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Abstract 42 

The common node approach and the dual node approach are two widely applied approaches to 43 

couple surface-subsurface flow. In this study both approaches are analyzed for cell-centered as 44 

well as vertex-centered finite difference schemes. It is shown that the dual node approach should 45 

be conceptualized and implemented as a one-sided first-order finite-difference to approximate the 46 

vertical subsurface hydraulic gradient at the land surface. This results in a consistent dual node 47 

approach in which the coupling length is related to grid topology. In this coupling approach the 48 

coupling length is not to be interpreted as a non-physical model parameter. Although, this 49 

particular coupling approach is technically not new, the differences between this consistent dual 50 

node approach and the common node approach have not been studied in detail. In fact, this 51 

coupling scheme is often believed to be similar to the common node approach. In this study it is 52 

illustrated that in comparison to the common node approach, the head continuity at the surface-53 

subsurface interface is formulated more correctly in the consistent dual node approach. Numerical 54 

experiments indicate that the consistent dual node approach is less sensitive to the vertical 55 

discretization when simulating excess infiltration. It is also found that the consistent dual node 56 

approach can be advantageous in terms of numerical efficiency.  57 

 58 

 59 

 60 

 61 

 62 



1 Introduction 63 

There exists a variety of hydrogeological problems, such as the hydrologic response of hillslopes 64 

and river catchments, which requires an integrated analysis of surface and subsurface flows. This 65 

has led to the development of physically-based, distributed parameter models for simulating 66 

coupled surface-subsurface flows. Well-known examples of such models include MODHMS [ 67 

Panday and Huyakorn, 2004] , InHM [Ebel et al., 2009], HydroGeoSphere [Therrien et al., 2010], 68 

CATHY [Camporese et al., 2010], WASH123D [Yeh et al., 2011], ParFlow [Kollet and Maxwell, 69 

2006] and OpenGeoSys [Kolditz and Shao, 2010]. Typically, subsurface flow is governed by the 70 

Richards’ equation whereas surface flow is either governed by the kinematic wave or the diffusive 71 

wave equation.  72 

The coupling between subsurface and surface flow may be either based on the common 73 

node approach [Kollet and Maxwell, 2006] or on the dual node approach [Ebel et al., 2009; Panday 74 

and Huyakorn, 2004; VanderKwaak, 1999]. In the common node approach coupling is formulated 75 

by a continuity in head between surface and subsurface nodes. The dual node approach is based 76 

on formulating an exchange flux between the surface and subsurface nodes. Typically, the dual 77 

node approach is conceptualized as a hydraulic separation of the surface and the subsurface by an 78 

interface with a given thickness [Liggett et al., 2012]. The thickness of this interface defines a 79 

coupling length between the dual nodes to formulate the discrete exchange flux between the dual 80 

nodes.  81 

It has been argued that the coupling length represents a non-physical model parameter, 82 

because there is often no evidence to support the existence of a distinct  interface between the two 83 

flow domains [Kollet and Maxwell, 2006]. As such it appears that the common node approach is 84 

a more physically based coupling approach [Kollet and Maxwell, 2006; Liggett et al., 2012]. It has 85 



also been found that accurate simulations based on the dual node approach typically require a very 86 

small coupling length [Ebel et al., 2009; Liggett et al., 2012; Liggett et al., 2013]. Since it is known 87 

that the dual node approach mimics the common node in the limit as the  coupling length  goes to 88 

zero [Ebel et al., 2009], it thus seems that the dual node approach is most accurate if it mimics the 89 

common node approach. Nonetheless, it has been argued that the dual node approach remains an 90 

attractive alternative coupling approach since it offers more flexibility than the common node 91 

approach. Namely, while it can mimic the common node approach, the dual node approach offers 92 

the possibility to simulate a less tight coupling of surface-subsurface flow which results in 93 

increased computational efficiency [Ebel et al., 2009].  94 

In this study a detailed analysis of both coupling approaches is provided for cell-centered 95 

as well as vertex-centered finite difference schemes. This analysis starts with the crucial 96 

observation that that the topmost subsurface nodal values as computed by the finite difference 97 

schemes represent the mean values within the topmost discrete control volumes. Numerical 98 

experiments to compare the coupling approaches are carried out with the model code DisCo [de 99 

Rooij et al., 2013]. It is shown that the dual node approach should be interpreted and implemented 100 

as a one-sided finite difference approximation of the vertical hydraulic gradient at the land surface. 101 

This yields a consistent dual node scheme in which the coupling length is defined by the half the 102 

thickness of the topmost subsurface cells. The scheme of An and Yu [An and Yu, 2014] as well as 103 

the scheme of Kumar et al. [Kumar et al., 2009] are essentially very similar to this consistent dual 104 

node scheme. In the work of Panday and Huyakorn [Panday and Huyakorn, 2004], one of the 105 

suggestions to define the coupling length is to use half the thickness of the topmost subsurface 106 

cells, which yields a consistent dual node scheme. While the idea that the coupling length can be 107 

based on the grid topology is not new [Panday and Huyakorn, 2004], the idea that it must be 108 



related to grid topology to obtain a consistent approach is a significant new insight. Namely, since 109 

the coupling length in the consistent dual node approach is not to be interpreted as the thickness 110 

of a layer that separates the subsurface from the surface, the consistent dual node approach is not 111 

automatically less physically based than the common node. In fact, as explained in this study in 112 

comparison to the common node approach the implementation of a head continuity at the surface-113 

subsurface interface is formulated more correctly in the consistent dual node approach.  114 

The current consensus about how the dual node approach compares to the common node 115 

approach is based on alternative dual node approaches which as explained in this study are 116 

different from the consistent dual node approach. In this study the consistent dual node approach 117 

is compared in detail with the common node approach. It is shown that if the vertical discretization 118 

is sufficiently fine, then the common node approach and the consistent dual node approach are 119 

equally accurate. However, when simulating excess infiltration the consistent dual node approach 120 

is found to be less sensitive to the vertical discretization in comparison to the common node 121 

approach. This advantage in accuracy is related to the fact that head continuity is more correctly 122 

formulated in the consistent dual node approach. Moreover, it is also shown that the consistent 123 

dual node approach can be advantages in terms of numerical efficiency when simulating runoff 124 

due to both excess saturation as well as excess infiltration. The finding of this study show that the 125 

consistent dual node approach compares more positively with respect to the common node 126 

approach than other dual node approaches.      127 

2 Interpretation of nodal values 128 

As explained later on, a correct interpretation of nodal values is crucial for understanding the dual 129 

and common node approach for coupling surface-subsurface flow. Moreover, both coupling 130 



approaches depend on the configuration of surface and topmost subsurface nodes near the land 131 

surface. This configuration depends on whether cell-centered or vertex-centered schemes are used. 132 

In this study both type of schemes will be covered, but for simplicity only finite difference schemes 133 

are considered.    134 

In both cell-centered as vertex-centered schemes the flow variables such as the heads and 135 

the saturation are computed on nodes. In vertex-centered schemes these nodes coincide with the 136 

vertices of the mesh, whereas in cell-centered schemes the nodes coincide with the cell centers. 137 

When employing a finite difference scheme, nodal values correspond to the mean value within 138 

surrounding discrete control volumes. In cell-centered finite difference schemes these discrete 139 

volumes are defined by the primary grid cells. In vertex-centered finite difference schemes these 140 

discrete volumes are defined by the dual grid cells. Ideally, the mean values in the discrete control 141 

volumes are derived by applying the midpoint rule for numerical integration such that their 142 

approximation is second-order accurate. Therefore, the nodal values should ideally represent 143 

values at the centroid of the surrounding discrete control volume [Blazek, 2005; Moukalled et al., 144 

2016]. In that regard, a cell-centered finite difference scheme is thus more accurate than a vertex-145 

centered finite difference scheme. Namely, in cell-centered finite difference schemes the nodal 146 

values always correspond to the centroids of the cell whereas in vertex-centered finite difference 147 

schemes nodes and centroids (of the dual cells) do not coincide at model boundaries and in model 148 

regions where the primary grid is not uniform.  It is well-known that this mismatch between nodes 149 

and centroids can lead to inaccuracies since the mean values within affected discrete volumes are 150 

not computed by a midpoint rule [Blazek, 2005; Moukalled et al., 2016].  151 

 Typically, vertex-centered schemes for simulating coupled surface-subsurface flow are 152 

based on mass-lumped finite element schemes [Liggett et al., 2012]and not on finite difference 153 



schemes. However, with respect to coupling surface-subsurface flow there is actually no difference 154 

between a mass-lumped finite element scheme and a vertex-centered finite difference scheme. 155 

Similar as in vertex-centered finite difference schemes, the nodal values in mass-lumped finite 156 

element schemes define the mean values inside dual grid cells [Zienkiewicz et al., 2005]. 157 

Moreover, the coupling approaches establish one-to-one relations between surface and topmost 158 

subsurface nodes which do not depend on whether a finite difference or a finite element approach 159 

is being used.  160 

3 Common node approach 161 

The common node approach defines a head continuity between the topmost subsurface nodes and 162 

the surface nodes. This continuity requires that the topmost subsurface nodes and the surface nodes 163 

are co-located at the land surface such that there exists a continuity in the elevation head. This 164 

requirement is automatically full-filled in vertex-centered schemes. Figure 1a illustrates the 165 

configuration of common nodes in ParFlow, a cell-centered scheme [personal communication 166 

Maxwell, R. in relation to previous work of the author [De Rooij et al., 2012]].  Figure 1c illustrates 167 

the configuration of common nodes for vertex-centered schemes. This configuration is similar to 168 

the configuration as used in HydroGeoSphere [Therrien et al., 2010].  169 

Considering that nodal values represent ideally the mean values within discrete control 170 

volumes as described in Section 2, it can be argued that the head continuity as implemented in the 171 

common node approach is not in agreement with the physical principle of head continuity at the 172 

land surface. Namely, the common node approach enforces a continuity between surface heads at 173 

the land surface and the mean subsurface heads within the topmost subsurface discrete control 174 

volumes which have a finite thickness. This is different from enforcing a continuity between 175 



surface heads and subsurface heads within an infinitesimal thin subsurface layer directly below the 176 

land surface. As such the common node approach is only numerically correct if the topmost 177 

subsurface cells are very thin.   178 

4 Dual node approach 179 

4.1 Basics 180 

Figure 1b and 1c illustrate the classical arrangement of surface and subsurface nodes in cell-181 

centered and vertex-centered finite difference schemes, respectively. Commonly, the dual node 182 

approach is expressed in terms of an exchange flux eq  [LT-1] computed as [Liggett et al., 2012; 183 

Panday and Huyakorn, 2004]: 184 

  e p s ss
zK

q f h h
l

    (1) 185 

where hs and hss are the hydraulic heads [L] associated with the surface node and the topmost 186 

subsurface node, respectively,
pf  [-] the fraction of the interface that is ponded and l the coupling 187 

length [L]. The ponded fraction of the interface is typically defined by a function that varies 188 

smoothly between zero at the land surface elevation and unity at the rill storage height which 189 

defines the minimum water depth for initiating lateral overland flow [Panday and Huyakorn, 190 

2004]. In equation (1) the term 
p zf K l  is commonly referred to as the first-order exchange 191 

parameter, where first-order means that the exchange flux depends linearly of the hydraulic head 192 

difference.  193 

Typically, equation (1) is not derived as a numerical approximation of basic flow equations 194 

that govern the exchange flux, but is merely presented a numerical technique to couple two 195 

different flow domains [Ebel et al., 2009; Liggett et al., 2012]. Subsequently, the dual node 196 



approach is conceptualized by interpreting equation (1) as an expression that describes 197 

groundwater flow across a distinct interface separating the two flow domains [Ebel et al., 2009; 198 

Liggett et al., 2012; Liggett et al., 2013].   199 

4.2 Consistent dual node approach 200 

In the following, it is illustrated that the dual node approach can and should be derived from basic 201 

equations that describe infiltration into a porous medium. Using Darcy’s Law, the infiltration rate 202 

at the ponded land surface s ssq   [LT-1] can be written as a function of the vertical subsurface 203 

hydraulic gradient at the land surface: 204 
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where h the hydraulic head [L], z the elevation head [L], kr the relative hydraulic conductivity [-] 206 

Kz the saturated vertical hydraulic conductivity [LT-1] and zs the elevation head at the land surface. 207 

The relative hydraulic conductivity is unity because equation (2) applies to the ponded land surface 208 

which implies fully saturated conditions at the land surface (i.e. ponding means ps > 0, where ps is 209 

the pressure head at the surface).  Similarly, the infiltrability [LT-1], defined as the infiltration rate 210 

under the condition of atmospheric pressure [Hillel, 1982], can be written as: 211 
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The relative hydraulic conductivity is again unity because the saturation equals unity under 213 

atmospheric conditions (ps = 0). The infiltration rate at non-ponded land surface atm ssq  [LT-1] can 214 

be expressed as: 215 

   atm ss Rmin max ,0 ,q I q    (4) 216 



where qR is the effective rainfall rate (i.e. the infiltration rate is limited by either the infiltrability 217 

or the available effective rainfall rate). The total exchange flux across the surface-subsurface 218 

interface can now be written as: 219 

  e p s ss p atm ss1q f q f q      (5) 220 

To approximate the vertical subsurface hydraulic gradient in equations (2) and (3) , it is 221 

crucial to recognize that according to the principle of head continuity at the land surface, the 222 

surface hydraulic head at a surface node must also represent the subsurface head at the land surface 223 

at that location. Moreover, since the subsurface hydraulic heads at the topmost subsurface nodes 224 

are ideally associated with the centroids of the topmost subsurface discrete control volumes, these 225 

head values do not represent values at the land surface but at some depth below the land surface. 226 

Because the subsurface hydraulic heads at the dual nodes can be and should be associated with a 227 

different elevation, the vertical subsurface head gradient between the dual nodes can be 228 

approximated by a standard finite difference approximation. If this approximation is being used to 229 

approximate the gradient at the land surface in equations (2) and (3), then this approximation is by 230 

definition a one-sided first-order finite difference. By defining the coupling length by dnl z 231 

where dnz is the difference in the mean elevation head associated with the dual nodes, the 232 

infiltration rate and infiltrability can thus be computed with the following one-sided finite 233 

difference approximation: 234 

  
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s ss
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z
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Kh
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  (6) 235 

The above definition of the coupling length dnl z   ensures a proper approximation of the vertical 236 

gradient in elevation head at the land surface: 237 
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The above derivation of the consistent dual node approach from basic flow equations has 239 

implications for how the dual node approach is conceptualized and how it should be implemented. 240 

The idea that the coupling length must be directly related to the spatial discretization is an 241 

important new insight. Namely, as the coupling length is related to grid topology, it does not 242 

represent a non-physical parameter associated with a distinct interface separating the two domains. 243 

It is also crucial to observe the difference between the consistent dual node approach and the 244 

common node approach regarding how the head continuity at the surface-subsurface interface is 245 

formulated. As explained in Section 2, the formulation in the common node approach is only 246 

correct if the topmost subsurface discrete volumes are very thin. In comparison, the formulation 247 

in the dual node approach is correct irrespective of the vertical discretization. Namely, irrespective 248 

of the vertical discretization the surface hydraulic heads equal the subsurface heads at the interface. 249 

Since nodal values in cell-centered scheme are located at the centroids of the cells, the 250 

coupling length is simply given by s ssl z z   where zs and zss are the elevation heads [L] associated 251 

with the surface node and the topmost subsurface node, respectively. This value for the coupling 252 

length in cell-centered schemes has also been suggested by Panday and Huyakorn [Panday and 253 

Huyakorn, 2004]. However, in their work, the particular advantage of choosing this value (i.e. 254 

maintaining a unit gradient in elevation head) is not recognized. The coupling schemes as used by 255 

An and Yu [An and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are also in essence consistent 256 

dual node schemes. However, these schemes are not recognized as a dual node scheme. Instead, 257 

An and Yu [An and Yu, 2014] argue that their scheme is similar to the common node approach of 258 

Kollet and Maxwell [Kollet and Maxwell, 2006]. Kumar et al. [Kumar et al., 2009] argue that their 259 



scheme is similar to the dual node approach if the coupling length goes to zero which implies that 260 

their scheme would be similar to the common node approach. However, contrary to the common 261 

node approach the schemes of An and Yu [An and Yu, 2014] and Kumar et al. [Kumar et al., 2009] 262 

compute exchange fluxes between surface and topmost subsurface nodes and therefore these 263 

schemes are technically dual node schemes. As explained in this study, it is crucial to observe that 264 

the schemes of An and Yu [An and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are actually 265 

quite different from the common node approach. As already mentioned, the consistent dual node 266 

scheme differs from the common node approach with respect to how the head continuity is 267 

formulated at the surface-subsurface interface. As discussed later on, this difference has crucial 268 

consequences in terms of accuracy as well as numerical efficiency.  269 

In vertex-centered schemes the commonly used nodal configuration near the surface is such 270 

that s ssz z . However, even though the topmost subsurface node is located at the land surface in a 271 

vertex-centered scheme, the elevation head at this node should ideally correspond to the mean 272 

elevation head within the topmost subsurface discrete volume. This suggests that the topmost 273 

subsurface node should be moved to the centroid of the topmost subsurface discrete volume. 274 

Although this is a possible solution, the drawback of this solution is that the subsurface model 275 

ceases to be a purely vertex-centered scheme. Moreover, such an operation cannot be performed 276 

in finite element schemes since the nodal positions define the geometry of the elements. Therefore, 277 

an alternative solution is proposed. Namely, in vertex-centered schemes the elevation of the 278 

surface nodes are changed according to s ssz z l   where l is equals half the thickness of the 279 

topmost subsurface dual cell. The resulting nodal configuration is illustrated in Figure 1d. When 280 

applying this solution, all the topmost subsurface cells must have the same thickness, such that the 281 

topography is increased with the same value everywhere. In essence, the motivation behind this 282 



solution is that a more accurate approximation the hydraulic gradient (i.e. enforcing a unit gradient 283 

in elevation head) is more important than the actual elevation of the land surface. Similar to the 284 

nodal configuration in ParFlow, the resulting nodal configuration may not seem ideal. Namely, the 285 

surface elevation does not coincide with the top of the subsurface grid. Nonetheless, as illustrated 286 

later on, simulation results obtained with the resulting scheme are reasonable.  287 

To illustrate that the presented dual node approach exhibits consistent behaviour, the 288 

necessary conditions for ponding due to excess infiltration and exfiltration are considered. In 289 

general ponding starts when qR > I [Hillel, 1982]. Observing that equation (6) defines the computed 290 

infiltrability when s 0p  and that the gradient in elevation head between the dual nodes is unity, 291 

the infiltrability can be expressed by  z ss1I K p l  . Therefore, qR > I implies that:  292 

 R
ss 1

z
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p l

K
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  (8) 293 

Ponding due to excess infiltration occurs if  R z 1q K   and implies that saturation in the subsurface 294 

starts from the top down [Hillel, 1982]. Using R z 1q K  it follows from equation (8) that pss is 295 

still negative at the moment of ponding. This is reasonable, because the pressure head value at the 296 

topmost subsurface node represents a value at a certain depth below the land surface. Top-down 297 

saturation implies that saturation at the topmost subsurface node occurs after ponding and thus a 298 

negative pressure head value at this node at the moment that ponding starts. It is noted that if the 299 

ratio R zq K is greater than but close to unity or if the coupling length is very small, then this 300 

condition becomes ss 0p  . Once ponding starts the total flux rate between the dual nodes equals 301 

  z s ss 1K p p l  . Top-down saturation requires that this flux exceeds the vertical hydraulic 302 

conductivity. Reaching saturation at the topmost node ( ss 0p  ) therefore requires s 0p  . Thus, 303 



while pss is still negative at the moment that ponding starts, saturation at the topmost subsurface 304 

node will occur some time after ponding started. Ponding due to excess saturation occurs if 305 

R z 1q K   and implies that saturation in the subsurface starts from the bottom up [Hillel, 1982]. It 306 

follows from equation (8) that ponding due to excess saturation occurs while ss 0p  . Thus ponding 307 

starts after reaching fully saturated conditions at the topmost subsurface node, which is again 308 

reasonable. It is noted that if the ratio R zq K is smaller than but close to unity or if the coupling 309 

length is very small, then ponding occurs when ss 0p  . 310 

4.3 Comparison to alternative coupling approaches 311 

To illustrate that it is crucial to account for the meaning of the values at the topmost subsurface 312 

nodes, it is instructive to consider what happens if these values are not taken as the mean values 313 

within discrete control volumes. As a first example, consider vertex-centered schemes where the 314 

dual nodes are defined such that ss sz z as illustrated in Figure 1c. This is inconsistent because it 315 

defines a zero gradient in elevation head between the dual nodes. Since the vertical gradient in 316 

elevation head between the dual nodes is zero the total flux rate after ponding now equals317 

 s sszK p p l . Top-down saturation requires that this flux exceeds the vertical hydraulic 318 

conductivity. Thus, reaching saturation at the topmost subsurface node ( ss 0p  ) requires sp l .  319 

Therefore, top-down saturation will not occur if runoff occurs and if the surface water depths 320 

remains smaller than the chosen coupling length. Indeed, it has been pointed out in other studies 321 

that the coupling length should be smaller than the rill storage height [Delfs et al., 2009; Liggett et 322 

al., 2012]. The zero vertical gradient in elevation head between the dual nodal also means that the 323 

ponding occurs when ss R zp lq K  . This implies that ponding due to excess saturation occurs 324 



while the topmost subsurface node is not yet saturated. This dual node approach has been compared 325 

to the common node approach in vertex-centered schemes [Liggett et al., 2012]. 326 

A second example is the dual node approach for cell-centered schemes as implemented in 327 

MODHMS which uses an adapted pressure-saturation relationship for the topmost subsurface 328 

nodes such that the topmost subsurface node only becomes fully saturated if hydraulic head at the 329 

node rises above the land surface [Liggett et al., 2013].  Since the topmost subsurface heads are 330 

associated with the cell centroid, this dual node scheme defines a unit gradient in elevation head 331 

at the land surface.  However, the saturation value at the topmost node is associated with a location 332 

at the land surface and not with the centroid of a discrete control volume. This has undesirable 333 

consequences. Namely, saturating the topmost subsurface node (pss = l) due to excess infiltration 334 

requires that sp l . Indeed, when simulating excess infiltration with MODHMS, a very small 335 

coupling length is needed to simulate top-down saturation due to excess infiltration. [Gaukroger 336 

and Werner, 2011; Liggett et al., 2013]. It can also be shown that ponding due to excess saturation 337 

occurs while ss 0p  . But, because of the adapted pressure-saturation relationship this means that 338 

ponding starts while the topmost subsurface node is not yet saturated. This dual node approach has 339 

been compared to the common node approach in cell-centered schemes [Liggett et al., 2013].  340 

 The two comparison studies of Liggett et al. [Liggett et al., 2012; Liggett et al., 2013] 341 

indicate that the dual node approach is typically only competitive with the common node approach 342 

in terms of accuracy once the coupling length is very small. However, the requirement for a very 343 

small coupling length, is a logical consequence if the topmost subsurface nodal values are not 344 

taken as the mean values within discrete volumes. In essence, by choosing a very small coupling 345 

length this inconsistency is minimized.  This contrasts with the consistent dual approach in which 346 



decreasing the coupling length for a given vertical discretization will result in more inaccurate 347 

simulation results as this would be numerically incorrect. 348 

 CATHY [Camporese et al., 2010] as well as the model of Morita and Yen [Morita and 349 

Yen, 2002] are examples of models which are neither based on the common node approach, nor a 350 

dual node approach. Both these models are conjunctive models in which the surface and subsurface 351 

flow are computed separately in a sequential fashion and in which coupling is established by 352 

matching the flow conditions along the surface-subsurface interface. A complete discussion is 353 

outside the scope of this paper, but it is worthwhile to mention that these models share some crucial 354 

characteristics with the consistent dual node approach. Although the two models are different, both 355 

models switch between appropriate boundary conditions along the surface-subsurface interface, 356 

such that infiltration fluxes are limited to the infiltrability. In both models the infiltration fluxes 357 

are computed while accounting for the unit vertical gradient in elevation head near the surface-358 

subsurface interface. In addition, in both models ponding occurs when the infiltrability is 359 

exceeded.    360 

5 Numerical experiments 361 

5.1 Numerical model 362 

To compare the consistent dual node approach with respect to the common node approach in terms 363 

of accuracy and computational efficiency numerical experiments are presented. These experiments 364 

are carried out with the model code DisCo. This model code can simulate coupled surface-365 

subsurface flow with the dual node approach using a fully implicit or monolithic scheme [de Rooij 366 

et al., 2013]. Subsurface flow is governed by the Richards’ equation while surface flow is governed 367 

by the diffusive wave equation.  368 



Starting from a dual node scheme, the implementation of a common node scheme is 369 

relatively straightforward. If the surface nodes are numbered last, a permutation vector can be 370 

constructed which gives the corresponding topmost subsurface node for each surface node. Then, 371 

the node numbering as used in the original dual node scheme can still be used to compute the 372 

surface and subsurface flow terms. Subsequently, using the permutation vector the surface and 373 

subsurface flow terms associated with a common node can be combined into the same row of the 374 

global matrix system. In addition, when using the common node approach, there is no need to 375 

evaluate exchange flow terms between the two flow domains. It is noted that the surface flow and 376 

subsurface flow computations are exactly the same irrespective of the coupling approach. As such 377 

the model permits to compare the two approaches in terms of accuracy as well as numerical 378 

efficiency. 379 

An adaptive error-controlled predictor-corrector one-step Newton scheme [Diersch and 380 

Perrochet, 1999] is used in which a single user-specified parameter controls the convergence as 381 

well the time stepping regime. Although, this scheme may not be necessary the most efficient 382 

scheme, it ensures that time discretization error is the same irrespective of the applied coupling 383 

approach. For brevity further details about the model are not discussed here and can be found 384 

elsewhere [de Rooij et al., 2013].  385 

5.2 Hillslope scenarios 386 

The model code is applied to a set of three hillslope scenarios. Table 1 lists the abbreviations used 387 

in the figures to distinguish between the coupling approaches, and to distinguish between cell-388 

centered and vertex-centered schemes. Each scenarios is solved using different but uniform 389 

vertical discretizations and Δz specifies the discretization of the primary grid. The first two 390 

simulation scenarios consider hillslope problems as designed by Sulis et al. [Sulis et al., 2010]. 391 



For the purpose of this study, a third scenario is considered in which the initial and boundary 392 

conditions are different to create a flooding wave across an unsaturated hillslope. The problems 393 

consist of a land surface with a slope of 0.05 which is underlain by a porous medium. The domain 394 

is 400 m long and 80 m wide. The subsurface is 5 m thick. In the direction of the length and in the 395 

direction of the width the discretization is 80 m. Different vertical discretizations are considered. 396 

The van Genuchten parameters are given by sr = 0.2, ss = 1.0, α = 1 m-1 and n = 2. The porosity is 397 

0.4 and the specific storage is 10-4 m-1. The manning’s roughness coefficients are given by 3.3 x 398 

10-4 m-1/3min. The surface flow domain has a zero-gradient outflow condition. For the first two 399 

simulation scenarios the domain is recharged with an effective rainfall rate of 3.3 x 10-4 m/min for 400 

a duration of 200 minutes and the initial water table depth is at a depth of 1.0 m below the land 401 

surface.  402 

The first scenario considers excess saturation, the saturated conductivity equals 6.94 x 10-403 

4 m/min. Figure 2 and 3 illustrates the simulated runoff and the number of Newton steps, 404 

respectively. Figure 4 and 5 illustrate the subsurface pressure heads at the topmost subsurface 405 

nodes and the water depths on the surface nodes. For the second scenario which considers excess 406 

infiltration the saturated hydraulic conductivity equals 6.94 x 10-7 m/min. Figure 6 and 7 show the 407 

simulated runoff and the number of Newton steps, respectively. Figure 8 and 9 illustrate the 408 

subsurface pressure heads at the topmost subsurface nodes and the water depths on the surface 409 

nodes for the finest and the coarsest vertical discretization, respectively. In the third scenario a 410 

surface water flood wave crossing the hillslope in the downhill direction is simulated by applying 411 

a Neumann boundary condition of 1.0 m3/s for a duration of 200 minutes to the surface nodes with 412 

the highest elevation. The initial water table is located at a depth of 1.5 m. The vertical saturated 413 

hydraulic conductivity equals 6.94 x 10-6 m/min. Figure 10 illustrates the differences in simulated 414 



runoff and Figure 11 illustrates the number of Newton steps of the model runs. Figure 12 and 13 415 

illustrate the subsurface pressure heads at the topmost subsurface nodes and the water depths on 416 

the surface nodes for the finest and the coarsest vertical discretization, respectively. 417 

6 Discussion 418 

6.1 Accuracy  419 

As discussed by Ebel et al. [Ebel et al., 2009] and confirmed by others [Liggett et al., 2012] the 420 

dual node approach mimics the common node approach if the coupling length becomes sufficiently 421 

small. When comparing the consistent dual node approach and the common node approach a very 422 

similar observation applies. If the topmost subsurface cells are very thin, then the coupling length 423 

in the consistent dual node approach is very small. Also, if the topmost subsurface cells are 424 

sufficiently thin then the formulation of head continuity at the surface-subsurface interface in the 425 

common node approach is correct. Thus, the common node approach will mimic the consistent 426 

dual node approach. Indeed, the simulations results indicate that a relatively fine vertical 427 

discretization yields similar results for the common node approach as well as for the consistent 428 

dual node approach (Figure 2a, 4a, 6a, 8a, 10a and 12a).  429 

A relatively fine uniform vertical discretisation also enables to simulate sharp saturation 430 

fronts with the Richards’ equation [Pan and Wierenga, 1995; Ross, 1990]. As such the simulation 431 

results based on the finest vertical discretization can be taken as reference solutions that enables 432 

comparisons of the coupling approaches when a coarser vertical discretization is used.  433 

6.1.1 Excess saturation 434 

The simulation results of runoff due to excess saturation as obtained by the common node approach 435 

and the consistent dual node approach as depicted in Figure 2 illustrate that simulating excess 436 



saturation runoff is not significantly affected by the vertical discretization. This is because the time 437 

needed to reach fully saturated conditions in the subsurface is a simple function of the flow 438 

boundary conditions and the initial water content. It is thus expected that the vertical discretization 439 

does not significantly affect the simulation of excess saturation. Although the vertical 440 

discretization may affect the computed initial water content, this effect is usually negligible. It has 441 

been found in other studies that the vertical discretization has little effect on simulated runoff due 442 

to excess saturation [Kollet and Maxwell, 2006; Sulis et al., 2010].  443 

6.1.2 Excess infiltration 444 

When simulating excess infiltration the common node approach requires fully saturated conditions 445 

at the topmost subsurface node for ponding to occur. However, top-down saturation associated 446 

with excess infiltration implies that reaching fully saturated conditions in the topmost subsurface 447 

discrete volumes should requires more time than reaching fully saturated conditions at the land 448 

surface, especially if the vertical discretization is relatively coarse. It is thus expected that the 449 

common node approach delays runoff and that this delay increases for a coarser vertical 450 

discretization. In addition, if the saturation fronts are less sharp due to a relatively coarse vertical 451 

discretization, it takes more time to reach saturated conditions at the common node. This will 452 

further delay runoff. Indeed, the simulation results indicate clearly that runoff is delayed when 453 

using the common node approach, particularly if the vertical discretization is relatively coarse 454 

(Figure 6, 9a, 10 and 13a). It has also been found in other studies that the common node approach 455 

delays runoff due to excess infiltration if the vertical discretization is relatively coarse [Sulis et al., 456 

2010].   457 

 As explained in Section 4.2, when using the consistent dual node approach, ponding due 458 

to excess infiltration occurs before reaching fully saturated conditions at the topmost subsurface 459 



node. More specifically, ponding occurs when the infiltrability is exceeded. Compared to the 460 

condition for ponding in the common node approach this is arguably more correct. Namely, if 461 

saturation occurs from the top-down then the saturation at a certain depth occurs later than 462 

saturation at the land surface. Indeed, simulation results indicate that when simulating excess 463 

infiltration the consistent dual node approach is less sensitive to the vertical discretization in 464 

comparison to the common node approach. This is clearly indicated in Figure 6b-d, 9a, 10b-d and 465 

13a. To further explain this difference in accuracy, it is emphasized that the spatial resolution only 466 

affects the accuracy of the flow computations when using the consistent dual node approach and 467 

that the formulation of head continuity at the interface remains correct. In contrast, when using the 468 

common node approach, if the spatial resolution is too coarse then this does not only affect the 469 

accuracy of the flow computations but in addition the formulation of head continuity becomes 470 

incorrect. It must be emphasized, however, that regardless of the applied coupling approach, the 471 

vertical discretization must be relatively fine. As indicated by Figure 6b-d, 9a, 10b-d and 13a the 472 

difference between the simulated results and the reference solution increase for a coarser 473 

discretization. Eventually such differences will lead to unreasonable results regardless of the 474 

coupling approach.     475 

It is interesting to note that An and Yu [An and Yu, 2014] also found that their model was 476 

less sensitive to the vertical discretization in comparison to ParFlow when simulating runoff due 477 

to excess infiltration. Whereas An and Yu [An and Yu, 2014] hypothesized that this difference in 478 

performance was related to using irregular grids instead of orthogonal grids as in ParFlow, it is 479 

argued here that this difference can be explained by the fact that both models use a different 480 

coupling approach. 481 



 Although the consistent dual node approach is less sensitive to the vertical discretization 482 

in comparison to the common node approach, it is useful to explain in detail how the vertical 483 

discretization affects the accuracy of the consistent dual node approach to the vertical 484 

discretization. A relatively coarse vertical discretization may result in an underestimation of the 485 

vertical pressure gradient at the land surface. This is because in a soil close to hydrostatic 486 

conditions the pressure heads increase with depth. Therefore, the infiltrability during the early 487 

stages of infiltration may be underestimated. If the applied flux rate is sufficiently large such that 488 

the underestimated infiltrability is exceeded, then runoff during the early stages will be 489 

overestimated. Figure 6d illustrates that the runoff as simulated with the cell-centered scheme, a 490 

relatively coarse vertical discretization and a consistent dual node approach is indeed 491 

overestimated at early times. During the later stages of infiltration the pressure head at the topmost 492 

subsurface node will be underestimated due to the combined effect of an underestimated 493 

infiltration rate and the overly diffused saturation fronts. This results in an overestimation of the 494 

infiltration rate in the later stages. Thus at some time after ponding has started, it is expected that 495 

the amount of runoff is underestimated.  496 

 If the underestimated infiltrability is not exceeded, then the overly diffused saturation fronts 497 

resulting from a relatively coarse vertical discretization will eventually lead to an underestimation 498 

of pressure head at the topmost subsurface node and as such the infiltrability may be overestimated 499 

at later times. Consequently, when using the consistent dual node approach runoff due to excess 500 

infiltration may be delayed. However, the delay in runoff as simulated by the consistent dual node 501 

approach will only equal the delay in runoff as simulated by the common node approach in the 502 

limit when qR/Kz goes to unity. Namely, as explained in Section 4.2 if qR/Kz goes to unity, then the 503 

consistent dual node approach behaves similar as a common node approach. However, in general, 504 



if the consistent dual node approach delays runoff, this delay will be smaller than the delay in 505 

runoff as simulated by the common node approach.  506 

Comparing Figure 12a and 13a it can be observed that if the vertical discretization is 507 

relatively coarse then a common node can act as an artificial barrier for a surface water wave 508 

advancing across an initially unsaturated subsurface domain. Namely, as the wave travels 509 

downstream the wave can only advance to the next common node once it is fully saturated. The 510 

effect of this artificial barrier is that the front of the surface water wave is steepened. In contrast, 511 

the consistent dual approach simulates a wave that becomes less steep as it advances downstream 512 

for relatively fine as well as relatively coarse vertical discretizations as depicted in Figure 13a.    513 

As illustrated in Figure 6b-d, and 10b-d, if the coupling approach and the vertical 514 

discretization are identical, then the vertex-centered schemes are closer to the reference solution 515 

with respect to the cell-centered schemes. This difference results solely from the fact the primary 516 

mesh is the same for both schemes. As such the vertical extent of the topmost subsurface volumes 517 

is twice as small when using the vertex-centered scheme. This difference in vertical grid resolution 518 

near the land surface explains the differences between the schemes. 519 

6.2 Computational efficiency 520 

The computational efficiency of the schemes is measured in terms of the number of Newton steps. 521 

The number of Newton steps equals the number of times that the linearized system of equations is 522 

solved and this number depends on the time step sizes as well as the number of failed Newton 523 

steps. It is emphasized that the measured efficiency depends crucially on the applied model code. 524 

Nonetheless, as shown in the following, the measured differences in efficiencies can be explained 525 

in terms of abrupt changes in how fast pressure heads near the surface-subsurface interface are 526 



evolving with time. Regardless of the type of scheme used to solve the non-linear flow equations, 527 

such abrupt changes are difficult to solve.  528 

Once ponding occurs a surface-subsurface flow model will encounter significant numerical 529 

difficulties as surface flow terms are activated. In essence, the activation of these terms represents 530 

a discontinuity in flow behaviour which is challenging to resolve [Osei-Kuffuor et al., 2014]. 531 

Indeed, the Newton steps as depicted in Figure 3 and 7 indicate that simulations encounter 532 

difficulties at the moment of ponding. These figures also indicate that the consistent dual node 533 

approach can be more efficient in comparison to the common node approach.  534 

6.2.1 Excess saturation 535 

Just before the moment of ponding due to excess saturation, the rate of change in pressure heads 536 

at the topmost subsurface nodes is relatively high for both coupling approaches. This high rate is 537 

related to the shape of the water retention curve. Typically, the derivative of the saturation with 538 

respect to the pressure head goes to zero when approaching fully saturated conditions. Once 539 

ponding starts, the surface flow terms are activated and therefore the rate of changes in pressure 540 

heads at the topmost subsurface nodes decreases drastically. Both approaches must handle this 541 

drastic change. However, from Figure 4b and 5b it can be observed that the rate of change 542 

decreases more abruptly when using the common node approach.  543 

 When using the common node approach the vertical hydraulic gradients in the subsurface 544 

are close to zero at the moment of ponding, since additional water volumes can only be 545 

accommodated by means of specific storage. This implies that the infiltration rate drops 546 

instantaneously at the moment of ponding. In contrast, in the dual node approach ponding starts 547 

when the infiltrability is exceeded. Thus at the moment of ponding, the infiltration rate is higher 548 

in comparison to the common node approach. After ponding this infiltration rate will decrease 549 



quickly as the hydraulic heads at the dual nodes equilibrate. This difference in the infiltration rate 550 

at the moment of ponding explains why the topmost subsurface hydraulic heads change more 551 

smoothly when using the dual node approach. If the vertical discretization is coarser, then the 552 

infiltration rate at the moment of ponding as computed with the consistent dual node approach is 553 

even higher and this results in a lower initial rate initial rate of change in water depth as depicted 554 

in Figure 5a.    555 

 The more abrupt changes in pressure heads at the common node in comparison to the 556 

changes in pressure heads at the dual nodes mean that solving the activation of ponding with the 557 

common node approach is more difficult.  It is noted that the differences in the infiltration rates 558 

between the two coupling approaches only occur at the moment of ponding and directly thereafter 559 

when water depths are relatively small. Namely, quickly after ponding, the hydraulic heads at the 560 

dual nodes will equilibrate and after that the two coupling approaches will behave similar. This 561 

explains why these differences in infiltration rates do not significantly affect the accuracy of 562 

simulated runoff.    563 

6.2.2 Excess infiltration 564 

Figure 8, 9, 12 and 13 illustrate the evolution of pressure heads at dual nodes and common nodes 565 

when simulating excess infiltration. When applying the consistent dual approach, the net flux into 566 

a topmost subsurface cell will decrease once ponding occurs, because the applied flux rate will be 567 

partitioned between dual nodes (i.e. between the surface flow and subsurface flow domain). This 568 

occurs while the topmost subsurface node is not yet fully saturated. After ponding the infiltration 569 

rate decreases such that if the topmost subsurface node reaches fully saturated conditions the net 570 

flux into the topmost subsurface node is relatively small. In contrast, partitioning of the applied 571 

flux rate on a common node between the surface flow and subsurface domain starts when the 572 



common node reaches fully saturated conditions at this node. This means that just before ponding 573 

the rate of change in pressure head is relatively high as the common node is driven towards fully 574 

saturated conditions while the infiltration rate is relatively high. This means that similar to the 575 

excess saturation scenario the rate of change in pressure head at the common node is high just 576 

before ponding. At the moment of ponding, this rate must drop abruptly as surface flow terms are 577 

activated.  This abrupt change explains why the common node approach is less efficient.    578 

 Figures 7 and 11 also indicate that a coarser vertical discretization only provides a 579 

significant gain in efficiency in terms of Newton steps when using the consistent dual node 580 

approach. When using the common node approach, a coarser discretization does not change the 581 

fact that the topmost subsurface node must reach fully saturated conditions for ponding to occur 582 

and that the infiltration rate is relatively high just before ponding. When using the consistent dual 583 

node approach, a coarser vertical discretization means that the saturation fronts are more diffused 584 

such that the flow problem becomes easier to solve.   585 

 Figure 8a and 9a illustrate that for the second simulation scenario, ponding occurs almost 586 

simultaneously at all the surface nodes. Figure 12a and 13a show that this is different for the third 587 

scenario where ponding occurs at different times as the flooding wave travels downstream. When 588 

Figure 11a is compared with Figure 12a and when Figure 11d is compared with Figure 13a, it is 589 

clear that the common node approach encounters difficulties around each time ponding starts at a 590 

surface node. Figure 11 shows that these difficulties are encountered for all discretizations. In 591 

contrast the consistent dual node approach has much less difficulties solving these difficulties. As 592 

discussed in Section 6.1.2. the common node approach may result in steepening the advancing 593 

wave. This implies that water depths will be changing more quickly. This presents an additional 594 

difficulty for solving this flow problem with the common node approach.  595 



7 Conclusions 596 

In this study it is shown that the dual node approach should be conceptualized and implemented 597 

as a one-sided finite differences approximation of the vertical hydraulic gradient at the land 598 

surface. This provides an important new insight into the coupling length. Namely, if the dual node 599 

approach is properly implemented then the coupling length is related to the vertical grid resolution. 600 

Thus, the coupling length does not represent an additional non-physical model parameter and 601 

therefore the dual node approach is not automatically a less physically based approach in 602 

comparison to the common node approach. Actually, this study shows if the vertical discretization 603 

is not sufficiently fine then the head continuity at the surface-subsurface interface is formulated 604 

more correctly in the consistent dual node scheme. This difference in formulation has 605 

consequences for how both approaches compare in terms of accuracy and efficiency. 606 

Numerical experiment indicate that the consistent dual node approach is equally accurate 607 

or more accurate than the common node approach. It has been shown that in comparison to the 608 

common node approach the consistent dual node approach is less sensitive to the vertical 609 

discretization when simulating excess infiltration. However, the practical advantage of the 610 

consistent dual node approach in terms of accuracy is limited. Namely, if the vertical discretization 611 

is refined, both approaches will converge to more accurate and eventually similar results when 612 

simulating excess infiltration. When simulating excess saturation both approaches yield similar 613 

results even if the vertical discretization is relatively coarse.  614 

Nonetheless, even though the advantage of the consistent dual node approach in terms of 615 

accuracy is limited, the fact that the consistent dual node approach is equally or more accurate than 616 

the common node approach is a significant finding. Namely, this finding is different from the 617 

commonly held view that a dual node approach is most accurate if it mimics the common node 618 



approach. Moreover, it also illustrates clearly that the consistent dual node approach is not similar 619 

to a common node approach.  620 

Numerical experiment indicate that the consistent dual node approach can be more efficient 621 

than the common node approach while being equally or more accurate than the common node 622 

approach. It has been shown that this difference in efficiency is related to abrupt changes in the 623 

evolution of pressure heads around the moment that ponding is initiated.   624 

Based on the findings in this study the models of An and Yu [An and Yu, 2014] and Kumar 625 

et al. [Kumar et al., 2009] are expected to have some advantages with respect to models that are 626 

based on the common node approach. This is because these models are based on a consistent dual 627 

node approach. Moreover, given a model that uses an alternative dual node approach, it is relatively 628 

straightforward to implement the numerically more correct consistent dual node approach. 629 
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 701 

abbreviation meaning 

cc cell-centered 

vc  vertex-centered  

dn dual node  

cn common node  

 702 

Table 1: Abbreviations as used in the figures. 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 



 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

a) b) 

 

  
 

  

  

  

 

  

  

 

 

 

  

  

  

   

l 

c) d) 

 

  

  

 

 

   

  

  

   

 

 

 

 

 

 

  

  

l 

l 



Figure 1: a) Common nodes in cell-centered schemes. b) Dual nodes in cell-centered-centered 731 

schemes. c) Common nodes and co-located dual nodes in vertex-centered schemes. d) Dual nodes 732 

in vertex-centered schemes (not co-located). The white squares and white circles represent surface 733 

and subsurface nodes, respectively. The solid and dashed lines represent the primary mesh and the 734 

dual mesh, respectively. The grey-shaded area is a topmost discrete volume as associated with a 735 

topmost subsurface node. The black dot represents the centroid of this volume. The coupling length 736 

l as depicted in this figure applies to the consistent dual node approach. 737 
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 748 

Figure 2: Outflow response for excess saturation on a hillslope (first scenario) using different 749 

vertical discretizations. 750 

 751 

 752 

Figure 3: Number of Newton steps for excess saturation on a hillslope (first scenario) using 753 

different vertical discretizations. 754 

 755 

time [min]

ru
n

o
ff

[m
3
/m

in
]

0 100 200 300
0

2

4

6

8

10
dn(cc) z = 0.0125 m
dn(cc) z = 0.2 m
cn(cc) z = 0.2 m
dn(vc) z = 0.2 m
cn(vc) z = 0.2 m

b)

time [min]

N
ew

to
n

st
ep

s

0 100 200 300
0

200

400

600

800
dn(cc) z = 0.2 m
cn(cc) z = 0.2 m
dn(vc) z = 0.2 m
cn(vc) z = 0.2 m

b)



 756 

Figure 4: Simulated values at the common nodes for excess saturation on a hillslope (first scenario) 757 

with a cell-centered scheme and Δz = 0.0125 m. a) Water depths. b) Pressure heads. Nodes are 758 

numbered 1-5 in the down-slope direction. 759 

 760 

Figure 5: Simulated values for excess saturation on a hillslope (first scenario) with a cell-centered 761 

scheme and Δz = 0.2 m. a) Water depths at the surface nodes. b) Pressure heads at the topmost 762 

subsurface nodes. Nodes are numbered 1-5 in the down-slope direction. 763 
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 765 

Figure 6: Outflow response for excess infiltration on a hillslope (second scenario) using different 766 

vertical discretizations.  767 
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 774 

Figure 7: The total number of Newton steps for excess infiltration (second scenario) on a hillslope 775 

using different vertical discretizations. 776 
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 781 

Figure 8: Simulated values at the common nodes for excess infiltration on a hillslope (second 782 

scenario) with a cell-centered scheme and Δz = 0.0125 m. a) Water depths. b) Pressure heads. 783 

Nodes are numbered 1-5 in the down-slope direction. 784 
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 786 

Figure 9: Simulated values for excess infiltration on a hillslope with a cell-centered scheme 787 

(second scenario) and Δz = 0.2 m. a) Water depths at the surface nodes. b) Pressure heads at the 788 

topmost subsurface nodes. Nodes are numbered 1-5 in the down-slope direction. 789 
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 791 

Figure 10: Outflow response for flooding an unsaturated hillslope using different vertical 792 

discretizations. 793 
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 800 

Figure 11: Number of Newton steps for flooding an unsaturated hillslope using different vertical 801 

discretizations. 802 
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 807 

Figure 12: Simulated values for excess infiltration (third scenario) on a hillslope with a cell-808 

centered scheme and Δz = 0.0125 m. a) Water depths at the surface nodes. b) Pressure heads at the 809 

topmost subsurface nodes. Nodes are numbered 1-5 in the down-slope direction). 810 

 811 

Figure 13: Simulated values for excess infiltration (third scenario) on a hillslope with a cell-812 

centered scheme and Δz = 0.2 m. a) Water depths at the surface nodes. b) Pressure heads at the 813 

topmost subsurface nodes. Nodes are numbered 1-5 in the down-slope direction). 814 
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