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Abstract.  

Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semi-arid region that exhibits high 

spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone 

to water scarcity caused by seasonal drought. Droughts here are often triggered during El Niño episodes; however, other large-

scale climate mechanisms also play a noteworthy role in controlling the region’s hydrologic cycle. An extensive season-ahead 15 

drought prediction model is developed to help bolster existing capacity of stakeholders to plan for and mitigate the deleterious 

impacts of this hydrologic extreme. In addition to existing climate indices, large-scale climatic variables, such as sea surface 

temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied 

to eleven potential predictors to produce an ensemble forecast of January-March precipitation. Model hindcasts of 51 years, 

compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable 20 

skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. Extending the lead 

time and spatially disaggregating precipitation predictions to the local level may further assist regional stakeholders and 

policymakers preparing for drought. 

1 Introduction. 

Southern Peru is a semi-arid region just north of the Atacama Desert, located at a complex topographic, climatic, and 25 

hydrologic crossroads. With elevations ranging from sea level to over 6,000 meters, the area is a patchwork of snow-capped 

Andean mountains, highlands and plateaus, and large expanses of coastal desert. Due to its proximity to the Amazon rainforest, 

the Atacama Desert, and the Pacific Ocean, the climate patterns that govern the region’s precipitation vary drastically, both 

seasonally and annually. Although a notable portion of this region drains to Lake Titicaca, which is itself a part of a larger 

endorheic basin, the majority of the region’s water flows into the Pacific Ocean through networks of small rivers and seasonal 30 

creeks. While the topographic, climatic, and hydrologic factors of the region produce spatiotemporal variability in the 
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distribution of water resources (Tapley and Waylen, 1990), southern Peru can generally be characterized as water scarce 

(Alegría, 2006; Kuroiwa, 2007; Ugarte, 2012; Chinchay Alza, 2015). 

 

Nonetheless, southern Peru displays a high economic dependence on activities driven directly by water availability, specifically 

agriculture and mining (Higa Eda and Chen, 2010). The region is home to some of the nation’s richest olive and grapevine 5 

fields, as well as several large-scale copper mining operations. Both of these industries are heavily dependent on water 

consumption. Additionally, several large urban areas such as Arequipa, Juliaca, and Tacna (Fig. 1) necessarily require large 

quantities of water to thrive as economic and cultural centers.  

 

Droughts, like the one that struck in early 2016, have a critical impact on the success and survival of the region. During that 10 

year, agricultural outputs of southern Peru were reduced by up to 75% (ANA, 2016), necessitating the creation of an emergency 

contingency fund for impacted farmers by Peru’s national water authority (in Spanish, Autoridad Nacional del Agua, or ANA). 

The ANA also declared states of emergency for two cities, Tacna and Arequipa. Consequentially, the city’s water supplies 

were reduced by more than one-fourth. The mining operations of the region were also negatively impacted, with ANA ordering 

mining companies such as Southern Peru Copper Corporation (SPCC), to reduce their water consumption and, transitively, 15 

copper production, resulting in lost economic potential and reduced fiscal resources for the region as a whole. 

 

The severity of this most recent bout of drought, unfortunately, is not unprecedented; other droughts in the past have also 

caused serious economic and social consequences. The drought event of early 1983 wreaked havoc across southern Peru 

(Caviedes, 1985). Before this event, hazard preparedness essentially did not exist in Peru. The drought, which coincided with 20 

deadly flooding in the northern part of the country, was met with slow and uncoordinated official disaster relief. Even after 

Peru developed their national hazard preparedness program following this event, the region continued to be vulnerable to 

drought. In 1998, an estimated $200 million in direct losses occurred over the southern Andes of Peru due to drought (Lavado-

Casimiro et al., 2013). 

 25 

The dire conditions created by drought, when combined with other factors such as cultural differences and socioeconomic 

disparities, can instigate economic instability and societal stress regionally (Lynch, 2012). While tools exist to monitor drought 

and hydroclimatic conditions in Peru, such as the Peruvian Drought Observatory (ANA, 2014), drought prediction remains a 

relatively unexplored field for southern Peru. If droughts can be predicted several months or seasons in advance, regional 

decision makers, private entities, local interests, and other stakeholders may be able to reduce their immediate vulnerability to 30 

hydroclimatic variability (Sadoff and Muller, 2009). Season-ahead drought prediction may afford stakeholders more capacity 

to address mid- and long-term water resources planning goals, as well (Ugarte, 2012; Chinchay Alza, 2015). We address this 

gap in southern Peru by developing and evaluating a statistical precipitation prediction model for the region. 
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2 Data Description. 

Monthly precipitation data are available for 29 stations distributed across the region over a period of 51 years (1966-2016; Fig. 

1). Six of the 29 stations are owned and operated by SPCC, with the remaining stations belonging to Peru’s national 

meteorological service (in Spanish, Servicio Nacional de Meteorologia e Hidrologia del Peru, or SENAMHI). SPCC acquired 

SENAMHI data for this study. 5 

 

 
Figure 1: Blue circles represent locations of SPCC stations; white circles represent SENAMHI stations. Three major urban centers 
are labeled (map generated using Google Earth imagery and station information from SPCC). 

 10 

The 29 stations provide spatial coverage for an area of 65,000 km2 and are located in a variety of environments, including the 

edge of the Atacama Desert, the islands of Lake Titicaca, the dry grassy plains of the Altiplano, and the mountainous terrain 

of the Central Andes.  
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Cross-correlations between all of the stations were calculated based on available monthly precipitation data. For any missing 

station data (<1% of total data), the ten most highly correlated stations were identified, and multi-regression based on monthly 

statistics was used to interpolate a probable missing value. In most cases, high correlation coefficients between estimated 

missing points and observed data suggest that this simple methodology is effective. 

 5 

Potential large-scale climate predictors, including sea surface temperature (SST), sea level pressure (SLP), and geopotential 

height (GH), were retrieved from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research 

Laboratory Physical Sciences Division (ESRL-PSD). The data are based on National Centers for Environmental Prediction-

National Center for Atmospheric Research (NCEP-NCAR) reanalysis data (Kalnay et al., 1996) and available as monthly 

average on a 2.5° x 2.5° global grid. In addition, ESRL-PSD monthly/seasonal climate correlation and composite mapping 10 

tools are used in this analysis. 

 

In addition to the aforementioned large-scale climate variables, several established teleconnection indices, such as Niño 3.4 

(Rayner et al., 2003), Pacific Decadal Oscillation (PDO; Mantua et al., 1997), North Pacific index (NP; Trenberth and Hurrell, 

1994), and Western Hemisphere Warm Pool (WHWP; Wang and Enfield, 2001), are also evaluated in this study. 15 

3 Southern Peru Rainy Season and Large-scale Climate Influences. 

In the mid-high elevation regions of southern Peru, as in most tropical zones, the annual cycle is dominated by a wet and dry 

season (Fig. 2). For southern Peru, the rainy season occurs from November to April (Kuroiwa, 2007); however, the majority 

of precipitation in the region occurs during January, February, and March (JFM; 315 mm on average). JFM precipitation 

represents, on average, more than two-thirds of annual precipitation for the region, with some locations receiving up to 85% 20 

of annual precipitation during this period. Thus, JFM is identified as the season of interest for this study.   

 

 
Figure 2: Average monthly precipitation (mm) in southern Peru. 
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To evaluate the spatial and temporal patterns of regional precipitation, an empirical orthogonal function (EOF) is performed 

on JFM seasonal precipitation totals (von Storch and Zwiers, 2001) based on data from the 29 stations. In EOF, a dataset is 

decomposed into orthogonal, uncorrelated modes representing distinctive signals, or variance, present in the dataset. Even with 

significant changes in elevation across the region, the sign and magnitude of the first EOF spatial pattern of all stations is 5 

similar (Fig. 3), generally implying spatial homogeneity of JFM seasonal precipitation within this relatively small region 

(Eklundh and Pilesjö, 1990). Additionally, the first principal component (PC) of the precipitation time series captures 51% of 

the variance in the data, and correlates well with area-averaged JFM seasonal precipitation observations (r2 = 0.99; Fig. 4). 

 

 10 
Figure 3: The first EOF pattern (dots) of regional precipitation and topographic elevation (shading). Color (red or cyan) and size of 
dots represent sign and strength, respectively, of EOF signal.  
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Figure 4: Areal average JFM precipitation (mm) and the first PC anomalies for the period of record, 1966-2016. 

 

During the rainy season, the tropical Southern Hemisphere receives increased amounts of solar radiation that destabilizes the 

atmospheric boundary layer, inducing deep convection and moist air advection (Vuille et al., 1999; Garreaud, 1999). This 5 

directly translates to increased levels of evapotranspiration in the Amazon basin, with moisture transported deep into the 

atmosphere by a complex network of deep convection systems, including the upper level of the Bolivian High (Lenters and 

Cook, 1997). In general, the winds associated with this deep convection are easterly and northerly, carrying moisture towards 

the Andes from the Amazon (Fuenzalida and Rutllant, 1987; Chaffaut et al., 1998; Rao et al., 1996; Vizy and Cook, 2007). 

The Andes induce an orographic effect in which more precipitation occurs at windward locations and higher elevations of the 10 

region (Garreaud 1999). Meanwhile, the precipitation at the leeward (western) side of the mountain range and lower elevations 

is markedly reduced; this region of southern Peru exists in the rain shadow of the Andes, a fact especially relevant for the 

study.  

 

Previous studies have identified SST anomalies in the equatorial Pacific Ocean as a substantial factor impacting regional 15 

precipitation patterns in southern Peru (Vuille et al., 2000; Garreaud et al. 2003; Espinoza Villar et al. 2009; Lavado-Casimiro 

et al., 2013; Cid-Serrano et al., 2015). This area of the Pacific is commonly associated with the El Niño-Southern Oscillation 

(ENSO) phenomenon, and several studies further identify the SST domain of 5° N-5° S, 120° W-170° W, known as Niño 3.4 

(Trenberth, 1997), as particularly influential in modulating JFM precipitation. Strong El Niño (warm SST) conditions in the 

Niño 3.4 region are typically associated with drought in southern Peru, whereas La Niña (cool SST) conditions often align 20 

with wetter-than-average conditions (Fig. 5). 

 

Furthermore, prior studies have determined that droughts in southern Peru are not generally caused by limited moisture 

availability, but rather limited moisture transport. During El Niño episodes, enhanced upper-level westerly flow from the 
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Pacific Ocean weaken the typical wind patterns of the region, blocking easterly winds laden with moisture that normally falls 

as precipitation in southern Peru (Garreaud et al., 2003; Takahashi, 2006). During La Niña, easterly flow is enhanced, often 

resulting in greater precipitation and cloud cover, and lower temperatures in the central Andes (Vuille, 1999). 

 

 5 
Figure 5: Time series of JFM precipitation and concurrent JFM Niño 3.4 SST anomalies (r=-0.57). 

 

The phase and strength of ENSO does not necessarily translate into a specific outcome for seasonal precipitation, a fact 

particularly evident in three notable cases (bolded and underlined, Fig. 6). In late 1972, a strong El Niño developed off the 

coast of South America; however, instead of expected dry conditions, JFM 1973 surprisingly turned out to be one of the wettest 10 

rainy seasons on record for the region (Garreaud et al., 2003). In contrast, ENSO index values indicative of neutral to weak La 

Niña conditions prior to JFM 1990 and 2014 would have typically indicated normal to slightly wetter-than-usual conditions, 

yet these years resulted in two of the driest rainy seasons on record. 
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Figure 6: Scatterplot of JFM precipitation and concurrent Niño 3.4 SST anomalies. Three outlier years in which general relationship 
between Niño 3.4 and regional precipitation did not hold to be true are bolded and underlined. 

 

Such deviations from the generally understood relationship between ENSO and regional JFM seasonal precipitation are likely 5 

due to other climate phenomena; regions and variables of interest highlighted in other studies as mechanisms potentially 

controlling precipitation in southern Peru include the Tropical Atlantic SST, several SST regions of the Pacific, and the 

Bolivian High.  

 

While the main moisture source for Altiplano precipitation is the tropical lowlands to the east of the Andes, this moisture 10 

ultimately originates over the trade wind regions of the tropical Atlantic (Vuille et al., 2000), the primary source of moisture 

to the Amazon. In particular, SST anomalies in the North Tropical Atlantic regulate dry season precipitation anomalies in the 

western Amazon (Marengo et al., 2008; Zeng et al., 2008; Yoon and Zeng, 2010; Fernandes et al., 2011). When the North 

Tropical Atlantic is anomalously warm, the Intertropical Convergence Zone shifts northward, causing net water vapor 

divergence, anomalous subsidence, and reduced precipitation in western/southern Amazon (Marengo, 1992; Marengo et al., 15 

2008; Yoon and Zeng, 2010), and southern Andes (Lavado-Casimiro et al., 2012). This study considers climatic variables from 

the Tropical Atlantic Ocean. 

 

In the Pacific Ocean, locations outside of the traditional ENSO region also appear to impact precipitation in this region of 

South America. Although the subtropical Pacific is immediately adjacent to the region of interest, it typically contributes little 20 

moisture to southern Peru because low-level zonal flow and associated moisture from the sea is blocked by steep regional 

terrain and large-scale subsidence (Rutllant and Ulriksen, 1979). The Pacific Ocean, however, still plays a significant role in 

controlling the regional hydrologic cycle due to these zonal winds. The Pacific Decadal Oscillation (PDO) has also been 
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identified as modulating precipitation variability for much of South America (Enfield, 1996; Kayano and Andreoli, 2007). 

This multi-decadal, low frequency oscillation of North Pacific SST impacts several regional climate systems and has been 

widely accepted by the hydrometeorologic community as being distinct from ENSO (Deser and Blackmon, 1995; Mantua and 

Hare, 2002; Wang et al., 2008). Additionally, the Western Hemisphere Warm Pool (WHWP), a region of abnormally warm 

SST off the coast of Central America with lobes in the Caribbean and Pacific Ocean, may likewise influence regional 5 

precipitation as a result to the warming cycle’s impact on rainy season precipitation in equatorial Central and South America 

via tradewind modulation (Wang and Enfield, 2003; Wang and Enfield, 2006). Finally, the North Pacific (NP) index, which 

describes SST and SLP variability in the North Pacific, has a direct connection with changes to Tropical Pacific SST and 

circulation patterns (Trenberth and Hurrell, 1994). PDO, WHWP, and NP indices are all considered in this study. 

 10 

The upper-level Bolivian High, located over the Altiplano during December-April, is related to latent heat release over the 

Amazon (Silva Dias et al., 1983; Lenters and Cook, 1997). The position and strength of the High has been linked to 

precipitation anomalies over the Altiplano during the rainy season. Specifically, a weakened, northward shifted Bolivian High 

is often associated with persistent dryness on the Altiplano (Aceituno and Montecinos, 1993; Lenters and Cook, 1999; Vuille 

et al., 2000), whereas a strong, southward shifted Bolivian High favors deep convection on the Altiplano and increased 15 

moisture availability (Garreaud and Aceituno, 2001; Garreaud et al., 2003). Thus, the position of the Bolivian High impacts 

zonal winds during the Altiplano’s rainy season; dry (wet) conditions over the Altiplano are associated with anomalous 

westerly (easterly) flow in the region (Aceituno and Montecinos, 1993; Lenters and Cook, 1999). 

4 Identification of Seasonal Precipitation Predictors. 

Potential predictors of JFM precipitation are identified by analyzing persistent large-scale and local climate variables in the 20 

prior season of October–December (OND) based on the suite of variables and indices previously identified, and validated 

through correlation mapping, composite mapping, and global wavelet analysis. The purpose of these three methods is to 

identify climate variables and indices that partially explain the variance in JFM precipitation and may thus serve as potentially 

skillful predictors in the development of a season-ahead prediction model. 

 25 

Correlation maps between the first three PCs of JFM regional precipitation (explaining approximately 80% of the variance) 

and global OND climatic variables, including SST, SLP, and GH at 200 hPa, illustrate regions of correlation and potentially 

relevant teleconnections. Only December values are used for SLP and GH given their limited atmospheric persistence. For 

example, the correlation between OND SST and the first PC of JFM regional precipitation produces a pattern emblematic of 

the classic ENSO phenomenon (Fig. 7). The area near (but not exactly) Niño 3.4 has the strongest correlation (-0.54), indicative 30 

of a relationship in which, generally, abnormally warm (cool) water in this region corresponds with dry (wet) conditions in 

southern Peru, supporting previous findings. 
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Not all regions that display high correlations with the PCs are necessarily physically relevant however. To limit spurious 

correlations, only regions of statistical significance at the 95% confidence level and justifiable (via relevant, peer-reviewed 

literature) physical influence on moisture transportation to southern Peru are selected as potential predictors. 

 5 

Additional areas of interest identified through correlation mapping include an area of SLP off the western coast of Mexico/USA 

(roughly 35° N-20° N, 150° W-135° W) and an area of geopotential height above southern Bolivia/northern Argentina (not 

shown). These two areas, in addition to the aforementioned region of SST in the equatorial Pacific, displayed statistical 

significance at the 95% confidence level to at least one of the three analyzed PCs. We speculate that these two regions of high 

correlation likely have a physical relation to the WHWP and Bolivian High, respectively. 10 

 

Composite maps illustrate climate conditions for a single period or subset of periods, and may be especially useful for 

understanding forcing mechanisms in anomalous periods. For example, OND SST for the nine subsequent driest JFM seasons 

on record for southern Peru during El Niño years subtracted from OND SST for the nine subsequent wettest JFM seasons on 

record for southern Peru during La Niña years produce large positive anomalies in the equatorial Pacific Ocean. This composite 15 

map (Fig. 8) further indicates the potential importance of ENSO in explaining JFM precipitation variability in the study region. 

 

 
Figure 7: Correlation between global OND SST and the first PC of regional JFM precipitation. 

 20 
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Composite maps illustrate climate conditions for a single period or subset of periods, and may be especially useful for 

understanding forcing mechanisms in anomalous periods. For example, OND SST for the nine subsequent driest JFM seasons 

on record for southern Peru during El Niño years subtracted from OND SST for the nine subsequent wettest JFM seasons on 

record for southern Peru during La Niña years produce large positive anomalies in the equatorial Pacific Ocean. This composite 

map (Fig. 8) further indicates the potential importance of ENSO in explaining JFM precipitation variability in the study region. 5 

 

 
Figure 8: Composite SST conditions of dry El Niño years subtracted from wet La Niña years. 

 

Additional composite maps, namely subsets of years with the strongest El Niño and La Niña years or years with wetter-than-10 

average El Niño years and drier-than-average La Niña years, led to identification of ENSO, SST gradients in the North Pacific 

and Tropical Atlantic Oceans, and the Pacific lobe of the WHWP as potentially skillful predictors of JFM precipitation. 

Interestingly, for deviations from the typical ENSO-precipitation relationship (i.e., dry- vs. wet-El Niño JFMs and dry- vs. 

wet-La Niña JFMs), the resulting anomalies in the North Pacific as well as WHWP appear to be similar in size and magnitude. 

Thus, during the unexpectedly wet 1973 JFM or unexpectedly dry 1990 JFM, for example, these two SST regions may have 15 

modulated the effect of other large-scale climate variables, such as equatorial Pacific SST, on regional precipitation.  

 

Finally, wavelet analysis is applied to identify differing frequency signals that may exist in the observed area-averaged 

precipitation dataset. More specifically, wavelet analysis is mainly used to detect the changing of dominant periods with time. 

Wavelet analysis decomposes a time series into time-frequency space to identify significant modes of variability and illustrate 20 

how variability may change with time (Torrence and Compo, 1998). Using a Morlet 6.00 transform (Morlet et al., 1982) on 
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the JFM precipitation time series, signals at a ~3-5-year band, ~12-16-year band, and ~24-year band are identified as 

statistically significant at the 95% confidence level (Fig. 9). 

 

 
Figure 9: (a) Precipitation time series, (b) statistically significant signals at T = 3-5, 12-16, and 24 years (statistically significant 5 
periods at 95% confidence level outlined), (c) global wavelet variance with 95% confidence level delineated by dotted line. 

 

The identified signals at ~3-5 years and ~12-16 years are likely indicative of ENSO and perhaps PDO, respectively. These 

identified underlying periodicities of the precipitation data further confirm the inclusion of large-scale climate indices with 

both relatively short and long periods of oscillation. Occasionally, wavelet spectrum analysis can artificially amplify the power 10 

of longer periods. To determine whether the ~24-year signal is truly statistically significant, further testing, such as a Fourier 

power spectrum, may be warranted (Wu and Liu, 2005), but not undertaken here.  

 

In total, 11 potential predictors are identified for prediction of JFM precipitation based on previous literature and inference 

from correlation maps, composite maps, and global wavelet analysis (Table 1). These potential predictors include both 15 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-183, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



13 
 

established climate indices and relevant regions of SST, SLP, and GH (as well as gradients of these variables). Although some 

predictors listed (marked with asterisks in Table 1) do not display significant levels of correlation with area-averaged JFM 

precipitation time series, significant correlation is observed with at least one of the first three PCs of the precipitation time 

series. 

 5 

Table 1: The suite of potential predictors for JFM precipitation; correlations are based on JFM total precipitation and spatial 
averages across the regions noted. 
 

Name Large-scale climate variable Timeframe Region 
Corr. w/ 

JFM precip. 

Niño 3.4 SST OND 5° N-5° S 170° W-120° W -0.53 

PDO SST OND all areas north of 20° N -0.19* 

NP SLP D 65° N-35° N 160° E-140° W -0.18* 

WHWP SST OND 28° N-8° N 110° W-40° W -0.16* 

 SST OND 0° -5° S 160° W-140° W -0.54 

 SLP D 35° N-20° N 150° W-135° W 0.15* 

 
SST gradient OND 

0° -15° S 15° W-35° W 
0.30 

 (25° S-40° S) (15° W-35° W) 

 
SST gradient OND 

50° N-40° N 150° W-135° W 
0.38 

 (35° N-30° N) (180° -165° W) 

 GH 200 hPa D 10° S-15° S 70° W-65° W -0.35 

5 Prediction Model Framework and Evaluation. 

A principal component analysis (PCA) coupled with a multiple-linear regression model construct, otherwise known as 10 

principal component regression (PCR), is used to predict areal average JFM seasonal precipitation for the study region. In this 

case, the method used to develop the model is advantageous because it accounts for the multi-collinearity present among 

several of the identified potential predictors (von Storch and Zweirs, 2001). After a PCA is performed on the set of identified 

potential predictors, the PCs are fit to a multiple-linear regression, given as: 

 15 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑒𝑒          (1) 

 

where y is the observed JFM total precipitation, β0 is a constant, β1…βn are coefficients, x1…xn are the PCs, and e is the error 

term. Coefficients are determined using the ordinary least squares method (Helsel and Hirsch, 2002). 
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To create a parsimonious model and minimize overfitting, the optimal number of PCs (i.e. predictors) is selected using the 

generalized cross-validation (GCV) skill score (Walpole et al., 2012; Block and Rajagopalan, 2007), given as: 

 

𝐺𝐺𝐺𝐺𝐺𝐺 =  
∑ 𝑒𝑒𝑡𝑡2

𝑁𝑁
𝑁𝑁
𝑡𝑡=1

(1−𝑚𝑚𝑁𝑁)2
            (2) 5 

 

where N is the number of data points (JFM seasons in the study), et is the prediction error or residual (the difference between 

model predictions and observations), and m is the number of PCs retained as predictors. GCV scores are computed for each 

model iteration (models with varying numbers of PCs retained), with the preferred model having the lowest GCV score. Models 

that overfit may have smaller prediction errors, but are penalized for having a larger number of predictors.  10 

 

After selecting the optimal number of PCs to incorporate into the model, a drop-one cross validation prediction framework is 

applied to the 51 years of available data. For any given year, the corresponding recorded values of the potential predictors are 

dropped, or excluded, from the previously described PCR process (Stone, 1978). 

 15 

The cross-validated predictions, in turn, are used for a model assessment through a hindcast. This includes the creation of an 

ensemble of hindcast values for each historical year based on the residuals of the cross-validated model. The residuals of all 

years form a distribution of potential model prediction errors. This distribution is then applied to the cross-validated predictions 

via a Monte Carlo method to create an ensemble of potential hindcast values for each year. The cross-validated ensemble 

forecasts are evaluated deterministically and categorically in this study using three metrics: correlation coefficients between 20 

observed values and the median of the ensemble forecast; rank probability skill score (RPSS); and a hit-miss statistic. 

 

RPSS is based on the ranked probability score (RPS), which measures the categorical accuracy of forecasts (Wilks, 2011). For 

this study, categories are based on three equal terciles from the observed record (e.g. splitting the ordered observed record into 

three categories with 17 years in each), and represent above normal (greater than 350 mm), near normal, and below normal 25 

(less than 270 mm) total seasonal precipitation. RPS is the cumulative squared difference between categorical probabilities for 

forecasted and observed conditions, and takes the form: 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝐾𝐾−1

∑ [(∑ 𝑓𝑓𝑘𝑘𝑚𝑚
𝑘𝑘=1 ) − (∑ 𝑜𝑜𝑘𝑘𝑚𝑚

𝑘𝑘=1 )]2𝐾𝐾
𝑚𝑚=1          (3) 

 30 

where K is the number of categories, fk is the predicted probability for the kth category, and ok is the observed probability for 

the kth category (1 if the observation falls in that category and 0 if not). RPS ranges from 0-1, with a perfect forecast scoring 
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0. RPSS provides the relative improvement of a prediction as compared to a reference prediction – typically climatology 

(distribution of long-term historical observations), and is given as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

           (4) 

 5 

RPSS scores less than 0 signify no model skill over climatology (i.e. it is more skillful to simply use the distribution of historical 

precipitation), whereas scores between 0-1 represent skillful model performance. 

 

The hit-miss statistic describes the occurrence of median model predictions falling into the observed category (above normal, 

near normal, or below normal conditions). Results are presented in a three-by-three matrix, or contingency table, that illustrate 10 

the performance of the model for each category. Of particular interest in this study is the hit rate statistic, or the percentage of 

time the model accurately predicts (categorically) the actual observed condition. In addition, because this project looks 

specifically to predict regional drought, an alteration to this statistic that evaluates prediction of extremely dry conditions is 

also considered. 

6 Results. 15 

The best performing model, as determined by GCV, includes four PCs explaining 83% of the variance in the original potential 

predictors. The median of the cross-validated, ensemble predictions of JFM precipitation (Fig. 10) correlates with observations 

at 0.58. 
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Figure 10: Box plots of cross-validated, ensemble forecasts of JFM precipitation with observed conditions (solid black line) and 
categorical thresholds (dotted lines, with delineated categories labeled A, N, and B) included. 

 

The median RPSS score for the model is 0.16, indicating marginal, yet noteworthy, improvement over climatology. The model 5 

also scores a hit rate of 51%, predicting the correct category in 26 of 51 years (Table 2). With specific regard to below normal 

conditions, the PCR prediction has a 59% hit rate, with 10 of 17 instances correctly predicted.  

 

Table 2: Hit-miss matrix with three equal categories: above normal (A), near normal (N), and below normal (B) precipitation. 
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For the 49% of years in which the model missed the observed category, only three times did the model miss by two categories. 

In all three cases, below normal conditions are predicted yet above normal precipitation is observed (similar to what occurred 

in 1973). Overall, though, the model has a strong tendency to predict near normal conditions too often (53% of the time versus 

an expected 33%).  

 5 

Since drought prediction is of particular interest in this study, an alternative hit-miss metric that uses only two categories – 

extreme below normal conditions (eB) and above normal/near normal conditions (A/N) – is also evaluated. Here, extreme dry 

conditions are defined as the lowest quartile of JFMs on record (specifically, 13 years with less than 250 mm of JFM 

precipitation). The alternative hit-miss metric has a hit rate of 80% in general and accurately predicts 62% of eB conditions, a 

notable improvement compared with the tercile-based hit-miss metric (Table 3). 10 

 

Table 3: Hit-miss matrix with only two categories: above normal/near normal (A/N), and extreme below normal (eB) precipitation. 

 

 

 15 

 

 

 

 

 20 

Overall model predictions demonstrate moderate skill improvement over predictions conditioned solely on an ENSO index. 

While a simple linear regression model using OND Niño 3.4 as a predictor for JFM precipitation correlates at 0.53 (only 0.05 

less than the more complex PCR model), the RPSS of this Niño 3.4 model is -0.38, or inferior to climatology. Comparing hit-

miss metrics, both models perform similarly for tercile-based categories; however, the Niño 3.4 model does not exhibit as 

much improvement for the two-category assessment (predicting only 23% of eB years correctly). Both models fail to accurately 25 

predict 1973 (unexpectedly wet) and 1990 (unexpectedly dry); however, the PCR model does accurately predict JFM 2014 as 

dry, even though a strong El Niño existed. 

7 Extended Lead Time and Spatial Disaggregation of Regional Predictions. 

Extending the prediction lead time is also explored by evaluating progressively earlier 3-month periods. In the current version 

of the model, predictors are drawn from OND, such that predictions may be issued on January 1st for JFM precipitation. 30 

Shifting the predictor season to SON, the JFM precipitation prediction may instead be issued on December 1st, and so forth 

(Fig. 11). For longer leads, no additional predictors were identified. The correlation strength between JFM precipitation and 

  Predicted conditions 

  A/N eB 

Observed 
conditions 

A/N 33 5 

eB 5 8 

Above normal/near normal (A/N), extreme below normal (eB) 
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predictors typically weakened slightly with increasing lead time; however, correlations between predicted and observed JFM 

precipitation only drop slightly. RPSS remains positive through ASO. 

 

 
Figure 11: Correlation coefficients between observed and modeled JFM precipitation and ensemble RPSS for various lead times. 5 

 

Although seasonal predictions of area-averaged regional precipitation may benefit planning at a larger scale, such as by 

regional water councils or federal entities, more localized predictions of precipitation may prove to be advantageous for 

sectoral decision-making (mining, farming, etc.) To address this, spatial disaggregation of predictions at the regional level to 

the station-level is evaluated. Using the regional level categorical prediction probabilities in each year (Fig. 12), ensemble 10 

predictions for each station are generated in a cross-validated mode based on a station’s own climatology. 

 

 
Figure 12: Categorical probabilities for each year, as predicted by the regional-scale model, are used to create representative 
station-level prediction ensembles. 15 
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This methodology ensures that regional- and station-level categorical prediction probabilities match, however absolute 

precipitation magnitudes across stations may vary significantly. Station-level predictions are evaluated using the same metrics 

previously described. Because the main objective of this spatial disaggregation is to create appropriate, local values for each 

station, one would expect station-level predictions to perform equally, if not better, against these metrics. 

 5 

For two of the stations, correlation values between station-level predictions and station-level observations increase as compared 

with correlation values between regional-level predictions and station-level observations (statistically significant at the 95% 

level). The remaining stations experience no statistically significant change in correlation as a result of station-level scaling. 

Five of the stations significantly improve RPSS values while only one of the stations has a new RPSS value lower than 0. As 

expected, given identical categorical prediction probabilities, station-level hit scores are nearly identical to regional-level 10 

scores (51% overall accuracy), with more accuracy in predicting near normal and below normal conditions. 

8 Summary and Discussion. 

To enhance planning and management for various sectors in southern Peru, a PCR modeling framework is developed to predict 

JFM seasonal precipitation across the region at various lead times. Eleven oceanic and atmospheric variables that modulate 

regional precipitation are identified, with the first four PCs selected for incorporation into the season-ahead prediction model. 15 

The PCR model proves skillful, with a clear improvement over climatology and a Niño 3.4 index-based model, and most 

effective at predicting dry conditions, the state of most interest in this semi-arid region. This points to the evident importance 

of climatic factors other than ENSO in modulating regional precipitation. 

 

Model skill remains relatively constant with increasing predictor lead time, even up to five months. This additional lead may 20 

prove beneficial to stakeholders in the region. For example, in the 2016 drought, ANA made emergency declarations for the 

cities of Tacna and Arequipa at the beginning of January based on projected water availability. This allowed minimal time for 

city officials and local residents to prepare for the impending dry rainy season (even though exceptionally strong El Niño 

conditions had been predicted several months in advance by multiple entities including the National Weather Service Climate 

Prediction Center and Peru’s Estudio Nacional del Fenómeno “El Niño”). Additionally, farmers in the region – many of whom 25 

are subsistent – had already made crucial agricultural decisions well before the beginning of the rainy season.  

 

In addition to extended lead times, spatially disaggregated predictions could prove beneficial to several sectors impacted by 

spatiotemporal precipitation variability. This investigation produces disaggregated predictions with only minimal significant 

diminishments in skill, which may require further investigation. The governing large-scale climate mechanisms that deliver 30 

precipitation to the region more or less act uniformly across this small area of southern Peru, with relatively distinct signals, 

while station observations may actually be noisier in comparison. 
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The potential for enhanced model utility through extended lead times and spatial disaggregation may allow regional 

stakeholders more time to proactively prepare for predicted droughts, as opposed to reactive measures that have plagued 

regional drought management in the past. The lynchpin of this proactivity is effective and consistent collaboration among 

ANA, SENAMHI, and other public and private local, regional, and national entities. Projects such as the Peruvian Drought 5 

Observatory have served as a starting point for this collaboration; however, the observatory currently offers minimal climate 

forecast information, and could benefit from the inclusion of such outputs. As drought continues to deleteriously impact water 

supply and access in southern Peru, season-ahead predictions may become more instrumental in facilitating proactive and 

sustainable water management in this semi-arid region of the world. 
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