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Abstract  23 

Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be 24 

exacerbated by climate variability and change.  However, climate impacts on agricultural lands 25 

and resultant nutrient loads into surface water resources are largely unknown.  This study 26 

evaluated the impacts of climate variability and change on two adjacent watersheds in the 27 

Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model.  We 28 

prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 29 

concentration (590 and 850 ppm), precipitation increase (11 and 21 %) and temperature increase 30 

(2.9 and 5.0 °C), based on regional general circulation model (GCM) projections.  Further, we 31 

considered the ensemble of five GCM projections (2085 – 2098) under the representative 32 

concentration pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, 33 

precipitation and temperature.  Using SWAT model simulations from 2001 to 2014, as a baseline 34 

scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were 35 

analyzed.  Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 36 

concentration of 850 ppm significantly increased stream flow and nitrate loads by 50 % and 37 

52 %, respectively, while a temperature increase of 5.0 °C reduced stream flow and nitrate loads 38 

by 12 % and 13 %, respectively.  Crop biomass increased by elevated CO2 concentrations due to 39 

enhanced radiation- and water-use efficiency, while it decreased by precipitation and temperature 40 

increases.  Over the GCM ensemble mean, annual stream flow and nitrate loads showed an 41 

increase of ~ 70 %, relative to the baseline scenario, due to elevated CO2 concentrations and 42 

precipitation increase.  Different hydrological responses to climate change were observed from 43 

the two watersheds, due to contrasting land use and soil characteristics.  The watershed with 44 

larger percent croplands indicated a greater increase rate of 5.2 kg N ha-1 in nitrate yield relative 45 
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to the watershed with less percent croplands as a result of increased export of nitrate derived 46 

from fertilizer.  The watershed dominated by poorly-drained soils showed increased nitrate 47 

removal due do enhanced denitrification compared to the watershed dominated by well-drained 48 

soils.  Based on our findings, it is suggested that increased implementation of conservation 49 

practices would be necessary for this region to mitigate increased nitrate loads associated with 50 

predicted changes in future climate.   51 

 52 
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1 Introduction 64 

 Located in the Mid-Atlantic region, the Chesapeake Bay (CB) is the largest and most 65 

productive estuary in the United States (US).  The Chesapeake Bay Watershed (CBW) covers an 66 

area of 166,000 km2 and is home to more than 18 million people and 3,600 species of plants and 67 

animals (Chesapeake Bay Program, 2016).  Despite significant restoration efforts, the health of 68 

the Bay has continued to deteriorate, primarily due to excessive nutrients and sediment loadings 69 

from agricultural lands (Rogers and McCarty, 2000).  Najjar et al. (2010) suggested that the 70 

current water quality problems in the Bay are expected to worsen under climate variability and 71 

change.  General Circulation Models (GCMs) have projected increases in temperature and 72 

precipitation of up to 5.0 °C and 21 %, respectively, by the end of this century in the CB region 73 

(Najjar et al., 2009), which could lead to substantial changes in the hydrology and nitrogen (N) 74 

cycling.  For instance, Howarth et al. (2006) reported that greater precipitation is anticipated to 75 

increase N loads to the CB by ~ 65 %.  With precipitation and temperature changes, elevated 76 

CO2 concentrations affecting stomatal conductance has also been viewed as one of decisive 77 

factors modifying watershed hydrological processes (Chaplot, 2007; Wu et al., 2012a and 2012b).  78 

 Numerous studies have been conducted to demonstrate the impacts of changes in CO2 79 

concentrations, precipitation, and temperature on stream flow and N loads.  Elevated CO2 80 

concentrations are predicted to increase stream flow by reduction of evapotranspiration (ET) that 81 

results from a decrease in plant stomatal conductance (Field et al., 1995; Jha et al., 2006; Wu et 82 

al., 2012a and 2012b).  Jha et al. (2006), for example, showed that a doubling of CO2 83 

concentration increased water loads by ~ 36 % in the upper Mississippi river basin.  Precipitation 84 

increase/decrease was found to directly cause the rise/fall of stream flow levels (Jha et al., 2006; 85 

Ficklin et al. 2009; Wu et al., 2012a; Praskievicz, 2014; Uniyal et al., 2015).  Similarly, the study 86 
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by Ficklin et al. (2009) found that precipitation change of + 20 % and – 20 % led to changes in 87 

water loads by nearly + 17 % and – 14 %, respectively, in the San Joaquin River watershed, 88 

California.  Temperature increase was reported to reduce stream flow during summer seasons 89 

due to the intensified ET values, but to increase stream flow during winter seasons due to an 90 

upsurge of snow melting (Jha et al., 2006; Ficklin et al. 2009 and 2013; Wu et al., 2012a; 91 

Praskievicz, 2014).  Interestingly, in most studies, the responses of N loads to climate variability 92 

were found to be similar to the response of stream flow (Ficklin et al. 2009; Wu et al., 2012a; 93 

Praskievicz, 2014; Gombault et al., 2015).  According to the projected climatic conditions (e.g., 94 

elevated CO2 concentrations, precipitation and temperature increases) illustrated in Najjar et al. 95 

(2009), substantial variations in stream flow and N loads are anticipated in the CBW.  Therefore, 96 

it is important to investigate potential climate change impacts on watershed hydrological 97 

processes to efficiently mitigate water quality degradation. 98 

 However, climate change impacts on hydrological processes have not been fully 99 

investigated in the CBW region.  Howarth et al. (2006) attempted to quantify N loads under 100 

modified climate conditions, but their projections relied on the statistical relationships between 101 

river discharge/precipitation and N loads.  Lee et al. (2015) predicted changes in stream flow and 102 

nitrate loads at the outlet of the watershed in response to climate variability (e.g., elevated CO2 103 

concentrations, precipitation and temperature increase).  To cope with climate change-driven 104 

modifications, it is imperative to have an understanding of a wide range of changes in 105 

hydrological processes (Najjar et al., 2010).  A simple projection of aggregated watershed 106 

responses (water quality variables at the outlet of the watershed) would be limited to suggest 107 

conservation practices to reduce climate change impacts.  Understanding of internal watershed 108 

processes (i.e., water and nutrient transport mechanisms) within a watershed can guide site-109 
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specific management plan to aid conservation decision making.  In addition, climate impacts on 110 

agriculture is extremely important for the CB region because agriculture is the single largest 111 

nutrient source and modified crop growth by climate change can exert great impacts on internal 112 

watershed processes (Najjar et al., 2010). However, previous studies did not fully demonstrate 113 

climate change impacts on internal watershed processes considering detailed agricultural 114 

management practices.   115 

 Moreover, responses of watershed hydrological processes to climate variability and 116 

change can vary by watershed characteristics (e.g., land use and soil drainage conditions).  For 117 

example, several studies showed that watersheds with a greater area of cropland released a 118 

higher amount of nitrate than areas with less cropland, mainly due to agricultural N inputs 119 

(Jordan et al., 1997; Hively et al., 2011; McCarty et al., 2014).  Thus, climate change can lead to 120 

greater nitrate export from watersheds with a larger percent cropland area, due to increased 121 

export of N from fertilizer application.  Additionally, different soil characteristics also can lead 122 

to different responses in watershed-scale water and N cycles under climate change.  A study by 123 

Chiang (1971) showed that well-drained soils with a high infiltration rate promote water 124 

percolation, increasing groundwater contribution to stream flow.  Nitrate leaching is also found 125 

to frequently occur in well-drained soils (Lee et al., 2016a).  In contrast, poorly-drained soils 126 

with a low infiltration rate provide anaerobic conditions favorable to denitrification, resulting in 127 

nitrate removal in soils and groundwater (Denver et al., 2010; Lee et al., 2016a; Sharifi et al., 128 

2016).  For example, prior converted croplands, which are also known as “currently farmed 129 

historical wetlands”, often associated with poorly-drained soil were also shown to have 130 

prominent impacts on reducing agrochemical loadings in the CBW region during the winter 131 

season, when ET is low which results in a higher groundwater table (Tiner and Burke, 1995; 132 
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Denver et al., 2014; McCarty et al., 2014; Sharifi et al., 2016).  Artificial drainage systems in 133 

agricultural lands are widely developed on poorly-drained soils in this region, resulting in an 134 

increase of water and nutrient transport from lands to nearby streams through surface runoff 135 

(McCarty et al., 2008; Fisher et al., 2010).  Therefore, water and nitrate fluxes in the watersheds 136 

with different soil characteristic are expected to show distinctive responses to climate variability 137 

and change.   138 

This study aimed at evaluating the impacts of potential climate variability and change on 139 

water and nitrate budgets in two adjacent watersheds on the Coastal Plain of the CBW, using the 140 

Soil and Water Assessment Tool (SWAT) model.  This process-based water quality model has 141 

been widely used to predict climate change impacts on numerous watersheds (Gassman et al., 142 

2007; Uniyal et al., 2015).  We prepared six climate sensitivity scenarios to assess the individual 143 

impacts of changes in CO2 concentration (590 and 850 ppm), precipitation (11 and 21 %) and 144 

temperature (2.9 and 5.0 °C) increase.  This sensitivity analysis was prepared to develop in-depth 145 

knowledge and understanding on how each climate factor affects internal watershed processes 146 

and crop growth.  Then, the simulations with five GCM projections (referred to as the GCM 147 

scenario) was conducted to evaluate watershed internal processes and crop growth under 148 

foreseeable climate conditions that considers simultaneous changes in CO2, precipitation and 149 

temperature.  We used the GCM projections to describe foreseeable changes, as the combination 150 

of climate factors and their interactions could not provide complete climate change/variability 151 

information including seasonal and inter-decadal variability (Mearns, 2001).  We first assessed 152 

climate change impacts on water and nitrate loadings by analyzing internal watershed processes 153 

and crop growth, and then, comparative analyses between two watersheds were conducted to 154 

identify critical landscape characteristics that affected nitrate loads. Finally, suggestions were 155 
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provided regarding conservation practice implementation to improve the resilience of coastal 156 

watersheds to the future climate change in the CBW region. 157 

 158 

2 Materials and Methods 159 

2.1  Study area 160 

 This study was undertaken on two adjacent watersheds, Tuckahoe Creek Watershed 161 

(TCW, ~220.7 km2) and Greensboro Watershed (GW, ~290.1 km2).  They are sub-watersheds of 162 

the Choptank River Watershed located in the Coastal Plain of the CBW (Figure 1).  The 163 

Choptank River Watershed is one of the Conservation Effects Assessment Project (CEAP) 164 

Benchmark watersheds of the US Department of Agriculture (USDA)-Natural Resources 165 

Conservation Service (NRCS).  The US Environmental Protection Agency (USEPA) has listed 166 

this watershed, as “impaired” under Section 303(d) of the 1972 Clean Water Act, primarily due 167 

to the excessive nutrient and sediment loadings (McCarty et al. 2008).  The two adjacent sub-168 

watersheds have distinctive characteristics considering the distribution of land use and soil 169 

drainage conditions (Figure 2 and Table 1).  The TCW is dominated by agricultural lands (54 %) 170 

and forest (32.8 %) with well-drained soils, classified as hydrologic soil groups (HSG) – either A 171 

or B.  These soils account for 56% of the total watershed and 69.5 % of the agricultural lands 172 

(Figure 2).  Thus, water and nitrate fluxes tend to be easily percolated and leached into soils and 173 

groundwater, and thus groundwater flow is considered as a major water pathway for nutrient 174 

fluxes to streams in the TCW (Lee et al., 2016a).  In comparison, forest (48.3 %) is the major 175 

land use type in the GW, followed by agricultural (36.1 %).  Soils that are poorly-drained (HSG 176 
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– C or D) occupy 75 % of the total area and 67.2 % of agricultural lands, which result in a low 177 

infiltration and high denitrification.  178 

[Insert Figure 1. The location of Tuckahoe Creek Watershed (left) and Greensboro Watershed 179 

(right)] 180 

[Insert Figure 2. The physical characteristics of the Tuckahoe Creek Watershed (left) and 181 

Greensboro Watershed (right); (a) land use, (b) hydrologic soil groups, and (c) elevation] 182 

[Insert Table 1. Soil properties and land use distribution of the Tuckahoe Creek Watershed 183 

(TCW) and Greensboro Watershed (GW)] 184 

 185 

2.2 Soil and Water Assessment Tool (SWAT) 186 

 The SWAT is a process-based watershed model, developed to assess the impact of human 187 

activities and land use on water and nutrient cycles within agricultural watersheds (Netisch et al., 188 

2011).  The SWAT divides a watershed into sub-watersheds using a Digital Elevation Model 189 

(DEM), and each sub-watershed is further divided into hydrological response units (HRUs) 190 

based on a unique combination of land use, soil type, and slope.  Model simulation is performed 191 

at the HRU level, and the simulated outputs aggregated at the sub-watershed and then further at 192 

the watershed level through routing processes.  The amount of surface runoff and infiltration are 193 

calculated based on Soil Conservation Service (SCS) Curve Number (CN) method, and the CN 194 

values are updated daily based on soil permeability, land use type, and antecedent soil water 195 

conditions.  Water infiltrated into soils is either delivered to streams through lateral flow or 196 

further percolated into groundwater, when soil water content exceeds its field capacity.  The 197 

groundwater portion is then either transported to streams through groundwater flow, percolated 198 
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into the deep groundwater aquifer, or discharged to the soil profile.  The amount of nitrate in 199 

soils increases by nitrification, mineralization of soil organic and crop residue, biological N 200 

fixation, and fertilization, but it decreases through denitrification and plant uptake (Neitsch et al., 201 

2011).  Nitrate fluxes move via surface runoff, lateral flow, percolated water from soil to 202 

groundwater, and groundwater flow.  Nitrate concentration in the mobile water (i.e., surface 203 

runoff, lateral flow, and percolated water) is first determined and then nitrate fluxes in the mobile 204 

water is calculated based on the nitrate concentration and the amount of mobile water.  Nitrate in 205 

groundwater is re-distributed in four ways: remain in the groundwater, recharge to deep 206 

groundwater, move to streams, or discharge to the soils. Nitrate removal by biological and 207 

chemical processes in groundwater is simulated by the first-order kinetics. Refer to Netisch et al. 208 

(2011) for further details. 209 

 The SWAT model has the capability of simulating the impacts of CO2 concentration on 210 

ET and biomass accumulations.  The Penman-Monteith method used for this study considers 211 

CO2 effects on ET based on the relationship between plant stomatal conductance and CO2 212 

concentration:  213 

)]330/(4.04.1[ 2, 2
COgg lCOl                             (1) 214 

where 
2,colg  is the leaf conductance modified to reflect CO2 effects, and lg is the leaf 215 

conductance without the effect of CO2.  The equation shows the linear reduction of the leaf 216 

conductance with increasing CO2 and results in 40 % reduction in leaf conductance for all plants 217 

when CO2 concentration is doubled.  According to Eq. (1) elevated CO2 concentrations decrease 218 

plant stomatal conductance and canopy resistance, subsequently reducing ET.  Refer to Neitsch 219 

et al. (2011) for details on the Penman-Monteith method.  220 
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 The simulation of the crop growth in the SWAT is based on potential heat unit theory. 221 

The model considers the impacts of CO2 concentration on crop biomass growth by modifying 222 

radiation-use efficiency (RUE) of the plant as follows:  223 

)exp(

100

2212

2

COrrCO

CO
RUE
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
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(2)

 

224 

where RUE is radiation-use efficiency of a plant, and 1r and 2r are coefficients.  225 

phosynHRUEbio                                                                                                                 (3) 226 

where bio is a potential increase in plant biomass on a given day and phosynH  is the amount of 227 

intercepted photosynthetically active radiation on a given day. 228 

 229 

2.3 Baseline SWAT input data 230 

 Climate and geospatial data needed for the SWAT simulation are summarized in Table 2. 231 

Daily precipitation and temperature were obtained from three meteorological stations operated 232 

by the National Oceanic and Atmospheric Administration (NOAA) National Climate Data 233 

Center (NCDC) at Chestertown, Royal Oak, and Greensboro (USC00181750, USC00187806, 234 

and US1MDCL0009, respectively).  Due to data unavailability, humidity, wind speed, and solar 235 

radiation were generated using the SWAT built-in weather generator (Neitsch et al., 2011).  236 

Monthly stream flow data were downloaded from US Geological Survey (USGS) gauge stations 237 

on the Tuckahoe Creek near Ruthsburg (USGS#01491500) and the Choptank River near 238 

Greensboro (USGS#01491000) (Figure. 1).  The USGS LOAD ESTimator (LOADEST, Runkel 239 

et al. (2004)) was used to generate continuous monthly nitrate loads from nitrate grab sample 240 
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data (133 samples over the simulation period) that were obtained from the Chesapeake Bay 241 

Program (CBP, TUK#0181) for the TCW, and obtained from USGS gauge station data 242 

(USGS#01491000) for the GW.  The LOADEST is used commonly to generate continuous data 243 

from discrete data and it was shown to accurately generate water quality variables (Jha et al., 244 

2013; Lee et al., 2016b). The land use and soil maps, and DEM were prepared as shown in Table 245 

2. 246 

[Insert Table 2. List of the SWAT model input data] 247 

 We identified representative agricultural practices for this region using multiple 248 

geospatial data (Lee et al., 2016a).  Major crop rotations and their year to year placement was 249 

derived through analysis of the USDA-National Agricultural Statistics Service (NASS) Cropland 250 

Data Layer (CDL) for the period of 2008 – 2012.  We assumed that crop rotation and land use 251 

did not change over the simulation period so that agricultural N input did not vary for the 252 

baseline and GCM scenarios.  Detailed agricultural management information (e.g., the amount, 253 

type, and application timing of fertilizer, and planting and harvesting timings of individual crops) 254 

was developed through literature review and communications with local experts (Table A1).  255 

Detailed information about the development of crop rotation and land management is available 256 

in Lee et al. (2016a). 257 

 258 

2.4 Baseline SWAT calibration and validation 259 

 The SWAT model runs were performed at a monthly time step for 16 years; these include 260 

a 2-year warm-up (1999 – 2000), 8-year calibration (2001 – 2008), and 6-year validation period 261 

(2009 – 2014).  The SWAT model was simulated at a daily time step based on daily climate 262 
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input, and daily outputs were aggregated to monthly outputs.  It should be noted that due to 263 

unavailability of observations before 2001, model calibration and validation were initiated from 264 

2001. Compared to past 30-year precipitation data (1981 - 2010), climate condition over the 265 

calibration period (2001 - 2008) was shown to include representative wet, dry, and average 266 

climate conditions while the validation period (2009 - 2014) was dominated by wet conditions.  267 

Critical parameters used for model calibration were selected based on previous studies conducted 268 

in this region (Sexton et al., 2010; Yeo et al., 2014; Lee et al., 2016a) and allowable ranges of 269 

these parameters were derived from literature presented in the caption of Table 3.  Stream flow 270 

parameters were manually calibrated and then nitrate parameters were adjusted following SWAT 271 

calibration guideline (Arnold et al., 2012).  A set of parameters, that produced the best model 272 

performances and fulfilled model performance criteria suggested by Moriasi et al. (2007), were 273 

chosen for model validation.  Model performance was evaluated using the following statistics: 274 

Nash-Sutcliffe Efficiency coefficient ( NSE ), Root Mean Square Error ( RMSE )-Standard 275 

deviation Ratio ( RSR ), and Percent bias ( biasP ).  276 
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where iO  is the observed data at time step i, and iS  is the simulated output at time step i, O  is 280 

the mean of observed data over all time steps, and n  is the total number of observed data.  We 281 

also calculated NSE for the natural logarithm of stream flow to evaluate model performance for 282 

low-flows (Kiptala et al., 2014).  In addition, the 95 percent prediction uncertainty (95 PPU) 283 

band was represented to evaluate model uncertainty (Singh et al., 2014).  The 95 PPU was 284 

computed based on all simulated outputs generated during the calibration process.  The 95 PPU 285 

was represented as the range of values between the 2.5 and 97.5 percentiles of the cumulative 286 

distribution of simulated outputs. 287 

[Insert Table 3. List of calibrated parameters] 288 

 289 

2.5 Climate sensitivity and GCM scenarios 290 

 To evaluate the impacts of climate variability and change on watershed hydrological 291 

processes, climate sensitivity and GCM scenarios were prepared as illustrated below (see 2.5.1 292 

and 2.5.2).  The calibrated SWAT model was simulated using the climate sensitivity and GCM 293 

scenarios for comparison with baseline water and nitrate budgets.  294 

 295 

2.5.1 Climate sensitivity scenarios 296 
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 A climate sensitivity analysis aids in identifying the degree or threshold of responses of 297 

hydrologic variables to climate-induced modifications and a sensitivity scenario generally 298 

assumes constant changes throughout the year (Mearns, 2001).  Following the approach in 299 

Mearns (2001), six climate sensitivity scenarios were prepared by modifying the baseline data 300 

(1999 – 2014) to assess individual effects of elevated CO2 concentrations, precipitation and 301 

temperature on watershed hydrological processes (Table 4).  Sensitivity scenarios were designed 302 

to change one variable while holding other variables constant throughout the simulations.  303 

Baseline precipitation and temperature were modified by percent and absolute changes using 304 

anomaly and absolute data, respectively, as illustrated in Najjar et al. (2009).  They reported 305 

mean temperature and precipitation changes over the CB for three future periods (2010 – 2039, 306 

2040 – 2069, and 2070 – 2099) relative to the baseline period (1971 – 2000) based on GCM 307 

outputs (Najjar et al., 2009).  We used the maximum increase rate (and value) for 2040 – 2069 308 

(precipitation: 11 % and temperature: 2.9 °C) and 2070 – 2099 (precipitation: 21 % and 309 

temperature: 5.0 °C) to set the precipitation and temperature sensitivity scenarios.  For example, 310 

baseline precipitation increased by 11 % and 21 % for Scenario 3 and 4, respectively, and 2.9 °C 311 

and 5.0 °C were added to the baseline temperature for Scenario 5 and 6, respectively (Table 4).  312 

Baseline CO2 concentration was set as the default value (330 ppm) for simulations.  For the first 313 

and second scenarios, baseline CO2 concentration was replaced with 590 and 850 ppm, 314 

respectively.  The upper value of 850 ppm was used because GCMs used for temperature and 315 

precipitation sensitivity scenarios were forced with the assumption of CO2 concentration of 850 316 

ppm (Najjar et al., 2009).  The lower value of 590 ppm (the average of 330 and 850 ppm) was 317 

considered to be the level of CO2 concentration around the middle of this century.   318 

[Insert Table 4. Climate sensitivity scenarios developed by modifying baseline values] 319 
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2.5.2 GCM scenario 320 

 A GCM-based scenario is the most commonly used method for assessing future climate 321 

change impacts (Mearns, 2001).  We downloaded projected climate data (e.g., daily precipitation 322 

and maximum and minimum temperature) from the World Climate Research Program’s 323 

(WCRP’s) Coupled Model Intercomparison Project5 (CMIP5) archive (Brekke et al., 2013).  324 

Five GCM data under the representative concentration pathway (RCP) 8.5 scenario were 325 

downloaded (Table A2), because the RCP 8.5 indicates the highest value of CO2 concentration in 326 

the CMIP5.  To be consistent with the period of the baseline data (1999 – 2014), 16-year future 327 

data (2083 – 2098) were used in this study.  We further refined GCM data using the delta change 328 

method because spatially downscaled data are consistent with historical observations at the 329 

global scale, but could be significantly inconsistent at fine spatial scales, such as a watershed 330 

(Wang et al., 2014). The delta change method was calculated as follows:  331 

monthlybaselinePmonthlyfuturePdelta GCMGCMP ,,                (7) 332 

monthlybaselineTmonthlyfutureTdelta GCMGCMT ,,                  (8) 333 

deltadailybaselinePdaillyfutureP POBSDGCM   ,,                       (9) 334 

deltadailybaselineTdaillyfutureT TOBSDGCM   ,,                                                                    (10) 335 

where, deltaP   and deltaT  indicate precipitation ( P ) and temperature ( T ) biases in GCM data, 336 

respectively, monthlyfutureGCM , and monthlybaselineGCM ,  indicate the monthly average of GCM 337 

data for the future (2083 - 2098) and baseline (1999 - 2014) periods, respectively, 338 

dailybaselineOBS , indicates observed daily climate, and daillyfutureDGCM ,  indicates unbiased 339 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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future climate data.    We calculated the ensemble mean of delta-change values from the five 340 

GCMs, because substantial variations existed among the GCM projections (Shrestha et al., 2012; 341 

Van Liew et al., 2012).  Then, the SWAT model was simulated using the ensemble mean to 342 

predict hydrological processes under future climate conditions.  Similar to the baseline scenario, 343 

humidity, wind speed, and solar radiation values were generated using the SWAT built-in 344 

weather generator owing to data unavailability.  We assumed CO2 concentration for the GCM 345 

scenario at 936 ppm, as specified CO2 concentration under the RCP8.5 scenario (Meinshausen et 346 

al., 2011). 347 

 348 

2.6 Analyses of simulation outputs 349 

 Simulated outputs were summarized at multiple temporal scales (e.g., monthly, seasonal, 350 

and annual).  Annual averages of stream flow, ET, and nitrate loads were calculated to 351 

investigate changes in water and nitrate budgets in response to climate sensitivity and GCM 352 

scenarios.  The response of crop growth to climate variability and change was also analyzed to 353 

show the effects of modified crop biomass on hydrology and N cycle.  For comparative analyses 354 

between two watersheds, water and nitrate yields were summarized seasonally for climate 355 

sensitivity scenarios (i.e., summer (April – September) and winter (October – March)) and 356 

monthly for the GCM scenario.  Note that water and nitrate yields indicate the summations of 357 

water and nitrate fluxes transported from lands to streams by surface runoff, lateral flow, and 358 

groundwater flow.  All simulation outputs were normalized by total watershed size. 359 

 We conducted a statistical analysis to test if the simulation results under climate 360 

sensitivity and GCM scenarios were statistically different from those under the baseline scenario 361 

using parametric (paired t-test) and nonparametric (Wilcoxon signed rank) methods.  Note that 362 
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we used monthly outputs (168 samples over 14 years) for this analysis. The statistical 363 

significance for the difference was indicated by p-value.   364 

 365 

3 Results and Discussions 366 

3.1 Model calibration and validation 367 

 Monthly simulations for stream flow and nitrate loads were compared with corresponding 368 

observations (Figure 3).  Results show that simulated monthly stream flow were in good 369 

agreement with observations, but simulated peak stream flows were underestimated relative to 370 

observations.  This underestimation was attributed to the inherent limitations of the SWAT 371 

model and limited climate data to capture local storm effects as it does not account for intensity 372 

and duration of the precipitation (Qiu et al., 2012).  Previous studies conducted in this region 373 

showed similar results, though the overall simulation results accurately replicated the 374 

observations (Yeo et al., 2014; Lee et al., 2016a).  Simulated nitrate loads were also well 375 

matched with actual observations and the uncertainty band (shown as green in Figure 3) captured 376 

most observations in the two watersheds.  Overall, model performance measures fulfilled “good” 377 

(e.g., 0.65 < NSE ≤ 0.75) or “very good” (0.75 < NSE) criteria for stream flow and at least 378 

“satisfactory” (0.5 < NSE ≤ 0.65) for nitrate loads (Table 5).  The model performance measures 379 

for low-flows (NSE for the natural logarithm of stream flow) also indicated “satisfactory” to 380 

“very good” (Table 5).  These results demonstrated that the calibrated model replicated actual 381 

conditions reasonably well (Moriasi et al., 2007; Arnold et al. 2012).  382 

[Insert Figure 3. Simulated and observed monthly stream flow and nitrate loads for (a & b) TCW 383 

and (c & d) GW during calibration and validation periods] 384 
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[Insert Table 5. Model performance measures for monthly stream flow and nitrate loads] 385 

3.2 Responses to climate sensitivity scenarios 386 

3.2.1 Water and nitrate budgets 387 

 14-year averages of annual hydrologic variables under the baseline and climate 388 

sensitivity scenarios are presented in Figure 4.  Elevated CO2 concentrations (590 and 850 ppm) 389 

and precipitation increase (11 and 21 %) led to significant increases in annual stream flow and 390 

nitrate loads by 50 % and 52 % for the TCW and 43 % and 33 % for the GW, respectively, 391 

relative to the baseline scenario (p-value < 0.01) (Figure 4).  Elevated CO2 concentrations 392 

lowered plant’s stomatal conductance, resulting in a decrease in ET of 30 % and thereby 393 

increased stream flow and corresponding nitrate loads (Figure 4).  The reduced rate of ET 394 

(driven by CO2 concentrations of 850 ppm) demonstrated in this study is supported by previous 395 

studies using SWAT, such as Ficklin et al., 2009 (- 40 %; 970 ppm) and Pervez et al., 2015 (- 396 

12 %; 660 ppm).  Precipitation increase resulted in a direct increase in stream flow, leading to 397 

increased nitrate loads.  Compared to the baseline scenario, a temperature increase of 5 °C 398 

significantly reduced annual stream flow and nitrate loads by 12 % and 13 % for the TCW and 399 

11 and 13 % for the GW (p-value < 0.01), respectively, due to intensified ET (Figure 4).  400 

It should be noted that the standard version of SWAT tends to overestimate the impact of 401 

CO2 on reduction of ET (Eckhardt and Ulbrich, 2003).  Maximum leaf area index (LAI) is 402 

assumed to be constant regardless of variation in CO2 concentration in SWAT.  However, 403 

maximum LAI is known to increase with increasing CO2 concentration (Eckhardt and Ulbrich, 404 

2003).  In addition, the degree of reduction in stomatal conductance varies by plant species, 405 

which also is not taken into account in the SWAT model. Another model simplification, which 406 

increases uncertainty, is the application of the same reduction rate to all plants.  For example, C3 407 
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crops (soybean and wheat) are known to have less reduction in stomatal conductance with rising 408 

CO2 concentration compared to C4 crops (corn) (Ainsworth and Rogers, 2007).  Both factors 409 

could contribute to overestimating reduction of ET and resultant increase in stream flow and 410 

nitrate loads (Eckhardt and Ulbrich, 2003).   411 

 Changes in crop growth under climate sensitivity scenarios had great impacts on water 412 

and nitrate budgets.  Although precipitation increase resulted in the greatest increase in annual 413 

stream flow, annual nitrate loads were greater under elevated CO2 concentrations (Figure 4ab), 414 

due to increased crop biomass and high N availability from mineralization of crop residues 415 

(Figure 5a).  Elevated CO2 concentrations stimulated crop growth by decreasing water demand 416 

and increasing radiation-use efficiency (Abler and Shortle, 2000; Parry et al., 2004).  For 417 

example, simulated corn and soybean biomass increased from 1.5 and 0.9 Mg ha-1 (baseline 418 

concentration of 330 ppm) to 1.6 and 1.3 (CO2 concentration of 850 ppm) Mg ha-1, respectively 419 

(Figure 5a).  Increased crop biomass left greater amounts of crop residue after harvesting crops 420 

(winter seasons: Oct. – Mar.), which contributed to increasing nitrate in soils through 421 

mineralization (Lee et al., 2016a).  Our simulation results indicated that mineralized nitrate under 422 

elevated CO2 concentrations increased by 27 % for the TCW and 23 % for the GW during winter 423 

seasons, compared to the baseline values (Figure A3).  Increased crop residue resulted in greater 424 

nitrate loads under elevated CO2 concentrations than under conditions of increased precipitation.  425 

In contrast, temperature increase led to lower crop biomass than the baseline value, due to 426 

increased heat stress (Figure 5c).  Lower biomass reduced remaining crop residue and 427 

subsequently reduced mineralized nitrate by 22 % during winter seasons, compared to the 428 

baseline value (Figure A3).  Reduction of mineralized nitrate contributed to decreased nitrate 429 

loads in conjunction with intensified ET.  Precipitation increase slightly decreased corn biomass 430 
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because increased precipitation reduced the availability of nutrients for crops (Figure 5b), 431 

leading to increased nutrient stress.  However, soybean biomass did not change in response to 432 

precipitation increase (Figure 5e) since soybean crops can generate N through fixation as needed. 433 

 434 

[Insert Figure 4. 14-year average of annual hydrologic variables under the baseline and climate 435 

sensitivity scenarios at the watershed scale] 436 

[Insert Figure 5. The responses of crop biomass growth to the climate sensitivity scenario: (a, b, 437 

and c) corn and (d, e, and f) soybean.] 438 

 439 

3.2.2 Comparative analyses 440 

 For the purpose of comparing the two watersheds in response to climate sensitivity 441 

scenarios, 14-year averages of seasonal water and nitrate yields were calculated (Figure 6).  Both 442 

elevated CO2 concentrations and precipitation increase led to greater water and nitrate yields for 443 

the two watersheds during winter and summer seasons, compared to the baseline scenario.  444 

However, the seasonal pattern of nitrate yield differed between the two watersheds.  Wintertime 445 

water yield was greater than summertime value for both watersheds, which was consistent with 446 

the seasonal pattern of nitrate yield for GW.  However, summertime nitrate yield increases were 447 

greater than wintertime value for the TCW, apparently due to the difference in percent 448 

agricultural lands between the TCW (54.0 %) and GW (36.1 %).  Increased water yield could 449 

accelerate the export of nitrate added to the watersheds through fertilizer activities mainly 450 

occurred during summer seasons.  Accordingly, increased water yield caused by elevated CO2 451 

concentrations and precipitation increase induced considerable increase in summertime nitrate 452 
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yield by ~ 62.5 % for the TCW, while moderately increasing it by ~ 35.6 % for the GW, which is 453 

dominated by forest instead of croplands. 454 

[Insert Figure 6. 14-year average of seasonal hydrologic variables under the baseline and climate 455 

sensitivity scenarios at the watershed scale] 456 

 Temperature increase reduced summertime water and nitrate yields by 18.5 % and 27 % 457 

for the TCW and 13.9 % and 20.2 % for the GW, respectively, mainly due to increased water 458 

loss by ET (Table A4).  Wintertime water yield also decreased for the two watersheds, but 459 

changes in wintertime nitrate yield differed between the two watersheds.  A decrease of 9.5 % in 460 

wintertime nitrate yield was found for GW, but wintertime nitrate yield increased by 1.6 % for 461 

the TCW (Figure 6b), due to modified crop growth patterns and contrasting soil characteristics 462 

between the two watersheds.  Temperature increase could drive crops to reach maturity earlier 463 

while exerting increased heat stress on crops, leading to lower biomass compared to the baseline 464 

(Figure 5cf).  These two factors collectively reduced soil water and nitrate consumption by crops 465 

at the end of the growth stage, subsequently increasing soil water content and nitrate leaching 466 

compared to the baseline (Figure A5).  Nitrate leached into groundwater was discharged to 467 

streams through groundwater flow during winter seasons.  The TCW showed increased nitrate 468 

leaching of 1.0 kg N ha-1 compared to GW, due to a larger percentage of well-drained soils with 469 

a high infiltration rate.  Different leaching rates between the TCW and GW soils led to a greater 470 

increase in wintertime nitrate flux transported by groundwater flow (NGWQ) for the TCW (0.21 471 

kg N ha-1) compared to the GW (0.16 kg N ha-1) (Figure 6b).  However, intensified ET reduced 472 

wintertime water and nitrate fluxes transported by surface runoff (SURQ and NSURQ, 473 

respectively) for the two watersheds (Table A4) while water fluxes transported by lateral and 474 

groundwater flow (LATQ and GWQ, respectively) were rarely changed.  Because the majority 475 
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of water flux was transported by groundwater flow for the TCW and surface runoff for the GW 476 

(Figure 6a), a decrease in SURQ led to a substantial reduction of wintertime NSURQ for GW 477 

(0.45 kg N ha-1) and less reduction for the TCW (0.12 kg N ha-1), compared to the baseline 478 

(Figure 6b).  Therefore, both increased NGWQ and decreased NSURQ during winter seasons 479 

collectively led to an increasing pattern of wintertime nitrate yield for the TCW and a decreasing 480 

pattern for the GW, compared to the baseline scenario.  Note that denitrification was rarely 481 

affected by temperature increase because reduced soil water content by increased ET through 482 

higher temperatures decreased denitrification.   483 

 484 

3.3 Responses to the GCM scenario 485 

3.3.1 Comparison of climate data  486 

 The monthly averages of mean temperature and cumulative precipitation under the 487 

baseline scenario were compared with the ensemble means of five GCMs (Figure 7).  Projected 488 

temperature was constantly higher than the baseline value throughout the year by 3.8 – 6.2 °C 489 

(Figure 7a).  Compared to the baseline, projected precipitation was greater except for March and 490 

October. (Figure 7b).  Monthly cumulative precipitation was up to 19 mm greater on August and 491 

up to 11 mm lower on October, in comparison to the baseline values.  Note that the annual 492 

average of mean temperature increased from 13.9 °C (baseline) to 18.6 °C (projection), and the 493 

annual average of cumulative precipitation also increased from 1221 mm (baseline) to 1322 mm 494 

(projection). 495 

[Insert Figure 7. Monthly average of (a) mean temperature and (b) cumulative precipitation for 496 

the baseline (2001 – 2014) and future (2085 – 2098) periods] 497 
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3.3.2 Water and nitrate budgets 498 

 Baseline hydrologic variables (e.g., stream flow, ET, and nitrate loads) are compared 499 

with the simulated outputs in Table 6.  Relative to the baseline scenario, annual stream flow and 500 

nitrate loads significantly increased by 70 % and 66 % for the TCW and 50 % and 56 % for the 501 

GW, respectively (p-value < 0.01).  These increasing patterns were mainly caused by two factors: 502 

1) increased precipitation and 2) decreased ET resulting from elevated CO2 concentration of 936 503 

ppm.  Annual precipitation increased by 8 % and elevated CO2 concentrations reduced ET by 32 % 504 

for the TCW and 26 % for the GW (Table 6).   505 

[Insert Table 6. 14-year average of hydrologic variables under the baseline and GCM scenarios] 506 

 507 

3.3.3 Comparative analyses 508 

 Responses of the two watersheds to the GCM scenario were compared using the monthly 509 

averages of water and nitrate yields in Figure 9.  Relative to the baseline, projected water and 510 

nitrate yield was greater over the year.  The greatest increase in water yield was observed on 511 

August and September when the increase rate of precipitation was greatest.  However, the 512 

increase rate of nitrate yield was higher on April than other months, due to a significant export of 513 

nitrate from fertilizer applications.  514 

 An increase rate of nitrate yield (under the GCM scenario relative to the baseline scenario) 515 

was 5.2 kg N ha-1 greater in the TCW compared to the GW, mainly due to two watershed 516 

characteristics (Figure 9cd).  First, a larger percentage of croplands in TCW led to greater nitrate 517 

export from fertilizer application compared to GW with smaller percent croplands.  This was 518 

because increased water yield by elevated CO2 concentrations and precipitation increase 519 
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promoted the export of nitrate in soil profile (Suddick et al., 2013).  For example, nitrate yield 520 

increased by 1.4 kg N ha-1 for the TCW and 0.9 kg N ha-1 for the GW in April, when fertilizer 521 

application occurred, compared to the baseline.  Second, a larger percentage of poorly-drained 522 

soils in the GW contributed to reducing nitrate yield via greater potential of denitrification, 523 

compared to the TCW dominated by well-drained soils, under the GCM scenario.  Increased soil 524 

water content resulting from elevated CO2 concentration of 936 ppm provided anaerobic 525 

conditions for denitrification.  Compared to the baseline, the GW and TCW showed increased 526 

nitrate (removed by denitrification) of 3.9 and 0.5 kg N ha-1 under the GCM scenario, 527 

respectively.  Eventually, GW lost 8.7 kg N ha-1 more nitrate flux via denitrification than the 528 

TCW, which likely led to lowering nitrate yield for the GW. 529 

[Insert Figure 8. 14-year average of monthly water and nitrate yields under the baseline and 530 

GCM scenarios] 531 

4 Implications and limitations 532 

 The key results of this study can suggest important future research for improving our 533 

understanding of climate change impacts on nutrient loads into the CBW.  Analysis of climate 534 

variability and change impacts on watershed hydrological processes illustrated the close 535 

relationship between agricultural activities and future nitrate export in the watershed dominated 536 

by croplands, due to excessive export of nitrate from springtime fertilizer application.  Changes 537 

in crop growth are likely to alter current agricultural activities and associated nitrate loads.  538 

Fertilizer application might increase in the future because increased extreme climate conditions 539 

(e.g., high intensity rainfall and flooding) might lead to increased risk of nutrient loss to leaching 540 

and runoff, reducing the fertilizer use efficiency of field crops (Suddick et al., 2013).  Our 541 
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simulation also indicated considerable increases in nitrate transported by surface runoff (NSURQ) 542 

due to increased precipitation on April, when the vast majority of fertilizers were applied (Figure 543 

8bd).  As a result, projected corn biomass appeared to be 0.03 Mg ha-1 lower than the baseline 544 

value, likely due to increased nutrient stress (Figure 9a).  However, soybean biomass increased 545 

under the GCM scenario since soybean could accumulate N through biological fixation and 546 

elevated CO2 concentrations contributed to biomass growth (Figure 9b).  To adapt to warmer 547 

temperatures, early planting of summer crops could be suggested to increase crop production 548 

while reducing heat stress (Woznicki et al., 2015).  For example, when planting dates were 549 

shifted 10 days earlier, soybean yield increased on average of 0.03 Mg ha-1 (Figure 8b).  550 

Contrary to our expectation, corn yield decreased under the earlier planting date, due to increased 551 

nutrient stress resulting from intensified precipitation.  Lastly, irrigation patterns could be 552 

changed due to decreased ET under elevated CO2 conditions.  However, there are limited studies 553 

investigating future agricultural practices.  Therefore, it is crucial to investigate potential 554 

agricultural activities under climate change and their effects on nitrate loads.  555 

[Insert Figure 9. Crop biomass growth and stress under the baseline and GCM scenarios: (a) corn 556 

and (b) soybean] 557 

 Climate change-driven modifications indicated a potential overall increase in nitrate 558 

export.  Therefore, the importance of conservation practices aimed at N mitigation would be 559 

even more critical in the future.  Comparative analyses of two watersheds can provide practical 560 

guideline and have implications for agricultural watersheds on coastal areas in the CBW because 561 

our analyses considered climate change impacts on croplands (crop growth, water and nutrient 562 

cycling) and their transport mechanisms with detailed agricultural management practice.  In 563 

addition, the two watersheds showed the typical site characteristics in the coastal watershed, in 564 
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terms of topographic and soil characteristics, and the agricultural practices commonly used in the 565 

CBW.    Hence, the findings from this study can be applicable to other catchments in the CBW 566 

region and will be useful to prepare climate change adaptation strategies.  For example, the 567 

control of nutrients in manure or fertilizer would be more critical for reducing nitrate export from 568 

a watershed dominated by croplands.  Winter cover crops, which are widely implemented in this 569 

region, would likely show increased value in mitigating agricultural nitrate loss during winter 570 

seasons, considering increased N availability and increased wintertime precipitation.  In a 571 

watershed dominated by poorly-drained soils, wetland restoration would be well positioned to 572 

enhance denitrification (McCarty et al., 2014), as would be the use of drainage control structures 573 

on ditches and tiles draining prior converted croplands (poorly drained areas of the farm 574 

landscape).  575 

 Note that although forest litterfall have significant impacts on nutrient cycles (Zhang et 576 

al., 2014), the current version of SWAT model is limited to represent those forest impacts (Yang 577 

et al., 2016).  In our simulation, growth of deciduous tree was simulated at forest areas with the 578 

default setting.  This setting allowed tree growth to affect water and nutrient cycling via ET and 579 

uptake, but simulated tree growth was considerably underestimated compared to actual growth 580 

and litterfall was rarely considered (Yang et al., 2016).  Hence, our simulation might poorly 581 

represent the ecological responses of forests to climate change.  Future work should accurately 582 

consider forest ecosystems through model improvement. 583 

5 Summary and conclusion 584 

Water quality degradation by human activities on agricultural lands is a great concern on the 585 

Coastal Plain of the CBW.  This degradation is expected to worsen in the future due to changes 586 
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in climate variability and conditions.  However, there is limited information about how climate 587 

change will influence hydrology and nutrient cycles.  This study used the SWAT model to 588 

simulate the impacts of potential climate variability and change on two adjacent watersheds in 589 

the Coastal Plain of the CBW.  The climate sensitivity and GCM scenarios were prepared to 590 

assess the individual and combined impact of three climate factors (e.g., increases in CO2 591 

concentration, precipitation, and temperature).  We performed comparative analyses between 592 

two watersheds to show how key landscape characteristics influence the watershed level 593 

response to climate variability and change.  594 

Our simulation results showed that water and nitrate budgets in two watersheds in the Coastal 595 

Plain of the CBW were significantly sensitive to climate variability and change.  Compared to 596 

the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentrations of 850 597 

ppm resulted in increases in stream flow and nitrate loads of 50 % and 52 %, respectively.  A 598 

temperature increase of 5.0 °C reduced stream flow and nitrate loads by 12 % and 13 %, 599 

respectively.  Under the GCM scenario, annual stream flow and nitrate loads increased by 70 % 600 

and 66 %, respectively, compared to the baseline scenario.  Contrasting land use and soil 601 

characteristics led to different patterns of nitrate yield between two watersheds.  The watershed 602 

with a larger percent cropland indicated 5.2 kg N ha-1 greater increase rate of nitrate yield (under 603 

the GCM scenario relative to the baseline scenario) compared to the one with less percent 604 

croplands under the GCM scenario, due to increased export of nitrate derived from fertilizer.  605 

Increased nitrate loss by denitrification also contributed to less increase in nitrate yield in the 606 

watershed dominated by poorly-drained soils compared to the watershed dominated by well-607 

drained soils.  Based on our results, we suggest that increased implementation of conservation 608 

practices, such as nutrient management planning, winter cover crops, and wetland restoration and 609 
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enhancement, is necessary to mitigate increased nitrate loads by climate change.  These findings 610 

may help watershed managers and decision makers to establish climate change adaptation 611 

strategies for mitigating water quality degradation in areas impaired by excessive agricultural 612 

nutrient loadings.  613 
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 844 

Table 1. Soil properties and land use distribution of the Tuckahoe Creek Watershed (TCW) and 845 

Greensboro Watershed (GW) (adapted from Lee et al. (2016a)) 846 

Land use TCW GW 

Agriculture 54.0 % [69.5% / 30.5 %] 36.1 % [32.8% / 67.2 %] 

Forest 32.8 % 48.3 % 

Pasture 8.4 % 9.3 % 

Urban 4.2 % 5.6 % 

Water body 0.6 % 0.7 % 

Hydrologic soil groups (HSGs) TCW GW 

A 0.3 % 3.1 % 
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B 55.8 % 22.4 % 

C 2.2 % 4.2 % 

D 41.7 % 70.3 % 

Note: Values in parenthesis [], denote the proportion of well-drained soils (HSG-A&B) and 847 

poorly-drained soils (HSG-C&D) used for agricultural lands, respectively.  848 

 849 

 850 

Table 2. List of the SWAT model input data 851 

Data  Source Description Year 

DEM MD-DNR LiDAR-based 2 meter resolution  2006 

Land use USDA-NASS Cropland Data Layer (CDL) 2008 - 2012 

MRLC National Land Cover Database (NLCD) 2006 

USDA-FSA-APFO 
National Agricultural Imagery Program digital 

Orthophoto quad imagery 
1998 

US Census Bureau TIGER road map  2010 

Soils USDA-NRCS Soil Survey Geographical Database (SSURGO)  2012 

Climate NCDC Daily precipitation and temperature 1999 - 2014 

Stream flow USGS Monthly stream flow  2001 - 2014 

Water quality USGS and CBP Daily grab nitrate samples 2001 - 2014 

Note: MD-DNR: Maryland Department of Natural Resources, USDA-NASS: USDA-National 852 

Agricultural Statistics Service, MRLC: Multi-Resolution Land Characteristics Consortium, 853 

USDA-FSA-APFO: USDA-Farm Service Agency-Aerial Photography Field Office, TIGER: 854 

Topologically Integrated Geographic Encoding and Referencing, and USDA-NRCS: USDA-855 

Natural Resources Conservation Service. 856 

 857 

 858 

 859 

 860 

Table 3. List of calibrated parameters  861 

Parameter Variable Description (unit) Range 
Calibrated value 

TCW GW 

CN2
#
 

Stream 

flow 

Curve number -50 - 50 % -30 % 0% 

ESCO
#
 Soil evaporation compensation factor 0 - 1 1 0.95 

SURLAG
#
  Surface runoff lag coefficient 0.5 - 24 0.5 0.5 

SOL_AWC
#
 Available water capacity of the soil layer (mm H2O mm soil-1) -50 - 50 % - 10% - 1% 

SOL_K
#
 Saturated hydraulic conductivity (mm hr-1) -50 - 50 % 50 % 49 % 



42 

 

SOL_Z
#
 Depth from soil surface to bottom of layer (mm) -50 - 50 % -20 % -31 % 

ALPHA_BF
#
 Base flow recession constant (1 days-1) 0 - 1 0.07 0.051 

GW_DELAY
#
 Groundwater delay time (days) 0 - 500 120 45 

GW_REVAP
#
 Groundwater “revap” coefficient 0.02 - 0.2 0.10 0.02 

RCHRG_DP
#
 Deep aquifer percolation fraction 0 - 1 0.01 0.05 

GWQMN
#
 

Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm) 
0 - 5000 1.9 1.0 

CH_K2
#
 Effective hydraulic conductivity (mm hr-1) 0 - 150 0 20 

CH_N2
#
 Manning coefficient 0.01 - 0.3 0.29 0.021 

NPERCO
†
 

Nitrate 

Nitrogen percolation coefficient 0.01 - 1 0.5 0.2 

N_UPDIS
†
 Nitrogen uptake distribution parameter 5 - 50 50 50 

ANION_EXCL
†
 Fraction of porosity from which anions are excluded 0.1 - 0.7 0.59 0.6 

ERORGN
†
 Organic N enrichment ratio for loading with sediment 0 - 5 4.92 4.1 

BIOMIX
†
 Biological mixing efficiency 0.01 - 1 0.01 0.01 

SOL_NO3
§
 Initial NO3 concentration in soil layer (mg N kg-1) 0 - 100 11.23 0 

CDN
$
 Denitrification exponential rate coefficient 0 - 3.0 0.3 1.8 

SDNCO
$
 Denitrification threshold water content 0.1 - 1.1 1.0 1.0 

* refers to a default value. The ranges of parameters with superscripts (#, †, §, $) were adapted 862 

from Gitau and Chaubey (2010), Yeo et al. (2014), Seo et al. (2012), Neitsch et al. (2011), 863 

respectively. 864 

 865 

 866 

 867 

 868 

Table 4. Climate sensitivity scenarios developed by modifying baseline values 869 

Scenario 
Percent increase of 

precipitation (%) 

Absolute increase of 

temperature (°C) 

Replacement of CO2 

(ppm) 

Baseline 0 0 330 

1 0 0 590 

2 0 0 850 

3 11 0 330 

4 21 0 330 

5 0 2.9 330 

6 0 5.0 330 

 870 

 871 

 872 
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 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

Table 5. Model performance measures for monthly stream flow and nitrate loads 892 

Period Variable 
Stream flow Nitrate loads 

TCW GW TCW GW 

Calibration 

NSE 
0.723** 

(0.828***) 

0.686** 

(0.719**) 
0.623* 0.702** 

RSR 0.523** 0.556** 0.610* 0.542** 

P-bias (%) -5.8*** -3.2*** -9.8*** -4.1*** 

Validation 

NSE 
0.674** 

(0.556*) 

0.790*** 

(0.727**) 
0.604* 0.567* 

RSR 0.566** 0.454*** 0.624* 0.652* 

P-bias (%) 17.8** 13*** -5.6*** -12.1*** 

Model performances were rated based on the criteria of Moriasi et al. (2007); * Satisfactory, ** 893 

Good, and *** Very Good; Satisfactory (0.5 < NSE ≤ 0.65, 0.6 < RSR ≤ 0.7, and ± 15 ≤ P-bias < 894 
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± 25), ** Good (0.65 < NSE ≤ 0.75, 0.5 < RSR ≤ 0.6, and ± 10 ≤ P-bias < ± 15), and *** Very 895 

Good (0.75 < NSE ≤ 1.0, 0.0 < RSR ≤ 0.5, P-bias < ± 10). A value in parentheses indicates NSE 896 

for the natural logarithm of stream flow. 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

Table 6. 14-year average of hydrologic variables under the baseline and GCM scenarios 914 

Variables 

TCW GW 

Baseline 
GCM 

scenario 

Relative 

change (%) 
Baseline 

GCM 

scenario 

Relative 

change (%) 

Stream flow 

(m3 s-1 ha-1 104) 
1.5 

2.5 

(2.3 – 2.8) 
70 1.7 

2.5 

(2.3 – 2.8) 
50 

ET 

(mm ha-1) 
2.7 1.8 -32 2.3 1.7 -26 

Nitrate loads 

(kg N ha-1) 
12.5 

20.8 

(19.8 – 22.0) 
66 5.3 

8.2 

(7.8 – 8.9) 
56 

Note: The numbers within parenthesis indicates the maximum and minimum values of 915 

simulations with five GCM data. Relative change indicates the percent changes in the ensemble 916 

mean relative to the baseline value.  917 
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 952 

Figure 1. The location of the Tuckahoe Creek Watershed (left) and Greensboro Watershed (right) 953 

(adapted from Lee et al. (2016a)) 954 

 955 

 956 

 957 

 958 

 959 

 960 
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 961 

Figure 2. The physical characteristics of the Tuckahoe Creek Watershed (left) and Greensboro 962 

Watershed (right); (a) land use, (b) hydrologic soil groups, and (c) elevation (adapted from Lee 963 

et al. (2016a)).  964 

Note: Dbl WW/Soyb stands for double crops of winter wheat and soybean in a year. Hydrologic 965 

soil groups (HSGs) are characterized as follows: Type A- well-drained soils with 7.6-11.4 mm 966 

hr-1 water infiltration rate; Type B - moderately well-drained soils with 3.8-7.6 mm hr-1; Type C - 967 

moderately poorly-drained soils with 1.3-3.8 mm hr-1; Type D – poorly-drained soils with 0-1.3 968 

mm hr-1 (Netisch et al., 2011).  969 
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 970 

Figure 3. Simulated and observed monthly stream flow and nitrate loads for the (a & b) TCW 971 

and (c & d) GW during calibration and validation periods.  972 

Note: 95 PPU stands for 95 percent prediction uncertainty. 973 

 974 
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 975 

Figure 4. 14-year average of annual hydrologic variables under the baseline and climate 976 

sensitivity scenarios at the watershed scale: (a) stream flow and evapotranspiration (ET), and (b) 977 

nitrate loads.  978 

Note: The red and black numerical values above the bar and the dot graphs, respectively, indicate 979 

the relative changes (%) in hydrologic variables for climate sensitivity scenarios relative to the 980 

baseline scenario [relative change (%) = (Sensitivity Scenarios – Baseline) / Baseline × 100]. 981 

PCP and TMP stand for precipitation and temperature, respectively. 982 

 983 

 984 
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 985 

Figure 5. The responses of crop biomass growth to the climate sensitivity scenario: (a & b & c) 986 

corn and (d & e & f) soybean.  987 

Note: PCP and TMP in the legend stand for precipitation and temperature, respectively.  988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 
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 996 

Figure 6. 14-year average of seasonal hydrologic variables under the baseline and climate 997 

sensitivity scenarios at the watershed scale: (a) water and (b) nitrate yields.  998 

Note: The number on the bar graph indicates the relative changes (%) in hydrologic variables for 999 

climate sensitivity scenarios relative to the baseline scenario. Water and nitrate yields indicate 1000 

the summations of water and nitrate fluxes transported from lands to streams by surface runoff, 1001 

lateral flow, and groundwater flow. PCP and TMP stand for precipitation and temperature, 1002 

respectively. SURQ, LATQ, and GWQ indicate water fluxes transported by surface runoff, 1003 

lateral flow, and groundwater flow, respectively. NSURQ, NLATQ, and NGWQ indicate nitrate 1004 

fluxes transported by surface runoff, lateral flow, and groundwater flow, respectively.  1005 

 1006 

 1007 

 1008 

 1009 
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 1010 

Figure 7. Monthly average of (a) mean temperature and (b) cumulative precipitation for the 1011 

baseline (2001 – 2014) and future (2085 – 2098) periods.  1012 

Note: Projection stands for the ensemble mean of five GCM data, and the range stands for the 1013 

interval between the maximum and minimum values of five GCM data.  1014 
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 1015 

Figure 8. 14-year average of monthly water and nitrate yields under the baseline and GCM scenarios.  1016 

Note: The descriptions of abbreviation are available in the caption of Figure 6. 1017 

 1018 

 1019 
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 1020 

Figure 9. Crop biomass growth under the baseline and GCM scenarios: (a) corn and (b) soybean.  1021 

Note: Projection stands for the simulated biomass plantd on the original planting dates under the 1022 

GCM scenario. Earlier planting indicates the simulated biomass planted 10 days earlier than the 1023 

original planting dates under the GCM scenario. 1024 
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 1034 
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Table A1. Management schedules for the baseline scenario (adapted from Lee et al. (2016a))  1054 

Baseline scenario (no winter cover crop) 

Crop Planting Fertilizer Harvest 

Corn (after corn) 
Apr. 30 

(no-till) 

157 kg N ha-1 of poultry manure on Apr. 20 

45 kg N ha-1 of sidedress 30% UAN on Jun. 7 
Oct. 3 

Corn (after  

Soybean and Double crop 

soybean) 

Apr. 30 

(no-till) 

124 kg N ha-1 of poultry manure on Apr. 20 

34 kg N ha-1 of sidedress 30% UAN on Jun. 7 
Oct. 3 

Soybean 
May 20 

(no-till) 
  Oct. 15 

Double crop winter wheat 

(Dbl WW) 
Oct. 10 

34 kg N ha-1 of sidedress 30% UAN on Oct. 8 

45 kg N ha-1 of sidedress 30% UAN on Mar. 1 

67 kg N ha-1 of sidedress 30% UAN on Apr. 5 

Jun. 27 

Double crop soybean 

(Dbl Soyb) 
Jun. 29   Nov. 1 

Note: UAN stands for Urea-Ammonium Nitrate. The typical nitrogen content for poultry manure 1055 

is assumed as 2.8% (Glancey et al., 2012).  1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 
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 1065 

 1066 

 1067 

 1068 

 1069 

 1070 
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Table A2. Five GCMs used to the GCM scenario 1071 

Num. Model Full name Modeling Group 
1 BCC-CSM1-1.1 Beijing Climate Center (BCC) - Climate System Model (CSM) Beijing Climate Center, China Meteorological Administration 

2 CCSM4.1 Community Climate System Model (CCSM) 4.1 National Center for Atmospheric Research 

3 GFDL-ESM2G.1 Geophysical Fluid Dynamics Laboratory (GFDL) - Earth System 

Model (ESM) NOAA Geophysical Fluid Dynamics Laboratory 

4 IPSL-CM5A-LR.1 Institut Pierre-Simon Laplace (IPSL) - Climate Model(CM)5A-

Low Resolution Institut Pierre-Simon Laplace 

5 MIROC-ESM-CHEM.1 
An atmospheric chemistry coupled version of Model for 

Interdisciplinary Research on Climate (MIROC) - Earth System 

Model (ESM) 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), and National Institute for Environmental 

Studies 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 
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 1081 

 1082 

 1083 

 1084 
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 1085 

Figure A3. 14-year average of annual mineralized nitrate during winter seasons (Oct. – Mar.) 1086 

under the baseline and climate sensitivity scenarios at the watershed scale.  1087 

Note: The black numerical values above the bar graph indicate the relative changes (%) in 1088 

hydrologic variables for climate sensitivity scenarios relative to the baseline scenario [relative 1089 

change (%) = (Sensitivity Scenarios – Baseline) / Baseline × 100]. PCP and TMP stand for 1090 

precipitation and temperature, respectively. 1091 
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Table A4. Seasonal ET (mm ha-1 102) under climate sensitivity scenarios 1101 

Scenario 
Corn Soybean 

Winter Summer Winter Summer 

Baseline 0.74 2.00 0.68 1.64 

CO2 (590 ppm) 0.65 1.77 0.59 1.49 

CO2 (850 ppm) 0.50 1.40 0.46 1.22 

PCP (11 %) 0.75 2.03 0.68 1.68 

PCP (21 %) 0.75 2.05 0.69 1.71 

TMP (2.6 °C) 0.81 2.03 0.77 1.67 

TMP (5.0 °C) 0.87 2.05 0.83 1.70 
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 1109 
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 1112 

Figure A5. Changes in (a & b) soil water content and (c & d) nitrate leaching under temperature 1113 

increase 1114 

Note: TMP stands for temperature, respectively. 1115 
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