✿✿✿

domain
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿

It
✿✿

is
✿✿✿✿✿

quite
✿✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿

in
✿✿✿✿✿

terms
✿✿✿

of
✿✿✿✿✿✿✿

climate
✿✿✿

and
✿✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿✿✿

uninfluenced
✿✿✿

by
✿✿✿✿✿✿

human
✿✿✿✿✿✿✿

activity,
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

mostly

✿✿✿✿✿✿✿✿

unaffected
✿✿✿

by
✿✿✿✿✿✿

Radio
✿✿✿✿✿✿✿✿✿

Frequency
✿✿✿✿✿✿✿✿✿✿

Interference
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Leroux et al., 2013).
✿✿✿✿✿✿✿✿✿

Although
✿✿✿✿

large
✿✿✿✿✿

parts
✿✿✿

are
✿✿✿✿✿✿✿

covered
✿✿✿

by
✿✿✿✿✿✿✿✿

drylands,
✿✿✿

the
✿✿✿✿✿

land5

✿✿✿✿

cover
✿✿✿✿✿✿

varies
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿✿

coastline
✿✿✿✿

and
✿✿✿✿✿✿✿✿

includes
✿✿✿✿✿

some
✿✿✿✿✿✿✿

densely
✿✿✿✿✿✿✿

forested
✿✿✿✿✿

areas
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿

Alps
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿

pasture
✿✿✿✿

and

✿✿✿✿

areas
✿✿

of
✿✿✿✿✿✿✿

intense
✿✿✿✿✿✿✿✿✿✿

agricultural
✿✿✿✿✿✿

activity
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

south-east
✿

and soil texture. Looking at the relative occurrence of a specific value

is more useful, especially when trying to identify spatial patterns, such as areas suffering from extreme conditions like

droughtsor possible flooding. Examples for existing hydrological monitoring systems are for instance the US. drought monitor

(Svoboda et al., 2002), the African Flood and Drought Monitor (Sheffield et al., 2014) or the German Drought Monitor (Samaniego et al., 2013),10

with all of them using soil moisture quantiles at grid cell level to characterise different levels of severity. With longer
✿✿✿✿✿✿✿✿✿

south-west.

✿✿✿

The
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿

large
✿✿✿✿✿✿

densely
✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿✿✿

areas,
✿✿✿✿✿

which
✿✿✿✿✿

mask
✿✿✿

out
✿✿✿

the L-band time series becoming available, modelled soil moisture

time series improved by assimilation will become sufficiently long for computing the relative occurrence of events and existing

monitoring systems, now often relying on purely modelled data , might subsequently benefit from using such data.
✿✿✿✿✿✿✿✿

emissions

✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,
✿✿

is
✿✿✿✿✿✿✿✿✿

beneficial.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

satellite
✿✿✿✿

data
✿✿

is
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿

advertised
✿✿✿

as15

✿✿✿✿

being
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿

useful
✿✿✿

for
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

extremes
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿

floods
✿✿✿

and
✿✿✿✿✿✿✿✿

droughts,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

Australia
✿✿

is
✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

susceptible
✿✿

to

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(van Dijk et al., 2013; Johnson et al., 2016; Kiem et al., 2016).
✿✿

In
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿✿✿✿

already
✿✿✿✿✿✿✿✿✿

mentioned,
✿✿

a
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

L-band

✿✿✿✿✿✿

specific
✿✿✿✿✿✿

studies
✿✿✿✿✿

have
✿✿✿✿✿✿

focused
✿✿✿

on
✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿✿✿✿

covering
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Van der Schalie et al., 2015),
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

studies

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lievens et al., 2015c),
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

studies
✿✿✿

and
✿✿✿✿

field
✿✿✿✿✿✿✿✿✿

campaigns
✿✿✿

for
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Peischl et al., 2009; Panciera et al., 2008) as
✿✿✿✿

well
✿✿

as

✿✿✿✿✿

SMAP
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Panciera et al., 2014) and
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿✿

downscaling
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Piles et al., 2011; Merlin et al., 2012; Dumedah et al., 2015).20

✿✿✿

The
✿✿✿✿✿✿✿✿

potential
✿✿

of
✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿

shown
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Draper et al. (2009b).
✿✿

A
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿

satellite

✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿

with
✿✿✿✿✿✿✿✿

products
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿

other
✿✿✿✿✿✿

sensors
✿✿

is
✿✿✿✿✿

given
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Su et al. (2013).
✿✿✿

The
✿✿✿✿

joint
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿

ASCAT
✿✿✿✿

and

✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿

data
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿

tested
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Renzullo et al. (2014).
✿✿✿✿✿

More
✿✿✿✿✿✿✿

recently,
✿✿✿✿✿✿

SMOS
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿

and
✿✿✿✿✿✿✿

GRACE
✿✿✿✿✿

water
✿✿✿✿✿✿

storage
✿✿✿✿✿

have

✿✿✿✿

been
✿✿✿✿✿✿

jointly
✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tian et al. (2017).
✿✿✿✿✿✿✿✿✿✿

Downscaled
✿✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿

within
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿

basin
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

López López et al. (2016).25

Within this study we assimilate 6 full years of SMOS brightness temperaturesat H polarisation over Australia from January

2010 until December 2015 into the Community Land Model (version 4.5, Oleson et al. (2013)), and evaluate the assimilation

impact both in terms of correlation improvements towards in-situ measurements as well in terms of induced model biases and

quantile changes. The CLM is therefore
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿✿

Land
✿✿✿✿✿

Model
✿✿✿✿✿✿

(CLM)
✿✿✿✿✿✿✿✿

provides
✿✿

all
✿✿✿✿✿✿✿

outputs
✿✿✿✿✿✿✿

required
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness30

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿

which
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

motivates
✿✿✿

the
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿✿

temperatures.
✿✿✿✿✿

Being
✿✿✿✿

part
✿✿

of
✿✿✿

the

✿✿✿✿

fully
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿✿

Earth
✿✿✿✿✿✿✿

System
✿✿✿✿✿

Model
✿✿✿✿✿✿✿✿

(CESM),
✿✿

it
✿✿✿✿

can
✿✿

be
✿✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿

future
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

land-atmosphere
✿✿✿✿✿✿

studies
✿✿✿✿✿

using
✿✿

a

✿✿✿✿✿✿

similar
✿✿✿✿

setup
✿✿

as
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿

A
✿✿✿

full
✿✿✿✿✿✿✿✿✿

description
✿✿

of
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿

surface
✿✿✿✿

data
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

the

✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿✿✿

continent
✿✿✿✿

will
✿✿

be
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿

section
✿✿

2.
✿

4



✿✿

In
✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿

the
✿✿✿✿

CLM
✿✿

is
✿

coupled to the Community Microwave Emis-

sion Model (CMEM, version 5.1, Drusch et al. (2009)) forward operator within the data assimilation system DasPy (Han et al.,

2015a). The increments are computed with the Local Ensemble Transform Kalman Filter (Han et al., 2015b; Miyoshi and Yamane, 2007; Hunt

The observation bias problem between forward simulations and observed brightness temperatures is encountered by assimi-

lating anomalies. Remaining differences in mean and variance are resolved by quantile mapping
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

quantile-mapping the entire5

observation anomaly time series towards the offline computed
✿✿✿✿✿✿✿✿

open-loop
✿

forward simulation anomalies at each grid point.

The assimilation impact is evaluated by comparing open loop and assimilation results to
✿✿✿✿✿✿

Details
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system,
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

treatment
✿✿✿

will
✿✿✿

be
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿

section
✿✿

3.

✿✿✿

The
✿

in-situ measurements extracted from the International Soil Moisture Network (ISMN) (Dorigo et al., 2011) for two10

main assimilation experiments: In the first experiment (DA1) brightness temperature assimilation is restricted to the upper

three CLM soil layers corresponding to a depth of 9 cm. The upper six model layers, reaching 50 cm, are updated in the

second experiment (DA2). These two experiments enable us to examine to what extent CLM model physics are sufficient to

propagate upper level increments to the root-zone in comparison to directly applying the increments in this depth.For these two

experiments the soil texture perturbations applied for the ensemble generation were incrementally reduced with layer depth,15

avoiding to large updates in deep layers. Although the analysis is not focused on it, we have included a third experiment

(DA0) using homogeneous soil texture perturbations across all layers, highlighting the problem of large increments in lower

layers when the ensemble spread is too large
✿✿✿

data
✿✿✿✿

used
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

are
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿

OzNet
✿✿✿

and
✿✿✿✿✿✿✿✿

CosmOZ
✿✿✿✿✿✿✿✿✿✿✿✿

measurement

✿✿✿✿✿✿✿

networks
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Smith et al., 2012; Hawdon et al., 2014) and
✿✿✿✿

were
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

International
✿✿✿✿

Soil
✿✿✿✿✿✿✿✿

Moisture
✿✿✿✿✿✿✿

Network
✿✿✿✿✿✿

ISMN

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dorigo et al., 2011). For the quantile analysis the quantiles at 1 % steps are computed at each model grid-point, enabling the20

sufficient
✿✿✿✿✿✿✿

allowing
✿

a
✿✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿✿✿

precise empirical estimation of the CDFs. As an example to highlight
✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿✿✿✿✿✿

distribution

✿✿✿✿✿✿✿✿

functions.
✿✿✿

To
✿✿✿✿✿✿✿✿

exemplify
✿

the effects of quantile changes , we show a very dry event defined at the 10 % quantile level and to

what extent its classification changes for the open loop run and
✿✿✿✿✿

spatial
✿✿✿✿✿✿

extent
✿✿✿✿✿✿✿

changes
✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿✿✿✿✿✿

open-loop
✿✿✿

run
✿✿

to the

data assimilation .
✿✿✿✿✿✿

results.
✿✿✿

Part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿

is
✿✿✿✿

also
✿✿

to
✿✿✿✿✿

show
✿✿✿

how
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿✿✿

translates
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

updates
✿✿✿✿✿✿✿✿

restricted
✿✿

to
✿✿✿

the

✿✿✿✿✿

upper
✿✿✿

soil
✿✿✿✿✿

layers
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿

purely
✿✿✿✿✿✿✿

through
✿✿✿✿✿

model
✿✿✿✿✿✿✿

physics
✿✿

as
✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿

updating
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿

soil
✿✿✿✿✿✿

layers25

✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

findings
✿✿✿✿✿

being
✿✿✿

set
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿✿✿✿

analysis.
✿✿✿

The
✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

experiments

✿✿✿

will
✿✿

be
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿

section
✿✿

4,
✿✿✿✿✿✿✿

followed
✿✿✿

up
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discussion
✿✿✿

and
✿✿✿✿✿✿✿✿✿

conclusion
✿✿✿

in
✿✿✿✿✿✿

section
✿✿

5.

2 The Community Land Model

The Community Land Model (CLM) is the land surface component of the Community Earth System Model (CESM) and can be

run either in coupled mode together with the other CESM components or offline using precomputed
✿✿✿✿✿

offline
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

pre-computed30

atmospheric forcings (Oleson et al., 2013). CLM provides global surface datasets which can be interpolated to pre-defined or

custom resolutions and grid types both globally as well as regionally,
✿

including single point simulations. For this continental

scale study , we replace many of the surface datasets with more recent and higher resolution data, creating a consistent surface

5



dataset
✿✿✿✿✿✿✿✿✿✿

Interpolating
✿✿✿

the
✿✿✿✿✿✿✿✿

included
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

datasets
✿✿✿✿✿✿✿

resulted
✿✿

in
✿✿✿✿✿✿✿

artefacts
✿✿✿

for
✿✿✿✿✿✿✿✿

elevation
✿✿✿

and
✿✿✿✿

grid
✿✿✿

cell
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿

variance
✿✿✿

as
✿✿✿✿

well
✿✿

as

✿✿✿✿

plant
✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿

types,
✿✿✿✿

with
✿✿✿✿

one
✿✿✿✿

plant
✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿

type
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿✿✿

borders.
✿✿✿

We
✿✿✿✿✿✿✿✿

replaced
✿✿✿✿✿

these,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿✿

other

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

datasets,
✿✿✿✿

with
✿✿✿✿✿✿✿

suitable
✿✿✿✿✿✿✿✿✿✿

alternatives.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿

choice
✿✿

of
✿✿✿✿✿✿✿

datasets
✿✿✿

we
✿✿✿✿

kept
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

future
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

applications
✿✿

in
✿✿✿✿✿

mind,
✿✿✿✿✿✿

which

✿✿

the
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

study
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿

with.
✿✿

At
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time
✿✿✿

we
✿✿✿✿✿✿

believe
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿✿✿

continent
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿✿

represented

✿✿

by
✿✿✿

the
✿✿✿✿✿✿

chosen
✿✿✿✿✿✿✿

datasets
✿✿

or
✿✿✿✿

that
✿✿✿

no
✿✿✿✿✿

better
✿✿✿✿✿

suited
✿✿✿✿✿✿✿✿✿✿

alternatives
✿✿✿✿

were
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

requirements
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

study.
✿✿

A
✿✿✿✿✿✿✿✿✿

description
✿✿✿

of5

✿✿✿✿

these
✿✿✿✿✿✿✿

datasets
✿✿

is
✿✿✿✿✿✿

follows
✿✿

in
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿

section.
✿✿✿✿

The
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

was
✿✿✿✿✿✿✿

defined at 0.25 degree resolution
✿✿✿✿✿✿✿

degrees,
✿✿✿✿✿

which
✿✿✿✿✿✿

agrees

✿✿✿

well
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

Level
✿

3
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿

the
✿✿✿✿✿

EASE
✿✿✿

25
✿✿✿

km
✿✿✿✿

grid. The model is run at 30-minute time steps, with hourly

outputs, allowing for the
✿

a
✿

sufficiently correct temporal alignment of model and satellite observations.

2.1 Surface Datasets

Each grid cell within CLM is divided into land units covering a
✿✿✿✿✿

certain
✿

percentage of the total grid cell area. Possible land10

units consist of vegetation, wetlands, lakes, glaciers and urban areas. Vegetated land units have a single set of soil properties

but can be populated by several Plant Functional Types
✿✿✿✿

plant
✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿

types (PFTs), again defined over
✿✿

by
✿

their percentage

of coverage in respect to the entire grid cell (Bonan et al., 2002). We have updated the model PFTs with information from

the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 (version 5) land cover products, provided at 500

m resolution in sinusoidal projection and containing a classification of each grid cell describing the dominant plant functional15

type. On the basis of WorldClim climate data (Hijmans et al., 2005) these plant functional types are reclassified to the CLM

compatible
✿✿✿✿✿✿✿✿✿✿✿✿✿

CLM-compatible
✿

PFTs (Bonan et al., 2002). PFTs were then aggregated to the model resolution,
✿

computing the

percentage of 500 m pixels of each Plant Functional Type
✿✿✿✿

plant
✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿

type per grid cell. Monthly Leaf Area Index (LAI)

values for each PFT within a grid cell were computed by averaging the MODIS 8-daily MCD15A3H (version 6) LAI product,

also provided at 500 m resolution in sinusoidal projection, over the assimilation period (2010 - 2015) to derive the monthly20

climatology and to replace the original climatological LAI values of CLM. The high-resolution LAI values were up-scaled to

model resolution by mapping the 500 m pixels to the 500 m reclassified PFT values within each grid cell and subsequently

averaging these per PFT. Stem Area Index (SAI) values were also computed on the basis of the high-resolution MODIS LAI

data and likewise up-scaled to model resolution
✿

,
✿

replacing the standard CLM values. Urban and lake areas were extracted

from the MODIS land cover information MCD12Q1. Mean topographic height and standard deviation for each grid cell were25

downscaled from the 3 arc-second HydroSHEDS digital elevation model (Lehner et al., 2008). Soil texture, namely clay and

sand fractions as well as organic matter content, were obtained from the global International Soil Reference and Information

System (ISRIC) soil database (Hengl et al., 2014) and mapped to the 10 CLM soil layers by nearest-neighbour interpolation

according to their respective depths. The ISRIC database provided information on organic matter as the gravimetric percentage

of the fine scale soil fraction and we assumed that the coarse scale soil fraction contains no organic matter. Bulk density was30

used to compute the organic matter content required by CLM,
✿

assuming 0.58 g organic matter per kilogram. The rational for

creating high-resolution datasets for CLM closely followed the approaches described in detail in Ke et al. (2012) and Han et al.

(2012), similarly replacing
✿✿✿

who
✿✿✿✿✿✿✿✿

similarly
✿✿✿✿✿✿✿

replaced
✿

the CLM standard datasets.
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2.2 ERA-Interim atmospheric forcing

CLM provides forcings (CRUNCEP) not available for
✿✿✿✿

which
✿✿✿

do
✿✿✿✿

not
✿✿✿✿✿

cover the required time period. However, the rolling

✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿

due
✿✿✿

to
✿✿✿

the
✿

release of ERA-Interim reanalysis data (Dee et al., 2011) with a time lag
✿✿✿✿✿✿

time-lag
✿

of only a few

monthsenables the assimilation of relatively new satellite measurements, in this case SMOS, and thus ERA-Interim atmospheric

✿

,
✿✿✿✿

these
✿

data were used to force the CLM land surface model over Australia.5

The variables 2 m air temperature, 2 m pressure, short-wave incoming radiation and total precipitation were extracted and

specific humidity was computed from the ERA-Interim 2 m dew point temperature and 2 m air temperature. 2 m wind speed

was derived from the provided wind speed components in lateral and longitudinal direction. As
✿✿✿

With
✿

ERA-Interim is
✿✿✿✿✿

being

produced by assimilating a multitude of observations into an atmospheric model, some of these variables are the result of the

analysis step and others of the forecast stepand ,
✿✿✿✿

thus
✿

the data needed to be handled respectively. Forecasts for flux variables10

are provided bi-daily at 0:00 and 12:00 UTC for 3, 6, 9 and 12 hour
✿✿✿✿✿✿

12-hour
✿

forecast periods and in accumulated form.

For example, the precipitation forecast for a 6-hour time window is the accumulated precipitation over 6 hours. In order to

obtain a precipitation estimate for the hours 3 - 6, the precipitation forecast for the first 3-hour window needs to be subtracted.

This disaggregation was performed for all flux variables to obtain 3-hourly forcing estimates. Analysis variables are valid as

instantaneous estimates and no disaggregation had to be performed in their case. The atmospheric forcings were bi-linearly15

interpolated from 0.75 degrees spatial resolution to 0.25 degrees model resolution. A similar approach for creating atmospheric

forcing data based on ERA-Interim, but with additional corrections through ancillary data, is described in Weedon et al. (2014).

Time interpolation from 3-hourly to 1-hourly timesteps is performed at CLM runtime applying
✿✿✿

with
✿

an appropriate interpolation

algorithm
✿✿✿✿✿✿

applied
✿

to each variable. Incoming radiation is interpolated
✿✿

by using a cosine function simulating the position of the

sunand
✿

, for precipitation a nearest neighbour interpolation is used. For the remaining variables linear interpolation is applied.20

3 Assimilation system

The assimilation experiments are performed with the open-source multivariate data assimilation system DasPy. Mainly coded

in Python, its modular design in principle allows to couple it to
✿✿✿

the
✿✿✿✿✿✿✿✿

coupling
✿✿

of different models, observation operators and

assimilation algorithms. The version used within this study is coupled to the Community Land Model and the Community

Microwave Emissions Model (CMEM, de Rosnay et al. (2009)) observation operator. Furthermore, the system uses the Local25

Ensemble Transform Kalman Filter (LETKF) implementation by Miyoshi and Yamane (2007) for computing the actual in-

crements. Several studies have been performed using DasPy, including the assimilation of synthetic brightness temperatures

within the Babaohe River Basin in northwestern China (Han et al., 2012) and in the Rur catchment in Germany (Han et al.,

2015c). The system allows for dual state parameter estimation as shown in Han et al. (2014b).

DasPy has been developed with a focus on High-Performance Computingand parallelism
✿

.
✿✿✿✿✿✿✿✿✿

Parallelism
✿

is achieved through30

ParallelPython, OpenMP, the Message Parsing Interface (MPI) and MPI4Python. Ensemble members can be distributed across

different nodes with the core assimilation system, including the LETKF, being confined to one node. Some of the operations
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are implemented in C++ within the Python environment, using Weave, to further optimise performance. The LETKF itself is a

fully parallel Fortran implementation called through F2PY (Fortran2Python).

3.1 Local Ensemble Transform Kalman Filter

The Local Ensemble Transform Kalman Filter (Hunt et al., 2007) is one of the implementations of the Ensemble Kalman square

root filter and is deterministic as opposed to stochastic, thus not introducing random noise into the observations. The LETKF5

has the advantage over other non-localised implementations , that the analysis performed for each grid point is limited to a local

domain, which makes it computationally more efficient and less susceptible to long-range spurious correlations. Although we

are using Level 3 data with the antenna pattern already partially accounted for, the
✿✿✿

The
✿

original SMOS footprint is 43 km
✿✿✿✿✿

across

and thus covers more than a single model grid cell, which would encourage
✿✿✿✿✿

justify
✿✿✿

the
✿

assimilation in 3D. However, mostly

for reasons of simplicityand the already ,
✿✿✿✿

and
✿✿✿✿

also
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

previously
✿

performed inverse distance observation regridding ,10

partially accounting for this, we here only assimilate
✿✿✿✿

only
✿✿✿

use observations directly covering a grid cell.
✿✿✿✿✿

Also,
✿✿✿✿✿

about
✿✿

90
✿✿

%
✿✿✿

of

✿✿

the
✿✿✿✿✿✿

signal
✿✿✿✿✿✿✿

observed
✿✿✿

by
✿✿✿✿✿✿

SMOS
✿✿✿✿

does
✿✿✿✿✿✿✿✿

originate
✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿

footprint
✿✿✿✿✿✿

closely
✿✿✿✿✿✿✿✿

matching
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

grid.

Mathematically, the LETKF can be described as follows.
✿

:
✿

Model states for each ensemble
✿✿✿✿✿✿✿

member k from a total of K

ensembles
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members
✿

are propagated over time by the model M
✿

, starting at a previous analysis time step n− 1, e.g. a

previous analysis step within the data assimilation scheme, xa
n−1

, resulting .
✿✿✿✿

This
✿✿✿✿✿✿

results
✿

in a new background estimate of the15

state vector xb consisting of the soil moisture states for all ensembles at the current time step n.

xb
n,k =Mn(x

a
n−1,k) (1)

The background ensemble perturbations Xb at the current time step can be computed as:

Xb = [xb
1
− x̄b|...|xb

k − x̄b] (2)

The individual ensemble states xb are propagated
✿✿✿✿✿✿✿

mapped into observation space using a forward operator H , in this case20

CMEM.

ybk =H(xb
k) (3)

and the forward simulation perturbations are defined as:

Y b = [yb
1
− ȳb|...|ybk − ȳb] (4)

Within the ensemble space the analysis error covariance P̃ a is computed through25

P̃ a = [(K − 1)I +(Y b)TR−1Y b]−1 (5)

allowing for the computation of W̄ a as the mean weighting vector

w̄a = P̃aY
bTR−1(y0 − ȳb) (6)
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resulting in the analysis mean x̄a.

x̄a = x̄b +Xbw̄a (7)

The analysis perturbations are defined as Xa

Xa =Xb +W a (8)

with5

W̃ a =

√

(K − 1)P̃ a (9)

where the analysis error covariance P a is given by:

P a =XbP̃ a(Xb)T (10)

3.2 Ensemble generation

Model uncertainty is simulated by running the model in ensembles with perturbations applied either to the atmospheric forc-10

ings, surface dataset, model parameters or possible combinations of these. In order to account for the model uncertainty in this

study, CLM is run with 32 ensembles with spatially-uncorrelated perturbations added to some of the ERA-Interim forcing data,

namely air temperature, shortwave radiation and precipitation. Shortwave radiation is perturbed with multiplicative noise with

a standard deviation of 0.3, while
✿✿✿✿✿✿✿

whereas for temperature additive noise with a standard deviation of 2.5 K is applied. Finally

precipitation is perturbed with multiplicative log-normal noise with a standard deviation of 0.5. In order to
✿✿✿

0.3.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

perturbation15

✿✿✿✿✿

factors
✿✿✿✿

are
✿✿✿

the
✿✿✿✿

same
✿✿✿

as
✿✿✿✿

used
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Reichle et al. (2007) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Han et al. (2014a).
✿✿✿

No
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿

correlated
✿✿✿✿✿

noise
✿✿✿

was
✿✿✿✿✿✿

added,
✿✿✿

as
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

are
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿

in
✿✿✿

1D,
✿✿✿✿

only
✿✿✿✿✿

using
✿✿✿

one
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿

per
✿✿✿✿

grid
✿✿✿✿

cell.
✿✿

To
✿

avoid ensemble collapse during dry periodsalso

✿

, soil texture is
✿✿✿

also
✿

perturbed once at model startupwith spatially correlated multiplicative noise and
✿

.
✿✿✿✿✿

Here,
✿✿✿✿✿✿✿✿✿✿✿✿

multiplicative

✿✿✿✿

noise
✿✿✿✿

with
✿

a standard deviation of 10 percent for clay and sand for the top two soil layers , while constraining the sum of soil

and clay to a maximum of 98 percent. For the lower layers ,
✿✿

is
✿✿✿✿✿✿✿

applied.
✿✿✿

For
✿✿✿✿✿

lower
✿✿✿✿✿

layers
✿

the top layer multiplicative factor is20

rescaled by using the inverse relationship between each soil layers thickness
✿✿

the
✿✿✿✿✿✿✿✿

thickness
✿✿✿

of
✿✿✿✿

each
✿✿✿

soil
✿✿✿✿✿

layer and the summed

soil layer thickness of the two top layers (see Table 1). This should insure
✿

is
✿✿✿

to
✿✿✿✿✿

ensure
✿

that increments in lower soil layers do

not result in very large changes in soil water in absolute terms, since soil layer thickness greatly increases towards lower layers.

Because CLM derives
✿✿✿

With
✿✿✿✿✿

CLM
✿✿✿✿✿✿✿✿

deriving hydraulic properties based on soil texture, it is to be noted that as a consequence

each ensemble member runs with slightly modified model physics. As stated, for demonstration purpose a third experiment25

(DA0), was performed, using homogeneous texture perturbations for all soil layers
✿✿✿✿✿✿✿✿✿✿

Concerning
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿✿

ensembles,
✿✿✿

an

✿✿✿✿✿✿

amount
✿✿✿

of
✿✿✿✿✿✿

around
✿✿✿

30
✿✿

is
✿✿✿✿✿✿✿

common
✿✿

in
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

studies
✿✿✿

and
✿✿✿✿✿✿

should
✿✿✿✿✿

allow
✿✿✿✿✿✿✿✿

sufficient
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

estimation.

3.3 Observation Operator

Forward simulations from the model space to the observation space are performed with the Community Microwave Emission

Model (CMEM, version 5.1). Model output at each observation time, with the observation time rounded to the full hour, serve30
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as input in order to simulate brightness temperatures as measured by the satellite. SMOS ascending and descending orbits have

a local overpass time of approximately 6 am and 6 pm. Forward simulations are thus computed at 08:00 UTC on the same day

and 20:00 UTC on the previous day for descending and ascending acquisitions respectively, assuming an average time shift of

-10 hours for the entire Australian continent. This greatly decreases the number of analysis steps, since individual orbits within

one day can be assimilated at once, and it is still assumed to provide
✿✿✿✿✿✿✿✿

assuming
✿✿✿

that
✿

a sufficiently correct temporal alignment5

between observations and model forward simulations .
✿

is
✿✿✿✿✿✿✿✿

provided.
✿✿✿✿✿

With
✿✿✿

the
✿✿✿✿✿✿✿

western
✿✿✿✿

parts
✿✿✿

of
✿✿✿✿✿✿✿

Australia
✿✿✿✿✿✿✿✿

deviating
✿✿✿

by
✿✿

2
✿✿✿✿✿

hours

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

ERA-Interim
✿✿✿✿✿✿✿

forcings
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿✿✿

from
✿✿✿✿✿✿✿✿

3-hourly
✿✿

to
✿✿✿✿✿✿✿

1-hourly
✿✿✿✿

data,
✿✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿✿

this
✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿

acceptable.

CMEM requires time invariant information such as soil layer depth, sand, clay and water fractions, surface height as

well as the dominant vegetation type covering the grid cell. Plant functional types are reclassified to ECOCLIMAP veg-

etation classes and the dominant
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Champeaux et al., 2005) and
✿✿✿

the
✿

type for low and high vegetation is then used by the10

CMEM(Champeaux et al., 2005). Based on this reclassification
✿

, the LAI information is assigned to the dominant ECOCLIMAP

low vegetation classes accordingly. For the offline forward simulations , CLM was run with LAI as daily output in order to

make use of the model-internal LAI interpolation, creating a smooth LAI time series based on the monthly surface dataset.

This also ensures that the LAI values used for the CMEM forward simulation are the same as those used within CLM during

assimilation. LAI values for high vegetation classes are fixed within CMEM and not taken from the CLM input data. Other15

dynamic fields used in the forward simulations are soil moisture and soil temperature for all defined soil layers and 2 m air

temperature. CMEM supports different types of sub-modules for specific calculations. Within this study, the Mironov model

(Mironov et al., 2004) is
✿✿✿

has
✿✿✿✿

been chosen for the dielectric constant computation. Vegetation temperature is computed directly

by CLM and used as an input without the need of an approximation, e.g. through air temperature. Effective temperature is ob-

tained through the Wigneron model (Wigneron et al., 2001) and applied in the dielectric model. For smooth surface emissivity,20

soil roughness and vegetation opacity, the Fresnel, Choudhury (Choudhury et al., 1979) and Wigneron (Wigneron et al., 2007)

models are used respectively. Finally, atmospheric contributions are estimated applying
✿✿✿✿

with the Pellarin methodology (Pellarin

et al., 2003). For all modules the standard parameters for CMEM 5.1 remained unchanged and the forward observation model

was not calibrated.
✿✿✿✿✿✿✿

Although
✿✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿✿✿

very
✿✿✿✿✿✿✿

unlikely
✿✿

to
✿✿

be
✿✿✿✿✿✿✿

perfect
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿✿

classes,
✿✿✿

we

✿✿✿✿

argue
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿

worse
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿

alternative
✿✿

of
✿✿✿✿✿✿✿✿✿

calibrating
✿✿✿

the
✿✿✿✿✿✿✿

radiative
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

model.
✿✿✿

By
✿✿✿✿✿✿✿✿✿

modifying25

✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

roughness,
✿✿✿✿

the
✿✿✿

bias
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

removed,
✿✿✿

but
✿✿

in
✿✿✿✿✿

some

✿✿✿✿

cases
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

expense
✿✿✿

of
✿

a
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿

towards
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.
✿✿✿✿✿✿✿✿✿

Therefore
✿✿

we
✿✿✿✿✿✿✿

remove
✿✿✿

the
✿✿✿✿✿

static
✿✿✿✿

bias
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

simulations

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

through
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

rescaling.
✿

3.4 Observations and anomaly computationSMOS
✿✿✿✿✿✿✿✿✿✿

preparation

✿✿✿✿✿

Large
✿✿✿✿✿

biases
✿✿✿

are
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿

and
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

due
✿✿✿

to
✿✿✿

the
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿

involved,30

✿✿✿✿

such
✿✿

as
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿

forcing,
✿✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿✿✿

representation,
✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿

model
✿✿✿✿✿

itself
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

radiative

✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

model
✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

parametrization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Drusch et al., 2009; Barella-Ortiz et al., 2015),
✿✿✿✿

with
✿✿✿

this
✿✿✿✿✿

study
✿✿✿✿✿

being
✿✿

no
✿✿✿✿✿✿✿✿✿

exception.
✿✿✿✿

The

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

is
✿✿✿✿✿✿✿

expected
✿✿✿

to
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿

random
✿✿✿✿✿

errors
✿✿✿✿

only,
✿✿✿✿

i.e.
✿✿✿✿✿✿✿✿✿

bias-blind,
✿✿✿

and
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿

necessary
✿✿✿

to
✿✿✿✿✿✿

remove
✿✿✿

the
✿✿✿✿

bias
✿✿✿✿✿

prior

✿✿

to
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Yilmaz and Crow, 2013).
✿✿✿✿✿✿✿✿✿✿

Calibrating
✿✿✿

the
✿✿✿✿✿✿✿

radiative
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿

model
✿✿

to
✿✿✿✿✿✿✿

closely
✿✿✿✿✿

match
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

is
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✿

a
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿

solution,
✿✿

as
✿✿✿✿✿

shown
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Drusch et al. (2009),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

De Lannoy et al. (2013) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lievens et al. (2015a),
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

alternative

✿✿✿✿

being
✿✿✿

the
✿✿✿✿✿✿✿✿

rescaling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

to
✿✿✿✿✿✿

mimic
✿✿✿✿✿

more
✿✿✿✿✿✿

closely
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lievens et al., 2015b),
✿✿

as
✿✿✿✿✿✿✿✿✿

mentioned

✿✿✿✿✿

above.
✿✿✿✿

The
✿✿✿✿✿✿

details
✿✿

of
✿✿✿✿✿✿✿✿

preparing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

are
✿✿✿✿✿

given
✿✿✿✿

here.
✿

✿✿✿✿✿

SMOS
✿✿✿✿✿

Level
✿✿

3 daily brightness temperatures at horizontal H polarisation and 42.5 incidence angle provided by Centre Aval

de Traitement des Donées
✿✿✿✿✿✿✿

Données
✿

(CATDS) are used in the study and processed for the years 2010 - 2015 (version 310). The5

data are rigorously filtered by using ancillary data from the corresponding Level 3 Soil Moisture
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿

products (version

300), excluding measurements with a probability of Radio Frequency Interference (RFI) greater than 0.2 and a Data Quality

Index (DQX) value greater than 0.07. Measurements with a number of activated science flags, namely strong topography, snow,

flooding, urban areas, coastal zone and precipitation, are not considered either. The filtered observation data are regridded from

the Equal-Area Scalable Earth Grid 2 (EASE2) 25 km grid to the 0.25 degree rectangular model grid
✿✿

by using inverse-distance10

interpolation. Based on these data

✿✿

On
✿✿✿

the
✿✿✿✿✿

basis
✿✿

of
✿✿✿✿✿

these
✿✿✿✿

data,
✿

we compute the climatology for each day for the years 2010 - 2015 by averaging along a 7-day

moving window across the 6 years, producing separate climatologies for ascending and descending orbits, and thus removing

seasonal differences between forward simulations and observations (see e.g. De Lannoy and Reichle (2016a)). Anomalies are

then computed between the climatologies and the original SMOS time series. Brightness temperature forward simulations based15

on an open loop
✿✿✿✿✿✿✿✿

open-loop run with 32 ensembles are performed and the ensemble mean climatology is derived
✿✿

in
✿

the same

way as the observation climatology. SMOS anomalies are then quantile matched
✿✿✿✿✿✿✿✿✿✿✿✿✿

quantile-matched
✿

to the ensemble average

forward simulation anomalies to account for the differences in variance. The full approach of anomaly computation and quantile

matching is taken in order to account for seasonal mean differences between simulations and observations and to remove the

bias , without requiring
✿✿✿✿✿✿

without
✿

more aggressive CDF-matching techniques at seasonal level
✿✿✿✿✿

being
✿✿✿✿✿✿✿

required. The original20

brightness temperature simulations over the entire period exhibited a mean warm bias of 21 K for the ascending orbit and 26 K

for the descending orbit. Anomaly correlations prior to quantile matching are 0.21 and 0.39 and after quantile matching 0.38

and 0.60 for ascending and descending orbits respectively. Based on the scaling factor between the standard deviation of the

original and CDF-matched SMOS anomalies
✿

, the observation variance is recomputed. The unscaled observation variance R =

5 K2 was defined, accounting for 4 K instrument error
✿

a
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿

error
✿✿

of
✿✿

3
✿✿

K and an assumed
✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿

standard25

mean error of 3
✿

4 K for the forward simulations and representativeness error. This
✿✿✿

The
✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿

error
✿

can be seen as a low

estimate and was
✿✿

is based on the assumption that the brightness temperature binning around the 42.5 degree incidence angle

should slightly reduce the instrument error.
✿✿✿✿✿

results
✿✿

in
✿✿

a
✿✿✿✿✿

slight
✿✿✿✿✿✿✿✿

reduction,
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿

4
✿✿

K
✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿

error
✿✿✿✿✿✿✿

usually

✿✿✿✿✿✿

applied
✿✿✿

for
✿✿✿✿✿

Level
✿

1
✿✿✿✿✿

data.

During assimilation at each time step the current forward simulation is subtracted from the precomputed forward simulation30

climatology to compute on-the-fly anomaliesand compared to the precomputed SMOS anomaly. The difference between the

two
✿✿✿

this
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

anomaly
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿

anomaly is the innovationbetween model and observations in observation space

and
✿

,
✿✿✿✿✿

which
✿

is used within the LETKF algorithm. The assumption is made that the forward simulation climatology does not

significantly change during the assimilation run. In total there are 2063 and 2044 observations for the ascending / descending

orbits respectively.35
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4 Data assimilation and results

Two main data assimilation runs
✿✿

In
✿✿✿✿✿

total,
✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿

experiments are carried outto assess the impact of the brightness

temperature assimilation. The rescaled observed brightness temperatures are representative for the top layer and lower layers

are updated making use of the covariances between the ensembles of the topmost CLM layer and the ensembles of all

subsequent layers. Within the first experiment (DA1) the top 3 CLM layers, reaching a depth of 9 cm, are updated. The5

assimilation was not restricted to the top two layers, corresponding to the depth where SMOS is mainly sensitive, since the

assimilation impact would have been further diminished, as discussed later on. The top 6 layers, later also referred to as the root

zone, are updated within experiment two (DA2). Both experiments are validated ,
✿✿✿✿✿✿✿✿

updating
✿✿✿✿✿

either
✿✿✿

top
✿✿✿✿

layer
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿

or
✿✿✿✿

both

✿✿✿

top
✿✿✿✿

layer
✿✿✿

and
✿✿✿✿✿✿✿✿✿

root-zone
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.
✿✿✿✿✿

Only
✿✿✿✿✿✿✿

updating
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿

allows
✿✿✿

for
✿✿✿✿✿

testing
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model
✿✿

to
✿✿✿✿

feed

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

effects
✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿✿

through
✿✿✿✿✿✿

model
✿✿✿✿✿✿

physics
✿✿✿✿✿

only.
✿✿✿✿✿✿✿✿

Updating
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿

is
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿✿

with
✿✿✿✿

two
✿✿✿

sets
✿✿✿

of10

✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿✿✿✿✿✿✿✿✿✿

perturbations,
✿✿✿✿✿

which
✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿

influence
✿✿✿

the
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

objective
✿✿

is
✿✿

to
✿✿✿✿✿✿✿

validate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿

impact
✿

by comparing the assimilation impact to an open loop run in respect to in-situ soil moisture observations. In-situ stations

are available for
✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

before
✿✿✿✿

and
✿✿✿✿

after
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

to
✿

a number of depths, mostly 5 cm and 8 cm, thus corresponding

well to DA1, as well as 30 cm and a limited number of deeper depths, thus corresponding well to DA2
✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.

In additionto the in-situ validation, quantile shifts in ,
✿✿✿✿✿

shifts
✿✿

in
✿✿✿

the
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

quantiles
✿✿

in respect to the open loop
✿✿✿✿✿✿✿✿

open-loop15

run are analysed , highlighting the
✿

to
✿✿✿✿✿✿✿✿

highlight
✿✿✿✿✿

some long-term effects of the data assimilation. A set of quantiles is computed

at each grid cell allowing for
✿

to
✿✿✿✿✿

allow
✿

the empirical estimation of the cumulative distribution functions, since varying quantile

shifts, both positive or negative, are possible at different quantile levels. For the quantile analysis, a third experiment (DA0)

was added using homogeneous soil texture perturbations, as opposed to texture perturbations decreasing
✿✿✿✿

Both
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿✿

on

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿

effects
✿✿✿

are
✿✿✿

set
✿✿✿

into
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿

to
✿✿✿✿✿✿

which
✿✿✿✿✿

layers
✿✿✿

are
✿✿✿✿✿✿✿

updated
✿✿✿

and
✿✿

to
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿
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✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

and
✿✿✿✿✿

their
✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿

and
✿✿✿

set
✿✿✿✿

into
✿✿✿✿✿✿

context
✿✿

of
✿✿✿✿✿

their
✿✿✿✿✿✿✿

potential
✿✿✿✿✿

effect
✿✿✿

on

✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿✿

systems,
✿✿

as
✿✿✿✿✿✿

shown
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

exemplary
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿

of
✿

a
✿✿✿✿

dry
✿✿✿✿✿

event.
✿✿✿

We
✿✿✿✿✿✿

believe
✿✿✿

this
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿

relevant,
✿✿✿✿✿

since

✿✿✿✿✿✿

L-band
✿✿✿✿

data,
✿✿

or
✿✿✿✿

data
✿✿✿✿

from
✿✿✿✿✿

other
✿✿✿✿✿✿✿

sources,
✿✿✿

are
✿✿

in
✿✿✿

the
✿✿✿✿

long
✿✿✿

run
✿✿✿✿✿

likely
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿✿

into
✿✿✿✿

more
✿✿✿✿

and
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

systems.
✿

✿✿✿

The
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

open-loop
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

depths
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

locally
✿✿✿✿✿✿✿✿✿

optimised

✿✿✿✿✿✿✿✿

AWRA-L
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(http://www.bom.gov.au/water/landscape)
✿✿

to
✿✿✿✿✿

ensure
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿✿✿

plausible.
✿
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✿✿

In
✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

(DA
✿✿✿

1)
✿✿✿

only
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿

three
✿✿✿✿✿

CLM
✿✿✿

soil
✿✿✿✿✿✿

layers,
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿

a
✿✿✿✿✿

depth
✿✿

of
✿

9
✿✿✿✿

cm,
✿✿

are
✿✿✿✿✿✿✿✿

updated.
✿✿✿✿✿✿✿✿

Although

✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

are
✿✿✿✿

only
✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿

in
✿✿✿

up
✿✿

to
✿

5
✿✿✿

cm
✿✿✿✿✿✿

depth,
✿✿✿

DA
✿✿

1
✿✿✿

was
✿✿✿✿✿✿✿

defined
✿✿

as
✿✿✿✿✿✿✿

updating
✿✿✿

the
✿✿✿

top
✿✿✿✿✿

three

✿✿✿✿✿

layers,
✿✿✿✿✿

since
✿

a
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

are
✿✿✿✿

taken
✿✿✿✿✿

from
✿

a
✿✿✿✿✿

depth
✿✿

of
✿✿✿

up
✿✿

to
✿

8
✿✿✿✿

cm.
✿✿✿

For
✿✿✿✿✿

these
✿✿✿✿✿

in-situ
✿✿✿✿✿

sites,
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

are

✿✿✿

also
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿

deeper
✿✿✿✿✿

layers
✿✿✿

and
✿✿✿

we
✿✿✿✿

thus
✿✿✿✿✿

define
✿✿✿

top
✿✿✿✿✿

layer
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿

as
✿✿✿

the
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

updated
✿✿

in
✿✿✿

DA
✿✿

1.
✿✿✿✿

The
✿✿✿✿✿

upper
✿✿✿

six

✿✿✿✿✿

model
✿✿✿✿✿✿

layers,
✿✿✿✿✿✿✿

reaching
✿✿✿

50
✿✿

cm
✿✿✿✿

soil
✿✿✿✿✿

depth,
✿✿✿

are
✿✿✿✿✿✿✿

updated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

(DA
✿✿✿

2).
✿✿✿

We
✿✿✿✿

refer
✿✿

to
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿

three
✿✿

of
✿✿✿✿

these
✿✿✿✿

soil30

✿✿✿✿✿

layers
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone.
✿✿✿✿✿

These
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿

enable
✿✿

us
✿✿

to
✿✿✿✿✿✿✿✿

examine
✿✿

to
✿✿✿✿

what
✿✿✿✿✿✿

extent
✿✿✿✿✿

CLM
✿✿✿✿✿

model
✿✿✿✿✿✿✿

physics
✿✿✿✿✿

alone
✿✿✿

are
✿✿✿✿✿✿✿✿

sufficient

✿✿

to
✿✿✿✿✿

update
✿✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿✿

layers,
✿✿

as
✿✿

in
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿

applying
✿✿✿

the

✿✿✿✿✿✿✿✿✿

increments
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

depth.
✿✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿

DA
✿✿

1
✿✿✿

and
✿✿✿✿

DA
✿✿

2,
✿✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿

incrementally
✿✿✿✿✿✿✿

reduced
✿

with

layer depth, showing how sensitive the quantile analysis and the entire assimilation is from these perturbations . Finally, the
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implications of quantile changes were showcased for one specific dry event and placed within the context of hydrological

monitoring systems.
✿✿✿✿✿✿✿✿✿

minimising
✿✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿

large
✿✿✿✿✿✿✿

updates
✿✿

in
✿✿✿✿✿

deep
✿✿✿✿✿✿

layers.
✿✿✿✿✿

Since
✿✿✿✿✿✿✿✿✿✿

increments
✿✿✿

are
✿✿✿✿✿✿✿✿

computed
✿✿✿

in

✿✿✿✿✿✿

relative
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,
✿✿✿✿✿✿✿

identical
✿✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿✿

affect
✿✿✿✿✿✿✿

absolute
✿✿✿✿

soil
✿✿✿✿✿

water
✿✿✿✿

very
✿✿✿✿✿✿✿✿✿✿

differently,
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿✿✿✿

exaggerating
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿

impact
✿✿✿

for
✿✿✿✿✿✿

deeper
✿✿✿✿✿✿

layers.
✿✿✿✿✿✿✿✿✿✿✿

Perturbations
✿✿✿

for
✿✿✿

the
✿✿✿✿

two
✿✿✿

top
✿✿✿✿✿

layers
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿✿✿

unchanged,
✿✿✿✿

thus
✿✿✿

not
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿✿

for

✿✿

the
✿✿✿✿✿✿

layers
✿✿✿✿✿

where
✿✿✿✿✿✿

SMOS
✿✿

is
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.
✿✿✿✿

The
✿✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsequent
✿✿✿✿✿✿

layers
✿✿

is
✿✿✿✿✿✿✿✿

perturbed
✿✿✿

by
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿

the5

✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿

factor
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿

ratio
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿

layer
✿✿✿✿✿✿✿✿

thickness
✿✿✿

and
✿✿✿

the
✿✿✿✿

layer
✿✿✿✿✿✿✿✿

thickness
✿✿

of
✿✿✿

the
✿✿✿✿

two
✿✿✿

top
✿✿✿✿✿

layers
✿✿✿✿

(see

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

generation
✿✿✿✿✿

under
✿✿✿✿✿✿

section
✿

3
✿✿✿✿

and
✿✿✿✿✿

Table
✿✿

1).
✿✿✿✿✿✿

Within
✿✿

a
✿✿✿✿

third
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

(DA
✿✿

0),
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿✿✿✿✿✿✿✿✿

perturbations

✿✿

are
✿✿✿✿✿✿✿

applied
✿✿✿✿✿

across
✿✿✿

all
✿✿✿✿✿

layers,
✿✿✿✿✿✿✿✿✿✿

highlighting
✿✿✿

the
✿✿✿✿✿✿✿

problem
✿✿

of
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

increments
✿✿

in
✿✿✿✿✿

lower
✿✿✿✿✿

layers.
✿✿✿

As
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿

shown,
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿

spread
✿✿

in
✿✿✿✿

DA
✿

0
✿✿✿✿✿✿✿

actually
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

with
✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿✿

but
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

expense
✿✿

of
✿✿✿✿✿✿✿✿✿✿

introducing
✿✿✿✿✿✿

strong

✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿

effects.
✿✿✿

For
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿✿✿

computed
✿✿

by
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿

output10

✿✿

of
✿✿

all
✿✿✿✿✿✿

layers.
✿✿✿✿

The
✿✿✿✿✿✿

L-band
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿

thereby
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

output
✿✿

of
✿✿✿

up
✿✿

to
✿✿

5
✿✿✿

cm
✿✿✿✿✿

depth,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿

sensor.
✿

4.1 Correlation with in-situ observations

For validationpurposes the ,
✿✿✿✿✿✿

hourly
✿

CLM soil moisture model output is compared to in-situ measurements obtained from the

International Soil Moisture Network (ISMN Dorigo et al. (2011)), which were additionally quality checked both visually and15

in an automatic way to remove erroneous soil moisture behaviour, e. g. identical values over long periods. For each
✿✿✿✿✿

ISMN

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dorigo et al., 2011).
✿✿✿✿✿✿

OzNet
✿

in-situ measurement
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

probes
✿✿✿

are
✿✿✿✿✿✿✿

located
✿✿✿✿✿

within
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿

in

✿✿✿✿✿✿✿✿

south-east
✿✿✿✿✿✿✿✿

Australia,
✿✿

a
✿✿✿✿✿✿

limited
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿

domain
✿✿✿✿✿✿

which
✿✿✿✿

does
✿✿✿✿✿✿✿

however
✿✿✿✿✿

cover
✿✿

a
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿

different
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

classes
✿✿✿✿✿✿✿✿✿✿✿✿

representative

✿✿

for
✿✿✿✿✿✿✿✿

Australia
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Smith et al., 2012).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

was
✿✿✿✿

also
✿✿✿✿✿✿

chosen
✿✿

as
✿✿

a
✿✿✿

site
✿✿✿

for
✿✿

a
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿✿✿

campaign

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Peischl et al., 2012).
✿✿✿✿✿✿✿✿✿✿✿✿

Measurements
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿

OzNeT
✿✿✿✿✿✿✿

network
✿✿✿

are
✿✿✿✿✿

taken
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

TDR-probes
✿✿

at
✿✿✿✿✿✿

shallow
✿✿✿✿✿✿

levels,
✿✿✿✿✿✿

mostly
✿✿

5
✿✿✿

cm
✿✿

or20

✿

8
✿✿✿

cm,
✿✿✿✿

and
✿✿

at
✿✿✿✿✿✿

deeper
✿✿✿✿✿

layers,
✿✿✿✿✿✿

mostly
✿✿✿

30,
✿✿✿

60
✿✿✿

and
✿✿✿

90
✿✿✿

cm.
✿✿✿✿

The
✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

that
✿✿

are
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

CosmOZ
✿✿✿✿✿✿✿

network
✿✿✿

are
✿✿✿✿✿

taken

✿✿

by
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

cosmic-ray
✿✿✿✿✿✿✿

neutron
✿✿✿✿✿✿

probes
✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿

for
✿

a
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

footprint
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

traditional

✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿✿✿✿✿✿

CosmOz
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

sites
✿✿✿

are
✿✿✿✿✿✿✿

located
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿

at
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿

locations

✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿

coast.
✿✿

In
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿

description
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿✿

networks
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Renzullo et al. (2014) and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Holgate et al. (2016) for
✿✿✿✿✿✿✿

instance
✿✿✿✿✿

offer
✿✿

an
✿✿✿✿✿✿✿✿

extensive
✿✿✿✿✿✿✿

overview
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

CosmOz
✿✿✿

and
✿✿✿✿✿

OzNet
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

sites.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Su et al. (2013) give25

✿✿✿✿

more
✿✿✿✿✿✿

details
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

locations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

OzNet
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

sites.
✿✿✿✿

For
✿✿

all
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements

✿✿✿✿

sites the weighted average of the corresponding CLM soil moisture is computed, using layer thickness as weights, prior to the

comparison.When taking
✿✿✿✿

layers
✿✿

is
✿✿✿✿✿✿

taken,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

layer
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿

being
✿✿✿✿

used
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿

weights.
✿✿✿✿✿

Figure
✿✿

1
✿✿✿✿✿

shows
✿✿✿✿✿✿

where

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿

is
✿✿✿✿✿✿✿

situated
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿

data
✿✿✿✿

used
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿✿✿✿✿

simulations.
✿

✿✿✿✿✿✿

Taking into account only measurements with at least one year of data, not necessarily consecutive, correlations improve30

from 0.613 for the open loop
✿✿✿✿✿✿✿✿✿

open-loop run to 0.640
✿

,
✿✿✿✿✿

0.678 and 0.681 for DA1 and DA2 respectively
✿✿✿

DA
✿✿

1,
✿✿✿

DA
✿✿

2
✿✿✿

and
✿✿✿✿

DA

✿

0
✿

for top layer soil moisture (number of stations , n = 17). Bottom layer
✿✿✿✿✿✿✿✿

Root-zone
✿

soil moisture improvements are lower

✿✿✿✿✿✿

smaller,
✿

with average correlation coefficients of 0.626,
✿✿✿✿✿

0.644
✿

and 0.648 for DA1 and DA2,
✿✿

DA
✿✿

1,
✿✿✿✿

DA
✿

2
✿✿✿✿

and
✿✿✿

DA
✿

0
✿

compared to

0.601 for the open loop
✿✿✿✿✿✿✿✿

open-loop
✿

run (n = 30). Upper soil moisture
✿✿✿

31).
✿✿✿

For
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿

level
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

improves
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✿✿

for
✿✿✿

all
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿

stations,
✿✿✿✿✿✿✿

whereas
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿

in-situ
✿✿✿✿✿

station
✿✿✿✿✿✿

shows
✿✿

a
✿✿✿✿✿✿✿✿✿✿

deterioration
✿✿✿

of

✿✿✿✿✿✿✿✿✿

correlation
✿✿

for
✿✿✿✿

DA
✿✿

1.
✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿

DA
✿✿

2
✿✿✿

and
✿✿✿

DA
✿✿

0
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿

at
✿✿✿

two
✿✿✿✿✿✿✿

stations,
✿✿✿✿✿

albeit
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿

ones,
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿

deteriorates.

✿✿

On
✿✿✿✿✿✿✿✿

average,
✿✿✿✿✿

upper
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿

behaviour thus improves by also
✿✿✿✿✿✿✿✿✿

additionally
✿

updating deeper layersand
✿

,
✿✿✿✿✿✿✿

whereas deeper layer

soil moisture is slightly enhanced through only assimilating
✿✿✿✿✿✿✿

updating
✿

top level soil moisture
✿

, with the assimilation effects only

being propagated
✿✿✿✿✿

applied
✿

through model physics. Overall
✿✿

All
✿✿✿

in
✿✿

all, updating the top 6
✿✿

six
✿

CLM layers results in the largest5

improvements. Figure 3 shows ,
✿✿✿✿✿

even
✿✿✿✿

more
✿✿✿

so
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿

identical
✿✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿

are
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

all
✿✿✿

soil
✿✿✿✿✿✿

layers
✿✿✿✿✿✿

within

✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

DA
✿✿

0,
✿✿✿✿✿✿✿

thereby
✿✿✿✿✿✿✿✿

increasing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

impact
✿✿✿✿✿✿✿

through
✿✿

an
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error.
✿✿✿✿

The

✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿

area
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

changes
✿✿✿

for

✿✿

all
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿✿✿✿

open-loop
✿✿✿

run
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿

2.
✿✿✿

For
✿✿✿

top
✿✿✿✿✿

layer
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿✿✿✿

improvements

✿✿

are
✿✿✿✿✿✿

visible
✿✿✿

for
✿✿✿

the
✿✿✿✿

sites
✿✿✿✿✿✿✿

located
✿✿

in
✿✿✿

the
✿✿✿✿✿

centre
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿

(Yanco
✿✿✿✿

site)
✿✿✿✿

with
✿✿✿✿✿

clear
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

for
✿✿✿

DA
✿✿

2
✿✿✿

and
✿✿✿

DA
✿✿

0
✿✿✿✿✿

when10

✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

DA
✿✿

1.
✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone,
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

depths
✿✿✿✿

were
✿✿✿✿✿✿✿✿

averaged
✿✿✿✿✿

using
✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿

layer

✿✿✿✿✿✿✿

thickness
✿✿✿

as
✿✿✿✿✿✿✿

weights.
✿✿✿✿

Here
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿

highest
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

Yanco
✿✿✿✿

site,
✿✿✿✿✿

except
✿✿✿

for
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿

location
✿✿✿✿✿✿✿

showing
✿✿

a

✿✿✿✿✿✿✿✿✿✿

deterioration
✿✿

of
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿

for
✿✿✿✿

DA
✿✿

0.
✿✿✿

The
✿✿✿✿

area
✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿✿✿

Yanco
✿✿✿

site
✿✿

is
✿✿✿

flat
✿✿✿

and
✿✿✿✿✿✿✿✿

semi-arid
✿✿✿✿

with
✿✿✿✿✿✿

mostly
✿✿✿✿

low
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿

and
✿✿✿✿

thus

✿✿✿✿

more
✿✿✿✿✿

ideal
✿✿✿

for
✿✿✿✿✿✿

L-band
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿

sensitivity.
✿✿✿✿

The
✿✿✿✿✿

lesser
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

in-situ
✿✿✿✿

sites
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿

east
✿✿✿✿✿✿✿✿

therefore

✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿✿✿

explained
✿✿✿

by
✿✿✿

the
✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

terrain,
✿✿✿✿

less
✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿

and
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿

influencing
✿✿✿

the
✿✿✿✿✿✿✿

L-band15

✿✿✿✿✿

signal,
✿✿

as
✿✿✿✿✿✿✿✿✿

discussed
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

Su et al. (2013).
✿

✿✿✿✿✿

Figure
✿✿

3
✿✿✿✿✿✿

shows
✿✿✿

The
✿

Taylor diagrams for the validation results of experiment DA2
✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿

validation
✿✿

of
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

DA
✿✿

2.

✿✿

As
✿✿✿✿✿✿✿

opposed
✿✿✿

to
✿✿✿✿✿

Figure
✿✿

2,
✿✿✿

all
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

are
✿✿✿✿✿✿✿

included
✿✿✿✿

with
✿✿✿

no
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

aggregation
✿✿✿✿✿✿✿✿✿

performed. The Taylor diagrams

further show
✿✿✿✿✿

reveal
✿

a slightly decreased normalised standard deviation of the assimilation results in respect to the in-situ

measurements when compared to the open loop time seriesin respect to the in-situ data
✿✿✿✿✿✿✿✿

open-loop
✿✿✿✿

time
✿✿✿✿✿

series. In terms of20

standardised RMSE it is less conclusive, and RMSE is slightly reduced by assimilation
✿✿✿✿

with
✿✿✿✿✿✿

RMSE
✿✿✿✿✿

being
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿

reduced

for some stations and slightly increased for some others
✿✿✿✿✿

others,
✿✿✿

but
✿✿✿✿✿✿

never
✿✿✿✿✿✿✿✿✿✿

significantly. These findings correspond well to

experiment DA
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

DA
✿

0
✿✿✿✿

and
✿✿✿

DA
✿

1 , not shownhere
✿✿✿

(not
✿✿✿✿✿✿

shown).

✿✿✿✿✿

When
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

non-vertically
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿✿

sites
✿✿✿✿

only
✿✿✿

for
✿✿✿

the
✿✿✿

ten
✿✿✿✿

used
✿✿✿✿✿✿✿✿

CosmOz

✿✿✿✿

sites,
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

increases
✿✿✿

by
✿✿✿✿✿

about
✿✿✿✿✿

0.016
✿✿✿

for
✿✿✿✿

DA1
✿✿✿✿✿✿

(three
✿✿✿✿

sites
✿✿✿✿

with
✿✿✿✿✿

+0.03
✿✿✿

and
✿✿✿✿

two
✿✿✿✿

very
✿✿✿✿✿

close
✿✿

to
✿✿✿✿✿

zero).
✿✿✿✿

For
✿✿✿✿

DA2
✿✿✿

the
✿✿✿✿✿✿✿

average25

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

increases
✿✿

by
✿✿✿✿

0.02
✿✿✿✿

(two
✿✿✿✿

sites
✿✿✿✿✿✿✿✿

showing
✿✿✿✿✿

+0.05
✿✿✿

and
✿✿✿✿

one
✿✿✿✿✿

-0.02)
✿✿✿

and
✿✿✿

for
✿✿✿✿

DA3
✿✿✿

by
✿✿✿✿

0.13
✿✿✿✿✿

(three
✿✿✿✿

sites
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿✿

deteriorating).

✿✿✿✿

This
✿✿✿✿✿✿✿✿

highlights
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

are
✿✿✿✿✿✿✿

stronger
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

OzNet
✿✿✿✿

sites
✿✿✿✿✿✿✿

located
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿✿

catchment.

✿✿✿✿✿

Partly
✿✿✿

this
✿✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

CosmOz
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

are
✿✿✿✿✿

valid
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿

variable
✿✿✿

soil
✿✿✿✿✿✿

depth,
✿✿✿✿✿✿✿✿✿

depending
✿✿✿

on

✿✿

the
✿✿✿✿✿✿✿

current
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿

For
✿✿✿✿✿✿✿✿✿

validation
✿✿

a
✿✿✿✿✿

single
✿✿✿✿

soil
✿✿✿✿✿

depth
✿✿✿✿

was
✿✿✿✿✿

used,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

reported
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

ISMN
✿✿✿✿✿✿✿✿

network.

✿✿✿✿

Also,
✿✿✿✿✿✿✿✿

CosmOz
✿✿✿✿

sites
✿✿✿

are
✿✿✿✿✿

partly
✿✿✿✿✿✿✿

situated
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿

coast
✿✿

or
✿✿✿✿

close
✿✿✿

to
✿✿✿✿

water
✿✿✿✿✿✿

bodies
✿✿✿✿

and
✿✿✿✿✿

within
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

vegetation,
✿✿✿✿✿✿✿

making30

✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿✿✿✿✿

through
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

challenging,
✿✿

as
✿✿✿✿✿✿✿

reported
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Renzullo et al. (2014).
✿✿✿✿✿✿

When
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿✿

considering
✿✿✿

the

✿✿✿✿✿✿✿

CosmOz
✿✿✿✿✿

sites,
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

decreases
✿✿✿

for
✿✿✿✿

DA3
✿✿

in
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿

DA2
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

contradicts
✿✿✿

the
✿✿✿✿✿✿✿

findings
✿✿✿✿✿

when
✿✿✿✿✿

taking
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿✿

measurements

✿✿✿

into
✿✿✿✿✿✿✿

account.
✿

✿✿✿✿✿✿✿✿✿

Altogether,
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿

well
✿✿✿✿✿✿✿

designed
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿✿

modelling

✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿✿✿✿

continent,
✿✿✿✿

both
✿✿✿

for
✿✿✿

top
✿✿✿✿✿

layer
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone.
✿✿✿✿✿✿✿✿

However,
✿✿✿

as
✿✿✿✿

with
✿✿✿✿✿

most35
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✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

studies,
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿

sites
✿✿

are
✿✿✿✿✿✿

sparse
✿✿✿

and
✿✿✿

do
✿✿✿

not
✿✿✿✿

cover
✿✿✿

the
✿✿✿✿✿✿✿✿✿

many-fold
✿✿✿✿✿✿✿✿✿✿✿

combinations
✿✿

of
✿✿✿✿

soil
✿✿✿✿✿✿

texture,
✿✿✿✿

land
✿✿✿✿✿

cover,
✿✿✿✿✿✿✿

climate

✿✿✿

etc.
✿✿✿✿✿

which
✿✿✿✿✿

might
✿✿✿

all
✿✿✿✿

have
✿✿✿

an
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿✿

performance.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

representativeness
✿✿✿✿✿

error
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿

measurement

✿✿✿✿✿✿

equally
✿✿✿✿✿✿✿

remains
✿

a
✿✿✿✿✿✿✿✿

problem,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

support
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿

TDR
✿✿✿✿✿✿

probes
✿✿✿✿

only
✿✿✿✿

point
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,

✿✿✿✿

being
✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿

area
✿✿✿✿✿✿✿

covered
✿✿

by
✿✿✿✿✿✿✿✿

satellite.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

system
✿✿

is
✿✿✿✿✿✿✿✿

therefore
✿✿✿

not
✿✿✿✿✿✿✿✿

designed
✿✿

to
✿✿✿✿✿✿✿

remove
✿✿✿

the
✿✿✿✿✿✿✿

relative

✿✿✿

bias
✿✿✿✿✿✿✿

between
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿

exact
✿✿✿✿

truth
✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿✿✿

unknown,
✿✿✿

but
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿

temporal5

✿✿✿✿✿✿✿✿

behaviour
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿✿

which
✿✿✿

has
✿✿✿

for
✿✿✿

the
✿✿✿✿

most
✿✿✿✿

part
✿✿✿✿

been
✿✿✿✿✿✿✿✿

achieved.

4.2 Soil moisture increments

In a bias-blind assimilation system it can be expected that , especially over longer time periods ,
✿✿✿✿✿✿✿✿

Especially
✿✿✿✿

over
✿✿✿✿✿

long
✿✿✿✿

time

✿✿✿✿✿✿

periods
✿

the mean increments should be
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿

bias-blind
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

system
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿

be very close to zero. Fig-

ure 4 and Figure 6 show the mean soil moisture increments over the assimilation period 2010 - 2015 for the experiments10

DA 0, DA 1 and DA 2, separately for the ascending and descending orbits.
✿✿✿✿

Both
✿✿✿

the
✿✿✿

top
✿✿✿✿✿

three
✿✿✿

soil
✿✿✿✿✿✿

layers
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone

✿✿✿

soil
✿✿✿✿✿

layers
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

averaged.
✿

Distinctive areas of mean positive increments for the ascending orbit are located in the North,

South-West and South-East
✿✿✿✿✿

visible
✿✿

in
✿✿✿

the
✿✿✿✿✿

north,
✿✿✿✿✿✿✿✿✿✿

south-west
✿✿✿

and
✿✿✿✿✿✿✿✿✿

south-east of Australia, seemingly being linked to the occur-

rence of vegetation . Nevertheless, the positive bias does not
✿✿✿

(see
✿✿✿✿✿✿

Figure
✿✿✿

1).
✿✿✿

The
✿✿✿✿✿

areas
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

south-west
✿✿✿✿

and
✿✿✿✿✿✿✿✿

south-east
✿✿✿

as

✿✿✿

well
✿✿✿

as
✿✿

in
✿✿✿

the
✿✿✿✿✿

north
✿✿✿✿✿✿✿✿✿✿

correspond
✿✿✿✿

well
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

subtropical,
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿✿✿✿

tropical
✿✿✿✿✿✿

climate
✿✿✿✿✿

zones
✿✿✿✿✿✿✿✿✿✿✿

respectively
✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿

subject15

✿✿

to
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

dry
✿✿✿✿✿

areas
✿✿✿✿✿✿

inland,
✿✿✿✿✿✿✿

although
✿✿✿✿✿

other
✿✿✿✿✿

areas
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿

coast
✿✿✿✿✿

have
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿✿✿✿

The
✿✿✿✿✿

areas

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

south-west
✿✿✿✿

and
✿✿✿✿✿✿✿✿

south-east
✿✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

wheat
✿✿✿✿✿✿✿

growing
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿✿✿✿✿

Australia.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

misrepresentation
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿

areas

✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿

CLM
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

datasets,
✿✿✿✿

such
✿✿✿

as
✿✿✿

the
✿✿✿

use
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿

LAI
✿✿✿✿✿✿✿

instead
✿✿

of
✿✿✿✿✿

actual
✿✿✿✿✿

LAI,
✿✿✿✿✿

might
✿✿✿✿

well
✿✿✿

be
✿✿✿

the
✿✿✿✿✿

source
✿✿✿

of

✿✿✿✿

such
✿✿✿✿✿✿✿

patterns.
✿✿✿✿✿

Also,
✿✿✿✿✿✿✿✿✿✿✿✿

satellite-based
✿✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

Leaf
✿✿✿✿✿

Area
✿✿✿✿✿

Index
✿✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿✿

error-free,
✿✿✿

as
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿

shown
✿✿✿✿✿✿✿✿✿

specifically
✿✿✿✿

for
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(McColl et al., 2011).
✿✿✿✿✿✿✿✿

Irrigation,
✿✿✿✿✿✿

which
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

predominantly
✿✿✿✿✿✿

applied
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿

south-east,
✿✿✿✿✿

could
✿✿

be
✿✿✿

an20

✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿

source
✿✿

of
✿✿✿✿✿

error
✿✿✿

for
✿✿✿✿✿✿

limited
✿✿✿✿✿

areas,
✿✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

will
✿✿✿

be
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿

seasonally
✿✿✿✿

too
✿✿✿

low
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,

✿✿✿✿✿✿

causing
✿✿

an
✿✿✿✿✿✿✿✿

incorrect
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

seasonality
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsequent
✿✿✿✿✿✿✿

anomaly
✿✿✿✿✿✿✿✿✿✿✿

computation.
✿

✿✿✿✿✿✿✿✿✿✿✿

Nevertheless,
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿✿✿✿✿✿✿

overpasses
✿✿✿

the
✿✿✿✿✿✿✿

positive
✿✿✿✿✿

biases
✿✿✿✿✿✿

hardly
✿

exceed 0.5 % soil moisture and the remaining parts

of Australia either show no mean increments bias or slightly negative values. These
✿

,
✿✿✿✿

both
✿✿

in
✿✿✿✿✿

areas
✿✿✿✿✿✿✿

covered
✿✿

by
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿

sparse

✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿

and
✿✿✿

the
✿✿✿✿

inner
✿✿✿✿✿✿✿✿

drylands.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿

orbits
✿✿✿

the patterns are still visible for the descending orbit or the
✿✿✿

but
✿✿✿

are25

✿✿✿✿✿✿

weaker,
✿✿✿✿

both
✿✿✿

for
✿✿✿

top
✿✿✿✿✿✿

layers
✿✿✿

and
✿✿✿

the root-zonesoil moisture but are on overall weaker, except for .
✿✿✿✿

The
✿✿✿✿✿✿✿✿

exception
✿✿

is
✿

DA 0with
✿

,

✿✿✿✿✿

where little differences between top layer and deep layer increments
✿✿

are
✿✿✿✿✿✿✿✿✿

noticeable. Interesting to highlight , is the fact that top

layer deviations from zero are strongest for the assimilation experiment DA1
✿✿✿

DA
✿✿

1,
✿

compared to DA 0 and DA2, with the latter

two updating both
✿✿✿

DA
✿✿

2,
✿✿✿✿✿

which
✿✿✿✿

both
✿✿✿✿✿✿

update
✿

top layer soil as well as the root-zone. A possible interpretation might be that the

assimilation into
✿✿✿

root
✿✿✿✿✿

zone.
✿✿✿✿

The
✿✿✿✿✿

reason
✿✿✿✿

may
✿✿✿

be
✿✿✿✿

that
✿✿✿✿✿✿✿

updating
✿

deeper layers results in a longer
✿✿✿✿

more
✿

lasting effect, potentially30

moving the model closer to subsequent observations and thus reducing subsequent increments.

Figure 5 and 7 show the increment standard deviations, which are substantially stronger for the ascending orbit. Top
✿

.

✿✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿

patterns
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

impact
✿✿✿✿

are
✿✿✿✿

very
✿✿✿✿✿✿✿✿✿

distinctive
✿✿✿

but
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

patterns
✿✿✿✿

seen
✿✿✿

in
✿✿✿

the

✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

increments,
✿✿✿✿✿✿✿✿

although
✿✿✿✿

they
✿✿

do
✿✿✿✿✿✿

partly
✿✿✿✿✿✿

match,
✿✿

as
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

south-west
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

south-east.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿

increments
✿✿

in
✿✿✿

the

15



✿✿✿✿✿✿

western
✿✿✿✿✿✿✿✿

wheatbelt
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murray-Darling
✿✿✿✿✿

basin,
✿✿✿✿✿

some
✿✿✿✿✿

areas
✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

western
✿✿✿✿

coast
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

Queensland
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

eastern
✿✿✿✿✿

coast
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿

Territory
✿✿✿✿✿

show
✿

a
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿

2.5
✿✿✿

%.
✿✿✿

The
✿✿✿✿✿

areas
✿✿

in
✿✿✿

the
✿✿✿✿✿

north
✿✿✿✿✿

seem
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

occurrence

✿✿

of
✿✿✿✿✿✿

tussock
✿✿✿✿✿✿✿

grasses,
✿✿✿

as
✿✿✿✿✿✿

shown
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿✿✿

National
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿

map
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(http://www.ga.gov.au/scientific-topics/earth-obs/).

✿✿✿✿✿✿✿

Minimal
✿✿

or
✿✿✿✿

zero
✿✿✿✿✿✿✿✿✿✿

increments
✿✿

in
✿✿

all
✿✿✿✿✿✿

layers,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿

eastern
✿✿✿✿✿✿

coast,
✿✿✿

are
✿✿✿

due
✿✿

to
✿✿

a
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿

as
✿✿✿✿✿

these
✿✿✿✿✿

were

✿✿✿✿✿✿✿

removed
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

active
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿

science
✿✿✿✿✿

flags
✿✿

or
✿✿✿

the
✿✿✿

fact
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

high
✿✿✿

LAI
✿✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿

high
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿✿✿✿

within
✿✿✿

the5

✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

operator
✿✿✿✿✿

mask
✿✿✿

all
✿✿✿✿✿✿

signals
✿✿✿✿

from
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.

✿✿✿✿✿✿✿✿✿

Concerning
✿✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿

top
✿

layer increments are larger
✿✿✿✿✿

largest
✿

for DA 1
✿

,
✿

followed by DA 2

and then DA 0. Deep layer increments are much larger for DA 0 when compared to DA 2. For
✿✿✿✿✿

Being
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

dominant

✿✿✿✿✿✿✿

dynamic
✿✿✿✿✿

factor
✿✿✿

for the ensemble generation, precipitation is the most dominant dynamic factor and leads to immediate increased

ensemble spread , andthus a
✿✿✿✿

leads
✿✿

to
✿✿✿

an
✿✿✿✿✿✿✿✿

immediate
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

spread
✿✿✿✿

and,
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence,
✿✿

to
✿✿

a larger background10

error , for the very shallow soil layers, thereby also increasing the observation impact. This impact on the ensemble spread will

however be dampened and temporally lagged for deeper layers. The static soil texture perturbations, although their effect are

also dynamically dependent on the current soil moisture state, lead to model uncertainty not directly induced by the forcing

perturbations. Soil texture perturbations decrease with layer depth for DA 1 and DA 2 (see perturbation scaling shown in Table

1) and lead to the reduced covariance between top layer and deep layers, which results in decreasing increments for lower15

layers. It is thereby important to note that in terms of absolute soil moisture, large increments in low layers remove or add

vastly larger amounts of water than similar increments in shallow layers and will exhibit strong effects on all above layers

(see soil thickness in Table 1). As an example, removal of water in a deep lying layer will lead to increased percolation in all

above lying layers, resulting in a sudden drying out of the top soil layers. Small biases inherent in the data assimilation system

thus might be largely exaggerated when allowing to large deep layer updates.
✿✿✿✿

With
✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿

layer
✿✿✿✿✿✿

depth,
✿✿✿

the
✿✿✿✿

soil
✿✿✿✿✿✿

texture20

✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿

play
✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

important
✿✿✿✿

role
✿✿

in
✿✿✿✿✿✿✿✿✿✿

determining
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error.
✿

This is visible for DA 0 where homogeneous

soil texture perturbations were applied across all layers and increments
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿

are not significantly reduced for the

root-zone
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

layers
✿✿✿✿✿

above
✿

(Figure 5).
✿✿✿

As
✿

a
✿✿✿✿✿✿✿

contrast,
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿✿✿

applied
✿✿✿✿✿✿

within
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

DA
✿✿

2
✿✿✿

are

✿✿

far
✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

upper
✿✿✿✿✿

layers.
✿✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

with
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

we
✿✿✿✿✿✿

showed
✿✿✿✿

that
✿✿✿✿

these
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

increments
✿✿✿

for

✿✿✿

DA
✿

0
✿✿✿✿✿✿✿

actually
✿✿✿✿✿

result
✿✿

in
✿✿

a
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

over
✿✿✿✿

DA
✿✿

1.25

Concluding on the relationship between
✿✿✿✿✿✿✿✿

behaviour
✿✿

of
✿

increment bias and increment standard deviation, it seems that there is

either a decreased increment bias at
✿

a
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿

to
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿✿

updates.
✿✿✿✿

Both
✿✿✿✿✿✿✿✿✿

increment
✿✿✿✿

bias
✿✿✿

and
✿✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation

✿✿

are
✿✿✿✿✿✿

largest
✿✿✿

for
✿✿✿✿

DA
✿✿

1,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone
✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿

updated
✿✿

at
✿✿✿

all.
✿✿✿

The
✿✿✿✿

top
✿✿✿✿

layer
✿✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿

decreases
✿✿✿

for
✿✿✿✿

DA

✿✿

2,
✿✿✿✿✿

whilst
✿✿✿✿

also
✿✿✿✿✿✿✿

updating
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone,
✿✿✿✿

with
✿

a
✿✿✿✿✿

slight
✿✿✿✿✿✿✿✿

decrease
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿

bias.
✿✿✿✿✿✿✿✿

Compared
✿✿✿

to
✿✿✿

DA
✿✿

2,
✿✿✿

the
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿✿

standard

✿✿✿✿✿✿✿

deviation
✿✿

is
✿✿✿✿✿

larger
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

root-zone
✿✿

for
✿✿✿✿

DA
✿

0
✿✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿

top-layer
✿✿✿✿✿✿✿✿✿

increment
✿✿✿

bias
✿✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿✿✿✿✿

substantially.30

✿✿

As
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ascending
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿✿

orbits,
✿✿✿

we
✿✿✿✿✿✿✿✿

conclude
✿✿✿✿

that
✿✿✿✿

they
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

partly
✿✿✿✿✿✿✿✿✿

explained
✿✿✿

by

✿✿✿✿✿✿✿

referring
✿✿✿✿

back
✿✿

to
✿✿✿

the
✿✿✿

fact
✿✿✿✿

that
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿

be
✿✿

of
✿

a
✿✿✿✿✿

higher
✿✿✿✿✿✿

quality
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿✿

orbits
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hornbuckle and England,

✿✿✿

The
✿✿✿✿✿✿✿

thermal
✿✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

soils,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

at
✿

6
✿✿✿✿

a.m.
✿✿✿✿✿

local
✿✿✿✿✿

time,
✿✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿

error
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

forward

✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿✿

The
✿✿✿✿✿

mean
✿✿✿✿

bias
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

is
✿

5
✿✿✿

K
✿✿✿

less
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿✿✿

orbits,
✿✿✿✿✿✿

which

✿✿✿✿✿✿✿

supports
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

explanation.
✿

35
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✿✿

To
✿✿✿✿✿✿✿✿

highlight
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿

effects,
✿✿✿✿✿✿

Figure
✿✿

8
✿✿✿✿✿

shows
✿✿✿✿

the
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿✿

exemplary
✿✿✿

for
✿✿✿

DA
✿✿

2
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿

ascending
✿✿✿✿

orbit
✿✿✿✿✿

both
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

months
✿✿✿✿✿✿✿

January
✿✿

to
✿✿✿✿✿✿

March
✿✿✿

and
✿✿✿✿✿

June
✿✿

to
✿✿✿✿✿✿✿

August.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿

austral
✿✿✿✿✿✿

winter,
✿✿✿✿✿✿✿✿✿✿

increments
✿✿✿

are
✿✿✿✿✿✿

largest
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿✿✿

agricultural
✿✿✿✿✿

areas
✿✿

in
✿

the expense of larger deep layer increments, or vice versa. Finally, regarding the spatial patterns of

the increments, areas with very low increments in all layers, especially along the east coast, are either based on a lack of

observations, as these were filtered due to the active vegetation science flags, or the fact that the high LAI values for high5

vegetation prescribed within the forward operator mask any signal from soil moisture .
✿✿✿✿✿✿✿✿

south-west
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

south-east,
✿✿✿✿

now
✿✿✿

in

✿✿

the
✿✿✿✿✿✿✿✿

growing
✿✿✿✿✿✿

season,
✿✿✿✿

and
✿✿✿✿✿

these
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿

effects
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿✿

dominate
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿✿

(compare

✿✿

to
✿✿✿✿✿

Figure
✿✿✿

7).
✿✿✿✿✿✿✿✿✿

Similarly,
✿✿✿

the
✿✿✿✿✿✿✿

patterns
✿✿

in
✿✿✿

the
✿✿✿✿✿

north,
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿✿✿✿✿

grassland,
✿✿✿

are
✿✿✿✿✿✿

visible
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

yearly
✿✿✿✿✿✿

average
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

shown

✿✿✿✿✿✿

months
✿✿✿✿✿✿✿✿✿

contribute
✿✿✿

the
✿✿✿✿

most
✿✿✿

to
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

existence.
✿✿✿✿✿✿✿✿

Differing
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿

effects
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

impact
✿✿✿✿

were
✿✿✿✿

also
✿✿✿✿✿✿✿✿

observed
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Martens et al. (2016b) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tian et al. (2017),
✿✿✿✿✿✿✿

although
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

patterns
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

distinctively
✿✿✿✿✿✿✿✿

different.
✿

10

✿✿✿✿✿

When
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿✿✿

winter
✿✿✿✿✿✿✿

patterns
✿✿✿

to
✿✿✿✿

areas
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿

irrigation
✿✿✿✿✿

takes
✿✿✿✿✿✿

place,
✿✿

as
✿✿✿✿✿✿

shown
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

van Dijk et al. (2013),
✿✿✿✿✿✿✿✿

irrigated

✿✿✿✿

areas
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murray-Darling
✿✿✿✿✿

basin
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

identified
✿✿✿✿✿✿✿

through
✿✿

an
✿✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation.
✿✿✿✿✿

Here
✿✿✿

the
✿✿✿✿✿✿

SMOS

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

correct
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

which
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

modelled.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kumar et al. (2015); Escorihuela and Quintana-Seguí (2016)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

De Lannoy and Reichle (2016b) have
✿✿✿✿✿✿✿✿

similarly
✿✿✿✿✿✿✿

reported
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

potential
✿✿

of
✿✿✿✿✿✿

SMOS
✿✿

to
✿✿✿✿✿✿✿

observe
✿✿✿✿✿✿✿✿

irrigation.

4.3 Soil moisture quantiles15

In addition to
✿✿✿✿✿

Apart
✿✿✿✿

from
✿

looking at the increments, we compute a set of quantiles at 1 % intervals for each CLM soil layer and

each grid point
✿

, both for the assimilation experiments and the open loop
✿✿✿✿✿✿✿✿

open-loop
✿

run. Although in principle the assimilation

system should be designed bias-free with similar positive and negative increments, the previous section showed
✿✿

has
✿✿✿✿✿✿✿✿

revealed

that small increment biases
✿✿

do
✿

exist, potentially resulting in long term
✿✿✿✿✿✿

causing
✿✿✿✿✿✿✿✿✿

long-term
✿

effects in the resulting analysis.

Figures 9, 10 and 11 show the 10 % quantile
✿✿✿✿✿✿

changes, thus very dry conditions,
✿

in
✿✿✿✿✿✿✿

relation
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

open-loop
✿✿✿

run
✿

for the top 920

CLM layersand to which extent it shifts for each grid cell when compared to the open loop run
✿✿✿✿

nine
✿✿✿✿

CLM
✿✿✿✿✿✿

layers. For experiment

DA 1 (Figure 10), assimilation has a small
✿✿

an
✿

impact on the topmost soil layer with the quantile increasing by up to 5
✿✿

by
✿✿

a

✿✿✿✿✿✿✿✿

maximum
✿✿

of
✿✿✿

ca.
✿✿

1
✿✿

%
✿✿✿

for
✿✿✿✿✿

large
✿✿✿✿

areas
✿✿✿✿

and
✿✿

by
✿✿✿

up
✿✿

to
✿✿

4 % for spatially
✿✿✿✿

very limited areas. Much smaller changes are visible for

deeper layers but with changes nevertheless reaching layers that are not directly updated.
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿

and
✿✿✿✿

third
✿✿✿✿✿

layer,
✿✿✿✿

with
✿✿✿✿✿

some

✿✿✿✿

areas
✿✿✿✿

also
✿✿✿✿✿✿✿

showing
✿✿

a
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿

impact
✿✿✿

by
✿✿

up
✿✿

to
✿✿

2
✿✿✿

%.
✿✿✿✿✿

CLM
✿✿✿✿✿

model
✿✿✿✿✿✿✿

physics
✿✿✿✿✿

result
✿✿

in
✿✿✿✿✿✿✿

changes
✿✿✿✿✿

being
✿✿✿✿

also
✿✿✿✿✿✿

visible
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

root25

✿✿✿✿

zone,
✿✿✿✿✿

CLM
✿✿✿✿✿✿

layers
✿✿✿✿

three
✿✿

to
✿✿✿✿

six,
✿✿✿

and
✿✿✿✿✿✿

below.
✿✿✿✿

One
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

visible
✿✿✿✿✿✿✿

patterns
✿✿

is
✿✿✿✿✿

again
✿✿✿✿✿✿✿✿✿

south-east
✿✿✿✿✿✿✿✿

Australia.
✿✿✿✿

For
✿✿✿

the
✿✿✿✿

very
✿✿✿✿

deep
✿✿✿✿✿✿

layers

✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿

emerge
✿✿✿✿✿

which
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿

visible
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

above
✿✿✿✿✿

layers.
✿✿✿✿✿

Most
✿✿✿✿✿✿

notably
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Nullarbor
✿✿✿✿✿

plain,
✿✿

on
✿✿✿

the
✿✿✿✿✿

south

✿✿✿✿

coast
✿✿

of
✿✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿

where
✿✿✿✿

the
✿✿

10
✿✿

%
✿✿✿✿✿✿✿✿

quantile
✿✿✿✿✿✿✿✿

increases
✿✿

by
✿✿✿

up
✿✿

to
✿✿

2
✿✿✿

%.
✿✿✿✿

Such
✿✿✿✿✿✿✿

patterns
✿✿✿

are
✿✿✿✿✿✿

related
✿✿✿

to
✿✿✿✿✿

strong
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿✿✿✿✿

increments

✿✿

in
✿✿✿✿

very
✿✿✿

dry
✿✿✿✿

areas
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

accumulate
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

deepest
✿✿✿✿✿✿

layers.
✿✿✿✿

Due
✿✿

to
✿✿✿

the
✿✿✿✿

low
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

dynamics
✿✿

in
✿✿✿✿✿

these
✿✿✿✿✿

lower
✿✿✿✿✿✿

layers,
✿✿✿

any
✿✿✿✿✿✿

added

✿✿✿✿

water
✿✿✿✿

will
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿

lasting
✿✿✿✿✿

effect
✿✿✿✿✿✿✿✿

especially
✿✿✿

on
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿

quantiles.
✿

For experiment DA 2 (Figure 11), whilst also updating layers 330

- 6, slightly
✿✿✿

with
✿✿✿

the
✿✿✿✿

root
✿✿✿✿

zone
✿✿✿✿

also
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿

updated, larger impacts on the quantiles in deeper layers can be observedwith more

areas showing an increased 10 % quantile. For the largest part , the patterns , at least for upper layers,
✿✿✿✿

most
✿✿✿✿

part
✿✿✿

the
✿✿✿✿✿✿✿

patterns

reflect well the patterns identified in Figure 6, showing the mean increments, although in deeper layers also some independent

patterns emerge that cannot be directly explained by any increments bias. Figure
✿✿✿✿

ones
✿✿✿✿✿✿✿✿

identified
✿✿✿

for
✿✿✿

DA
✿✿

1.
✿✿✿✿✿✿

Figure 9 shows the
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impact on the 10 % quantile for the experiment DA 0 , using
✿✿✿✿

with
✿

homogeneous soil texture perturbations across all layers.

Here, much larger
✿✿✿✿✿

being
✿✿✿✿

used.
✿✿✿

As
✿✿✿✿✿✿✿✿

expected,
✿✿✿✿✿✿✿✿✿

significant
✿

effects are visible especially within the root-zone soil, increasing the

quantiles
✿✿✿

root
✿✿✿✿✿

zone,
✿✿✿✿

with
✿✿✿✿✿✿✿

quantiles
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿

decreased over wide areas of the Australian inland by up to 5 %. Hard to pinpoint the

exact mechanisms for this behaviour, it does highlight the potential implications of updating thick soil layers.
✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿✿

result

✿✿

of
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿✿

being
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿

negative
✿✿✿✿

for
✿✿✿✿✿

inland
✿✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿

which
✿✿✿✿

has
✿

a
✿✿✿✿✿

large
✿✿✿✿✿

effect
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

allowing
✿✿✿✿

large
✿✿✿✿✿✿✿✿

updates.5

✿✿✿✿

Also,
✿✿✿✿✿

since
✿✿✿✿✿✿✿

absolute
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

increases
✿✿✿✿

with
✿✿✿✿✿

layer
✿✿✿✿

depth
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

layer
✿✿✿✿✿✿✿✿✿

thickness,
✿✿✿✿✿✿✿

removal
✿✿

of
✿✿✿✿✿

water
✿✿

in
✿✿✿

low
✿✿✿✿✿✿

layers

✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿✿✿

drainage
✿✿

in
✿✿✿

the
✿✿✿✿✿

above
✿✿✿✿✿✿

layers,
✿✿✿✿✿✿✿✿

resulting
✿✿

in
✿✿✿✿

these
✿✿✿

to
✿✿✿

dry
✿✿✿

out.
✿✿✿✿✿

This
✿

is
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿

visible
✿✿✿

for
✿✿✿✿✿

layers
✿✿✿✿

two
✿✿✿

and
✿✿✿✿✿

three,
✿✿✿✿✿✿

where

✿✿✿✿✿

inland
✿✿✿✿✿✿✿✿

Australia
✿✿

to
✿

a
✿✿✿

far
✿✿✿✿✿✿

greater
✿✿✿✿✿

extent
✿✿✿✿✿✿

shows
✿

a
✿✿✿✿✿✿✿

lowered
✿✿✿

10
✿✿

%
✿✿✿✿✿✿✿

quantile
✿✿

in
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

DA
✿

1
✿✿✿✿

and
✿✿✿

DA
✿✿

2.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿✿

layer
✿✿

a

✿✿✿✿

clear
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿

quantile
✿✿✿✿

shift
✿✿

is
✿✿✿✿✿

visible
✿✿

in
✿✿✿

the
✿✿✿✿

area
✿✿

of
✿✿✿✿✿

Lake
✿✿✿✿✿

Eyre.
✿✿✿

The
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿

map
✿✿

in
✿✿✿✿✿✿

Figure
✿

1
✿✿✿✿✿✿

shows
✿✿✿

this
✿✿

as
✿✿✿

the
✿✿✿✿

only
✿✿✿✿

area
✿✿✿✿

that

✿

is
✿✿✿✿✿✿✿✿

classified
✿✿

as
✿✿✿✿

bare
✿✿✿✿

soil,
✿✿✿✿✿✿✿✿

although
✿

it
✿✿

is
✿✿✿✿✿✿

mostly
✿

a
✿✿✿✿

salt
✿✿✿✿

plain
✿✿✿✿

with
✿✿✿✿✿

water
✿✿✿✿✿

levels
✿✿

of
✿✿✿

the
✿✿✿✿

lake
✿✿✿✿

itself
✿✿✿✿✿

being
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿

seasonal.
✿✿

A
✿✿✿✿✿✿✿

number10

✿✿

of
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

were
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

flagged,
✿✿✿✿✿✿✿

making
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿

a
✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿

climatology
✿✿✿✿✿✿✿✿✿✿

challenging.
✿

✿✿✿✿✿✿

Figures
✿✿✿

10
✿

-
✿✿

11
✿✿✿✿✿

focus
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿✿

of
✿✿

the
✿✿✿

10
✿✿

%
✿✿✿✿✿✿✿✿

quantile.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿✿

identified
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿✿

reflect

✿✿✿✿✿✿

changes
✿✿

at
✿✿✿✿✿

other
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿✿

levels. The complex nature of these shifts at throughout the entire CDFs is shown in Figure 12. The

continental average empirical cumulative distribution functions are plotted for the soil layers 1 - 6 for the open loop
✿✿✿✿✿✿✿✿

open-loop

run as well as DA1 and DA2. As shown for the 10 % quantile, lower
✿✿

for
✿✿✿

DA
✿✿

1
✿✿✿✿

and
✿✿✿

DA
✿✿

2.
✿✿✿✿✿✿

Lower
✿

quantiles are increased15

on average through data assimilation, whereas a small decrease in the upper quantile values can be observed resulting in an

overall
✿✿✿✿✿✿✿

although
✿✿

at
✿✿✿✿✿✿✿✿✿

extremely
✿✿✿

low
✿✿✿✿✿✿

levels
✿✿✿

the
✿✿✿✿✿✿✿✿

behaviour
✿✿✿✿✿

tends
✿✿✿

to
✿✿✿✿✿✿✿

reverses
✿✿✿✿✿

again.
✿✿✿✿✿

Here
✿✿✿

the
✿✿✿✿✿✿✿✿

quantiles
✿✿✿✿✿✿✿

decrease
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

compared

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

open-loop.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿✿✿✿

quantiles
✿✿

a
✿✿✿✿✿

small
✿✿✿✿✿✿✿

decrease
✿✿✿✿

can
✿✿✿✿

also
✿✿

be
✿✿✿✿✿✿✿✿

observed.
✿✿✿✿

The
✿✿✿✿✿

point
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

decrease
✿✿✿✿

turns
✿✿✿✿

into
✿✿✿

an

✿✿✿✿✿✿✿

increase,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

having
✿✿

an
✿✿✿

on
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿

neutral
✿✿✿✿✿✿✿

impact,
✿✿

is
✿✿✿✿✿✿✿

roughly
✿✿✿

the
✿✿

50
✿✿✿

%
✿✿✿✿✿✿✿

quantile
✿✿✿

for
✿✿✿

the
✿✿✿

top
✿✿✿✿✿

layer.
✿✿✿✿

For
✿✿✿

the

✿✿✿✿✿✿✿✿✿

subsequent
✿✿✿✿✿

layers
✿✿✿✿

this
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿

40
✿✿

%
✿✿✿✿✿✿✿✿

quantile.
✿✿✿✿✿✿✿✿

Although
✿✿✿✿

DA
✿✿

0
✿✿✿✿✿✿✿

resulted
✿✿

in
✿✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿

with
✿✿✿

the20

✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿

it
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿

disregarded
✿✿

at
✿✿✿

this
✿✿✿✿✿

point
✿✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

impact
✿✿✿✿

was
✿✿✿

too
✿✿✿✿✿✿✿✿

disruptive
✿✿✿

by
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿

drying
✿✿✿

out

✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿

across
✿✿✿✿✿

many
✿✿✿✿✿✿

layers.
✿

✿✿✿

For
✿✿✿

DA
✿✿

1
✿✿✿

and
✿✿✿

DA
✿✿

2,
✿✿✿

the
✿✿✿✿✿✿✿✿

interplay
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿✿✿

changes
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

various
✿✿✿✿✿

levels
✿✿✿✿✿✿

results
✿✿

in
✿✿

an
✿✿✿✿✿✿✿

average decrease of the standard

deviation of the soil moisture analysis. As stated,
✿

,
✿✿✿✿✿✿

which
✿✿

to
✿

a
✿✿✿✿✿✿✿

certain
✿✿✿✿✿

extent
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿✿✿

attributed
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

anomaly
✿✿✿✿✿✿✿✿✿

rescaling.

✿✿✿✿

First
✿✿

of
✿✿✿

all,
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿

low
✿✿✿✿✿✿

sample
✿✿✿✿✿✿

count
✿✿✿

any
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

quantile-mapping
✿✿✿✿✿✿✿✿

procedure
✿✿✿✿✿

tends
✿✿

to
✿✿✿

be
✿

a
✿✿✿✿✿✿✿✿

challenge
✿✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿✿✿✿

extremes
✿✿✿

of
✿✿✿

the25

✿✿✿✿✿✿✿✿✿✿

distributions.
✿✿✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿

the
✿✿✿✿

exact
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

error
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

observation
✿✿

is
✿✿✿✿✿✿✿✿

unknown
✿✿✿

and
✿✿✿✿✿✿✿✿

although
✿✿✿✿✿✿✿

expected
✿✿✿

to
✿✿

be
✿✿✿✿

zero
✿✿✿

on

✿✿✿✿✿✿✿

average,
✿✿✿✿

with
✿

a
✿✿✿✿✿

small
✿✿✿✿✿✿

sample
✿✿✿✿

size
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿

might
✿✿

on
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿

deviate
✿✿✿✿✿

from
✿✿✿✿

zero,
✿✿✿✿✿✿✿✿

affecting
✿✿✿

the
✿✿✿✿✿✿✿✿

rescaling,
✿✿✿✿✿

since
✿✿✿

the

✿✿✿

true
✿✿✿✿✿

limits
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

anomaly
✿✿✿✿✿✿

CDFs
✿✿✿

are
✿✿✿✿✿✿✿✿

unknown.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

many
✿✿✿✿✿

other
✿✿✿✿✿✿

reasons
✿✿✿✿

will
✿✿✿✿✿✿✿

equally
✿✿✿✿

play
✿

a
✿✿✿✿

role
✿✿✿✿

and
✿✿

as
✿✿

it

✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿

shown,
✿✿✿✿✿✿✿✿

increment
✿✿✿✿

bias
✿✿✿✿

and
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿

are
✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿✿✿

geographic
✿✿✿✿✿✿

areas.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

disentanglement
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿

desired
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿✿✿✿✿✿✿✿

enhancements
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

erroneously
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿✿✿

effects
✿✿✿✿✿✿✿

remains
✿✿

a
✿✿✿✿✿✿✿✿

challenge.
✿✿✿✿✿✿

There
✿✿

is
✿✿✿

still
✿✿✿

no
✿✿✿✿✿✿

perfect
✿✿✿✿✿✿✿✿

approach30

✿✿

to
✿✿✿✿✿✿✿

rescaling
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

to
✿✿✿✿✿✿

match
✿✿✿

the
✿✿✿✿✿

model
✿✿

or
✿✿✿

to
✿✿✿✿✿✿✿✿✿

calibrating
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

model.
✿✿✿✿✿✿✿✿

Looking
✿✿

at
✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿

CDF

✿✿✿✿✿✿

changes
✿✿✿✿✿✿✿

induced
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

can
✿✿✿

be
✿✿✿

part
✿✿

of
✿✿✿✿✿✿✿✿✿

evaluating
✿✿✿✿✿

these
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

final
✿✿✿✿✿✿✿✿✿✿

application
✿✿

of
✿✿✿✿✿✿✿

analysis
✿✿✿✿

data

✿✿

to
✿✿

be
✿✿✿✿

kept
✿✿

in
✿✿✿✿✿

mind.
✿

✿✿✿✿✿✿

Finally,
✿✿

as
✿✿✿

an
✿✿✿✿✿✿✿

example
✿

we want to place these findings
✿✿✿✿✿✿

quantile
✿✿✿✿✿✿✿✿✿

behaviour
✿

within the context of possible applications of

such datasets, e.g. hydrological monitoring systems , which directly make use of grid cell quantiles and empirical CDFs.35
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Draper and Reichle (2015) have shown that data assimilation is able to correct modelled soil moisture also at longer time

intervals from sub-seasonal to seasonal scale. The correction of the short term behaviour
✿✿✿✿✿✿✿✿

short-term
✿✿✿✿✿✿✿✿✿

behaviour
✿✿✿✿

alone, i.e. daily,

of soil moisture and all connected fluxes is of importance for e.g. land-atmosphere feedbacks, but would have an negligible

✿✿✿✿✿

hourly
✿✿✿

or
✿✿✿✿✿

daily,
✿✿✿

has
✿✿

a
✿✿✿✿✿

minor
✿

effect when analysing phenomena that spread across larger spatial scales and time intervals.

These long term effects however, might be the result of the accumulated small updates during the assimilation run instead5

of
✿

,
✿✿✿✿✿✿✿

although
✿

large increments, that would drastically change the soil moisture regime.Further, when classifying an event
✿✿✿

e.g.

✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

during
✿✿

a
✿✿✿✿✿

storm,
✿✿✿✿

can
✿✿✿✿

have
✿✿✿

an
✿✿✿✿✿

effect
✿✿

on
✿✿✿

the
✿✿✿✿

start
✿✿✿✿

and
✿✿✿

end
✿✿✿✿✿

point
✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿

phenomenon, such

as a drought
✿

.
✿✿✿✿✿

When
✿✿✿✿✿✿✿✿✿✿

classifying
✿✿✿✿

such
✿✿✿

an
✿✿✿✿✿

event defined at a specific quantile level, there will be a twofold impact from the

assimilation, namely the change in soil moisture itself
✿

:
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

quantile
✿✿

of
✿✿✿✿✿✿✿

interest as well as the shifted quantile.

The latter is expected to have the larger effect on such event statistics, since the soil moisture analysis nominally will fluctuate10

around the open loop simulations and not show a consistent bias. We
✿✿✿✿✿

change
✿✿✿

in
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

itself.
✿✿✿✿✿

Here
✿✿✿

we
✿

highlight a

sample drought
✿✿✿

dry
✿

event on the East
✿✿✿✿

east coast to show to which extent it’s
✿✿✿

what
✿✿✿✿✿✿

extent
✿✿✿

its classification changes through

the assimilation impact. Figure 13 therefore shows root zone
✿✿✿✿✿

shows
✿✿✿✿✿✿✿✿

root-zone
✿

soil moisture at or below the 10 % quantile

level for the open loop
✿✿✿✿✿✿✿✿

open-loop
✿

run as well as the data assimilation experiment DA 2 for soil moisture conditions in early

2010, thus at the beginning of the assimilation period. Due to the higher 10 % quantile for DA 2, as seen in Figure 11 and15

12, the spatial extent of the cluster for DA 2 is reduced,
✿

but the spatial patterns of soil moisture remain largely the same. At

some time periods, not shown here, a higher degree of noise is visible
✿✿✿✿✿✿✿✿

noticeable
✿

within the assimilation dataset. This is likely

due to the fact that non-spatially correlated noise was applied to the meteorological forcings, resulting in a heterogeneous

background error field for grid pointseven when e. g. being affected by the same large scale precipitation event. An alternative

to
✿

.
✿✿✿

We
✿✿✿

thus
✿✿✿✿✿✿✿✿

conclude
✿✿✿

that
✿✿✿✿✿✿✿

despite
✿✿✿✿✿

having
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

in
✿✿✿

1D, spatially correlated noise
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

recommended
✿✿✿

for
✿✿✿✿

such20

✿✿✿✿✿✿✿✿✿✿

applications.
✿✿✿

An
✿✿✿✿✿✿✿✿✿

alternative
✿

would be to further increase the ensemble sizefrom 32 to a significantly higher number, which

however will also require larger
✿

,
✿✿✿

but
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

expense
✿✿✿

of
✿✿✿✿✿

higher
✿

computational resources. Additionally, when trying to extract

meaningful statistics on the occurrence
✿

of
✿

events, such as droughts, by extracting these as clusters of grid cells over the spatial

and temporal domain, it might be especially
✿✿✿✿✿✿✿✿✿✿

particularly important to clean up the dataset in the case of data assimilation using

simple filter algorithms, such as applied by Herrera-Estrada et al. (2017).
✿✿

We
✿✿✿✿✿

want
✿✿

to
✿✿✿✿✿✿✿✿

highlight
✿✿✿

the
✿✿✿

fact
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

shown
✿✿✿✿✿

event25

✿

is
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

demonstration
✿✿✿✿✿✿✿

purpose
✿✿✿✿

and
✿✿✿

not
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿

any
✿✿✿✿✿✿

major
✿✿✿✿✿✿✿

drought
✿✿✿✿✿

event,
✿✿✿✿✿✿

which
✿✿✿✿✿

would
✿✿✿✿✿✿

require
✿✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿✿

in-depth
✿✿✿✿✿✿✿

analysis
✿✿✿✿

and

✿✿✿✿✿✿✿✿

references
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

data
✿✿✿✿✿✿✿

sources.
✿

5 Discussion and Conclusion

The Community Land Model was set up for the Australian continent and we
✿✿✿✿✿✿

coupled
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿✿✿✿✿✿✿

Microwave
✿✿✿✿✿✿✿✿

Emission

✿✿✿✿✿✿

Model.
✿✿✿

We
✿

have substituted the surface datasets with higher resolution and more recent data. Further
✿✿✿✿✿✿✿✿✿✿

Additionally, we have30

replaced the offline forcing data with
✿✿✿✿✿✿

forcings
✿✿✿✿

with
✿✿✿

the
✿

ERA-Interim reanalysisdata. The assimilation over 6 full years, from

2010 – 2015, of SMOS brightness temperatures
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

anomalies
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

LETKF improved soil moisture simulations

when compared to in-situ measurements in the order of
✿✿

up
✿✿

to 11 % , which is similar to the impact in other studies. The CLM
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model remained uncalibrated, as this is tremendous task for large areas and calibration towards soil moisture simulations is

difficult for the lack of in-situ measurements, but given the results, we are confident that this specific CLM setup
✿✿

for
✿✿✿

top
✿✿✿✿

soil

✿✿✿✿✿✿✿

moisture.
✿✿✿✿✿

Both
✿✿✿

the
✿✿✿✿

CLM
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

model
✿✿✿✿

were
✿✿✿

not
✿✿✿✿✿✿✿✿✿

calibrated,
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

implying
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿✿

system could be applied to larger areasor at global scale.CLM model physics alone did propagate assimilation effects into the

root zone when restricting assimilation to
✿✿✿✿

other
✿✿✿✿✿

areas.5

✿✿

In
✿✿✿✿✿

detail,
✿✿✿✿

three
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

were
✿✿✿✿✿✿

carried
✿✿✿

out:
✿✿✿✿✿✿

Within
✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿✿✿✿✿

experiment the top three layers , improving the

correlation with in-situ measurements both for the root zone and surface soil moisture . However, the improvements were largest

when directly updating both surface
✿✿✿✿

were
✿✿✿✿✿✿✿

updated,
✿✿✿✿✿✿

which
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿

depth
✿✿✿✿✿✿

where
✿✿✿✿✿

SMOS
✿✿

is
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿✿✿

changes

✿✿

in
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

and
✿✿✿

top
✿✿✿✿✿

layer
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

are
✿✿✿✿✿✿✿✿

available.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

with
✿✿✿

top
✿✿✿✿✿

layer
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿✿✿

measurements10

✿✿✿✿✿✿✿✿

increased
✿✿

by
✿✿

5
✿✿✿

%,
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

increased
✿✿✿

by
✿✿

4
✿✿✿

%.
✿✿✿✿✿✿

Within
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿

both
✿✿✿

top
✿

soil moisture and root

zone soil moisture.
✿✿

the
✿✿✿✿

root
✿✿✿✿

zone
✿✿✿✿

were
✿✿✿✿✿✿✿✿

updated,
✿✿✿✿✿✿✿

resulting
✿✿

in
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

of
✿✿✿

11
✿✿

%
✿✿✿

and
✿✿

7
✿✿

%
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿✿✿✿✿

CLM

✿

is
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿✿

translate
✿✿✿

top
✿✿✿✿

layer
✿✿✿✿✿✿✿

updates
✿✿✿✿

into
✿✿✿✿✿✿

deeper
✿✿✿✿

layer
✿✿✿✿✿

soils.
✿✿✿✿✿✿✿

Greater
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

achieved
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

additionally

✿✿✿✿✿✿✿

updating
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿✿

directly.
✿✿✿

For
✿✿✿✿✿

these
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿

soil
✿✿✿✿✿✿

texture
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿

were
✿✿✿✿✿✿✿

reduced
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

layer
✿✿✿✿✿✿

depth.

✿✿✿✿

With
✿

CLM layer thickness greatly increases with depth which translates into identical increments in relative soil moisture15

being very different in
✿✿✿✿✿

vastly
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

with
✿✿✿✿✿

depth
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿

soil
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿✿

across
✿✿

all
✿✿✿✿✿

layers
✿✿✿✿✿

result
✿✿

in
✿✿✿✿✿

large
✿✿✿✿

deep
✿✿✿✿✿

layer

✿✿✿✿✿✿

updates
✿✿

in
✿

terms of absolute soil moisture. To thus restrict too large updates within the root zone we scaled the soil texture

perturbations. The scaling factor for each layer was based on the ratio between layer thickness and the layer thickness of the top

two layers, corresponding to the assumed depth were SMOS is sensitive, namely ca. 5 centimetres.
✿✿✿

This
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿

in
✿✿

a

✿✿✿✿

third
✿✿✿✿✿✿✿✿✿✿

experiment,
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

with
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

was
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿

first
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿✿✿✿

namely
✿✿✿

11
✿✿

%20

✿✿✿

and
✿

8
✿✿✿

%
✿✿✿

for
✿✿✿

top
✿✿✿

and
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

coincides
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

findings
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kumar et al. (2009),
✿✿✿✿

who
✿✿✿✿✿✿

report

✿✿✿

that
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

profit
✿✿✿✿✿

more
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

exaggerated
✿✿✿✿✿✿✿✿

coupling
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

top-layer
✿✿✿

and
✿✿✿✿✿✿✿✿✿

root-zone

✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿

than
✿✿✿✿

vice
✿✿✿✿✿

versa.
✿✿✿✿✿✿

Within
✿✿✿

this
✿✿✿✿✿✿✿

context
✿✿✿

we
✿✿✿✿✿✿✿

interpret
✿✿✿

the
✿✿✿✿✿✿

overly
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿✿✿

updates
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

third
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

as

✿✿

an
✿✿✿✿✿✿✿✿✿

artificially
✿✿✿✿✿✿✿✿✿✿

exaggerated
✿✿✿✿✿✿✿✿

coupling.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kumar et al. (2009) also
✿✿✿✿✿

state
✿✿✿✿

that
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

other
✿✿✿✿

land
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

models,
✿✿✿✿✿

CLM

✿✿✿✿✿✿

actually
✿✿✿✿✿✿

shows
✿✿

an
✿✿✿✿✿✿

overall
✿✿✿✿✿

lower
✿✿✿✿✿✿✿

coupling
✿✿✿✿✿✿✿✿

strength.
✿✿✿✿✿✿

Larger
✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

in
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

might25

✿✿

be
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

identical
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

setup
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

different
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

model.

Mean increments showed distinctive patterns with slight positive biases up to 1 % soil moisture in areas covered by

vegetation. Although this might be due to a problem with the uncalibrated forward operator or with the fixed high vegetationclass

LAI values within the forward operator, a further possible cause is
✿✿✿✿✿

denser
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿

and
✿✿✿✿✿✿✿

neutral
✿✿

to
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿

impact30

✿✿

for
✿✿✿✿✿

areas
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿

covered
✿✿✿

by
✿✿✿✿✿✿

sparse
✿✿✿✿✿✿✿✿✿

vegetation.
✿✿

A
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

cause
✿✿✿✿✿✿

could
✿✿

be
✿

the use of climatological LAI datafor CLM. The

use of such data is common practise ,
✿✿✿✿✿✿

which
✿

is
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

practice within current land data assimilation systems. However, due

✿✿✿

Due
✿

to the abundance of
✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

available
✿

vegetation data we
✿✿✿✿✿

would
✿✿✿✿

like
✿✿

to encourage future studies to look into possi-

ble improvements by using non-climatological LAI. In fact, the climatological LAI data is often aggregated from monthly or

sub-monthly LAI values and could be easily replaced with the non-aggregated data
✿

,
✿✿✿✿✿

where
✿✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿✿✿✿✿

permits. Climatolog-35
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ical LAI might especially pose a problem for the monitoring of extreme events, such as droughts, since these would likely

✿✿✿

tend
✿✿✿

to result in lower LAI values again influencing the forward simulations. With climatological LAI data these feedback

processes will not be modelled. The potential of the direct
✿✿✿✿✿✿

Further,
✿✿

it
✿✿✿✿✿

might
✿✿✿✿

also
✿✿

be
✿✿✿✿✿✿

useful
✿✿

to
✿✿✿

add
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿

to
✿✿✿

the
✿✿✿✿

LAI
✿✿✿✿

data

✿✿

in
✿✿✿✿

order
✿✿

to
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿

simulate
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿

It
✿✿

is
✿✿✿✿✿✿

known
✿✿✿

that
✿✿✿✿✿✿✿✿

remotely
✿✿✿✿✿

sensed
✿✿✿✿

LAI
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿✿✿

erroneous.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

McColl et al. (2011) for
✿✿✿✿✿✿✿

example
✿✿✿✿✿

show
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿

basin
✿✿✿✿

that
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

MOD15A2
✿✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿✿

too
✿✿✿✿

high
✿✿✿

for
✿✿✿✿✿✿

lightly5

✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿

areas
✿✿✿✿

and
✿✿✿

too
✿✿✿✿

low
✿✿✿

for
✿✿✿✿✿✿✿

densely
✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿✿✿

areas.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

coincides
✿✿✿✿✿

well
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

contradicting
✿✿✿✿✿✿✿✿

patterns
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

study

✿✿✿✿

with
✿✿✿

the
✿✿✿

the
✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿✿✿✿

showing
✿✿

a
✿✿✿✿✿

slight
✿✿✿✿✿✿

positive
✿✿✿✿

bias
✿✿✿

for
✿✿✿✿✿✿✿

densely
✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿

areas
✿✿✿✿

and
✿✿✿✿

vice
✿✿✿✿✿

versa.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

McColl et al. (2011) further

✿✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿

quasi
✿✿✿✿✿✿✿✿

gaussian
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿

the
✿✿✿

LAI
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

with
✿

a
✿✿✿✿

bias
✿✿

of
✿✿✿✿✿

-0.82
✿✿✿

and
✿✿

a
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿✿✿

0.82.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿

of
✿✿✿✿✿✿

SMOS
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

retrievals
✿✿

on
✿✿✿✿✿✿✿✿

landscape
✿✿✿✿✿✿✿✿

features,
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿

vegetation,
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿

basin

✿✿✿

was
✿✿✿✿

also
✿✿✿✿✿

shown
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

Su et al. (2013).
✿✿✿✿

The
✿✿✿✿✿✿

ability
✿✿

of
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿✿

accounting
✿✿✿

for
✿✿✿✿

these
✿✿✿✿✿✿

effects
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿

to10

✿✿✿✿

avoid
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlations
✿✿✿✿

with
✿✿✿✿✿✿✿✿

ancillary
✿✿✿✿

data
✿✿✿✿

used
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

retrieval
✿✿

is
✿✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

advantages
✿✿

of
✿✿✿

the
✿

brightness

temperature assimilation , allowing for the consistent use of data across model and forward simulations, should be made
✿✿✿✿✿

when

✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿✿✿

retrievals.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Draper et al. (2009b) have
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿

over
✿✿✿✿✿✿✿✿

Australia
✿✿✿✿✿✿

which

✿✿✿✿✿✿✿✿

correlates
✿✿✿✿

well
✿✿✿✿

with
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿✿

The
✿✿✿✿✿✿✿

seasonal
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

patterns
✿✿✿✿

also
✿✿✿✿

well
✿✿✿✿✿✿

reflect
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

within
✿✿✿✿

this

✿✿✿✿✿

study,
✿✿✿✿

most
✿✿✿✿✿✿✿

notably
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿

tropical
✿✿✿✿✿✿

regions
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿

in
✿✿✿

the
✿✿✿✿

east.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Draper et al. (2009b) argue
✿✿✿✿

that
✿✿✿✿✿✿✿✿

although
✿✿✿✿✿✿✿✿

vegetated15

✿✿✿✿

areas
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿✿✿✿

higher
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture,
✿✿✿

the
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿

might
✿✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

contaminated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿

signal.

✿✿✿✿✿

Areas
✿✿

of
✿✿✿✿✿✿

denser
✿✿✿✿✿✿✿✿

vegetation
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿✿✿✿✿✿✿

Seasonal
✿✿✿✿✿✿✿✿✿

variations
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

increments
✿✿✿

are
✿✿✿✿✿✿

clearly

✿✿✿✿✿

linked
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

patterns,
✿✿✿✿

and
✿✿✿✿

thus
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿

growing
✿✿✿✿✿✿✿

season.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

multiplicative
✿✿✿✿✿✿✿✿✿✿✿

precipitation

✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿✿

applied
✿✿✿✿

here
✿✿✿✿✿

have
✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations20

✿✿✿✿✿

across
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

geographic
✿✿✿✿✿

areas.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Renzullo et al. (2014) applied
✿✿

an
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿

multiplicative
✿✿✿✿✿

error
✿✿

of
✿✿

60
✿✿

%
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿✿

closely

✿✿✿✿✿✿✿

matching
✿✿✿

the
✿✿✿✿

50%
✿✿✿✿✿✿✿

applied
✿✿

in
✿✿✿

this
✿✿✿✿✿

study,
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿

BAWAP
✿✿✿✿✿✿✿✿

rain-gauge
✿✿✿✿✿

based
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

data
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Jones et al. (2009).

✿✿✿✿✿

Strong
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

variations
✿✿✿✿

exist
✿✿✿

for
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

estimates,
✿✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿

influenced
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿

locally
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿✿

gauge

✿✿✿✿✿✿✿

stations.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

ERA-Interim
✿✿✿✿✿✿✿

analysis
✿✿✿✿

data
✿✿✿✿

used
✿✿✿✿✿

within
✿✿✿✿

this
✿✿✿✿✿

study,
✿✿✿✿✿✿✿✿

produced
✿✿

by
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿

a
✿✿✿✿✿✿✿✿

multitude
✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿

satellite
✿✿

as
✿✿✿✿

well
✿✿

as

✿✿✿✿✿

in-situ
✿✿✿✿

data,
✿✿✿✿✿✿✿

equally
✿✿✿

has
✿✿✿✿✿

errors
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿✿✿✿✿

geographic
✿✿✿✿✿

areas.
✿✿✿✿✿✿✿✿✿

Estimates
✿✿

on
✿✿✿✿✿

these
✿✿✿

are
✿✿✿✿✿✿✿

however
✿✿✿

not
✿✿✿✿✿✿✿✿

provided
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

product.
✿✿✿✿

The25

✿✿✿✿✿✿

updated
✿✿✿✿✿✿

ERA-5
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

data,
✿✿✿✿✿✿

which
✿✿✿

will
✿✿✿✿✿✿✿

include
✿✿✿✿✿✿✿✿✿✿

information
✿✿

on
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean
✿✿✿

and
✿✿✿✿✿✿✿

spread,
✿✿✿✿

could
✿✿✿✿✿✿✿✿

therefore
✿✿✿

be
✿

a
✿✿✿✿✿✿✿✿✿

significant

✿✿✿

step
✿✿✿✿✿✿✿

forward
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

characterising
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error
✿✿✿✿✿✿✿

induced
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿

forcings
✿✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿✿✿✿

global,
✿✿✿✿

non
✿✿✿✿✿✿

locally

✿✿✿✿✿✿✿✿

optimised,
✿✿✿✿✿

data.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

López López et al. (2016) have
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿✿✿

AMSR-E
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿

data
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿

basin
✿✿✿✿✿

using

✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

data
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿

locally
✿✿✿✿✿✿✿✿

optimised
✿✿✿✿✿✿✿

forcing
✿✿✿✿

data.
✿✿✿✿✿

Since
✿✿✿

the
✿✿✿✿

latter
✿✿✿✿✿✿✿✿

increases
✿✿✿

the
✿✿✿✿✿✿✿✿

open-loop
✿✿✿✿✿✿✿✿

accuracy,
✿✿✿

the
✿✿✿✿✿✿✿

positive

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

effect
✿✿✿✿

here
✿

is
✿✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿✿

reduced.30

✿✿✿✿✿

Within
✿✿✿

the
✿✿✿✿✿✿✿

broader
✿✿✿✿✿✿

context
✿✿

of
✿✿✿✿✿✿✿✿✿

Australian
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

analysis,
✿✿

a
✿✿✿✿✿

study
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿

output
✿✿✿✿

from
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿

models

✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿

products
✿✿✿

to
✿✿✿✿✿

in-situ
✿✿✿✿

data
✿✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Holgate et al., 2016) showed
✿✿✿

that
✿✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿✿✿✿✿✿

favourable

✿✿✿✿✿

across
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

sites,
✿✿✿✿✿

except
✿✿✿

for
✿✿✿

one
✿✿✿✿

with
✿✿✿✿✿

dense
✿✿✿✿✿✿✿

tropical
✿✿✿✿✿✿✿✿✿

vegetation.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿

the
✿✿✿✿✿

likely
✿✿✿✿✿✿✿✿✿

advantage
✿✿

of
✿✿✿✿

their
✿✿✿✿✿✿

deeper

✿✿✿✿✿✿✿✿✿

penetration
✿✿✿✿✿✿✿✿✿

capability.
✿✿✿

The
✿✿✿✿✿

same
✿✿✿✿✿

study
✿✿✿✿

also
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

ascending
✿✿✿✿✿

orbits
✿✿✿✿✿✿✿

perform
✿✿✿✿

best.
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿

findings
✿✿✿✿✿

relate
✿✿

to35
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✿✿✿

our
✿✿✿✿✿

study,
✿✿✿✿✿✿

where
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

were
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿✿

improved
✿✿✿✿✿

across
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

sites
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

unscaled
✿✿✿✿✿✿✿✿✿

ascending

✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿

acquisitions
✿✿✿✿

both
✿✿✿✿✿✿✿

showed
✿

a
✿✿✿✿✿✿✿

smaller
✿✿✿✿

bias
✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

and
✿✿✿✿

had
✿

a
✿✿✿✿✿

larger
✿✿✿✿✿

effect
✿✿✿

on
✿✿✿

the

✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Su et al. (2013) report
✿✿✿✿

that
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

of
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

to
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements

✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿

basin
✿✿✿✿✿✿✿

showed
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿

orbits
✿✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

better.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Holgate et al., 2016) also
✿✿✿✿✿

show
✿✿✿✿

that

✿✿✿✿✿✿✿✿✿

similarities
✿✿✿

are
✿✿✿✿✿✿

largest
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

group
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

and
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿

group
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

model
✿✿✿✿✿✿✿

outputs,
✿✿✿✿✿

with5

✿✿

on
✿✿✿✿✿✿✿

average
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

models
✿✿✿✿

and
✿✿✿✿✿✿✿✿

retrievals.
✿✿✿✿

This
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

motivates
✿✿

to
✿✿✿✿✿✿✿✿

combine
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿✿

model
✿✿✿✿✿✿

output

✿✿

in
✿✿

an
✿✿✿✿✿✿✿

optimal
✿✿✿✿

way
✿✿✿✿✿✿✿

through
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

specifically
✿✿✿

for
✿✿✿✿✿✿✿✿

Australia,
✿✿

as
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

here.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kumar et al., 2017) compare
✿✿✿✿

soil

✿✿✿✿✿✿✿

moisture
✿✿✿✿

from
✿✿✿✿✿✿

simple
✿✿✿✿✿✿

model
✿✿✿✿✿

output
✿✿

to
✿✿✿✿✿✿✿

complex
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿✿

arguing
✿✿✿✿

that
✿✿

the
✿✿✿✿✿

latter
✿✿✿✿✿✿✿

perform
✿✿✿✿✿

better
✿✿✿✿✿

within
✿✿✿✿✿✿✿✿✿

Australia.

✿✿✿

The
✿✿✿✿✿

CLM
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿

model
✿✿

is
✿

a
✿✿✿✿

fully
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

based
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

scheme
✿✿✿✿✿✿

solving
✿✿✿

the
✿✿✿✿✿✿

energy
✿✿✿

and
✿✿✿✿

mass
✿✿✿✿✿✿✿

balance
✿✿✿

and
✿✿✿✿✿✿✿

provides
✿✿✿

all

✿✿✿

data
✿✿✿✿✿✿✿✿

required
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures,
✿✿✿✿✿✿✿✿

allowing
✿✿✿

the full use of . Within assimilation systems10

where the forward operator is calibrated, it is also likely that the problem of equifinality for
✿✿✿✿✿✿

L-band
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿✿✿✿✿✿✿

observations.

✿✿✿✿

This
✿✿✿✿✿✿

enables
✿✿✿

the
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

alignment
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

is
✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿✿✿✿

achieve

✿

a
✿✿✿✿

high
✿✿✿✿✿✿✿✿

accuracy
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿✿✿

Here,
✿✿✿

we
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

simplified
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

by
✿✿✿✿✿✿✿

merging
✿✿✿

all
✿✿✿✿✿✿✿✿✿

ascending
✿✿

or

✿✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿

overpasses
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

computing
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

at
✿✿✿

one
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿

time.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿

offset
✿✿

is
✿✿✿✿✿✿✿

thereby15

✿✿✿✿✿✿✿✿

maximum
✿✿

3
✿✿✿✿✿✿

hours,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿

within
✿✿✿✿

the
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿

data.
✿✿✿

No
✿✿✿✿✿✿✿✿

artefacts
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

identified
✿✿✿✿✿✿✿✿

although
✿✿✿

we

✿✿✿✿✿✿✿✿

encourage
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿

precise
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

alignment
✿✿✿✿✿

within
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

systems,
✿✿✿

as
✿

is
✿✿✿✿✿✿

mostly
✿✿✿✿✿

done.
✿✿✿✿

Soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿

only

✿✿✿✿

valid
✿✿✿

for
✿✿✿

one
✿✿✿✿✿✿✿

specific
✿✿✿✿

time
✿✿✿✿✿✿✿

instance
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

inter-daily
✿✿✿✿✿✿✿

variation
✿✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

considerable
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

events.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

into
✿

a
✿✿✿✿✿✿

model
✿✿✿✿

thus
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

advantageous,
✿✿✿✿✿

since
✿

it
✿✿✿✿✿✿

allows
✿✿

for
✿✿✿✿✿

more
✿✿✿✿✿✿

correct
✿✿✿✿

daily
✿✿✿✿✿✿✿✿

estimates
✿✿✿

by
✿✿✿✿✿✿✿✿

averaging

✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

time
✿✿✿✿✿

steps,
✿✿✿✿

here
✿✿

30
✿✿✿✿✿✿✿✿

minutes.20

✿✿✿✿

CLM
✿✿✿✿

uses
✿✿✿✿✿

fixed
✿✿✿

soil
✿✿✿✿✿✿✿✿✿✿

layer-depths
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

likely the forward operator parameters could thereby be reduced.
✿✿✿

most
✿✿✿✿✿✿✿✿✿

beneficial

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

structure
✿✿

for
✿✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

effects
✿✿✿✿✿✿✿

spatially,
✿✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿

state
✿✿✿✿✿✿✿

variable

✿✿✿✿

does
✿✿✿

not
✿✿✿✿

vary
✿✿✿✿✿✿✿✿

depending
✿✿✿

on
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿✿

non-uniform
✿✿✿✿

layer
✿✿✿✿✿✿

depths,
✿✿

as
✿✿

is
✿✿✿

the
✿✿✿✿

case
✿✿✿✿

with
✿✿✿✿

some
✿✿✿✿✿

other
✿✿✿✿

land
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

models.
✿✿✿

The
✿✿✿✿✿✿✿

validity

✿✿

of
✿✿✿✿✿✿✿

updating
✿✿✿✿✿

very
✿✿✿✿

deep
✿✿✿✿✿✿

layers
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

is
✿✿✿✿✿✿✿

however
✿✿✿✿✿✿✿✿✿✿✿✿

questionable.
✿✿✿✿✿✿✿✿

Therefore
✿✿✿✿✿

joint25

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

schemes
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿

data
✿✿✿✿

from
✿✿✿✿✿✿✿✿

satellites
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿

GRACE
✿✿✿

are
✿✿✿✿✿✿✿✿✿

preferable,
✿✿

as
✿✿✿✿

was
✿✿✿✿

done
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tian et al. (2017).

Long term assimilation effects were analysed by estimating the cumulative distribution functions for each grid cell prior

to and after assimilation. On average, lower quantiles are shifted towards wetter conditions and higher quantiles are slightly

shifted to drier conditions, although the very high quantiles remained unchanged, overall resulting in a
✿✿✿✿✿✿✿

resulting
✿✿

in reduced30

analysis variability. This highlights the fact, that although in principle the assimilation experiment was set up using unbiased

observations, analysis biases with non-linear behaviour may still be introduced. An additional experiment using
✿✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿

patterns

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

quantiles
✿✿

do
✿✿✿✿✿✿✿✿

however
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿✿

levels.
✿✿✿

We
✿✿✿✿✿

have
✿✿✿✿✿✿

shown
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

exemplary
✿✿✿

for
✿✿✿

the
✿✿

10
✿✿✿

%

✿✿✿✿✿✿✿

quantile.
✿✿✿✿✿

Here,
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

using homogeneous soil texture perturbations across all layerswas carried out showing much

larger analysis biases ,
✿✿✿

the
✿✿✿✿✿✿✿✿

root-zone
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

showed
✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿

reduction compared to the open loop
✿✿✿✿✿✿✿✿✿

open-loop run at the35
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10 % quantile level.
✿✿✿✿✿✿✿

Patterns
✿✿✿✿✿✿

visible
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

increment
✿✿✿✿

bias
✿✿✿✿✿

were
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿✿✿

exaggerated, highlighting the problem of too large

updates within the root zone and the general sensitivity towards model perturbations.

The reduction of analysis variability by the assimilation might be partly attributed to the anomaly rescaling and to disentangle

wished for systematic enhancements from erroneously introduced analysis is a challenge. There is still not the one perfect5

approach to rescale the observations to mach the model or to calibrate the forward observation and looking at long term CDF

changes induced by the assimilation should be part of evaluating these different approaches, also keeping the final application

of the analysis data in mind.

Longer L-band time series are becoming available through the continuation of existing missions as well as new ones
✿✿✿✿✿✿✿✿✿✿

uncalibrated

✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

operator
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿

necessary
✿✿✿✿✿✿✿

rescaling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

might
✿✿

be
✿✿✿

one
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

cause
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿

analysis10

✿✿✿✿✿✿✿✿

variability
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

patterns.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

rescaling
✿✿

is
✿✿✿✿✿✿✿✿✿

especially
✿

a
✿✿✿✿✿✿✿✿✿

challenge
✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿

very
✿✿✿✿

low
✿✿

or
✿✿✿✿✿

very

✿✿✿✿

high
✿✿✿✿✿✿

values.
✿✿✿✿

The
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿

samples
✿✿✿✿✿✿

within
✿✿✿✿

these
✿✿✿✿✿✿✿

regions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

CDFs
✿✿

is
✿✿✿✿✿

small
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

contaminated
✿✿✿✿

with

✿✿✿✿✿

errors,
✿✿✿✿✿✿

which
✿✿✿✿✿

might
✿✿✿

not
✿✿✿

be
✿✿✿✿

zero
✿✿✿

on
✿✿✿✿✿✿✿

average.
✿✿

In
✿✿✿✿

this
✿✿✿✿

case
✿✿✿

the
✿✿✿✿

tails
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

will
✿✿✿

not
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿

true

✿✿✿✿✿✿✿✿

maximum
✿✿✿✿

and
✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿

values.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterization
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

operator
✿✿

is
✿✿✿✿✿✿✿✿

certainly
✿✿✿

not
✿✿✿✿✿✿✿

perfect.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿

linked
✿✿

to
✿✿✿✿✿✿✿✿✿✿

geographic
✿✿✿✿

areas
✿✿

or
✿✿✿✿✿✿✿

specific
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

classes, such as the Soil Moisture Active Passive15

Mission (SMAP, Entekhabi et al. (2010a)). This in the long run opens up more application possibilities, since soil moisture

datasets enhanced by assimilating will allow for the computation of more stable grid cell CDFs. This will be especially useful

within the context of hydrological
✿✿✿✿

areas
✿✿✿

of
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿

vegetation,
✿✿✿✿✿

could
✿✿✿✿✿

likely
✿✿

be
✿✿✿✿✿✿✿

reduced
✿✿✿

by
✿✿✿✿✿✿✿✿✿

calibrating
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿

model
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

at
✿

a
✿✿✿✿

grid
✿✿✿

cell
✿✿✿✿✿

level.
✿✿✿✿

This
✿✿✿✿✿✿✿

however
✿✿✿✿✿

comes
✿✿✿✿

with
✿✿✿

its
✿✿✿

own
✿✿✿✿✿✿✿✿✿

problems,
✿✿✿

for
✿✿✿✿✿✿✿

instance
✿

a
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿

reduction

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿

towards
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿

or
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

sets
✿✿✿✿✿✿✿✿

achieving
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿

result
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿✿

equifinality).20

✿✿✿✿✿✿✿✿✿✿✿

Hydrological monitoring systems, where it is important to identify the relative occurrence of certain soil moisture levels and

to monitor patterns both over space and time. Within this study we have shown that the impact on CDFs will have an effect on

the quantile based classification of a drought event and change the spatial extent of the affected area.

Especially for droughts these datasets are beneficial, since the assimilation can update the root zone soil moisture , which is of25

vital importance for plant growth and thus for monitoring agricultural drought. Many drought monitoring systemscurrently rely

on precipitation based indices, e. g. the Palmer Drought Severity Index (PSDI, Palmer (1965)), due to the high correlation
✿

,
✿✿✿

are

✿✿✿✿

more
✿✿✿✿

and
✿✿✿✿

more
✿✿✿✿✿

likely
✿✿

to
✿✿✿✿✿✿✿✿✿✿

incorporate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿

long
✿✿✿✿

data
✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿

becoming

✿✿✿✿✿✿✿✿

available.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Draper and Reichle (2015) have
✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

is
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿

modelled
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿

also
✿✿

at
✿✿✿✿✿✿

longer

✿✿✿✿

time
✿✿✿✿✿✿✿

intervals
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

sub-seasonal
✿✿

to
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿

scale
✿✿✿

and
✿✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

effect
✿✿✿

are
✿✿✿✿✿✿✿

reported
✿✿✿✿✿✿

across
✿✿✿✿✿

many30

✿✿✿✿✿✿

studies,
✿✿

as
✿✿✿✿

also
✿✿✿✿✿

shown
✿✿✿✿✿

here.
✿✿✿✿✿✿✿

Existing
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

systems,
✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿

US.
✿✿✿✿✿✿

drought
✿✿✿✿✿✿✿

monitor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Svoboda et al., 2002),

✿✿

the
✿✿✿✿✿✿✿

African
✿✿✿✿✿

Flood
✿✿✿✿

and
✿✿✿✿✿✿✿

Drought
✿✿✿✿✿✿✿

Monitor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sheffield et al., 2014),
✿✿✿

the
✿✿✿✿✿✿✿

German
✿✿✿✿✿✿✿

Drought
✿✿✿✿✿✿✿

Monitor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Samaniego et al., 2013) or
✿✿✿

the

✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿

Water
✿✿✿✿✿✿✿✿

Resource
✿✿✿✿✿✿✿✿✿✿

Assessment
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Van Dijk et al., 2011; Vaze et al., 2013) all
✿✿✿

use
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿

quantiles
✿✿

at
✿✿✿✿

grid
✿✿✿✿

cell

✿✿✿✿

level
✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterise
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

levels
✿✿

of
✿✿✿✿✿✿✿

severity
✿✿✿✿

and
✿✿✿✿✿✿✿

facilitate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿

of soil moisture with precipitation over longer

time spans. However, this correlation can be much smaller on small time spans and soil moisture is influenced by a multitude35
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of factors within
✿✿✿✿

levels
✿✿✿✿✿✿✿

between
✿✿✿✿

grid
✿✿✿✿

cells.
✿✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

induced
✿✿✿✿✿✿

quantile
✿✿✿✿✿✿✿

changes
✿✿✿✿

will
✿✿✿✿

have
✿✿

an
✿✿✿✿✿

effect
✿✿✿

on

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿

of
✿✿✿✿

areas
✿✿✿✿✿

above
✿✿

or
✿✿✿✿✿✿

below
✿

a
✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿

quantile
✿✿✿✿✿

level,
✿✿✿✿✿✿✿

although
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿

changes

✿✿✿

will
✿✿✿

be
✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿

and
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

system.
✿✿✿✿✿✿✿✿✿

Hopefully,
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

will
✿✿✿✿✿✿

benefit
✿✿✿

the
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿

and

✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿✿✿

future
✿✿✿✿✿✿

severe
✿✿✿✿✿✿

events,
✿✿✿✿

such
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Millennium
✿✿✿✿✿✿✿

drought
✿✿

in
✿✿✿✿✿✿✿✿

Australia
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(van Dijk et al., 2013).
✿✿

To
✿✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿✿✿

complex

✿✿✿✿✿✿✿

feedback
✿✿✿✿✿✿✿✿

processes
✿✿✿✿✿✿✿✿

between
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿

and
✿✿✿✿✿✿✿✿✿

vegetation
✿✿

is
✿✿✿✿✿

likely
✿✿✿✿

best
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

using
✿✿✿

raw
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿

and
✿✿✿

the5

✿✿✿✿✿✿✿

therefore
✿✿✿

use
✿✿

of
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

data
✿✿✿✿✿✿✿

between the land surface complex, which a land surface model is better able to represent across

user-required time steps and spatial resolutions (Sheffield et al., 2004). But also in the case of floods an improved root-zone

representation will be beneficial for predicting how much precipitation is required to saturate top layer soil.
✿✿✿✿✿

model
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

simulations.

10

On overall, within this study we have attempted to show the possible complex behaviours induced by long-term assimilation

and implications for the use of assimilation improved soil moisturesimulations. Yet, it is clear that more studies should

be carried out, bridging the gap between technical assimilation studies and the application. For instance, we have shown

assimilation induced quantile changes for one specific data assimilation setup. The systematic analysis of various observation

rescaling techniques and the impact on recorded drought and flood events should be part of future studies
✿✿

In
✿✿✿

this
✿✿✿✿✿✿

paper,
✿✿

a15

✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

long
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿

SMOS
✿✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿✿

Land
✿✿✿✿✿

Model
✿✿✿✿✿✿

across
✿✿✿

the

✿✿✿✿✿✿✿✿

Australian
✿✿✿✿✿✿✿✿

continent
✿✿✿✿

and
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

improved
✿✿✿

for
✿✿✿

the
✿✿✿✿

very
✿✿✿✿✿✿

largest
✿✿✿✿

part
✿✿

of
✿✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿✿✿✿

both
✿✿✿

for

✿✿✿✿✿✿✿

top-layer
✿✿✿✿

and
✿✿✿✿✿✿✿✿

root-zone
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture.
✿✿✿✿✿✿

Finally,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿

Land
✿✿✿✿✿✿

Model
✿✿

is
✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Community
✿✿✿✿✿

Earth
✿✿✿✿✿✿✿

System
✿✿✿✿✿

Model
✿✿✿✿

and

✿✿

the
✿✿✿✿

here
✿✿✿✿✿✿✿✿

presented
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system
✿✿✿✿

will
✿✿

in
✿✿✿✿✿

future
✿✿✿✿

also
✿✿✿✿✿✿

enable
✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿

L-band
✿✿✿✿✿✿✿✿✿

brightness

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

within
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

land-atmosphere
✿✿✿✿✿✿✿✿✿✿✿

experiments.20
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Table 1. CLM soil layer depths and relative layer thickness in respect to sum of the two top layers. The relative thickness was used as a

scaling factor for the soil perturbations, effectively decreasing ensemble spread and error covariance for lower levels.

Layer Depth [m] 0.018 0.045 0.09 0.17 0.290 0.493 0.829 1.383 2.296 3.802

Perturb. scaling 1 1 1 0.60 0.36 0.22 0.13 0.08 0.05 0.03
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Figure 1. Taylor diagram showing assimilation impact
✿✿✿✿

CLM
✿✿✿✿

plant
✿✿✿✿✿✿✿✿

functional
✿✿✿✿

types
✿✿✿✿✿

based
✿

on top layer soil moisture, defined as 8 cm

soil depth, (left)
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿

MCDQ12
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿✿✿✿✿

classification
✿

and lower level soil moisture (right) in terms of correlation coefficient

R
✿✿✿✿✿✿✿✿✿✿✿

ECOCLIMAP
✿✿✿✿✿

climate
✿✿✿✿✿

zones
✿

at
✿✿✿✿

500
✿

m
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

prior
✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿

aggregation
✿✿

to
✿✿✿

0.25
✿✿✿✿✿✿✿

degrees.
✿✿✿✿

Some
✿✿✿✿✿

classes
✿✿✿

are
✿✿✿✿

here
✿✿✿✿✿✿✿✿

aggregated
✿✿

for
✿✿✿✿✿✿✿✿✿✿

visualisation

✿✿✿✿✿✿

purpose, standard deviation
✿✿

e.g.
✿✿✿✿✿✿✿✿

evergreen
✿✿✿✿✿✿✿✿

temperate and normalised RMSE
✿✿✿✿✿✿✿

evergreen
✿✿✿✿✿✿

tropical
✿✿✿✿✿✿

forests
✿✿✿

are
✿✿✿

both
✿✿✿✿✿✿

shown
✿✿

as
✿✿✿✿✿✿✿✿

Woodland. The

colours correspond to
✿✿✿✿✿✿✿

boundary
✿✿

of
✿

the
✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿✿

catchment,
✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿

site
✿✿

of
✿✿✿

the
✿✿✿✿✿

OzNet
✿

in-situ measurement sites but are not

comparable between both panels
✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿

is
✿✿✿✿✿

shown.
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Figure 2.
✿✿✿✿✿✿

Change
✿✿

in
✿✿✿✿✿✿✿✿

correlation
✿

R
✿✿✿

for
✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

DA
✿✿

1,
✿✿✿

DA
✿

2
✿✿✿

and
✿✿✿

DA
✿

0
✿✿✿✿

both
✿✿✿

for
✿✿

top
✿✿✿✿

layer
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿

(top
✿✿✿✿✿

panel)
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿

the
✿✿✿✿✿✿✿✿

root-zone

✿✿✿

soil
✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

(bottom
✿✿✿✿✿

panel)
✿✿✿✿✿

within
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Murrumbidgee
✿✿✿✿✿✿✿✿

catchment.
✿✿

In
✿✿✿

the
✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿✿✿

measurements
✿

at
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿

location,
✿✿✿

the
✿✿✿✿✿✿✿

weighted

✿✿✿✿✿✿

average
✿

of
✿✿✿

the
✿✿✿✿✿✿✿

measured
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿

modelled
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿

was
✿✿✿✿✿✿✿✿

computed
✿✿

in
✿✿✿✿✿✿✿✿

accordance
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿

CLM
✿✿✿✿

layer
✿✿✿✿✿✿✿

thickness.
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Figure 3.
✿✿✿✿✿

Taylor
✿✿✿✿✿✿

diagram
✿✿✿✿✿✿✿

showing
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

impact
✿✿✿

on
✿✿✿

top
✿✿✿✿

layer
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture,
✿✿✿✿✿✿

defined
✿✿✿

as
✿

8
✿✿✿

cm
✿✿✿✿

soil
✿✿✿✿✿

depth,
✿✿✿✿

(left)
✿✿✿✿

and
✿✿✿✿✿

lower
✿✿✿✿

level

✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(right)
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

coefficient
✿✿

R,
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

and
✿✿✿✿✿✿✿✿✿

normalised
✿✿✿✿✿

RMSE
✿✿✿

for
✿✿✿

all
✿✿✿✿✿

in-situ
✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

sites.

✿✿✿✿✿✿✿✿✿✿

Measurements
✿✿

at
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

depths
✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿

aggregated.
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Figure 4. Mean of all increments for experiment DA 0 for top-layer soil moisture (left) and root zone soil moisture (right) for ascending

(above) and descending orbits (below).
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Figure 5. Standard
✿✿✿✿✿✿✿✿

Increments
✿✿✿✿✿✿✿

standard deviation of all increments for experiment DA 0 for top-layer soil moisture (left) and root-zone soil

moisture (right) for ascending (above) and descending orbits (below). Increments for the root-zone soil moisture are fairly similar to the top

soil layers, due to the homogeneous texture perturbations applied across all layers.
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Figure 6. Mean of all increments for experiment DA 1 / DA 2 for top-layer soil moisture and root zone soil moisture for ascending (above)

and descending orbits (below). Biases are strongest for the ascending orbit and distinctive spatial patterns are visible. Biases are strongly

reduced both for deeper layers and descending orbits.
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Figure 7. Standard deviation of all increments for experiment DA 1 / DA 2 for top-layer soil moisture and root zone soil moisture for

ascending (above) and descending orbits (below). Increments are strongest for the ascending orbit and for top-layer soil moisture and even

stronger when restricting assimilation to these layers, as in DA 1. Increments are very low or zero for the forested areas along the coastline,

either due to the absence of observations or the high LAI values masking any soil moisture signal within the forward operator.
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Figure 8.
✿✿✿✿✿✿✿✿

Increment
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿✿

for
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿

orbits
✿✿✿

for
✿✿✿

July
✿

-
✿✿✿✿✿✿

August
✿✿✿✿

(top)
✿✿✿

and
✿✿✿✿✿✿

January
✿

-
✿✿✿✿✿

March
✿✿✿✿✿✿✿

(bottom)
✿✿

for
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

DA
✿✿

2.
✿✿✿

For

✿✿

the
✿✿✿✿✿

austral
✿✿✿✿✿

winter
✿✿✿✿✿✿✿✿✿

increments
✿✿

are
✿✿✿✿✿✿✿

strongest
✿✿✿

for
✿✿

the
✿✿✿✿✿

south
✿✿

of
✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿✿✿✿

especially
✿✿

the
✿✿✿✿✿✿✿✿✿

agricultural
✿✿✿✿✿

areas.
✿✿✿✿✿

During
✿✿✿✿✿✿

austral
✿✿✿✿✿✿

summer
✿✿

the
✿✿✿✿✿✿✿✿✿

increments

✿✿

are
✿✿✿✿✿✿✿

strongest
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿✿

grasslands.
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DA0 − OL for 10 % quantile
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Figure 9. Differences in relative soil moisture %/100between open loop
✿✿✿✿✿✿✿

open-loop
✿

and DA0
✿✿

DA
✿✿

0 experiment (DA 0 - OL) for the 10 %

quantile. The individual panels correspond to the top 9 CLM soil layers.
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DA1 − OL for 10 % quantile

0.0175 m 0.0451 m 0.0906 m
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Figure 10. Differences in relative soil moisture %/100between open loop
✿✿✿✿✿✿✿✿

open-loop and DA1
✿✿

DA
✿✿

1 experiment (DA 1 - OL) for 10 %

quantile. The individual panels correspond to the top 9 CLM soil layers titled with their depth.
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DA2 − OL for 10 % quantile
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Figure 11. Differences in relative soil moisture %/100between open loop
✿✿✿✿✿✿✿✿

open-loop and DA2
✿✿✿

DA
✿

2
✿

experiment (DA2
✿✿

DA
✿✿

2 - OL) for the

10 % quantile. The individual panels correspond to the top 9 CLM soil layers.
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Figure 12. Cumulative distribution functions (CDFs) for the upper 6 CLM soil layers for experiments DA1
✿✿✿

DA
✿

1
✿

and DA2
✿✿✿

DA
✿

2, based on

quantiles computed for all data across the model domain. CDFs for open loop
✿✿✿✿✿✿✿

open-loop
✿

simulations are shown in black and assimilation

results in red. Both panels show changes in CDF behaviour for the layers being updated in the respective experiments, i.e. layers 1-3 for DA1

✿✿✿

DA
✿

1 and layers 1-6 for DA2.
✿✿✿

DA
✿

2.
✿

Soil moisture increases systematically with soil depth allowing for the easy identification of the layers

within the plot. The dashed vertical line marks the 10 % quantile, corresponding to figures 10 and 11.
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Figure 13. Sample drought event for February 2010, showing only the root zone soil moisture below the 10 % quantile level for the open

loop
✿✿✿✿✿✿✿

open-loop (above) and experiment DA2
✿✿

DA
✿✿

2 (below). The different spatial extent and differences in soil moisture itself, depending on

the dataset used, at three different days are clearly visible
✿

.
✿✿✿

The
✿✿✿✿✿

figure
✿

is
✿✿✿✿✿✿

centred
✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿✿✿

Central
✿✿✿✿

coast
✿✿

of
✿✿✿✿

New
✿✿✿✿

South
✿✿✿✿✿

Wales.

45


