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Abstract. Flooding represents one of the most severe natural disasters threatening the development of human society. Flood 

forecasting systems imbedded with hydrological models are some of the most important non­engineering measures for flood 

defense. The Soil and Water Assessment Tool (SWAT) is a well­designed hydrological model that is widely applied for runoff 

and water quality modeling. The original SWAT model is a long­term yield model. However, a daily simulation time step and 15 

continuous time marching limit the application of the SWAT model for detailed, event­based flood forecasting. In addition, 

SWAT uses a basin level parameter that is fixed for the whole catchment to parameterize the Unit Hydrograph (UH), thereby 

ignoring the spatial heterogeneity among the sub­basins when adjusting the shape of the UHs. This paper developed a method 

to perform event­based flood forecasting on a sub­daily time scale based on SWAT2005 and simultaneously improved the UH 

method used in the original SWAT model. First, model programs for surface runoff and water routing were modified for a 20 

sub­daily time scale. Subsequently, the entire loop structure was broken into discrete flood events in order to obtain a SWAT­

EVENT model in which antecedent soil moisture and antecedent reach storage could be obtained from daily simulations of 

the original SWAT model. Finally, the original lumped UH parameter were refined into distributed parameters to reflect the 

spatial variability of the studied area. The modified SWAT­EVENT model was used in the Wangjiaba catchment located in 

the upper reaches of the Huaihe River in China. Daily calibration and validation procedures were first performed for the SWAT 25 

model with long­term flow data from 1990 to 2010, after which sub­daily ( Δ 2 ht  ) calibration and validation in the SWAT­

EVENT model were conducted with 24 flood events originating primarily during the flood seasons within the same time span. 

Daily simulation results demonstrated good model performances with Nash­Sutcliffe efficiency coefficient ( NSE ) values of 

0.80 and 0.83 for the calibration and the validation, respectively. Event­based flood simulation results indicated reliable 

performances, with NSE  values varying from 0.68 to 0.93. The SWAT­EVENT model, compared to the SWAT model, 30 

particularly improved the simulation accuracies of the flood peaks. Furthermore, the SWAT­EVENT model results of the two 
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UH parameterization methods indicated that the use of the distributed parameters resulted in a more reasonable UH 

characterization and better model fit compared to the lumped UH parameter. 
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1  Introduction 

A flood represents one of the most severe natural disasters in the world. It has been reported that nearly 40 % of losses 5 

originating from natural catastrophes are caused by floods (Adams Iii and Pagano, 2016). Numerous measures have been 

designed to defend against the threats of flooding. Of the many non­engineering measures, flood forecasting is one of the most 

important. A complete flood forecasting system consists of many different functional components, the most significant of 

which is the hydrological model. 

Numerous hydrological models have been developed since their first appearance. According to the spatial discretization 10 

method, these existing hydrological models can be divided into two categories: lumped models and distributed (semi­

distributed) models (Maidment, 1994). Although lumped models are commonly accepted for research and associated 

applications, they are not applicable to large catchments since they do not account for the heterogeneity of the catchments 

(Yao et al., 1998). Meanwhile, distributed (semi­distributed) models subdivide the entire catchment into a number of smaller 

heterogeneous sub­units with dissimilar attributes. A large number of distributed or semi­distributed hydrological models have 15 

been applied in flood forecasting (BEVEN and KIRKBY, 1979;Singh, 1997;Xiong and Guo, 2004;Mendes and Maia, 

2017;Hapuarachchi et al., 2011). 

The Soil and Water Assessment Tool (SWAT) model was developed by the United States Department of Agriculture (USDA) 

in 1994 and represents a typical semi­distributed hydrological model that can simulate long­term surface and subsurface 

discharge, sediment deposition, nutrient transport and transformation processes under varying land uses, soil types and 20 

management conditions. To spatially characterize the inhomogeneity, the SWAT model delineates a catchment into a number 

of sub­basins, which were subsequently divided into Hydrologic Response Units (HRUs). In the SWAT model, HURs are 

basic simulation units of the land phase of the hydrological cycle that controls the total yield of streamflow, sediment, pesticide 

and nutrient to the main channel in corresponding sub­basin. Afterwards the routing phase converges the land phase results to 

the watershed outlet through the channel network. The SWAT model has been widely applied throughout the world (Gassman 25 

et al., 2010), with corresponding research involving runoff simulation, non­point source pollution, model parameters, 

hydrological responses to changed scenarios and so on.  

SWAT is a continuous (i.e., long­term) model (Kiniry et al., 2005) with a limited applicability toward simulating instantaneous 

hydrologic responses. Therefore, Jeong et al. (2010) extended the capability of SWAT to simulate operational sub­daily or 

even sub­hourly hydrological processes, the modifications of which primarily focused on the model algorithms to enable the 30 

SWAT model to operate at a finer time scale with a continuous modeling loop. According to flood forecasting programs and 

technology in China (MWR, 2009), rainfall and discharge observations at a sub­daily time scale are usually only collected 
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during flood periods, while daily data are measured otherwise. Hydrological models are usually applied at different time scales 

(i.e., a daily time scale for continuous simulations and a sub­daily time scale for event­based flood forecasting) according to 

the availability of observed rainfall and discharge data (Yao et al., 2014). Hence, a major constraint for the application of the 

SWAT model as modified by Jeong et al. (2010) is the conflict between a continuous simulation loop and the discontinuous 

observed sub­daily data in China. 5 

To capture the sophisticated characteristics of flood events at a sub­daily time scale, a refinement of the spatial representation 

within the SWAT model is necessary. A dimensionless Unit Hydrograph (UH), which was distributed as a triangular shape 

and embedded within an sub­daily overland flow routing process in the SWAT model, was applied to relate hydrologic 

responses to specific catchment characteristics, such as the dimensions of the main stream and basin area, through applications 

of Geographic Information System (GIS) or Remote Sensing (RS) software (Jena and Tiwari, 2006). Due to the spatial 10 

discretization in the SWAT model, the model parameters are grouped into three levels: (1) basin level parameters are fixed for 

the whole catchment; (2) sub­basin level parameters are varied with sub­basins; (3) HRU level parameters are distributed in 

different HRUs. By default, the UH­specific parameters in the SWAT model are programmed on the basin level, which means 

that no spatial variation within a catchment is possible when adjusting the shape of the UH in each sub­basin. Given the spatial 

heterogeneity of the catchment, the application of this basin level adjustment parameter seems to be rather unconvincing. 15 

Moreover, because a great deal of research has primarily focused on daily, monthly or yearly simulations using the SWAT 

model, little effort has actually been provided toward demonstrating the usage of the UH method in the SWAT model. 

This study developed a method to perform event­based flood forecasting on a sub­daily time scale based on the SWAT model 

and simultaneously improved the UH method used in the original SWAT model in the upper reaches of the Huaihe River in 

China. SWAT is an open­source code model, which makes it possible to produce such a modification. The SWAT2005 version 20 

has an existing auto­calibration module and such integrated design of model simulation and auto­calibration is easily 

manageable and modified since there is no need to couple external optimization algorithms.  

2 Study area and data 

2.1 Study area 

The Huaihe River basin (30°55'–36 °36' N, 111°55'–121°25' E) is situated in the eastern part of China. The Wangjiaba (WJB) 25 

catchment is situated within the upper reaches of the Huaihe River basin and was chosen as the study area for this paper (see 

Fig. 1). The WJB catchment has a drainage area of 30630 km2, wherein the long channel reaches from the source region to the 

WJB outlet. The southwestern upstream catchment is characterized as a mountain range with a maximum elevation of 1110 m 

above sea level. The central and eastern downstream regions are dominated by plains. The study catchment is a subtropical 

zone with an annual average temperature of 15 °C. The long­term average annual rainfall varies from 800 mm in the north to 30 

1200 mm in the south. Since the catchment is dominated by a monsoon climate, approximately 60 % of the annual rainfall is 
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received during the flood season ranging from mid­May to mid­October. Severe rainfall events within the study area typically 

transpire during the summer, frequently resulting in severe floods (Zhao et al., 2011).  

2.2 Model dataset 

To construct and execute the SWAT model, a Digital Elevation Model (DEM), together with land use and soil type data, is 

required. Climate data, including that of rainfall, temperature, wind speed, etc., are also used. Table 1 lists the model data used 5 

in this study. 

The DEM data in this study were downloaded from the website of the U.S. Geological Survey (USGS) with a spatial resolution 

of 90 m. Since there is no specific instruction to subdivide the catchment, the threshold sub­basin size was decided by the 

model developer, depending on the computational time and the size of the catchment (Romanowicz et al., 2005). Consequently, 

the study catchment was divided into 21 sub­basins according to the given threshold of 844.64 km2, as shown in Fig. 1. The 10 

geographic features of all the sub­basins are displayed in Table 2. 

A land use map was produced from the Global Land Cover 2000 (GLC2000) data product with a grid size of 1 km (Bartholomé 

and Belward, 2005). Six categories of land use were identified for this catchment, as are shown in Fig. 2 (a): agricultural land 

(80.51 %), forest­deciduous (6.76 %), forest­evergreen (2.26 %), range­brush (1.09 %), range­grasses (8.09 %) and water 

(1.29 %). 15 

Soil data were obtained from the Harmonized World Soil Database (HWSD) with a spatial resolution of 30 arc­seconds. The 

HWSD also provides an attributed database that contains the physico­chemical characteristics of soil data worldwide 

(Nachtergaele et al., 2012). Since the built­in soil database within the SWAT model does not cover the study area, additional 

soil parameters were calculated using the method proposed by Jiang et al. (2014). Fig. 2 (b) exhibits the distribution of soil 

types in the study area according to the FAO­90 soil classification. Consequently, Eutric Planosols and Cumulic Anthrosols 20 

are the two main soil types with area percentages of 24.71 % and 19.95 %, respectively. 

The SWAT model has developed a weather generator (WXGEN) to fill the missing climate data by the use of monthly statistics. 

Relative humidity, wind speed, solar radiation and the minimum and maximum air temperatures were obtained from the 

Climate Forecast System Reanalysis (CFSR), which was designed based on the forecast system of the National Centers for 

Atmospheric Prediction (NCEP) to provide estimation for a set of climate variability from 1979 to the present day. There were 25 

30 weather stations included in the study catchment. 

A dense rain gauge network consisting of 138 gauges is distributed throughout the study area, as illustrated in Fig. 1. Thiessen 

average rainfall was calculated to incorporate spatially variable rainfall in each sub­basin. Daily observed rainfall data were 

retrieved from 1991 to 2010 with coverage during the entire year, while sub­daily ( Δ 2 ht  ) rainfall data are only available 

for flood periods from May to September during the years 1991 and 2010. 30 
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3 Methodologies 

3.1 Development of a sub­daily event­based SWAT model 

The original SWAT model was designed for continuous simulations using a daily time step. The SWAT model operates most 

effectively during the prediction of long­term catchment responses to land cover changes or soil management practices (Jeong 

et al., 2011). When faced with flood forecasting issues, a finer time scale is required to realistically capture the instantaneous 5 

changes representative of flood processes. Within the flood forecasting program and technology of China, discharges are 

observed daily during the dry seasons, which is intensified to sub­daily during flooding seasons in order to depict the details 

of flooding hydrographs and provide timely flood warnings (MWR, 2009). 

Therefore, the original daily simulation­based SWAT model first needs to be modified in order to perform sub­daily 

simulations. In a previous study, the sub­daily and even the sub­hourly modeling capacities of the SWAT model have been 10 

developed to allow flow simulations with any time step less than a day (Jeong et al., 2010). In the original SWAT model, the 

surface runoff lag was estimated by a first order lag equation, which was represented by a function of the concentration time 

and the lag parameter. However, this lag equation was implicitly fixed with daily time interval. Jeong et al. (2010) then 

introduced the simulation time interval into the lag equation to lag a fraction of the surface runoff at the end of each time step. 

In addition, channel and impoundment routings were also estimated at operational time interval while other processes such as 15 

base flow and evapotranspiration were calculated by equally dividing the daily results over the time steps. In this study, the 

modifications from daily modeling to sub­daily modeling followed the methods proposed by Jeong et al. (2010). Second, the 

modified sub­daily SWAT model must be applied in such a manner to achieve the simulation of individual flooding events 

rather than to simulate in a continuous way, as performed in the original SWAT model. Event­based flood modeling is 

necessary for these reasons: (1) to enable the modelers to acknowledge the detailed information of up­coming floods and (2) 20 

to potentially conduct flood forecasting within a watershed without possessing continuously recorded hydrologic data at short 

time step. To enable the SWAT model to simulate flood events, the original source codes were modified and compiled into a 

new version known as SWAT­EVENT. In the source code of SWAT2005, the subroutine "simulate" contains the loops 

governing the hydrological processes following the temporal marching during the entire simulation period. Here, the 

continuous yearly loop was set into several flood events, meanwhile, the continuous daily loop was broken into flood periods 25 

according to the specific starting and ending dates.  

However, the event­based modeling requires a separate method to derive the antecedent conditions of model states. The 

combination of daily continuous modeling and sub­daily event­based modeling was used in this study (Fig. 3). A continuous 

daily rainfall sequence was imported into the original SWAT model to independently perform long­term daily simulations. In 

the SWAT model, there are another two subroutines "varinit" and "rchinit" initializing the daily simulation variables for the 30 

land phase of the hydrologic cycle and the channel routing, respectively. In the SWAT­EVENT model, condition judgments 

were added into those two initialization subroutines. That is, when the simulation process is at the beginning of a given flood 
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event, antecedent soil moisture and antecedent reach storage are set equal to the respective values extracted from the long­term 

daily simulations of the original SWAT model; otherwise, they should be updated by the SWAT­EVENT model simulation 

states of the previous day. 

3.2 Application of Unit Hydrographs with distributed parameters 

The dimensionless UH method employed in the SWAT model exhibits a triangular shape (SCS, 1972), as shown in Fig. 4, 5 

wherein the time t  (h) represents the X­axis, and the ratio of the discharge to peak discharge represents the Y­axis. This UH 

is defined as follows: 
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where uhq  is the unit discharge at time t , pt  is the time to the peak (h), and bt  is the time base (h). Then, the dimensionless 

UH is expressed by dividing by the area enclosed by the triangle (Jeong et al., 2010). There are two time factors that determine 10 

the shape of the triangular UH, and they are defined by the following equations: 
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where ct  is the concentration time for the sub­basin (h), and adjt  is a shape adjustment factor for the UH (h) (Neitsch et al., 

2011). 15 

The time of concentration ct  can be calculated based upon the geographic characteristics of the sub­basin considered, for 

which ct  is denoted by the accumulation of the overland flow time ovt  (h) and the channel flow time cht  (h): 
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where slpL  is the average slope length for the sub­basin under consideration (m); n  is the Manning coefficient for the sub­

basin; subS  is the average slope steepness of the sub­basin (m m­1); L  is the longest tributary length in the sub­basin (km); A  

denotes the area of the sub­basin (km2); and chS  is the average slope of the tributary channels within the sub­basin (m m­1). 

According to Eq. (2), the time base of the UH ( bt ) is determined by both concentration time for the sub­basin ( ct ) and shape 

adjustment factor ( adjt ) concurrently. As seen in Fig. 1 and Table 2, there are obvious spatial differences of the geographical 25 
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attributes among sub­basins. For instance, the values of sub­basin area vary from 2.94 km2 to 4795.46 km2 with the average 

value of 1437.12 km2, and the mean slopes in source sub­basins (e.g. sub 1, sub 16, sub 19, sub 20 and sub 21) are much 

steeper than those in downstream sub­basins (e.g. sub 7, sub 8 and sub 11). As a result, the sub­basin concentration time ct  

synthesizes all those geographical attributes and it can fully present the spatial differences among sub­basins according to Eq. 

(5) and (6). However, the parameter adjt  in Eq. (2) is a basin level parameter possessing a lumped value for all sub­basins, 5 

meaning that the spatial heterogeneity of bt  may be homogenized due to the constraints between sub­basins. Generally, the 

time base of triangular UH ( bt ) should be reduced to produce increased peak flow for steep and small sub­basins, or increased 

to produce decreased peak flow for flat and large sub­basins. Thus, the shape adjustment parameter adjt  was modified from the 

basin level to the sub­basin level, and renamed subadjt  which allowed the UHs to be adjusted independently by distributed values. 

3.3 Model calibration and validation  10 

3.3.1 Sensitivity analysis 

Sensitivity analysis is a process employed to identify the parameters that result in significant changes within a model output 

due to disturbances of the input (Holvoet et al., 2005). Generally, sensitivity analysis takes priority over the calibration process 

to reduce the complexity of the latter (Sudheer et al., 2011). Here, a combined Latin­Hypercube and One­factor­At­a­Time 

(LH­OAT) sampling method embedded within the SWAT model (Griensven et al., 2006) was used to conduct a sensitivity 15 

analysis. A total of 26 model parameters related to the flow simulation were involved in sensitivity analysis (see Appendix A). 

Only the most sensitive parameters were used for the optimization procedure, while the values of the others parameters were 

set to their default values. 

3.3.2 Daily model calibration and validation 

Due to the high spatial heterogeneity within the hydrological processes simulated by semi­distributed hydrological models, 20 

the values of numerous parameters will be difficult to determine by manual calibration alone. Therefore, the application of an 

automatic calibration process to estimate the model parameters that minimize the errors between the observed and simulated 

results is necessary. The Shuffled Complex Evolution (SCE­UA) algorithm (Duan et al., 1992) is a global optimization 

technique that is incorporated as a module into the SWAT model. In this study, the SWAT­EVENT model employed the same 

built­in automatic calibration subroutine. The SCE­UA algorithm has been applied to multiple physically based hydrological 25 

models (Sorooshian et al., 1993;Luce and Cundy, 1994;Gan and Biftu, 1996) and has exhibited good performance similar to 

other global search procedures (Cooper et al., 1997;Thyer et al., 1999;Kuczera, 1997;Jeon et al., 2014). 

Daily simulations were performed within the time span, from 1990 to 2010, using observed data at the outlet of WJB. One 

year (1990) was selected as the model warm­up period, the period from 1991 to 2000 was used for the model calibration, and 

the remaining data from 2001 to 2010 were employed for validation.  30 
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Multiple statistical values, including the Nash­Sutcliffe efficiency coefficient ( NSE ) (Nash and Sutcliffe, 1970), ratio of the 

root mean square error to the standard deviation of measured data (
SRR ) (Singh et al., 2005) and the percent bias ( BIASP ) 

(Gupta et al., 1999), were selected in this study to evaluate the daily model performances, as shown in Eq. (7), (8) and (9). The 

NSE  provides a normalized statistic indicating how closely the observed and simulated data match with each other, wherein a 

value equal to 1 implies an optimal model performance insomuch that the simulated flow perfectly matches the observed flow. 5 

The 
SRR  index standardizes the root mean square error using the observations standard deviation, varying from 0 to a positive 

value. The optimal value of 
SRR

 
is 0, which indicates the perfect model simulation. The BIASP  detects the degree that the 

simulated data deviates from the observed data. 
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where obs ( )Q i  is the i  th observed streamflow (m3 s­1); sim ( )Q i  is the i  th simulated streamflow (m3 s­1); n  is the length 

of the time series. 

3.3.3 Event­based sub­daily model calibration and validation 

Sub­daily simulations in the SWAT­EVENT model were conducted within the same time span as the daily simulation, with a 15 

primary focus on the flood season with a series consisting of 24 flood events, two­thirds of which were utilized for the 

calibration while the rest were used for validation. Preferential implementation was applied to daily calibration from which 

the antecedent conditions were extracted.  

Flow parameters, together with additional distributed parameters subadjt
 
associated with the UH method, were used for the sub­

daily calibration. To analyze the influences of UH parameters on the SWAT­EVENT model performances, the lumped 20 

parameter adjt  was then calibrated while the other parameters remained unchanged exactly as the distributed case was 

calibrated. For the sub­basin level calibration, subadjt  was updated with distributed values for each of the sub­basins in each 
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iteration; for the basin level calibration, adjt  was consistently updated with lumped values for all of the sub­basins in each 

iteration. 

NSE , relative peak discharge error ( RPE ), relative peak time error ( RPTE ) and relative runoff volume error ( RRE ) were selected 

as the performance evaluation statistics for the flood event simulations to comply with the Accuracy Standard for Hydrological 

Forecasting in China (MWR, 2008). RPE , RPTE , and RRE  are specific indicators used to indicate whether the accuracies of 5 

the simulations reach the national standard (MWR, 2008). They are considered to be sufficiently qualified when the absolute 

values are less than 20 %, 20 % and 30 %, respectively. 

4 Results 

4.1 Daily simulation results 

The model performances for daily streamflow simulations at outlet WJB are summarized in Table 3. The NSE  value is 0.80 10 

for the calibration period and 0.83 for the validation period. These two values of the daily NSE  both exceed 0.75, which is 

considered to be good according to performance ratings for evaluation statistics recommended by Moriasi et al., (2007). The 

daily SRR  values are 0.45 and 0.42 for the calibration and validation, respectively, indicating that the root mean square error 

values are less than half the standard deviation of measured data, i.e. the “very good” model performances suggested by Moriasi 

et al. (2007). The SWAT model underestimates the streamflow by ­14.32 % and ­18.29 % for calibration and validation, 15 

respectively. Visual comparisons between the observed and simulated streamflows for both of the calibration and validation 

periods are shown in Fig. 5, from which it can be observed that the SWAT model could simulate well the temporal variation 

of streamflow at daily time scale. In general, the daily simulation results obtained from the SWAT model at WJB demonstrate 

decent applicability and can consequently represent a preliminary basis for further flood event simulation. 

4.2 Event­based simulation results 20 

The sub­daily simulation results for 24 flood events, as shown in Table 4, exhibit reliable performances of the SWAT­EVENT 

model, with NSE  values varying from 0.68 to 0.93, except for the event 19960917. The qualified ratios of RPE  ,
 RPTE  and 

RRE  are 75%, 100% and 75%, respectively. Since the SWAT­EVENT model was developed on the base of the SWAT model, 

its superiority of the simulation in flood seasons was investigated by comparing those two model results for the same flood 

events. Table 4 also displays the model performances of the daily simulation results using the SWAT model for specific flood 25 

events. Most daily NSE values are lower than the sub­daily ones, indicating that the flood hydrographs simulated by the sub­

daily SWAT­EVENT model are much more reliable than those simulated by the daily SWAT model. In addition, the peak 

flows simulated by the SWAT­EVENT model on a sub­daily time scale are much closer to the observed flows relative to the 
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predictions obtained from the SWAT model on a daily time scale, especially for flood events with high peak flows in Table 4. 

There are eight flood events (19910610, 19910629, 19960628, 20020622, 20030622, 20050707, 20050822 and 20070701) 

that exhibit peak flows greater than 5000 m3 s­1. The sub­daily simulation results of these eight floods were aggregated into 

daily averages and then compared with those of the daily simulations, the results of which are illustrated in Fig. 6. It can be 

concluded that the daily simulations are likely to miss the high flood peaks. The more effective performances of the SWAT­5 

EVENT model could be due to rainfall data with a higher temporal resolution and the model calculation with more detailed 

time steps, which can capture the instantaneous changes representative of flood processes. 

All the statistical indicators suggest that the SWAT­EVENT model can accurately reproduce the dynamics of observed flood 

events based upon antecedent conditions extracted from SWAT daily simulations. 

4.3 Effects of the UH parameters on the SWAT­EVENT model performances 10 

To analyze the spatial variability of the UH parameters and their influences on the event­based flood simulation results, the 

time characteristics of the sub­basins as well as two sets of optimized UH parameters are displayed in Table 5. From Eq. (5) 

and Eq. (6), in addition to the geographic features of the sub­basins depicted in Table 2, the overland flow time ovt  and the 

channel flow time cht  were calculated in Table 5. For the 21 sub­basins in studied catchment, the values of cht  are always 

much greater than those of ovt , implying that the channel flow time cht  is the dominant factor that determines the total time of 15 

concentration ct  in Eq. (4). Due to the comprehensive function of longest tributary length, sub­basin area and average slope 

of the tributary channels in Table 2, the channel flow times ( cht ) are distributed in sub­basins, reaching the maximum (35.38 

h) in sub­basin 16 and the minimum (1.12 h) in sub­basin 9. 

The optimized sub­basin level UH parameters ( subadjt ) are distributed in sub­basins, ranging from 0.48 h to 75.21 h, while the 

basin level parameters ( adjt )
 
display a uniform value of 31.89 h for all sub­basins. As a consequence, the optimized subadjt values 20 

enable the base time ( bt ) and the peak time ( pt ) of the UHs within the ranges of 6.38 h ­ 97.60 h and 2.39 h­ 36.60 h, 

respectively. While for the basin level UH parameter case, the values of bt  and pt distribute in a relatively narrow range, i.e. 

33.54 h ­54.28 h for bt and 12.58 h ­ 20.35 h for pt . The Coefficient of Variation (CV) in Table 5 was used to describe the 

spatial variability of the time characteristics of the UHs. As expected, the spatial variation of UHs derived by the sub­basin 

level parameters is 0.66, which is larger than the basin level case with the CV value of 0.13. Moreover, considering that the 25 

spatial CV of the concentration time ct is 0.57, the spatial variation of the UHs calculated by the sub­basin UH parameters is 

deemed to be more reasonable. Though the UH time indicators ( bt  and 
pt ) derived by the basin level UH parameter 

adjt  are 

always completely linear correlated to the concentration time ct according to Eq. (2) and (3), its spatial variability could not 

be guaranteed. However, Fig. 7 still shows a correlation between ct  and bt for the sub­basin level case, with higher ct  
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generally having higher value of bt . On this premise, the distributed UH parameters method makes the UH more accurate 

physical significance.  

The SWAT­EVENT simulation results using the basin UH parameters are also presented in Table 4. Compared with the sub­

basin level case, the sub­basin level case induces a decrease in the qualified ratio of RPE  from 75 % to 66.7 %, while keeping 

the same qualified ratio for RPTE  and RRE . It can be conclude that changing the spatial level of the UH parameter affects the 5 

peak simulations significantly. In this procedure, model parameters except for the UH parameter remain fixed, thus there is 

little change in the specific values of RRE between the two cases in Table 4. All these findings indicate that the application of 

sub­basin level UH parameters in the SWAT­EVENT model can improve the simulation accuracies of flood peaks. 

The overall distributions of statistics for flood events for the two UH methods (i.e., the basin level UH parameter vs. the sub­

basin level UH parameters) are plotted in Fig. 8. Since both cases fail to predict the event 19960917, of which the simulation 10 

result is excluded. The box plots therein exhibit rectangle heights equal to the interquartile range (IQR), the upper and lower 

ends of which are separately marked with the upper and lower quartile values, respectively. The median is represented by a 

line transecting either of the two rectangles. The extended whiskers denote the range of the batch data (Massart et al., 2005;Cox, 

2009). According to Table 4 and Fig. 8, the SWAT­EVENT model simulated using sub­basin level UH parameters 

demonstrates improvements for event­based flood simulation. For the sub­basin level case in Fig. 8, half of the NSE  values 15 

range from 0.78 (lower quartile) to 0.90 (upper quartile), with a median of 0.87, which can potentially represent the second 

flood forecasting accuracy standard (i.e. B) according to MWR (MWR, 2008). However, the basin level case performs 

comparatively poorly with regard to reproducing the flood hydrograph, wherein the majority of NSE  values vary between 0.75 

and 0.88. In comparison, the application of spatially distributed UH parameters allows the SWAT­EVENT model to simulate 

the flood events more accurately. 20 

5 Discussion 

Floods are always triggered by intense rainfall events with short duration. In order to adequately capture and analyze the rapid 

response of flood events, simulation time step is required at sub­daily resolution. Normally, an appropriate simulation time 

step is chosen depend on the observed catchment response time to a rainfall event. By examining the observed sub­daily 

rainfall and runoff time series at the WJB station, the general average response time between 1 day and 2 days. Moreover, 25 

considering the time interval of data acquisition (i.e. 2h to 6h), the 2­hour simulation step chosen in this study was more than 

sufficient for flood simulation. In an operational flood forecasting perspective, many endusers and practitioners are still in 

favor of the event­based models (Berthet et al., 2009). The emphasis on event­based modeling in this study was due to the 

unavailability of the long continuous hydrological data at sub­daily time scale. The data scarcity issue has also promoted the 

applications of the event­based models in some developing countries (Hughes, 2011;Tramblay et al., 2012). More broadly, the 30 
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preferred event­based approach is highlighted when the hydrological model is used for more than flood prediction, for example 

the evaluation of the design floods and the estimation of urban storm water quantity and quality (Sansalone et al., 2005). 

Several studies have declared that the catchment’s antecedent moisture conditions prior to a flood event can have a strong 

influence on flood responses, including the flood volume, flood peak flow and its duration (Rodrã­Guez­Blanco et al., 

2012;Tramblay et al., 2012;Coustau et al., 2012). Experimentally, the validation period was re­simulated by the SWAT­5 

EVENT model when the antecedent moisture conditions were set to zero. The impact of antecedent soil moisture conditions 

on the event­based flood simulation results is presented in Fig. 9. The simulated flood hydrographs are comparatively lower 

when the antecedent conditions are initialized to zero relative to when they are extracted directly from the daily SWAT model. 

The flood volumes decrease accordingly. It is therefore rational to consider that accurate calculation of the antecedent moisture 

conditions is of crucial importance for the flood modeling. Since the major drawback of event­based models lies in its 10 

initialization: external information is needed to set the antecedent conditions of a catchment (Berthet et al., 2009;Tramblay et 

al., 2012). Numerous methods have been used to set up the initial conditions of event­based models, such as in­situ soil 

moisture measurements, retrieved soil moisture from the remote sensing products and continuous soil moisture modeling. 

Among these methods, continuous soil moisture modeling using the daily data series to estimate sub­daily initial conditions 

would be a traditional solution, as suggested by Nalbantis (1995). Tramblay et al. (2012) also tested different estimations of 15 

the antecedent moisture conditions of the catchment for an event­based hydrological model and concluded that the continuous 

daily soil moisture accounting method performed the best. However, there might be some deficiencies in the continuous 

simulation of the SWAT model in this study. On the one hand, the continuous SWAT model was calibrated using the sum of 

squares of the residuals as the objective function, which was more sensitive to high flows than low flows. As a consequence, 

the SWAT model ensured the simulation accuracy at the expense of the low flow performances, which would certainly bring 20 

errors to the estimations of antecedent moisture conditions. On the other hand, the continuous soil moisture modeling required 

long data series and took a long time to implement. Active microwave remote sensing has proved the feasibility and rationality 

of obtaining temporal and spatial soil moisture data. It means that there is a potential interest of using the remote sensing data 

to estimate the initial conditions (Tramblay et al., 2012). 

Rainfall is the main driving force for the hydrological cycle. Hence, the temporal resolution of rainfall data could also have 25 

substantial impact on the simulation of flood processes. The decent performance of the SWAT­EVENT model at peak flows 

as shown in Fig. 6 could be due to the high temporal resolution of the input rainfall. Rainstorms may significantly vary over 

the course of a day, and thus, the use of daily rainfall data might not adequately represent the temporal profile. For example, a 

rainfall event (2 July 2003) prior to the peak of flood event 20030622 (Fig. 6) was characterized by an average daily rainfall 

of 80.6 mm for sub­basins located in the south part of study catchment, 85.24 % of which occurred during the first four time 30 

intervals ( Δ 2 ht  ) between 0 and 8 am. The daily surface runoff was calculated using the SCS curve number method in the 

SWAT model, whereas the sub­daily surface runoff was calculated using the Green & Ampt infiltration method in the SWAT­

EVENT model. On a daily basis, the Green & Ampt method will perform more effectively due to rainfall intensity and duration 
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considerations. Similar results were analyzed through the comparison of the aforementioned two methods on the Goodwin 

Creek Watershed (Vol., 1999). 

The UH represents the most widely practiced technique for determining flood hydrographs. Sherman (1932) first proposed the 

UH concept in 1932. However, because the UH proposed by Sherman is based on observed rainfall­runoff data at gauging 

sites for hydrograph derivations, it is only applicable for gauged basins (Jena and Tiwari, 2006). A prominent lack of observed 5 

data promoted the appearance of the Synthetic Unit Hydrograph (SUH), which extended the application of the UH technique 

to ungauged catchments. The triangular dimensionless UH used in this study denotes the simplest of SUHs, which relates 

hydrologic responses to the catchment geographic characteristics according to Eq. (2) ­ Eq. (6). There was a positive effect 

from the application of the distributed parameters of the UHs on the simulation of flood peaks as indicated in Table 4 and Fig. 

8. However, due to the interaction between model parameters during the calibration procedure, not all sub­basin UH parameters 10 

would ensure the high linear relationship between the UH time base bt  and the sub­basin concentration time ct in Fig. 7. From 

the calibrated results in Table 5, it was found that the optimized UH parameter in sub­basin 8 is unreasonably small. When 

sub­basin 8 was excluded, the coefficient of determination (
2r ) in Fig. 7 would increase from 0.53 to 0.69. Optimization, 

admittedly, is not the only solution to obtain the UH parameters. Jena and Tiwari (2006) developed regression equations 

between individual UH parameters and geomorphologic parameters of the watershed. In addition to the triangular 15 

dimensionless UH used in this study, there are many other available methods for derivation of the SUH. Bhunya et al. (2007) 

compared four probability distribution functions (pdfs) in developing SUH and concluded that such statistical distributions 

method performed better than the traditional synthetic methods. There might be room for further improving the current UH 

method used in the SWAT­EVENT model. 

6 Conclusions 20 

Flood forecasting is a synthetic system that integrates the data acquisition and processing, rainfall­runoff modeling and warning 

information release etc. Hydrological models are always the core part of the forecasting system. Model structures and 

parameters are one of the most important issues for accurate flood forecasting (Noh et al., 2014). The original SWAT model 

was not competent to flood forecasting due to its initial design of long­term simulations with daily time­steps. This paper 

mainly focused on the modification of the structure of the original SWAT model to perform event­based simulation, which 25 

was applicable for the area without continuous long­term observations. The newly developed SWA­EVENT model was applied 

in the upper reaches of the Huaihe River. Model calibration and validation were made by the using of historical flood events, 

showing good simulation accuracy. To improve the spatial representation of the SWA­EVENT, the lumped UH parameters 

were then adjusted to the distributed ones. Calibration and validation results revealed the improvement of event­based 

simulation performances. This study expands the application of the original SWAT model in event­based flood simulation. 30 
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The determination of hydrological model parameters is an inevitable process before flood forecasting. Parameter estimations 

of distributed or semi­distributed hydrological models commonly depend on automated calibration procedure due to 

overparametrization. The optimal parameters of the SWAT­EVENT model were obtained by the automatic parameter 

calibration module that integrated SCE­UA algorithm in this study. However, serveral factors such as interactions among 

model parameters, complexities of spatio­temporal scales and statistical features of model residuals may lead to the parameter 5 

non­uniqueness, which is the source of the uncertainty in the estimated parameters. Uncertainty of model parameters will be 

finally passed to the model results, hence leading to certain risks in flood forecasting. In the future, emphasis will be placed 

on the quantification of the parameter uncertainty to provide better supports for flood operations. 

Event­based runoff quantity and quality modeling has become a challenge task since the impact of hydrological extremes on 

the water quality is particularly important. The improvement of the SWAT model for event­based flood simulation will lay the 10 

foundation for dealing with the event­based water quality issues. 

Data availability 

The DEM data were downloaded from the website http://srtm.csi.cgiar.org/. 

The land use data (GLC2000) were downloaded from the website http://www.landcover.org/. 

The soil data (HWSD) were downloaded from the website http://webarchive.iiasa.ac.at/Research/LUC/External­World­soil­15 

database/HTML/. 

The global weather data were downloaded from the website https://globalweather.tamu.edu/. 

The rainfall observations at 138 stations and the discharge observations at the outlet (WJB) were provided by Hydrologic 

Bureau of Huaihe River Commission. 

The source codes of SWAT model are available at the website http://swat.tamu.edu/. 20 
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Appendix A 

Table A 1 Flow simulation related parameters and their lower bound and upper bound in the SWAT model, and the additional UH 
parameters for the SWAT­EVENT model. 

Parameters Definition  lower bound  upper bound 

ALPHA_BF Baseflow alpha factor (days).  0 1 

BIOMIX Biological mixing efficiency.  0 1 

BLAI Maximum potential leaf area index.  0 1 

CANMX  Maximum canopy storage (mm H2O).  0 10 

CH_K(2) Effective hydraulic conductivity in main channel alluvium (mm/hr).  0 150 

CH_N Manning's "n" value for the main channel. 0 1 

CN2 Initial SCS runoff curve number for moisture condition II. ­50 50 

EPCO Plant uptake compensation factor. 0 1 

ESCO  Soil evaporation compensation factor 0 1 

GW_DELAY Groundwater delay time (days).  ­10 10 

GW_REVAP Groundwater "revap" coefficient. ­0.036 0.036 

GWQMN 
Threshold depth of water inthe shallow aquifer required for return flow to 
occur (mm H2O).  

­1000 1000 

REVAPMN  
Threshold depth of water in the shallow aquifer for “revap” or percolation to 
the deep aquifer to occur (mm H2O).  

­100 100 

SMTMP  Snow melt base temperature (ºC).  0 5 

SLOPE Average slope ­25 25 

SLSUBBSN  Average slope length (m). ­25 25 

SMFMN Melt factor for snow on December 21 (mm H2O/ºC­day). 0 10 

SMFMX Melt factor for snow on June 21 (mm H2O/ºC­day).  0 10 

SMTMP  Snow melt base temperature (ºC).  ­25 25 

SOL_ALB Moist soil albedo. ­25 25 

SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil).  ­50 50 

SOL_K Saturated hydraulic conductivity (mm/hr).  ­25 25 

SOL_Z Depth from soil surface to bottom of layer (mm). ­40 40 

SURLAG Surface runoff lag coefficient. 0 10 

TIMP Snow pack temperature lag factor.  0 1 

TLAPS Temperature lapse rate (ºC/km).  0 50 

tadj Basin level UH parameter (h) 0 100 

tsubadj Sub­basin level UH parameter (h) 0 130 

 

  5 
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Table A 2 The optimal parameters for the SWAT model and the SWAT­EVENT model. 

Prameters 
Daily simulation with 

SWAT model 
Event­based simulation with SWAT­

EVENT model 

Alpha_Bf 0.84  0.96  

Blai 1.00  0.31  

Ch_K2 70.99  0.37  

Ch_N 0.16  0.02  

Cn2 9.00  47.75  

Esco 0.96  0.22  

Revapmin ­83.91  ­92.27  

Sol_Awc 49.47  ­1.13  

Sol_Z 12.94  35.14  

Surlag 2.25  0.22  

tadj 
  

0.48~75.21 

tsubadj 31.89  
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Table 1 SWAT model input data and sources for the Wangjiaba (WJB) catchment. 

Data type Resolution Source Description 

DEM 90m×90m http://srtm.csi.cgiar.org/ Digital Elevation Model 

Land use 1km×1km http://www.landcover.org/ Land use classification 

Soil  30 arc­second 
http://www.fao.org/soils­portal/soil­survey/soil­maps­and­
databases/harmonized­world­soil­database­v12/en/ 

Soil type classification and 
characterization of soil parameters  

Global weather 
data 

30 stations https://globalweather.tamu.edu/ 

Relative humidity, wind speed, 
solar radiation and the minimum 
and maximum air temperatures 

Observed 
rainfall 

138 gauges Hydrologic Bureau of Huaihe River Commission 
Daily data: 1991­2010; sub­daily 
data: flood periods during 1991­
2010 

Observed 
streamflow 

1 gauges Hydrologic Bureau of Huaihe River Commission 
Wangjiaba station, daily data for 
1991­2010, sub­daily data for 
flood periods during 1991­2010 

 

Table 2 Geographic features of sub­basins for the Wangjiaba (WJB) catchment. 

Sub­basin No. 
Drainage area Mean elevation Mean slope Mean slope length 

Longest 
tributary length 

Average slope of 
the tributary 

(km2) (m) (°) (m) (km) (m m­1) 

1 1997.74  83 7.49  60.96  140.06  0.0010  

2 262.15  62 1.05  121.91  49.46  0.0001  

3 1032.38  60 1.41  121.91  130.46  0.0010  

4 2515.71  161 4.58  91.44  175.31  0.0040  

5 1712.57  42 1.20  121.91  121.25  0.0010  

6 3852.86  57 2.71  91.44  295.11  0.0010  

7 4.26  30 1.32  121.91  4.13  0.0010  

8 722.28  32 0.93  121.91  81.10  0.0001  

9 2.94  32 2.26  91.44  4.92  0.0020  

10 927.36  49 0.95  121.91  101.10  0.0010  

11 450.41  31 1.12  121.91  73.08  0.0001  

12 31.34  35 1.59  121.91  16.31  0.0010  

13 477.56  47 0.88  121.91  48.86  0.0001  

14 295.68  49 1.13  121.91  42.90  0.0010  

15 886.69  54 1.10  121.91  104.65  0.0010  

16 4795.46  96 7.28  60.96  209.67  0.0020  

17 999.62  57 3.68  91.44  95.88  0.0040  

18 2216.48  50 4.43  91.44  141.88  0.0030  

19 2029.25  148 13.17  24.38  170.84  0.0040  

20 2399.24  74 8.42  60.96  160.71  0.0060  

21 2567.61  100 8.80  60.96  120.53  0.0060  
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Table 3 SWAT model performance statistics for the calibration and validation periods. 

  ENS RSR PBIAS (%) 

Calibration 0.80  0.45  ­14.32  

Validation 0.83  0.42  ­18.29  
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Table 4 Performance evaluations for the daily simulation with the SWAT model for specific flood events, and the SWAT­EVENT model performances 
with sub­basin level UH parameters and basin level UH parameter. 

 Flood event 
Start 
date 

End 
date 

Observ
ed 

peak 
flow 

Daily simulation 
with SWAT 

model 

SWAT­EVENT model with sub­basin level UH 
parameters 

SWAT­EVENT model with basin level UH 
parameter 

Simulate
d peak 
flow 

 

NSE  

 

Simulat
ed 

peak 
flow 

 

RPE  

 

 

RPTE  

 

 

RRE  

 

 

NSE  

 

Simulate
d 

peak 
flow 

 

RPE  

 

 

RPTE  

 

 

RRE  

 

 

NSE  

 (m3 s­1) (m3 s­1) (m3 s­1) (%) (%) (%) (m3 s­1) (%) (%) (%) 

C
alib

ration 

19910521 
21­

May 
10­
Jun 

2935 1720 0.58 2350 ­19.93 ­6.04 ­9.84 0.87 2520 ­14.14 ­7.38 ­9.99 0.87 

19910610 
10­
Jun 

29­
Jun 

7577 4690 0.80 6210 ­18.04 0.00 ­14.82 0.93 6360 ­16.06 2.70 ­14.75 0.94 

19910629 
29­
Jun 

21­
Jul 

5931 3870 0.85 4880 ­17.72 ­2.63 ­15.46 0.90 4740 ­20.08 1.75 ­15.46 0.86 

19910804 
4­

Aug 
17­
Aug 

4824 3340 0.74 4030 ­16.46 ­4.76 ­5.03 0.89 4350 ­9.83 ­6.35 ­4.61 0.89 

19950707 7­Jul 
18­
Jul 

2613 2250 0.59 3560 36.24 ­7.32 38.15 0.87 3250 24.38 ­14.63 38.15 0.85 

19950803 
3­

Aug 
6­

Sep 
922.1 995 0.69 1280 38.81 ­8.02 39.00 0.72 1270 37.73 ­4.40 39.02 0.71 

19960628 
28­
Jun 

25­
Jul 

5298 3280 0.30 4810 ­9.21 ­1.53 ­1.42 0.68 4870 ­8.08 ­1.15 ­1.33 0.66 

19960917 
17­
Sep 

26­
Sep 

1239 1490 0.79 1560 25.91 9.76 17.06 0.19 1640 32.36 9.76 18.32 0.17 

19970629 
29­
Jun 

30­
Jul 

2171 1340 0.82 2360 8.71 12.05 35.79 0.73 2550 17.46 8.93 36.22 0.63 

19980630 
30­
Jun 

13­
Jul 

4504 3070 0.77 4350 ­3.42 ­4.92 ­13.56 0.78 4370 ­2.98 ­3.28 ­13.49 0.74 

19980725 
25­
Jul 

2­
Sep 

3698 3360 0.81 3180 ­14.01 ­5.96 ­15.78 0.91 3750 1.41 ­7.28 ­15.66 0.93 

20020622 
22­
Jun 

11­
Jul 

5715 4170 0.75 7050 23.36 ­8.16 35.38 0.87 7960 39.28 ­10.20 35.49 0.82 

20020722 
22­
Jul 

4­
Aug 

4088 3290 0.73 3850 ­10.26 ­10.20 ­20.61 0.89 4220 ­1.63 ­10.20 ­20.39 0.89 

20030622 
22­
Jun 

29­
Jul 

8740 4940 0.68 5690 ­34.90 ­3.73 ­9.98 0.84 6150 ­29.63 ­3.73 ­10.25 0.80 

20040717 
17­
Jul 

29­
Jul 

2229 2080 0.27 1920 ­13.86 ­6.12 14.92 0.82 2100 ­5.79 ­10.20 15.47 0.85 

20040804 
4­

Aug 
13­
Aug 

2641 2280 0.67 2890 9.43 ­16.33 7.81 0.80 2720 2.99 ­16.33 8.99 0.78 

V
alidation 

20050707 7­Jul 
12­
Aug 

7331 4320 0.65 6290 ­14.20 ­11.84 ­16.11 0.83 6530 ­10.93 ­9.21 ­16.13 0.86 

20050822 
22­
Aug 

10­
Sep 

5650 3330 0.45 3990 ­29.38 0.00 ­33.02 0.69 4260 ­24.60 ­0.83 ­32.94 0.73 

20060722 
22­
Jul 

16­
Aug 

1770 1270 0.83 1450 ­18.08 10.00 ­14.08 0.81 1670 ­5.65 5.45 ­13.90 0.84 
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20070701 1­Jul 
1­

Aug 
7926 5780 0.74 6550 ­17.36 ­7.32 ­19.51 0.91 6820 ­13.95 ­6.50 ­19.32 0.91 

20080722 
22­
Jul 

9­
Aug 

4264 3120 0.68 4250 ­0.33 6.12 8.67 0.92 4370 2.49 2.04 8.72 0.90 

20080814 
14­
Aug 

27­
Aug 

4219 2730 0.69 3380 ­19.89 ­4.84 ­8.19 0.88 3590 ­14.91 ­4.84 ­7.75 0.88 

20090826 
26­
Aug 

13­
Sep 

2221 2030 0.72 2590 16.61 1.39 35.41 0.72 2790 25.62 ­1.39 35.63 0.75 

20100712 
12­
Jul 

5­
Aug 

4314 2930 0.87 4290 ­0.56 ­1.75 ­9.79 0.92 4300 ­0.32 ­0.88 ­9.72 0.93 

Qual
ified        75 100 75   66.67 100.00 75.00  

(%) 
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Table 5 Time characteristics of the sub­basins (tc, tb, tp) and the optimized UH parameters for each sub­basin. 

Sub­basin tov (h) tch (h) tc (h) 
Sub­basin level UH parameters Basin level UH parameters 

tsubadj (h) tb (h) tp (h) tadj (h) tb (h) tp (h) 

1  1.12  18.23  19.35  16.69  28.80  10.80  

31.89  

44.00  16.50  

2  0.40  19.68  20.08  51.24  63.78  23.92  44.44  16.66  

3  1.15  18.44  19.59  45.77  58.02  21.76  44.14  16.55  

4  1.12  13.18  14.30  1.90  10.98  4.12  40.97  15.36  

5  1.12  16.09  17.21  37.67  48.50  18.19  42.72  16.02  

6  1.10  35.38  36.48  75.21  97.60  36.60  54.28  20.35  

7  1.15  1.16  2.31  6.07  7.96  2.98  33.78  12.67  

8  1.25  28.42  29.68  9.40  27.70  10.39  50.20  18.82  

9  0.80  1.12  1.91  4.73  6.38  2.39  33.54  12.58  

10  1.21  14.48  15.70  51.17  61.09  22.91  41.81  15.68  

11  1.25  27.17  28.42  62.16  79.71  29.89  49.44  18.54  

12  1.04  3.57  4.60  8.53  11.79  4.42  35.15  13.18  

13  1.30  18.03  19.33  53.32  65.42  24.53  43.99  16.50  

14  1.25  7.09  8.34  27.62  33.12  12.42  37.40  14.02  

15  1.21  15.07  16.29  0.48  10.75  4.03  42.16  15.81  

16  0.74  18.86  19.60  63.50  75.76  28.41  44.15  16.56  

17  0.76  8.09  8.85  25.75  31.55  11.83  37.70  14.14  

18  0.81  12.07  12.88  39.83  48.06  18.02  40.12  15.04  

19  0.69  13.19  13.88  45.37  54.20  20.33  40.72  15.27  

20  0.14  10.44  10.58  6.19  13.04  4.89  38.74  14.53  

21  0.16  7.76  7.92  20.43  25.68  9.63  37.14  13.93  

CV 0.38  0.60  0.57   0.66  0.66   0.13  0.13  
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Figure 1 The Wangjiaba (WJB) catchment. 
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Figure 2 (a) Land use and (b) soil types throughout the study area. 

 

 

Figure 3 SWAT­EVENT model for the simulation of event­based flood data based on the initial conditions extracted from daily 5 
simulation results produced by the original SWAT model. 
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Figure 4 Shape of the dimensionless triangular UH. 

 

Figure 5 Comparisons between the observed and simulated daily discharges for the calibration and validation periods at WJB. 5 
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Figure 6 Comparisons of the daily simulations conducted using the SWAT model and the aggregated sub­daily simulations 
conducted using the SWAT­EVENT model. 

 

Figure 7 Relationship between UH time base bt  and concentration time ct , with a coefficient of determination (
2r ). 5 
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Figure 8 Box plots of ENS values for the SWAT­EVENT model results for sub­basin level UH parameters and basin level UH 
parameters. 

 

 5 

Figure 9 Impact of the antecedent conditions on the SWAT­EVENT model simulation results. 

 


