
Response to the reviewers 
 
I appreciate very much the comments that were very helpful in improving the manuscript. Below 
I have copied all the comments and have inserted my replies in italics. I believe that this revision 
adequately addresses most concerns. Nonetheless, since this is a major revision, minor revisions 
may still be needed. I hope that the Reviewers will be available for a subsequent revision round. 
 
 Before addressing the comments one-by-one, I would like to address thoroughly the main 
concern of the reviewers. It seems that the main concern of the reviewers is that the results and 
conclusions as presented in the manuscript are either not novel or irrelevant. Later on I will 
refer to the response to this main concern as the main response.  
 
Main response: 
 
To address main concern of the reviewers, I have revised the manuscript in the following ways. 
Firstly, I have changed the title. Following the comments, I realized that the original title is 
misleading (A consistent implementation of the dual node approach for coupling surface-
subsurface flow and its comparison to the common node approach). Namely, it may imply that 
this implementation is a novelty which is not the case. The new title is: New insights into the 
differences between the dual node approach and the common node approach for coupling 
surface-subsurface flow. Secondly, I have revised the manuscript thoroughly to make clearer 
what those insights are. Also, I have decreased the number of model scenarios and figures. I 
hope that this will help to keep more focus on the most important insights provided in this study 
and to make the manuscript easier to read. 
 
Nonetheless, I disagree that that most of the conclusions in this study are not novel. To convince 
the Reviewers, I here summarize the novel insights provided in the revised manuscript: 
 
1) 
According to commonly held views the common node approach is more physically-based. This 
view is based on the idea that the dual node approach introduces an additional parameter in the 
form of a coupling length. Typically, this coupling length is thought of as the thickness of layer in 
between the surface and the subsurface domain. I show that the dual node approach can be 
formulated such that this coupling length is fully defined by the grid topology. This results in 
what I call a consistent dual node approach. In this approach, the coupling length is not a non-
physical model parameter.  
 
2) 
In comparison to the common node approach the head continuity as implemented in the 
consistent dual node approach is more correctly formulated in the consistent dual node 
approach 
 
3) 
The manuscript explains in detail the comparison between the common node approach and the 
consistent dual node approach. Such a comparison has not been published as far as I know. 
Instead, most comparison studies between the dual node approach and the common node 



approach are based on alternative dual node approaches. The comparison in this study 
considers accuracy as well as numerical efficiency. I think that this comparison is a valuable 
contribution to the scientific literature. 
 
4) 
Although the scheme is not new, the scheme is typically not being recognized as a dual node 
approach. Instead, it is taken as being equivalent to the common node approach (An and Yu, 
Kumar et al.). Even if it is recognized as a dual node scheme, it is not recognized that this is a 
particularly advantageous scheme (Panday and Huyakorn). This study shows that models that 
already use this scheme should display some advantages in terms of accuracy as well as 
efficiency with respect to models that use the common node approach.  
 
5) 
The manuscript explains that to understand how the approaches work, it is important to consider 
the meaning of nodal values. Although, this may seems trivial to a numerical modeler, it seems 
that this point is often overlooked. Moreover, the consistent dual node approach is derived in the 
manuscript from basic flow equations using finite differences. Again, this may seem trivial to a 
numerical modeler, but I think it is important because it leads to a conceptualization of the dual 
node approach, which is very different from the one in existing literature. Namely, it is not an 
approach that needs an additional non-physical model parameter. The manuscript also provides 
an explanation how the dual nodes can be separated in a vertex-centered scheme to obtain a 
consistent dual node scheme.  
 
Except for not presenting new results or conclusions, another comment is that the differences 
between the approaches are irrelevant because they all yield accurate results if the spatial 
resolution is chosen carefully.  
 
It is indeed true that all coupling approaches can yield accurate results if the vertical 
discretization is sufficiently fine and if the coupling length (when using a dual node approach) is 
carefully chosen. I made revisions such that this point is acknowledged clearer and to be more 
objective. It is also true that the advantages in accuracy are limited to simulating excess 
infiltration using a relatively coarse grid. Thus it is true as mentioned by Reviewer 1 that 
problems related to a difference in accuracy are not a problem if the model setup is defined 
carefully. However, in my opinion this does not mean that the difference in accuracy when using 
a relatively coarse resolution is not interesting or irrelevant. In essence, from a practical point 
of view, I can understand the argument why this could be irrelevant. Namely, one would wish a 
very fine vertical discretization irrespective of the chosen coupling approach to simulate 
accurately the movement of saturation fronts. But there are different coupling schemes in use 
today to solve surface-subsurface flow. I think it is important to understand when and why these 
schemes yield different results. If scientists cannot answer this question, I think that that would 
be a problem.  
 
Moreover, the idea that a dual node approach can be more accurate than a common node 
approach is new and the current consensus is very different. Namely, the commonly held view is 
that the maximum accuracy of the dual node approach is reached when it mimics a common 
node approach. Also, studies based on models that use a consistent dual node approach (i.e. An 



and Yu, Kumar et al.) did not recognize that there is a difference in accuracy with respect to the 
common node approach. In the study of An and Yu it was found that their model is less sensitive 
to the vertical discretization in comparison to ParFlow (which uses the common node approach). 
However, they did not recognize that this difference is related to using a different coupling 
approach. 
 
The difference in accuracy also shows the consequence of how the head continuity is formulated 
in the common node approach. Namely, this formulation is only correct if the discretization is 
very fine and thus if a coarser vertical resolution is used, the common node approach can 
become less accurate than the consistent dual node approach (i.e. the formulation of head 
continuity in the consistent dual node approach is correct irrespective of the vertical 
discretization).  

Overall, it seems that the disagreement on whether the difference in accuracy is relevant or not, 
depends on whether one takes a practical or theoretical view point. Obviously, I look at it from a 
more theoretical perspective.  

But suppose for the sake of argument that the difference in accuracy is completely irrelevant to 
the scientific community. (Although as argued I do not think that is true). Then I still do not see 
why this would make the manuscript irrelevant in its totality. Namely, there is also the case of 
numerical efficiency. And the manuscript indicates quite clearly that the consistent dual node 
approach can be advantageous in terms of efficiency. Moreover, the case of accuracy can also 
be regarded as simply being an important issue to be considered when comparing two different 
approaches. 
 
 

Anonymous Referee #1 

Received and published: 12 May 2017 

I have carefully read the manuscript called “A consistent implementation of the dual node 
approach for coupling surface-subsurface flow and its comparison to the common node 
approach” by Rob De Rooij. This paper raises important issues regarding the application of 
integrated hydrological models through the examination of the possible influence of the coupling 
strategy and the vertical discretization. It especially investigates the following scientific 
questions (i) what is the proper coupling length to be used for the so-called dual node approach; 
(ii) how to formulate the dual node approach to conserve the physically based nature of the 
model; (iii) how does the coupling strategy influence the simulated dynamics when the vertical 
resolution is coarsened and (iv) how do the common node and the dual node approaches compare 
on synthetical test cases. 

I appreciate the careful reading and interest of the reviewer. 

Before going to my comments of the paper, I want to stress out that these issues are critical and 
barely discussed in the integrated hydrologic modeling literature. Integrated hydrologic models 
are more and more used to investigate hydrologic behaviors but the questions of the appropriate 



scale, spatial resolutions (both horizontal and vertical), the crucial modeling choices that are to 
be made (coupling length for instance) and their effect on the simulated dynamics are too often 
forgotten although in my opinion of primary importance. I especially believe that there is a need 
to keep the physical meaning of integrated hydrological models through the use of appropriate 
spatial resolutions. This point is made very clear in the paper and is in a way the starting point of 
the research presented. 

I agree with the reviewer that it is important to keep the physical meaning of a model trough 
appropriate spatial resolutions. Indeed, this becomes a critical issue if non-linearity is 
significant. And this is typically the case in integrated surface-subsurface models.   

The consistent dual node approach proposed in the paper is clearly exposed and is a way to 
properly account for infiltration, especially in partially ponded cells. This approach for coupling 
allows preserving the physics of infiltration across the land surface if numerical parameters and 
spatial resolution are chosen adequately. A detailed analysis on the surface and subsurface 
pressure values, on the infiltration flux and on the time to ponding is provided. This analysis 
demonstrates the added-value of this method mainly (and only?) to describe the infiltration 
excess process. Although the issues tackled are of interest and the method proposed seems 
appropriate, I have serious concerns with the paper and I am not sure that the material presented 
is enough for a research paper. It seems that the added value of the approach proposed is not so 
important compared to the classical coupling approaches if the classical approaches are used in a 
relevant way. I hope that the following comments will somehow help improving the manuscript 
and maybe help in the publication process. 

Major comments: 

(1) One of my major concern deals with the fact that most of the conclusions of the research 
proposed in this paper are not novel and already documented in the literature. For instance, it has 
already been demonstrated that when using a proper discretization both coupling approaches 
gives very similar results and that a relatively small coupling length needs to be used with the 
dual node approach to conserve the physical meaning. It is true that integrated models tend to be 
used out of their proper application domain with coarse vertical discretization but it is more than 
intuitive that the vertical resolution should be small to properly capture the non-linear dynamics 
of infiltration fronts (especially when infiltration excess occurs). If the integrated models are 
properly applied, most of the questions that are tackled in the paper are not a problem anymore. 
In a way, the paper aims at determining which method is the less inaccurate (see line 554 to 556) 
when using a coarse vertical discretization, which is in a way irrelevant as both approaches are 
acceptable when using a proper resolution. These comments are illustrated through the 
conclusion that is short and not so much informative. 

I have addressed this concern by acknowledging in the conclusions more clearly that the 
advantages in terms of accuracy of the consistent dual node approach versus the common node 
approach are indeed limited.  



Although I understand the reviewer’s concern, I do not agree that the most conclusions are 
already documented nor that the differences in between the approaches are in a way irrelevant. I 
refer to my main response as to why I disagree. 

(2) The second main concern is linked to the tone and the phrasing of the paper that are not 
always adapted especially when reference models of the literature – i.e. Hydrogeosphere, 
MODHMS or Parflow – are criticized. I acknowledge that the coupling in Parflow is not well 
described in Kollet and Maxwell (2006) and that as a consequence some important aspects of 
Parflow turn out to be unclear. But I don’t feel like there is a need to point out in details what the 
author think is not done properly by others. Once again, if an integrated model is used carefully 
with proper discretization and coupling length, it will produce consistent (with the physics) 
results regardless if it is a common node or a dual node approach. As a consequence, it is 
preferable to highlight what the consistent dual node approach brings than to denigrate the other 
approaches. I think that part 5 should be removed or at least strongly modified. 

I have changed the explanation of the coupling in ParFlow. However, Section 5 (now section 
4.3) is in my opinion essential. This section does not aim to denigrate other models. Namely, the 
shortcomings of inconsistent dual node approaches have already been discussed elsewhere. As 
such I do not heavily criticize other models here. I merely contrast the shortcomings with the 
consistent dual node. Nonetheless, I have tried to change the tone and the phrasing in this 
section. 

(3) I have serious concern about the result regarding the numerical efficiency. First I don’t 
understand the arguments presented at the beginning of the part 7.2 that directly link the 
infiltration rate and the gradient across land surface with the numerical efficiency. It is a problem 
for me as all the following discussion on the efficiency is related to that argument. I feel like this 
point should be explained better. Moreover, the efficiency of the resolution is highly linked to 
the numerical procedure (numerical scheme, time integration,….) that is used to solve the 
common node approach. In the paper by De Rooij (2013) it is explained that the model uses a 
dual node approach. But the common node approach is not described. Either I missed something 
or this should be detailed somewhere so that the reader can have all the needed information. 
Finally, for some test cases the difference in the number of Newton iteration is rather limited 
when using a proper discretization and coupling length making it difficult to say in a general way 
that the dual node approach is more efficient that the common node approach. 

I have made major revisions in the discussions to explain better the differences in efficiency. 
Moreover, I also added an explanation about how the common node approach is implemented.  

 (4) Regarding the efficiency, I also believe that the tighter the coupling, the more difficult the 
resolution will be. Considering the experience I have in the domain, it is much harder to impose 
continuity through a common node type of approach than to impose a first order coupling 
through a dual node approach (if the numerical resolution is the same). As a consequence, it is 
for me logical that convergence is harder to obtain for some test cases with the common node 
approach. 



In the literature the difference in efficiency havs indeed been explained in terms of tight or less 
tight coupling (i.e. Ebel et al.).I think that my explanations of why the consistent dual node 
approach can be more efficient are more detailed and add some significant understanding on 
why the efficiency can be different.  Namely, it is shown that this difference can be tied to how 
fast water depths are changing at the moment of ponding. These rates are different depending on 
the approach.  

(5) The paper is quite clear but some parts are too long. This makes the paper sometimes hard to 
read. Part 4 is an example. This part is very long and the first conclusions are deceiving – i.e the 
proper implementation has already been proposed by other (Line 240) and the proposition of a 
numerical trick to properly implement dual node in vertex-centered scheme (line 256 to 259). 
Maybe this can be improved. 

I shortened this section considerably. I have tried to re-phrase this part a bit to be clearer. 

(6) The part that presents the results is also hard to follow. I believe that there are too many test 
cases presented and that all of them are not needed. The saturation excess test cases may be 
removed as they are only illustrative for the efficiency. Maybe only the infiltration excess should 
be kept as it is for this process that the added-value of the method proposed is the most 
important. The consequence of multiple test cases per hydrological processes is that the reader 
has to jump from one figure to another which is not convenient at all. The number of figure 
presenting the results is also quite high. 

Instead of removing the saturation excess cases, I have removed the column experiments. In fact, 
the hillslope experiments are enough to make my points. 

(7) Regarding hydrological processes, it seems that the differences between both approaches are 
very small when dealing with the saturation excess process, which is the dominant process of 
streamflow generation in most temperate region. The main problems/conclusions are linked to 
the infiltration excess process. The findings for both processes are rather limited as (i) for 
saturation excess both approaches are OK and (ii) it is well-known that using the Richards 
equation infiltration excess cannot be properly capture with a 20 cm or a 50 cm resolution. 

I acknowledge more clearly that indeed, the advantage in accuracy is limited. But the fact that a 
dual node approach can be at least or more accurate in comparison to the common node 
approach is significant in my opinion as it illustrates that it matters how the head continuity is 
implemented. Moreover, the findings in this study contrast to commonly held views, according to 
which the dual node approach is only more efficient with respect to the common node approach 
at the expense of accuracy. Namely, the consistent dual node approach can be more efficient as 
well as more accurate for certain simulation scenarios. See also my main response for additional 
arguments why I think the difference in accuracy is actually quite relevant. 

The point of the manuscript is not only that the consistent dual node approach can be more 
accurate. Efficiency is also considered. In a more general sense, the manuscript simply 
compares in detail the consistent dual node approach with a common node approach. The fact 



that both approaches can yield similar results and that the differences in accuracy or efficiency 
are not extreme does not make this comparison study irrelevant. 

(8) The coupling between surface and subsurface strongly depends on the numerical schemes use 
for resolution. This point is clear on the paper (especially through the explanations related to 
figure 1) but the paper – although using 2 different schemes – is not exhaustive. Some published 
models using other resolution schemes are built using a properly implemented dual node 
approaches and this point should be fairly mentioned somewhere. 

I only found that the model of Kumar et al. is also in essence based on a consistent dual node 
approach. In addition, I also point out that CATHY as well as the model of Morita and Yen share 
characteristics with the consistent dual node approach.  

(9) I am a bit uneasy with the concepts of elegance and generality when considering physically-
based modelling. In my opinion, the main question is whether the modelling approach chosen 
allows for a proper description of the physics considered. I believe that it is an endless debate to 
determine which approach is the more elegant or the more general and I would suggest the 
author to remove the sentences related to that and focus on the accuracy and/or the efficiency 
that are can be somehow measured. 

Corrected in the revised manuscript.  

Other comments: 

- Some parts of the paper are only about interpretation and as a consequence are very subjective. 
See for instance from line 274 to line 283. 

Removed 

- Line 45: hillslopes not hill slopes 

Corrected 

- Line 50: the reference paper for CATHY is rather Camporese et al, WRR, 2010 than Weill et 
al, AWR, 2011. 

Corrected 

- Line 60: the interface is not always saturated. Its property is constant but saying that it is 
always saturated can be misunderstood regarding the infiltration process. 

Corrected 

-From line 191 to line196: this part is not clear and needs to be improved. To my knowledge and 
in most of the integrated models mentioned in the paper, when a cell is not ponded, all the 
rainfall infiltrates. When the cell is ponded or partially ponded, infiltration occurs under the 
ponded area. I agree that infiltration under the non-ponded fraction of a partially ponded area 
should be theoretically accounted for, but the sentences in the paper could lead to 
misunderstandings. 



Rephrased paragraph 

- Line 223: I don’t understand why it is mentioned here that the surface head can be used as a 
Dirichlet boundary condition. I agree that it can be done but not in the context of a coupling 
through a dual node approach. Maybe this is linked to the implementation of the common node 
approach. 

Corrected 

- Line 326: typo - Figure 1c 

Corrected 

- Line 365-368: Repetition of things already said from line 274 to 283 

Removed 

- Line 395-397: I quickly checked in de Rooij et al (2013) and this paper only describe the dual 
node approach for coupling. Some results with the common node approach are presented later in 
the paper. The way the common node approach is implemented should be presented somewhere. 

Corrected in revised manuscript, added explanation in section 5 (numerical experiments) 

-Line 464 to 478: this part does not bring anything to what is already well known and described 
in the literature. Just say that the reference is computed using a fine resolution. 

This is not completely true (already known), because I compare with a consistent dual node 
approach which is different. But the overall idea does indeed remain the same. I have shortened 
the paragraph. 

- Line 498-500: Please explain before in the paper how the inconsistent dual node approach was 
implemented. 

I have removed this approach from the experiments (Note that it would be quite simple. Namely 
a simple change in elevation heads of the surface nodes). 

- It is strange that figure 2 d and 4d shows so different results. We would expect that the behavior 
between different coupling approach/resolution provides same trends regarding the reference and 
it’s not the case. Can you explain? 

These figures are removed. But the difference is related to a difference in the effective rainfall 
rate, Namely, when simulating excess infiltration, the inconsistent dual node approach requires 
a water depth greater than the coupling length for top-down saturation to occur. Thus, if the 
effective rainfall rate is large enough then this is more likely to be the case.   

- Test cases with excess infiltration: even though the dual node approach displays “more 
desirable behavior” (line 521), the results with coarse discretizations are far from the reference. 
Meaning that a consistent implementation of the dual node approach is not sufficient enough if 
the resolution is not well chosen. 



I have changed the phrasing. But, the finding that the consistent dual node approach is less 
sensitive to the vertical discretization remains a significant insight. Indeed, I think that it can be 
argued well that the dual node approach displays more desirable behavior. Namely, ponding 
starts before the topmost subsurface node is saturated. Since this represents a value at some 
depth below the surface, it is logical to assume that this node should reach fully saturated 
conditions some time after reaching fully saturated conditions at the surface. Of course, this does 
not mean that the consistent dual node approach is accurate for any discretization. More in 
terms of comparing the two approaches I think it is fair to say that the consistent dual node 
approach displays more desirable behavior.     

- Figure 10 c and 10 d: it is hard to say who the best is between the common node and the dual 
node. Needs to be discussed. 

I have removed the simulations with the coarsest discretizations. Also because Reviewer 2 stated 
that such a coarse discretization is rarely used. 

- Figure 13: why is there so much difference for this test case only? When the discharge are so 
close and match pretty well, the efficiency seems very different between the coupling 
approaches. 

Added further and better explanation. 

- Line 538-539 (excess infiltration): all the simulations are far from the reference. The argument 
presented in this sentence is not valid in my opinion. 

Corrected 

- Line 553: typo “understimates or overestimates” 

Corrected 

- Line 671: Figure 9 not 10 

Corrected 

- Line 635: Figure 6 not 7 

Corrected 
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R. deRooij (RdR) presents the dual node approach for coupling surface and groundwater flow 
including a comparison to the common node approach and other dual node approximations based 



on synthetic numerical experiments and also numerical measures (i.e. number of non-linear 
iterations). 

I have two major points of concern with the manuscript. While I like and appreciate the effort by 
RdR to clarify general misperceptions and confusion of different common and dual nodes 
approaches, the manuscript reads more like a reckoning with numerical, hydrologic scientific 
software than a research paper. It is important to keep in mind that we are dealing with a highly 
non-linear problem ultimately cast in discrete mathematics that a computer can understand. As 
such there will always be ambiguities and errors. For example, I was always wondering, how 
these models handle the following situation. Imagine the following thought experiment of model 
with a cell-centered grid,where the top layer is just under tension saturation. Adding an 
incremental amount of water will switch the pressure value at the cell center from some negative 
value to ∼dz/2. A dual node right at the land surface interface would switch from some negative 
value to ∼0. In both cases surface runoff is initiated. Thus, there is something like a discontinuity 
in pressure due to the discrete mathematics, which will lead to errors under both excess 
infiltration and saturation conditions for both the dual and common node approach, which can 
only be resolved with very high spatial discretization. This can be nicely seen, in my opinion in 
the results of the numerical experiments presented here and have been shown before in 
publications related to the simulation of coupled groundwater-surface water flow and the 
development of integrated hydrologic scientific software. Looking at the results presented here, 
these types of problems are still not resolved by the proposed dual node approach, and probably 
never will be because of the limitations of discrete mathematics. 

The idea or objective of this paper is not to find a panacea for all these problems. Instead I show 
how the consistent dual node approach compares to the common node approach, which has not 
been done to the best of my knowledge. While I use similar experiments as previous studies, the 
results are thus novel. I use similar experiments as it is common practice to make comparisons 
on benchmark tests if available.  

I have changed the tone of the paper to make it look less than a reckoning with other models. 
Nonetheless, to make clear that this paper contains novel insight, I do need to discuss the 
differences with respect to other numerical models.  

I hope that the new figures in the manuscript will help the reviewer in finding an answer to his 
thought experiment. In general, the pressure head will never make an abrupt jump as long there 
is a specific storage greater than zero. Instead the pressure head can change very fast from 0 to 
a value equal to half the thickness of the topmost cell. How fast this change occurs depends on 
the coupling scheme as it is now explained in more detail in the manuscript. Also, when using the 
consistent dual node approach ponding will only start if the infiltrability is exceeded. The 
computation of this infiltrability depends on the vertical discretization. But in case of excess 
saturation, this does not matter since the ponding is merely governed by the time it takes to 
saturate the subsurface which depends on the initial water content and the applied flux rate.   

Therefore, because of numerical aspects, it is also not appropriate to compare directly the non-
linear iterations for both coupling schemes. The common and dual node implementation are 



different discrete approaches that of course will exhibit different non-linear convergence, and, 
second, it is not clear from the presentation how the common node approach has been 
implemented by RdR. 

I have added an explanation of how the common node approach is implemented in the model 
code. However, since all the flow computations (except for the exchange flow) are identical, I 
think it is fair to compare the non-linear iterations. I have added a remark that the iterations do 
depend on how the model code is constructed. But that dependency is equal for both approaches 
as they are implemented in the same code. Moreover, I explain in greater detail why there are 
differences in efficiency. Since they can be tied to how abrupt the pressure heads are changing 
near the surface at the moment of ponding, I think that any model will encounter similar 
problems (i.e. more iterations and smaller time steps if the changes are more abrupt). 
Considering the concern of comparing the number of iterations, I would be interested if the 
Reviewer has alternative ideas of measuring the efficiency.  

My second concern is related to the RdR’s dual node approach, which is not novel. As the author 
acknowledges himself that “Nonetheless, their [An, H., and S. Yu (2014)] approach is actually a 
properly implemented dual node approach practically similar to the one proposed in this paper.” 
Thus, it appears that main contribution of the manuscript is the discussion of the difference 
between the common and dual node approach and clarification of some of the applied concepts 
in different scientific hydrologic software. 

While I feel this is a valuable contribution to the scientific literature, the manuscript requires 
major revisions and a more objective discussion. After all, for example, figure 2 suggests that for 
coarse spatial resolution both the common and dual node approach are quite far off the reference 
simulation. But in the past ten years or so, model implementations improved and a spatial 
discretization of 0.5m at the land surface is rarely used in todays models that I read about. 

I have tried to strike a more objective tone and to make clearer what the paper is about. I 
acknowledge in the revised conclusion section that the advantage in accuracy is limited. The 
point that is being made in the paper is that the dual node approach should be perceived more 
positively in comparison to the common node approach. Namely, the common view is that a) the 
common node approach is more physically based, b) the common node approach is more 
accurate (i.e. the common view is that a dual node approach is most accurate when it mimics a 
common node approach), c) the dual node approach can be more efficient but at the expense of 
accuracy vis-à-vis the common node approach. This paper shows that this is very different when 
using a consistent dual node approach. Namely, in the dual node approach the head continuity is 
actually more properly formulated, the approach is at least at accurate as the common node 
approach and is often more efficient without a trade-off in accuracy. That the approach is not 
new (which is acknowledged in the paper) does not change the fact that these are significant new 
insights.   

I also removed the spatial discretization of 0.5 m and now set the coarsest discretization to 0.2 
m. Again, I do not pretend that the consistent dual node approach is always better or that it can 
be used with a very coarse vertical discretization. But it is interesting that the consistent dual 



node approach is less sensitive to the vertical discretization when simulating excess infiltration 
and that it can be more efficient for excess saturation as well as excess infiltration.  
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Abstract 43 

Commonly,The common node approach and the dual node approach for coupling are two widely 44 

applied approaches to couple surface-subsurface flow is conceptualized as a hydraulic separation 45 

of the surface and the subsurface by a distinct interface with a given thickness. Since such an 46 

interface is not supported by field observations, it has been argued that the dual node depends on 47 

a non-physical parameter in the form an ill-defined interface thickness. As such, the alternative 48 

common node approach is considered to be a more general and a more elegant approach since it is 49 

based on the physical principle of head continuity along the surface-subsurface interface.. In this 50 

study, however, it is argued that if properly implemented, then the dual node approach is actually 51 

the more general, the more elegant as well as the more accurate approach. This insight is obtained 52 

by considering that the topmost subsurface nodal values represent the mean values within discrete 53 

control volumes and by deriving the dual node approach from equations that govern infiltration 54 

and infiltrability. both approaches are analyzed for cell-centered as well as vertex-centered finite 55 

difference schemes. It is shown that the dual node approach should be conceptualized and 56 

implemented as a simple one-sided first-order finite-difference to approximate the vertical 57 

subsurface hydraulic gradient at the land surface and that there is no need to assume a hydraulic 58 

separation between the two flow domains by a distinct interface. Whereas a consistent properly 59 

implemented. This results in a consistent dual node approach in which the coupling length is 60 

related to grid topology. In this coupling approach the coupling length is not to be interpreted as a 61 

non-physical model parameter. Although, this particular coupling approach is technically not new, 62 

the differences between this consistent dual node approach and the common node approach have 63 

not been studied in detail. In fact, this coupling scheme is often believed to be similar to the 64 



common node approach. In this study it is illustrated that in comparison to the common node 65 

approach, the head continuity at the surface-subsurface interface is formulated more correctly in 66 

the consistent dual node approach. Numerical experiments indicate that the consistent dual node 67 

approach is in agreement with the physical principle of head continuity at the land surface, it is 68 

shown that the common node approach is not. Studies that have compared the two coupling 69 

approaches have been based on improperly implemented dual node approaches. As such, this study 70 

presents a re-evaluation of how the common node compares to theless sensitive to the vertical 71 

discretization when simulating excess infiltration. It is also found that the consistent dual node 72 

approach. Cell-centered as well as vertex-centered schemes are considered.  can be advantageous 73 

in terms of numerical efficiency.  74 

 75 

 76 

 77 

 78 

 79 

1 Introduction 80 

There exists a variety of hydrogeological problems, such as the hydrologic response of hill 81 

slopeshillslopes and river catchments, which requires an integrated analysis of surface and 82 

subsurface flows. This has led to the development of physically-based, distributed parameter 83 

models for simulating coupled surface-subsurface flows. Well-known examples of such models 84 

include MODHMS [Panday and Huyakorn, 2004][Kollet and Maxwell, 2006; Panday and 85 

Huyakorn, 2004] , InHM [Ebel et al., 2009], HydroGeoSphere [Therrien et al., 2010], CATHY 86 



[Weill et al., 2011] ,[Camporese et al., 2010], WASH123D [Yeh et al., 2011], ParFlow [Kollet and 87 

Maxwell, 2006] and OpenGeoSys [Kolditz and Shao, 2010]. Typically, subsurface flow is 88 

governed by the Richards’ equation whereas surface flow is either governed by the kinematic wave 89 

or the diffusive wave equation.  90 

The coupling between subsurface and surface flow may be either based on the common 91 

node approach [Kollet and Maxwell, 2006] or on the dual node approach [Ebel et al., 2009; Panday 92 

and Huyakorn, 2004; VanderKwaak, 1999]. In the common node approach coupling is formulated 93 

by a continuity in head between surface and subsurface nodes. The dual node approach is based 94 

on formulating an exchange flux between the surface and subsurface nodes. Typically, the dual 95 

node approach is conceptualized as a hydraulic separation of the surface and the subsurface by a 96 

saturatedan interface with a given thickness [Liggett et al., 2012]. The thickness of this interface 97 

defines a coupling length between the dual nodes to formulate the discrete exchange flux between 98 

the dual nodes.  99 

It has been argued that the coupling length isrepresents a non-physical model parameter, 100 

because there is often no evidence to support the existence of a distinct  interface between the two 101 

flow domains [Kollet and Maxwell, 2006]. As such it appears that the common node approach is 102 

a more general coupling approach [Kollet and Maxwell, 2006]. Considering that smaller coupling 103 

lengths tend to improve the accuracy of the dual node approachAs such it appears that the common 104 

node approach is a more physically based coupling approach [Kollet and Maxwell, 2006; Liggett 105 

et al., 2012]. It has also been found that accurate simulations based on the dual node approach 106 

typically require a very small coupling length [Ebel et al., 2009; Liggett et al., 2012; Liggett et al., 107 

2013], it also seems that the common node approach is generally more accurate. Namely, in the 108 

limit as the coupling length goes to zero, the dual node approach mimics the common node 109 



approach. Since it is known that the dual node approach mimics the common node in the limit as 110 

the  coupling length  goes to zero [Ebel et al., 2009], it thus seems that the dual node approach is 111 

most accurate if it mimics the common node approach. Nonetheless, it has been argued that the 112 

dual node approach remains an attractive alternative coupling approach since it offers more 113 

flexibility than the common node approach. Namely, while it can mimic the common node 114 

approach, the dual node approach offers the possibility to simulate a less tight coupling of surface-115 

subsurface flow which results in increased computational efficiency [Ebel et al., 2009]. It has been 116 

illustrated that both the dual node approach as well as the common node approach are sensitive to 117 

the vertical discretization near the surface [Liggett et al., 2012; Sulis et al., 2010]. 118 

In this study it is illustrated that if the dual node approach is properly implemented as well 119 

as properly conceptualized, then the dual node approach is actually the more general, more elegant 120 

as well as the more accurate approach. This is a significant finding particularly since this 121 

contradicts the findingsa detailed analysis of other studies in which the common node is commonly 122 

regarded as a more general and more elegant approach [Dawson, 2008; Kollet and Maxwell, 2006; 123 

Liggett et al., 2012; Liggett et al., 2013]. To arrive at a properly implemented or consistent dual 124 

node approach the dual node approach is derived from basic flow equations. Moreover, to develop 125 

and understand the consistent approach, it is crucial to realize that the topmost subsurface nodes 126 

should ideally represent values at the centroids of discrete control volumes. It is shown that the 127 

dual node approach should not be conceptualized as a distinct interface across which an exchange 128 

flux is computed. Instead the dual node approach should be interpreted as a one-sided finite 129 

difference approximation of the vertical hydraulic gradient at the land surface in which the 130 

coupling length is defined by the grid geometry. Moreover, whereas the consistent dual node 131 



approach is in agreement with the principle of head continuity at the surface-subsurface interface, 132 

it can be shown that the common node approach is not.  133 

In this study the both coupling approaches are consideredis provided for cell-centered as 134 

well as vertex-centered finite difference schemes. Theoretical considerations as well as This 135 

analysis starts with the crucial observation that that the topmost subsurface nodal values as 136 

computed by the finite difference schemes represent the mean values within the topmost discrete 137 

control volumes. Numerical experiments indicate that the dual node approach when properly 138 

implemented is often more accurate as well as more computationally efficient than the common 139 

node approach, particularly if the vertical discretization is relatively coarse. This is an important 140 

finding because using a relatively coarse vertical discretization is common practice in regional 141 

coupled surface-subsurface models [Jones et al., 2008; Kollet and Maxwell, 2008; Srivastava et 142 

al., 2014]. The numerical experimentsto compare the coupling approaches are carried out with the 143 

model code DisCo [de Rooij et al., 2013]. It is shown that the dual node approach should be 144 

interpreted and implemented as a one-sided finite difference approximation of the vertical 145 

hydraulic gradient at the land surface. This yields a consistent dual node scheme in which the 146 

coupling length is defined by the half the thickness of the topmost subsurface cells. The scheme 147 

of An and Yu [An and Yu, 2014] as well as the scheme of Kumar et al. [Kumar et al., 2009] are 148 

essentially very similar to this consistent dual node scheme. In the work of Panday and Huyakorn 149 

[Panday and Huyakorn, 2004], one of the suggestions to define the coupling length is to use half 150 

the thickness of the topmost subsurface cells, which yields a consistent dual node scheme. While 151 

the idea that the coupling length can be based on the grid topology is not new [Panday and 152 

Huyakorn, 2004], the idea that it must be related to grid topology to obtain a consistent approach 153 

is a significant new insight. Namely, since the coupling length in the consistent dual node approach 154 



is not to be interpreted as the thickness of a layer that separates the subsurface from the surface, 155 

the consistent dual node approach is not automatically less physically based than the common 156 

node. In fact, as explained in this study in comparison to the common node approach the 157 

implementation of a head continuity at the surface-subsurface interface is formulated more 158 

correctly in the consistent dual node approach.  159 

The current consensus about how the dual node approach compares to the common node 160 

approach is based on alternative dual node approaches which as explained in this study are 161 

different from the consistent dual node approach. In this study the consistent dual node approach 162 

is compared in detail with the common node approach. It is shown that if the vertical discretization 163 

is sufficiently fine, then the common node approach and the consistent dual node approach are 164 

equally accurate. However, when simulating excess infiltration the consistent dual node approach 165 

is found to be less sensitive to the vertical discretization in comparison to the common node 166 

approach. This advantage in accuracy is related to the fact that head continuity is more correctly 167 

formulated in the consistent dual node approach. Moreover, it is also shown that the consistent 168 

dual node approach can be advantages in terms of numerical efficiency when simulating runoff 169 

due to both excess saturation as well as excess infiltration. The finding of this study show that the 170 

consistent dual node approach compares more positively with respect to the common node 171 

approach than other dual node approaches.      172 

2 Interpretation of nodal values 173 

As explained later on, a correct interpretation of nodal values is crucial for understanding the dual 174 

and common node approach for coupling surface-subsurface flow. Moreover, both coupling 175 

approaches depend on the configuration of surface and topmost subsurface nodes near the land 176 



surface. This configuration depends on whether cell-centered or vertex-centered schemes are used. 177 

In this study both type of schemes will be covered, but for simplicity only finite difference schemes 178 

are considered.    179 

In both cell-centered as vertex-centered schemes the flow variables such as the heads and 180 

the saturation are computed on nodes. In vertex-centered schemes these nodes coincide with the 181 

vertices of mesh, whereas in cell-centered schemes the nodes coincide with the cell centers. When 182 

employing a finite difference scheme, nodal values correspond to the mean value within 183 

surrounding discrete control volumes. In cell-centered finite difference schemes these discrete 184 

volumes are defined by the primary grid cells. In vertex-centered finite difference schemes these 185 

discrete volumes are defined by the dual grid cells. Ideally, the mean values in the discrete control 186 

volumes are derived by applying the midpoint rule for numerical integration such that their 187 

approximation is second-order accurate. Therefore, the nodal values should ideally represent 188 

values at the centroid of the surrounding discrete control volume [Blazek, 2005; Moukalled et al., 189 

2016]. In that regard, a cell-centered finite difference scheme is thus more accurate than a vertex-190 

centered finite difference scheme. Namely, in cell-centered finite difference schemes the nodal 191 

values always correspond to the centroids of the cell whereas in vertex-centered finite difference 192 

schemes nodes and centroids (of the dual cells) do not coincide at model boundaries and in model 193 

regions where the primary grid is not uniform.  It is well-known that this mismatch between nodes 194 

and centroids can lead to inaccuracies since the mean values within affected discrete volumes are 195 

not computed by a midpoint rule [Blazek, 2005; Moukalled et al., 2016].  196 

 Typically, vertex-centered schemes for simulating coupled surface-subsurface flow are 197 

based on mass-lumped finite element schemes [Liggett et al., 2012]and not on finite difference 198 

schemes. However, with respect to coupling surface-subsurface flow there is actually no difference 199 



between a mass-lumped finite element scheme and a vertex-centered finite difference scheme. 200 

Similar as in vertex-centered finite difference schemes, the nodal values in mass-lumped finite 201 

element schemes define the mean values inside dual grid cells [Zienkiewicz et al., 2005]. 202 

Moreover, the coupling approaches establish one-to-one relations between surface and topmost 203 

subsurface nodes which do not depend on whether a finite difference or a finite element approach 204 

is being used. Thus, a less complicated vertex-centered finite difference scheme may be used to 205 

provide insights in the coupling approaches as used in mass-lumped finite element schemes. 206 

3 Common node approach 207 

The common node approach defines a head continuity between the topmost subsurface nodes and 208 

the surface nodes. This continuity requires that the topmost subsurface nodes and the surface nodes 209 

are co-located at the land surface such that there exists a continuity in the elevation head. This 210 

requirement is automatically full-filled in vertex-centered schemes. Figure 1a illustrates the 211 

configuration of common nodes in ParFlow, a cell-centered scheme [personal communication 212 

Maxwell, R. in relation to previous work of the author [De Rooij et al., 2012]].  Figure 1c illustrates 213 

the configuration of common nodes for vertex-centered schemes. This configuration is similar to 214 

the configuration as used in HydroGeoSphere [Therrien et al., 2010]. However, in cell-centered 215 

schemes such as ParFlow the co-location of nodes is less straightforward. Also, the basic 216 

explanation that the pressure head continuity is assigned at the top cell of the subsurface domain 217 

at the boundary between the two domains [Kollet and Maxwell, 2006; Maxwell et al., 2009; Sulis 218 

et al., 2010] is ambiguous since the location of the land surface with respect to the top cell is not 219 

specified. Nonetheless, since ParFlow is a cell-centered scheme where the topmost subsurface 220 

node is located at the center of the top cell, it follows that the surface node is located at the center 221 

of the topmost subsurface cells as depicted in Figure 1a such that the land surface is located at the 222 



center of the topmost subsurface cell. This is the correct configuration as applied in ParFlow 223 

[personal communication Maxwell, R. in relation to previous work of the author [De Rooij et al., 224 

2012]]. It can be argued that the additional subsurface volumes that extent above the land surface 225 

do not drastically affect the timing of runoff.  Namely, once the topmost subsurface node reaches 226 

fully saturated conditions, the amount of additional water that can be stored in those volumes is 227 

relatively small as long as the specific storage assigned to the topmost cell is relatively small. 228 

Since the location of the land surface in ParFlow is somewhat unclear, some studies have inferred 229 

that ParFlow uses a completely different nodal configuration. For example, it has been inferred 230 

that the topmost subsurface nodes in the ParFlow model are placed on top of the topmost 231 

subsurface cell such that they are co-located with the surface nodes [Liggett et al., 2013]. An and 232 

Yu [An and Yu, 2014] infer that the surface and subsurface nodes are not co-located at all and the 233 

surface nodes are located at the top face of the topmost subsurface cells and that the topmost 234 

subsurface nodes are located at the center of the topmost subsurface cells.  235 

Considering that nodal values represent ideally the mean values within discrete control 236 

volumes as described in Section 2, it can be argued that the head continuity as implemented in the 237 

common node approach is not in agreement with the physical principle of head continuity at the 238 

land surface. Namely, the common node approach enforces a continuity between surface heads at 239 

the land surface and the mean subsurface heads within the topmost subsurface discrete control 240 

volumes which have a finite thickness. This is different from enforcing a continuity between 241 

surface heads and subsurface heads within an infinitesimal thin subsurface layer directly below the 242 

land surface. As such inconsistent behavior is expected when using the common node approach. 243 

To effectively remove this inconsistency a is only numerically correct if the topmost subsurface 244 

cells are very fine vertical discretization is required near the land surface.thin.   245 



4 Consistent Dual node implementationapproach 246 

4.1 Basics 247 

Figure 1b and 1c illustrate the classical arrangement of surface and subsurface nodes in cell-248 

centered and vertex-centered finite difference schemes, respectively. Commonly, the dual node 249 

approach is expressed in terms of an exchange flux eq eq  [LT-1] computed as [Liggett et al., 2012; 250 

Panday and Huyakorn, 2004]: 251 

  e p s ss
zK

q f h h
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   e p s ss
zK

q f h h
l

    (1) 252 

where hs and hss are the hydraulic heads [L] associated with the surface node and the topmost 253 

subsurface node, respectively, pf pf  [-] the fraction of the interface that is ponded and l the 254 

coupling length [L]. The ponded fraction of the interface is typically defined by a function that 255 

varies smoothly between zero at the land surface elevation and unity at the rill storage height which 256 

defines the minimum water depth for initiating lateral overland flow [Panday and Huyakorn, 257 

2004]. In equation (1)(1) the term p zf K l p zf K l  is commonly referred to as the first-order 258 

exchange parameter, where first-order means that the exchange flux depends linearly of the 259 

hydraulic head difference.  260 

Typically, equation (1)(1) is not derived as a numerical approximation of basic flow 261 

equations that govern the exchange flux, but is merely presented a numerical technique to couple 262 

two different flow domains [Ebel et al., 2009; Liggett et al., 2012]. Subsequently, the dual node 263 

approach is conceptualized by interpreting equation (1)(1) as an expression that describes 264 

groundwater flow across a distinct interface separating the two flow domains [Ebel et al., 2009; 265 



Liggett et al., 2012; Liggett et al., 2013].  Evidently, if the coupling length is assumed to be a non-266 

physical parameter, then it follows that equation (1) cannot be derived from basic flow equations.  267 

4.2 Consistent dual node approach 268 

In the following, however, it is illustrated that the dual node approach can and should be 269 

derived from basic equations that describe infiltration into a porous medium. This derivation is 270 

inspired by but slightly different from the work of  Morita and Yen [Morita and Yen, 2002].   271 

Before deriving the dual node approach from equations that describe infiltration, it is 272 

worthwhile to point out that above formulation of an exchange flux implies that infiltration only 273 

occurs across the ponded fraction of the surface-subsurface interface. This is not correct, because 274 

rainfall typically results in infiltration across non-ponded areas. Although this issue is not a crucial 275 

problem since the ponded fraction will typically increase during rainfall, it is more elegant to 276 

account explicitly for infiltration across non-ponded areas. This is relatively straightforward since 277 

before ponding occurs the infiltration rate equals the rainfall rate if the rainfall rate is smaller than 278 

the infiltrability and is limited to the infiltrability otherwise [Hillel, 1982] and such a computation 279 

is also used by others [Morita and Yen, 2002].  In the approach presented here the surface cell can 280 

be partially ponded whereas in the work of Morita and Yen [Morita and Yen, 2002] a surface cell 281 

is either ponded or non-ponded. 282 

 Using Darcy’s Law, the infiltration rate at the ponded land surface s ssq  s ssq   [LT-1] can be written 283 

as a function of the vertical subsurface hydraulic gradient at the land surface: 284 
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where h the hydraulic head [L], z the elevation head [L], kr the relative hydraulic conductivity [-] 286 

Kz the saturated vertical hydraulic conductivity [LT-1] and zs the elevation head at the land surface. 287 

The relative hydraulic conductivity is unity because equation (2)(2) applies to the ponded land 288 

surface which implies fully saturated conditions at the land surface (i.e. ponding means ps > 0, 289 

where ps is the pressure head at the surface).  Similarly, the infiltrability [LT-1], defined as the 290 

infiltration rate under the condition of atmospheric pressure [Hillel, 1982], can be written as: 291 
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The relative hydraulic conductivity is again unity because the saturation equals unity under 293 

atmospheric conditions (ps = 0). The infiltration rate at non-ponded land surface atm ssq  atm ssq  [LT-294 

1] can be expressed as: 295 

   atm ss Rmin max ,0 ,q I q    atm ss Rmin max ,0 ,q I q    (4) 296 

where qR is the effective rainfall rate (i.e. the infiltration rate is limited by either the infiltrability 297 

or the available effective rainfall rate). The total exchange flux across the surface-subsurface 298 

interface can now be written as: 299 

  e s ss atm ss1p pq f q f q     e s ss atm ss1p pq f q f q      (5) 300 

To approximate the vertical subsurface hydraulic gradient in equations (2) and (3),(2) and 301 

(3) , it is crucial to recognize that according to the principle of head continuity at the land surface, 302 

the surface hydraulic head at a surface node must also represent the subsurface head at the land 303 

surface at that location. Thus, the surface hydraulic head can be used as a Dirichlet boundary 304 

condition for the subsurface flow domain. Moreover, it is also crucial to recognize thatMoreover, 305 

since the subsurface hydraulic heads at the topmost subsurface nodes are ideally associated with 306 



the centroids of the topmost subsurface discrete control volumes, these head values do not 307 

represent values at the land surface but at some depth below the land surface. Because the 308 

subsurface hydraulic heads at the dual nodes can be and should be associated with a different 309 

elevation, the vertical subsurface head gradient between the dual nodes can be approximated by a 310 

standard finite difference approximation. If this approximation is being used to approximate the 311 

gradient at the land surface in equations (2) and (3)(2) and (3), then this approximation is by 312 

definition a one-sided first-order finite difference. Defining the coupling length by l z  dnl z 313 

where Δz dnz is the difference in the mean elevation head associated with the dual nodes, the 314 

infiltration rate and infiltrability can thus be computed with the following one-sided finite 315 

difference approximation: 316 
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 (6) 318 

The above definition of the coupling length l z  dnl z   ensures a proper approximation of the 319 

vertical gradient in elevation head at the land surface: 320 
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 (7) 322 

The above derivation of the consistent dual node approach from basic flow equations has 323 

implications for how the dual node approach is conceptualized and how it should be implemented. 324 

The idea that the coupling length must be directly related to the spatial discretization is an 325 

important new insight. Namely, as the coupling length is related to grid topology, it does not 326 



represent a non-physical parameter associated with a distinct interface separating the two domains. 327 

It is also crucial to observe the difference between the consistent dual node approach and the 328 

common node approach regarding how the head continuity at the surface-subsurface interface is 329 

formulated. As explained in Section 2, the formulation in the common node approach is only 330 

correct if the topmost subsurface discrete volumes are very thin. In comparison, the formulation 331 

in the dual node approach is correct irrespective of the vertical discretization. Namely, irrespective 332 

of the vertical discretization the surface hydraulic heads equal the subsurface heads at the interface. 333 

Since nodal values in cell-centered scheme are located at the centroids of the cells, the 334 

coupling length is simply given by s ssl z z  . s ssl z z   where zs and zss are the elevation heads 335 

[L] associated with the surface node and the topmost subsurface node, respectively. This value has 336 

for the coupling length in cell-centered schemes has also been proposedsuggested by othersPanday 337 

and Huyakorn [Panday and Huyakorn, 2004]. However, in vertex-centered schemes the 338 

commonly used nodal configuration near the surface is such that s ssz z . If these elevation heads 339 

are used as the elevation heads at the dual nodes then s ss 0z z z    . Since the coupling length 340 

must be greater than zero, the coupling length cannot be defined as l z  . Indeed, the coupling 341 

length in vertex-centered schemes is typically not related to grid structure [Liggett et al., 2013]. 342 

However, if 0z  and the coupling length is some lumped-parameter greater than zero, then the 343 

dual node approach is inconsistent. Namely, if 0z  then the gradient in elevation head between 344 

the dual nodes equals zero. This may seem correct as the nodes are co-located. However, if ss sz z345 

, then the physical principle of head continuity implies that ss sp p must also hold. Moreover. 346 

However, in their work, the particular advantage of choosing this value (i.e. maintaining a unit 347 

gradient in elevation head) is not recognized. The coupling schemes as used by An and Yu [An 348 



and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are also in essence consistent dual node 349 

schemes. However, these schemes are not recognized as a dual node scheme. Instead, An and Yu 350 

[An and Yu, 2014] argue that their scheme is similar to the common node approach of Kollet and 351 

Maxwell [Kollet and Maxwell, 2006]. Kumar et al. [Kumar et al., 2009] argue that their scheme is 352 

similar to the dual node approach if the coupling length goes to zero which implies that their 353 

scheme would be similar to the common node approach. However, contrary to the common node 354 

approach the schemes of An and Yu [An and Yu, 2014] and Kumar et al. [Kumar et al., 2009] 355 

compute exchange fluxes between surface and topmost subsurface nodes and therefore these 356 

schemes are technically dual node schemes. As explained in this study, it is crucial to observe that 357 

the schemes of An and Yu [An and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are actually 358 

quite different from the common node approach. As already mentioned, the consistent dual node 359 

scheme differs from the common node approach with respect to how the head continuity is 360 

formulated at the surface-subsurface interface. As discussed later on, this difference has crucial 361 

consequences in terms of accuracy as well as numerical efficiency.  362 

In vertex-centered schemes the commonly used nodal configuration near the surface is such that363 

s ssz z . However, even though the topmost subsurface node is located at the land surface in a 364 

vertex-centered scheme, the elevation head at this node should ideally correspond to the mean 365 

elevation head within the topmost subsurface discrete control volume such that ss sz z .volume. 366 

This suggests that the topmost subsurface node should be moved to the centroid of the topmost 367 

subsurface discrete volume. Although this is a possible solution, the drawback of this solution is 368 

that the subsurface model ceases to be a purely vertex-centered scheme. Moreover, such an 369 

operation cannot be performed in finite element schemes since changing the nodal positions would 370 

changedefine the geometry of the elements. Therefore, an alternative solution is proposed. To 371 



enforce s ssl z z  without affecting the relative positions of nodesNamely, in the subsurface 372 

grid,vertex-centered schemes the elevation of the surface nodes are changed according to 373 

s ssz z l  s ssz z l   where l is equals half the thickness of the topmost subsurface dual cell. This 374 

change does also not affect the relative position of the nodes in the surface grid. The resulting 375 

nodal configuration is illustrated in Figure 1d. When applying this solution, all the topmost 376 

subsurface cells must have the same thickness, such that the topography is increased with the same 377 

value everywhere. In essence, the motivation behind this solution is that a more accurate 378 

approximation the hydraulic gradient (i.e. enforcing a unit gradient in elevation head) is more 379 

important than the actual elevation of the land surface. Indeed it can be argued that Similar to the 380 

change in land elevation will not drastically affectnodal configuration in ParFlow, the timing of 381 

runoff.resulting nodal configuration may not seem ideal. Namely, once the topmost surface 382 

elevation does not coincide with the top of the subsurface node reaches fully saturated conditions, 383 

the amount of additional water needed to reach the elevated land surface is minorgrid. Nonetheless, 384 

as long as the specific storage assigned to the topmost dual cell is relatively small.  385 

It is crucial to observe that the proposed dual node implementation is not basedillustrated 386 

later on assuming a distinct interface with a certain thickness between the subsurface and the 387 

surface. Instead, the coupling length is to be interpreted as a distance between dual nodes that 388 

accounts for the fact that the topmost subsurface nodal value ideally corresponds to a value below 389 

the land surface. This distance is related to the vertical discretization near the land surface and as 390 

such does not represent a non-physical parameter associated, simulation results obtained with a 391 

distinct interface separating the two domains. 392 

The common conceptualization of the dual node approach as a hydraulic separation by a 393 

interface with a given thickness [Kollet and Maxwell, 2006; Liggett et al., 2012; Liggett et al., 394 



2013], may arise if dual node approach is interpreted as a second-order central finite difference 395 

approximation evaluated at the centre of a saturated layer with a thickness equal to the coupling 396 

length. If in addition the topmost subsurface head values are taken as values at the land surface, 397 

then it follows that the dual node approach introduces a distinct interface between the two flow 398 

domains. However, as explained the topmost subsurface head values should not be taken as values 399 

at the land surface but as values at some distance from the land surface, such that the interface 400 

defined by the coupling length occupies the upper half of the topmost subsurface discrete control 401 

volumes.  402 

It is also worthwhile to explain in further detail that the dual node approach does not 403 

account for the relative hydraulic conductivity near the land surface. This does not imply that the 404 

subsurface near the land surface is saturated. Namely, saturation in the topmost subsurface discrete 405 

volume is computed with the pressure head at the topmost subsurface node which may well be 406 

below zero. It may appear that the vertical hydraulic conductivity between the dual nodes should 407 

be computed by weighting the vertical hydraulic conductivities at the dual nodes, which would 408 

result in a dependency on the relative hydraulic conductivity as long as the topmost subsurface 409 

node is not fully saturated. However, no weighting is needed if the dual node approach is 410 

understood as a one-sided finite difference evaluated at the land surface. Namely, the vertical 411 

hydraulic conductivity at the land surface is readily available. This is a difference with respect to 412 

the approach of Morita and Yen [Morita and Yen, 2002] who do use a weightingthe resulting 413 

scheme. Moreover, models typically apply upstream weighting to approximate the relative 414 

hydraulic conductivities between nodes to avoid numerical instabilities [Forsyth and Kropinski, 415 

1997]. Thus even if weighting is applied, then the dependency of the computations between the 416 



dual nodes on the relative hydraulic conductivity will automatically disappear as the upstream 417 

node is always saturated.   are reasonable.  418 

To illustrate that the presented dual node approach exhibits consistent behaviour, the 419 

necessary conditions for ponding due to excess infiltration and exfiltration are considered. In 420 

general ponding starts when qR > I [Hillel, 1982]. Setting qR = I , ps = 0 and using h = p + z, it 421 

follows from equation (6)(6) and (7) that at the moment of ponding:  422 
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 (8) 424 

Ponding due to excess infiltration occurs if  R z 1q K  R z 1q K   and implies that saturation in the 425 

subsurface starts from the top down [Hillel, 1982]. Using R z 1q K  R z 1q K  it follows from 426 

equation (8)(8) that ponding due to excess infiltration occurs while ss 0p  ss 0p  . This is 427 

reasonable since this value represents the pressure head at a certain depth below the land surface. 428 

Namely, if saturation occurs from the top-down then the saturation at a certain depth occurs later 429 

than saturation at the land surface. It is noted that if the ratio R zq K R zq K is greater than but close 430 

to unity or if the coupling length is very small, then this condition becomes ss 0p  . ss 0p  . Once 431 

ponding starts the total flux rate between the dual nodes equals   z s ss 1K p p l 432 

  z s ss 1K p p l  . Top-down saturation requires that this flux exceeds the vertical hydraulic 433 

conductivity. Reaching saturation at the topmost node ( ss 0p  ) thus ss 0p  ) therefore requires 434 

s 0p  s 0p  . Thus, top-down saturation will occur after ponding is initiated. Ponding due to 435 

excess saturation occurs if  R z 1q K  R z 1q K   and implies that saturation in the subsurface starts 436 



from the bottom up [Hillel, 1982]. Using ps = 0, It follows from equation (8)(8) that ponding due 437 

to excess saturation occurs while ss0 p l  . ss0 p l  . Thus ponding starts after reaching fully 438 

saturated conditions at the topmost subsurface node, which is again reasonable. Namely, the 439 

topmost subsurface node represents a value at a certain depth below the surface and thus bottom-440 

up saturation implies that this node reaches saturation earlier than the surface. It is noted that if the 441 

ratio R zq K It is noted that if the ratio R zq K is smaller than but close to unity or if the coupling 442 

length is very small, then ponding occurs when ss 0p  ss 0p  . 443 

4.14.3 Comparison to other dual node implementationsalternative coupling approaches 444 

To illustrate that it is crucial to account for the meaning of the values at the topmost subsurface 445 

nodes, it is instructive to consider what happens if these values are not taken as the mean values 446 

within discrete control volumes. As a first example, consider vertex-centered schemes where the 447 

dual nodes are defined such that ss sz z ss sz z as illustrated in Figure 2c. As discussed in Section 448 

41c. This is inconsistent because it defines a zero gradient in elevation head between the dual 449 

nodes. Nonetheless such schemes have been used in several models [Ebel et al., 2009; Liggett et 450 

al., 2012]. Since the vertical gradient in elevation head between the dual nodes is zero the total 451 

flux rate after ponding now equals  s sszK p p l .  s sszK p p l . Top-down saturation requires 452 

that this flux exceeds the vertical hydraulic conductivity. Thus, reaching saturation at the topmost 453 

subsurface node ( ss 0p  ss 0p  ) requires sp l sp l .  Therefore, top-down saturation will not 454 

occur if runoff occurs and if the surface water depths remains smaller than the chosen coupling 455 

length. Indeed, it has been pointed out in other studies that the coupling length should be smaller 456 

than the rill storage height [Delfs et al., 2009; Liggett et al., 2012]. The zero vertical gradient in 457 

elevation head between the dual nodal also means that the required condition for ponding now 458 



becomes ss R zp lq K  . ss R zp lq K  . This implies that ponding due to excess saturation occurs 459 

while the topmost subsurface node is not yet saturated. This dual node approach has been compared 460 

to the common node approach in vertex-centered schemes [Liggett et al., 2012]. 461 

A second example is the dual node approach for cell-centered schemes as implemented in 462 

MODHMS which uses an adapted pressure-saturation relationship for the topmost subsurface 463 

nodes such that the topmost subsurface node only becomes fully saturated if hydraulic head at the 464 

node rises above the land surface [Liggett et al., 2013].  Since the topmost subsurface heads are 465 

associated with the cell centroid, this dual node scheme defines a unit gradient in elevation head 466 

at the land surface.  However, the saturation value at the topmost node is associated with a location 467 

at the land surface and not with the centroid of a discrete control volume. This has undesirable 468 

consequences. Namely, saturating the topmost subsurface node (pss = l) due to excess infiltration 469 

requires that sp l . sp l . Indeed, when simulating excess infiltration with MODHMS, a very 470 

small coupling length is needed to simulate top-down saturation due to excess infiltration. 471 

[Gaukroger and Werner, 2011; Liggett et al., 2013]. It can also be shown that ponding due to 472 

excess saturation occurs while ss0 p l  . ss0 p l  . But, because of the adapted pressure-473 

saturation relationship this means that ponding starts while the topmost subsurface node is not yet 474 

saturated. Comparing these results with the results for the consistentThis dual node 475 

implementation, it is clear that the adapted pressure-saturation relationshipapproach has 476 

undesirable consequences.been compared to the common node approach in cell-centered schemes 477 

[Liggett et al., 2013].  478 

The above inconsistent implementations of the dual node approach have been used in several 479 

studies to compare the dual node approach with the common node approach  The two 480 



comparison studies of Liggett et al. [Liggett et al., 2012; Liggett et al., 2013]. Such studies indicate 481 

that the dual node approach is typically only competitive with the common node approach in terms 482 

of accuracy once the coupling lengths arelength is very small. However, the requirement for a very 483 

small coupling lengths, however, are a directlength, is a logical consequence of using inconsistent 484 

dual node approaches. Namelyif the topmost subsurface nodal values are not taken as the mean 485 

values within discrete volumes. In essence, by choosing a very small coupling lengths these 486 

inconsistencies are to some extent length this inconsistency is minimized. At best this 487 

minimization results in schemes that mimic the common node approach.  However, as discussed, 488 

the common node approach is also inconsistent since it is not in agreement with the physical 489 

principle of a head continuity at the surface-subsurface interface. Since current views on how This 490 

contrasts with the consistent dual approach in which decreasing the coupling approaches compare 491 

are based on inconsistent dual node approaches, it is imperative to re-evaluate how the dual and 492 

common node approaches compare if the dual node approach is properly implemented.  493 

Considering how the dual and the common node approach compare it is also crucial that the dual 494 

node approach is not to be conceptualized as a hydraulic separation between the flow domains in 495 

the form of length for a saturated interface. Namely, this conceptualization is often deemed a 496 

serious drawback of the dual node approach, since there is no evidence of such a distinct interface. 497 

Moreover, misconceptions about the coupling approaches can result in confusion. For example, in 498 

their paper An and Yu [An and Yu, 2014] reject the idea of using the dual node based on its classical 499 

conceptualization as a saturated interface and argue that their model is based on the approach 500 

proposed by Kollet and Maxwell [Kollet and Maxwell, 2006]. However, in their finite volume 501 

model the surface and subsurface nodes are not co-located. As such their coupling approach is, 502 

contrary to the claim of the authors, a dual node approach. This misunderstanding is probably also 503 



related to aforementioned difficulties in inferring the nodal configuration as used in ParFlow. 504 

Nonetheless, their approach is actually a properly implemented dual node approach practically 505 

similar to the one proposed in this paper. Interestingly, the model of An and Yu [An and Yu, 2014] 506 

is less sensitive to thegiven vertical discretization near the land surface in comparison to ParFlow 507 

However, since An and Yu were convinced that they followed the same coupling approach as 508 

ParFlow they hypothesized that the difference in performance was probably related to using 509 

irregular grids instead of orthogonal grids as in ParFlow [An and Yu, 2014]. However, if this 510 

difference is instead due to using a different coupling approach, then will result in more inaccurate 511 

simulation results as this would be an indication that a dual node approach is less sensitive to the 512 

vertical discretization near the land surface. This reinforces the idea that it is desirable to reconsider 513 

the comparison between the two coupling approachesnumerically incorrect. 514 

 CATHY [Camporese et al., 2010] as well as the model of Morita and Yen [Morita and 515 

Yen, 2002] are examples of models which are neither based on the common node approach, nor a 516 

dual node approach. Both these models are conjunctive models in which the surface and subsurface 517 

flow are computed separately in a sequential fashion and in which coupling is established by 518 

matching the flow conditions along the surface-subsurface interface. A complete discussion is 519 

outside the scope of this paper, but it is worthwhile to mention that these models share some crucial 520 

characteristics with the consistent dual node approach. Although the two models are different, both 521 

models switch between appropriate boundary conditions along the surface-subsurface interface, 522 

such that infiltration fluxes are limited to the infiltrability. In both models the infiltration fluxes 523 

are computed while accounting for the unit vertical gradient in elevation head near the surface-524 

subsurface interface. In addition, in both models ponding occurs when the infiltrability is 525 

exceeded.    526 



5 Numerical experiments 527 

5.1 Numerical model 528 

To compare the coupling schemesconsistent dual node approach with respect to the common node 529 

approach in terms of accuracy and computational efficiency numerical experiments are presented. 530 

These experiments are carried out with the model code DisCo which. This model code can simulate 531 

coupled surface-subsurface flow with the dual node approach using a fully implicit or monolithic 532 

scheme [de Rooij et al., 2013]. This means thatSubsurface flow is governed by the 533 

linearizedRichards’ equation while surface flow is governed by the diffusive wave equation.  534 

Starting from a dual node scheme, the implementation of a common node scheme is 535 

relatively straightforward. If the surface nodes are numbered last, a permutation vector can be 536 

constructed which gives the corresponding topmost subsurface node for each surface node. Then, 537 

the node numbering as used in the original dual node scheme can still be used to compute the 538 

surface and subsurface flow equations are terms. Subsequently, using the permutation vector the 539 

surface and subsurface flow terms associated with a common node can be combined into a 540 

singlethe same row of the global matrix system. In addition, when using the common node 541 

approach, there is no need to evaluate exchange flow terms between the two flow domains. It is 542 

noted that the surface flow and subsurface flow computations are exactly the same irrespective of 543 

the coupling approach. As such the model permits to compare the two approaches in terms of 544 

accuracy as well as numerical efficiency. 545 

An adaptive error-controlled predictor-corrector one-step Newton scheme [Diersch and 546 

Perrochet, 1999] is used in which a single user-specified parameter controls the convergence as 547 

well the time stepping regime. It is assumed that by using the same error norms and the same 548 

model parameters that control the time-stepping, the simulations results as obtained by different 549 



coupling approaches can be compared fairly in terms of accuracy and efficiency.Although, this 550 

scheme may not be necessary the most efficient scheme, it ensures that time discretization error is 551 

the same irrespective of the applied coupling approach. For brevity further details about the model 552 

are not discussed here and can be found elsewhere [de Rooij et al., 2013].  553 

5.2 Hillslope scenarios 554 

The model code is applied to a set of three hillslope scenarios. Table 1 lists the abbreviations used 555 

in the figures to distinguish between the coupling approaches, and to distinguish between cell-556 

centered and vertex-centered schemes and to distinguish between models based on a. Each 557 

scenarios is solved using different but uniform primary grid and grids that use a very thin primary 558 

top cell. The thickness of this top cell equals the thickness of the primary cells in the finest uniform 559 

grids. In models containing this thin layer of cells the vertical discretizations and Δz specifies the 560 

discretization below the thin layer is based on the coarsest uniform grids. Further details about the 561 

discretizations are given in the figures.  562 

The presented experiments focus mainly on the comparison between the consistent dual 563 

node approach and the common node approach. Inconsistent dual node implementations based on 564 

a zero hydraulic head gradient between the dual nodes are only considered for relatively coarse 565 

vertical discretizations to illustrate their short-comings vis-à-vis the consistent dual node approach. 566 

It is noted, that although these schemes are commonly used in vertex-centered schemes, for the 567 

purpose of this study they have also been implemented in the cell-centered schemes by using the 568 

nodal configuration depicted in Figure 1a. The scheme with an adapted pressure-saturation 569 

relationship is not considered.  570 



5.1 Soil column problems 571 

These simulation scenarios consider infiltration into a vertical soil column and are inspired by 572 

scenarios as studied by Liggett et al. [Liggett et al., 2012; Liggett et al., 2013]. In the simulation 573 

scenarios rainfall is applied to a soil column with a height of 5 m. Initial conditions are defined by 574 

h = 0 m. The saturated conductivity is 1.0608 md-1. The porosity is 0.41 and the specific storage 575 

is 10-4 m-1. The van Genuchten parameters are given by sr = 0.387, ss = 1.0, α = 7.5 m-1 and n = 576 

1.89.  577 

For the first two scenarios a constant head boundary of h = 0 m is applied at the bottom of 578 

the column and the flux rate applied to the top of the soil column exceeds the saturated conductivity 579 

of the soil column, resulting in runoff due to excess infiltration. In the first scenario the applied 580 

flux rate is 1.1 md-1. Figure 2 and 3 illustrates the simulated runoff and the number of Newton 581 

steps for this scenario, respectively. Figure 4 illustrates the simulated runoff for the second 582 

scenario in which the flux rate is 10.608 md-1. It is noted that figure 4 does not display the results 583 

at later times when a steady-state is reached. However, to show the differences in results around 584 

the timing of ponding only a limited time period is displayed. Figure 5 illustrates the number of 585 

Newton steps for the second scenario. For the second scenario, Figure 6 compares the evolution in 586 

water depth between the common node approach and the dual node approach when using a 587 

relatively coarse vertical discretization and a cell-centered scheme.  588 

 To compare the different coupling approaches when simulating excess saturation, a third 589 

scenario is considered. The model setup is exactly the same as before, except that the effective 590 

rainfall rate is set to 0.5 md-1 and that the bottom boundary is changed into a no-flow boundary. 591 

The simulated runoff is depicted in Figure 7. Figure 8 shows the total number of Newton steps 592 

during the model runs. Figure 9 compares the evolution in water depth between the common node 593 



approach and the dual node approach when using a relatively coarse vertical discretization and a 594 

cell-centered scheme. 595 

5.2 Hillslope problems 596 

In the followingof the primary grid. The first two simulation scenarios consider hillslope problems 597 

as designed by Sulis et al. [Sulis et al., 2010]. For the purpose of this study, a third scenario is 598 

considered in which the initial and boundary conditions are different to create a flooding wave 599 

across an unsaturated hillslope. The problems consist of a land surface with a slope of 0.05 which 600 

is underlain by a porous medium. The domain is 400 m long and 80 m wide. The subsurface is 5 601 

m thick. In the direction of the length and in the direction of the width the discretization is 80 m. 602 

Different vertical discretizations are considered. The van Genuchten parameters are given by sr = 603 

0.2, ss = 1.0, α = 1 m-1 and n = 2. The porosity is 0.4 and the specific storage is 10-4 m-1. The 604 

manning’s roughness coefficients are given by 3.3 x 10-4 m-1/3min. The surface flow domain has a 605 

zero-gradient outflow condition. For the first two simulation scenarios the domain is recharged 606 

with an effective rainfall rate of 3.3 x 10-4 m/min for a duration of 200 minutes and the initial water 607 

table depth is at a depth of 1.0 m below the land surface.  608 

The first scenario considers excess infiltration and the saturated hydraulic conductivity 609 

equals 6.94 x 10-6 m/min. Figure 10 and 11 show the simulated runoff and the number of Newton 610 

steps, respectively. For the second scenario which considers excess saturation, the saturated 611 

conductivity equals 6.94 x 10-4 m/min. Figure 122 and 133 illustrates the simulated runoff and the 612 

number of Newton steps, respectively. Figure 4 and 5 illustrate the subsurface pressure heads at 613 

the topmost subsurface nodes and the water depths on the surface nodes. For the second scenario 614 

which considers excess infiltration the saturated hydraulic conductivity equals 6.94 x 10-7 m/min. 615 

Figure 6 and 7 show the simulated runoff and the number of Newton steps, respectively. Figure 8 616 



and 9 illustrate the subsurface pressure heads at the topmost subsurface nodes and the water depths 617 

on the surface nodes for the finest and the coarsest vertical discretization, respectively. In the third 618 

scenario a surface water flood wave crossing the hillslope in the downhill direction is simulated 619 

by applying a Neumann boundary condition of 1.0 m3/s for a duration of 200 minutes to the surface 620 

nodes with the highest elevation. The initial water table is located at a depth of 1.5 m. The vertical 621 

saturated hydraulic conductivity equals 6.94 x 10-6 m/min. Figure 1410 illustrates the differences 622 

in simulated runoff and Figure 1511 illustrates the number of Newton steps of the model runs. 623 

Figure 16 compares12 and 13 illustrate the evolution in subsurface pressure heads at the topmost 624 

subsurface nodes and the water depthdepths on the surface nodes as well as the time step sizes 625 

between the common node approach and for the dual node approach when using a relatively 626 

coarsefinest and the coarsest vertical discretization and a cell-centered scheme, respectively. 627 

6 Discussion 628 

6.1 Accuracy  629 

Considering the simulation of vertical flow through the unsaturated zone, a relatively fine vertical 630 

discretisation is needed to simulate sharp saturation fronts with the Richards’ equation [Pan and 631 

Wierenga, 1995; Ross, 1990]. A relatively fine vertical discretisation also implies that the common 632 

node approach will be in close agreement with the physical principle of head continuity along the 633 

surface-subsurface interface. Finally, if the vertical discretisation is relatively small then the 634 

coupling length for the consistent dual node approach is also small and this implies that the dual 635 

node approach mimics the common node approach.  Therefore, it is expected that the coupling 636 

approaches will give similar and accurate results if the vertical discretization is sufficiently fine. 637 

Indeed, the simulations results indicate that a relatively fine and uniform vertical discretization 638 



yields similar results for the common node approach as well as for the consistent dual node 639 

approach (Figure 2a, 4a, 5a, 7a, 10a, 12a and 14a). The simulation results based on the finest 640 

vertical discretization may thus be taken as reference solutions that enables a comparison of the 641 

coupling approaches when a coarser vertical discretization is used. This is an important issue, 642 

because using a relatively coarse vertical discretization is common practice in regional coupled 643 

surface-subsurface models [Jones et al., 2008; Kollet and Maxwell, 2008; Srivastava et al., 2014].  644 

6.1.1 Excess saturation 645 

As discussed by Ebel et al. [Ebel et al., 2009] and confirmed by others [Liggett et al., 2012] the 646 

dual node approach mimics the common node approach if the coupling length becomes sufficiently 647 

small. When comparing the consistent dual node approach and the common node approach a very 648 

similar observation applies. If the topmost subsurface cells are very thin, then the coupling length 649 

in the consistent dual node approach is very small. Also, if the topmost subsurface cells are 650 

sufficiently thin then the formulation of head continuity at the surface-subsurface interface in the 651 

common node approach is correct. Thus, the common node approach will mimic the consistent 652 

dual node approach. Indeed, the simulations results indicate that a relatively fine vertical 653 

discretization yields similar results for the common node approach as well as for the consistent 654 

dual node approach (Figure 2a, 4a, 6a, 8a, 10a and 12a).  655 

A relatively fine uniform vertical discretisation also enables to simulate sharp saturation 656 

fronts with the Richards’ equation [Pan and Wierenga, 1995; Ross, 1990]. As such the simulation 657 

results based on the finest vertical discretization can be taken as reference solutions that enables 658 

comparisons of the coupling approaches when a coarser vertical discretization is used.  659 



6.1.1 Excess saturation 660 

The simulation results of runoff due to excess saturation as obtained by the common node approach 661 

and the consistent dual node approach as depicted in Figure 2 illustrate that simulating excess 662 

saturation runoff is not significantly affected by the vertical discretization (Figure 7 and 12).. This 663 

is because the time needed to reach fully saturated conditions in the subsurface is a simple function 664 

of the flow boundary conditions and the initial water content. It is thus expected that the vertical 665 

discretization does not significantly affect the simulation of excess saturation. Although the 666 

vertical discretization may affect the computed initial water content, this effect is usually 667 

negligible. It has been found in other studies that the vertical discretization has little effect on 668 

simulated runoff due to excess saturation [Sulis et al., 2010].  669 

As described in Section 4, when using the consistent dual node approach, ponding due to 670 

excess saturation occurs when ss0 p l  . Thus at the moment of ponding the hydraulic head at 671 

the topmost subsurface node is generally below the land surface. When using the common node 672 

approach, the hydraulic head at the topmost subsurface node is at the land surface at the moment 673 

of ponding. However, if the specific storage is relatively small, then the timing of runoff will be 674 

similar for both coupling approaches. Both approaches are thus expected to yield similar and 675 

reasonably accurate results even when the vertical discretization is relatively coarse. Indeed, the 676 

simulation results indicate that there is little difference between the common node approach and 677 

the consistent dual node approach (Figure 7 and 12). 678 

As indicated in figure 7d, when using an inconsistent dual node approach, the timing of 679 

runoff may be underestimated unless a very small coupling length is being used. As discussed in 680 

section 5 this is expected. 681 



6.1.2 Excess infiltration 682 

When simulating excess infiltration the common node approach requires fully saturated conditions 683 

at the topmost subsurface node for ponding to occur. This is a direct consequence of the head 684 

continuity between the surface nodes and the topmost subsurface nodes. However, top-down 685 

saturation associated with excess infiltration implies that reaching fully saturated conditions in the 686 

topmost subsurface discrete volumes should requires more time than reaching fully saturated 687 

conditions inat the very nearland surface, especially if the vertical discretization is relatively 688 

coarse. It is thus expected that the common node approach delays runoff and that this delay 689 

increases for a coarser vertical discretization. In addition, if the saturation fronts are less sharp due 690 

to a relatively coarse vertical discretization, it takes more time to reach saturated conditions at the 691 

common node. This will further delay runoff. Indeed, the simulation results indicate clearly that 692 

runoff is delayed when using the common node approach, particularly if the vertical discretization 693 

is relatively coarse (Figure 2, 46, 9a, 10 and 1413a). It has also been found in other studies that the 694 

common node approach delays runoff due to excess infiltration if the vertical discretization is 695 

relatively coarse [Sulis et al., 2010].  The overestimation of the infiltration associated with the 696 

delay in runoff may result in runoff due to excess saturation even if the applied flux rate should 697 

result in runoff due to excess infiltration. This is illustrated in Figure 10c for the model run based 698 

on a cell-centered scheme and the common node approach. This Figure illustrates that 699 

overestimating the infiltration can yield a distinctive higher peak in runoff. Comparing this peak 700 

with the runoff responses in Figure 12, it is clear that this model run simulates runoff due to excess 701 

saturation   702 

 In comparison,As explained in Section 4.2, when using the consistent dual node displays 703 

more desirable behaviour. Namely, as explained in Section 4approach, ponding due to excess 704 



infiltration occurs before reaching fully saturated conditions at the topmost subsurface node which 705 

is arguably more correct if saturation occurs from the top-down, particularly if the vertical 706 

discretization is relatively coarse. When using the consistent dual node approach, the moment of 707 

ponding depends on the computation of the infiltrability.. More specifically, ponding occurs when 708 

the infiltrability is exceeded. Compared to the condition for ponding in the common node approach 709 

this is arguably more correct. Namely, if saturation occurs from the top-down then the saturation 710 

at a certain depth occurs later than saturation at the land surface. Indeed, simulation results indicate 711 

that when simulating excess infiltration the consistent dual node approach is less sensitive to the 712 

vertical discretization in comparison to the common node approach. This is clearly indicated in 713 

Figure 6b-d, 9a, 10b-d and 13a. To further explain this difference in accuracy, it is emphasized 714 

that the spatial resolution only affects the accuracy of the flow computations when using the 715 

consistent dual node approach and that the formulation of head continuity at the interface remains 716 

correct. In contrast, when using the common node approach, if the spatial resolution is too coarse 717 

then this does not only affect the accuracy of the flow computations but in addition the formulation 718 

of head continuity becomes incorrect. It must be emphasized, however, that regardless of the 719 

applied coupling approach, the vertical discretization must be relatively fine. As indicated by 720 

Figure 6b-d, 9a, 10b-d and 13a the difference between the simulated results and the reference 721 

solution increase for a coarser discretization. Eventually such differences will lead to unreasonable 722 

results regardless of the coupling approach.     723 

It is interesting to note that An and Yu [An and Yu, 2014] also found that their model was 724 

less sensitive to the vertical discretization in comparison to ParFlow when simulating runoff due 725 

to excess infiltration. Whereas An and Yu [An and Yu, 2014] hypothesized that this difference in 726 

performance was related to using irregular grids instead of orthogonal grids as in ParFlow, it is 727 



argued here that this difference can be explained by the fact that both models use a different 728 

coupling approach. 729 

 Although the consistent dual node approach is less sensitive to the vertical discretization 730 

in comparison to the common node approach, it is useful to explain in detail how the vertical 731 

discretization affects the accuracy of the consistent dual node approach to the vertical 732 

discretization. A relatively coarse vertical discretization may result in an underestimation of the 733 

vertical pressure gradient at the land surface. This is because in a soil close to hydrostatic 734 

conditions the pressure heads increase with depth. Therefore, the infiltrability during the early 735 

stages of infiltration may be underestimated. If the applied flux rate is sufficiently large such that 736 

the underestimated infiltrability is exceeded, then this underestimation will result in an 737 

underestimation of the timing of runoff. It may  during the early stages will be observed from 738 

equation (8) that if the ratio qR/Kz or the coupling length is sufficiently large, then ponding is 739 

initiated immediately.overestimated. Figure 10c and 14c illustrate6d illustrates that the timing of 740 

runoff can indeed be underestimated due toas simulated with the cell-centered scheme, a relatively 741 

coarse vertical discretization when using theand a consistent dual node approach. However, is 742 

indeed overestimated at early times. During the later stages of infiltration the pressure head at the 743 

topmost subsurface node will be underestimated due to the combined effect of an underestimated 744 

infiltration rate and the overly diffused saturation fronts. This results in an overestimation of the 745 

infiltration rate in the later stages. Thus at some time after ponding has started, it is expected that 746 

the amount of runoff is underestimated. Contrary to the common node approach, however, there 747 

will be a time at which runoff is simulated correctly (Figure 10c and 14c).   748 

 If the applied flux rate is not sufficiently large, then the underestimated infiltrability in the 749 

early stages of infiltration will not be is not exceeded. In that case,, then the overly diffused 750 



saturation fronts resulting from a relatively coarse vertical discretization will eventually lead to an 751 

underestimation of pressure head at the topmost subsurface node and as such the infiltrability may 752 

be overestimated at later times. Consequently, when using the consistent dual node approach the 753 

timing of runoff due to excess infiltration may also be underestimated. As discussed in section 4 754 

if the ratio qR/Kz goes to unity, then the consistent dual node approach behaves practically similar 755 

to the common node approach. Indeed, Figure 2b which depicts a simulation with a relatively small 756 

ratio qR/Kz clearly illustrates that the timing of runoff may be underestimated when using the 757 

consistent dual node approach.runoff due to excess infiltration may be delayed. However, the delay 758 

in runoff as simulated by the consistent dual node approach will only equal the delay in runoff as 759 

simulated by the common node approach in the limit when qR/Kz goes to unity. Namely, as 760 

explained in Section 4.2 if qR/Kz goes to unity, then  the consistent dual node approach behaves 761 

similar as a common node approach. However, in general, if the consistent dual node approach 762 

delays runoff, this delay will be smaller than the delay in runoff as simulated by the common node 763 

approach (Figure 2b). Overall, regardless if the consistent dual node approach underestimates of 764 

overestimates the timing of runoff, the simulation results indicate that the consistent dual node 765 

approach is generally less inaccurate than the common node approach for simulating excess 766 

infiltration when using a relatively coarse uniform vertical discretization. .  767 

Comparing Figure 12a and 13a it can be observed that if the vertical discretization is 768 

relatively coarse then a common node can act as an artificial barrier for a surface water wave 769 

advancing across an initially unsaturated subsurface domain. Namely, as the wave travels 770 

downstream the wave can only advance to the next common node once it is fully saturated. The 771 

effect of this artificial barrier is that the front of the surface water wave is steepened. In contrast, 772 



the consistent dual approach simulates a wave that becomes less steep as it advances downstream 773 

for relatively fine as well as relatively coarse vertical discretizations as depicted in Figure 13a.    774 

As illustrated in Figure 2b, 4b,6b-d, and 10b and 14b-d, if the coupling approach and the 775 

vertical discretization are identical and if the thin layer is absent, then the vertex-centered schemes 776 

are more accuratecloser to the reference solution with respect to the cell-centered schemes. This 777 

difference in accuracy results solely from the fact the primary mesh is the same for both schemes. 778 

As such the vertical extent of the topmost subsurface volumes is twice as small when using the 779 

vertex-centered scheme. This difference in vertical grid resolution near the land surface explains 780 

the differences in accuracy between the schemes. 781 

When using a thin layer at the top of the model the common node approach and consistent 782 

dual node approach provide similar simulation results as shown in Figure 2c, 4c, 10d and 14d. This 783 

is expected, because the thin layer implies a small coupling length and as such the consistent dual 784 

node approach mimics the common node approach. In essence, in schemes using the consistent 785 

dual node approach the thin layer establishes a near head continuity between the dual nodes. If the 786 

simulation results are compared to the models based on the coarsest uniform discretization (Figure 787 

2b, 4b, 10c and 14c), it is observed that adding a thin layer has only a positive effect on the cell-788 

centered schemes based on the common node approach. This positive effect is explained by the 789 

fact that due to the thin layer the common node approach is in almost full agreement with the 790 

principle of head continuity at the land surface. Vis-à-vis the corresponding model without a thin 791 

layer, the thin layer has a negligible effect on the cell-centered scheme based on the consistent dual 792 

node approach. This is because the thin layer establishes a head continuity between the dual nodes 793 

and the topmost subsurface node and the adjacent subsurface node below act like the dual nodes 794 

in the model without the thin layer. The thin layer has also a negligible effect on the vertex-centered 795 



scheme based on the common approach. In this case the thin layer establishes a near head 796 

continuity between the topmost subsurface node and the adjacent node below and ponding due to 797 

excess infiltration will require almost fully saturated conditions in the two topmost subsurface 798 

volumes. The sum of these two volumes is equal to the topmost volume in the model without the 799 

thin layer and therefore the effect of the thin layer is minimal.  In a vertex-centered scheme based 800 

on the consistent dual node approach, the thin layer has a clear negative effect. In essence the head 801 

continuity between the dual nodes removes the benefits of using the consistent dual node approach 802 

and contrary to the cell-centered scheme based on the consistent dual node approach the topmost 803 

subsurface node and the adjacent subsurface node below do not act like the dual nodes in the model 804 

without the thin layer. This is because the thin layer creates a non-uniform primary mesh in which 805 

the subsurface node directly below the topmost subsurface node is not located at the centroid of 806 

its associated dual cell.  807 

As indicated in figure 2d and 4d, when using an inconsistent dual node approach, the runoff 808 

is overestimated unless a very small coupling length is being used. As discussed in section 5, this 809 

is expected. 810 

6.2 Computational efficiency 811 

During the early stages of ponding the rates at which the water depths are changing can be 812 

relatively fast as the applied flux rates on the land surface are possibly quite large. Typically, a 813 

numerical model with adaptive time-stepping will decrease the time step size at the moment of 814 

ponding to handle the non-linear flow terms and the high rates of change in water depth. Since a 815 

higher infiltration rate at the moment of ponding results in lower initial rates of change in water 816 

depth, it is expected that the most efficient coupling approach is characterized by a higher 817 

infiltration rate at the moment of ponding.  818 



The computational efficiency of the schemes is measured in terms of the number of Newton steps. 819 

The number of Newton steps equals the number of times that the linearized system of equations is 820 

solved and this number depends on the time step sizes as well as the number of failed Newton 821 

steps. It is emphasized that the measured efficiency depends crucially on the applied model code. 822 

Nonetheless, as shown in the following, the measured differences in efficiencies can be explained 823 

in terms of abrupt changes in how fast pressure heads near the surface-subsurface interface are 824 

evolving with time. Regardless of the type of scheme used to solve the non-linear flow equations, 825 

such abrupt changes are difficult to solve.  826 

Once ponding occurs a surface-subsurface flow model will encounter significant numerical 827 

difficulties as surface flow terms are activated. In essence, the activation of these terms represents 828 

a discontinuity in flow behaviour which is challenging to resolve [Osei-Kuffuor et al., 2014]. 829 

Indeed, the Newton steps as depicted in Figure 3 and 7 indicate that simulations encounter 830 

difficulties at the moment of ponding. These figures also indicate that the consistent dual node 831 

approach can be more efficient in comparison to the common node approach.  832 

6.2.1 Excess saturation 833 

When simulating excess saturation the subsurface is fully pressurized atJust before the moment of 834 

ponding due to excess saturation, the rate of change in pressure heads at the topmost subsurface 835 

nodes is relatively high for both coupling approaches. This high rate is related to the shape of the 836 

water retention curve. Typically, the derivative of the saturation with respect to the pressure head 837 

goes to zero when approaching fully saturated conditions. Once ponding starts, the surface flow 838 

terms are activated and can only accommodatetherefore the rate of changes in pressure heads at 839 

the topmost subsurface nodes decreases drastically. Both approaches must handle this drastic 840 



change. However, from Figure 4b and 5b it can be observed that the rate of change decreases more 841 

abruptly when using the common node approach.  842 

 When using the common node approach the vertical hydraulic gradients in the subsurface 843 

are close to zero at the moment of ponding, since additional water volumes can only be 844 

accommodated by means of the specific storage.  As such the column will be close to hydrostatic 845 

conditions at the moment of ponding. When using the common node approach this This implies 846 

that the hydraulic gradient between the common node and the adjacent subsurface node below is 847 

very close to zero. When using the consistent infiltration rate drops instantaneously at the moment 848 

of ponding. In contrast, in the dual node approach ponding due to excess saturation occursstarts 849 

when ss0 p l  .the infiltrability is exceeded. Thus, at the moment of ponding, the infiltration rate 850 

is higher in comparison to the common node approach. After ponding this infiltration rate will 851 

decrease quickly as the hydraulic headheads at the dual nodes equilibrate. This difference in the 852 

infiltration rate at the moment of ponding explains why the topmost subsurface hydraulic heads 853 

change more smoothly when using the dual node approach. If the vertical discretization is 854 

generally still below the land surface. This means thatcoarser, then the infiltration rate at the 855 

moment of ponding as computed by the consistent dual node approach is higher in comparison to 856 

the rate as computed by the common node approach. It is thus expected that with the consistent 857 

dual node approach is more efficient when simulating excess saturation.  Indeed, Figure 8 and 13 858 

illustrate that, when simulating excess saturation, the consistent dual node approach is more 859 

efficient then the even higher and this results in a lower initial rate initial rate of change in water 860 

depth as depicted in Figure 5a.    861 

 The more abrupt changes in pressure heads at the common node in comparison to the 862 

changes in pressure heads at the dual nodes mean that solving the activation of ponding with the 863 



common node approach. Figure 10 illustrates the pressure heads on the nodes near the land surface 864 

as  is more difficult.  It is noted that the differences in the infiltration rates between the two coupling 865 

approaches only occur at the moment of ponding and directly thereafter when water depths are 866 

relatively small. Namely, quickly after ponding, the hydraulic heads at the dual nodes will 867 

equilibrate and after that the two coupling approaches will behave similar. This explains why these 868 

differences in infiltration rates do not significantly affect the accuracy of simulated by the models 869 

based on the cell-centered scheme and the coarsest vertical discretization. As illustrated, the 870 

pressure head gradient governing the infiltration rate at the moment of ponding is larger when 871 

using the consistent dual node approach and consequently the rate of change in water depth is 872 

smaller.  runoff.    873 

6.2.2 Excess infiltration 874 

As discussed in section 7.1.2, in comparison to the consistent dual node approach, the common 875 

node approach yields a later time of ponding due to excess infiltration. Since saturation fronts in a 876 

homogeneous medium become more diffused with time, it follows that the common node approach 877 

yields a smaller infiltration rate at the moment of ponding. Namely, if the saturation fronts are 878 

more diffused, then the pressure head gradient governing the infiltration rate is less sharp. 879 

Therefore, it is expected that the common node approach is computationally less efficient than the 880 

consistent dual node approach, particularly if ponding is significantly delayed. Figure 5 illustrates 881 

clearly, that the consistent dual node approach can be more computationally efficient. For the 882 

simulation scenario depicted in Figure 5, the consistent dual node approach is also more accurate. 883 

Figure 4b illustrates that, compared to the consistent dual node approach, the common node 884 

approach can result in a relatively high rate of change in runoff at the moment of ponding. This is 885 

indicative of a relatively high initial rate of change in water depth at the moment of ponding. Figure 886 



7 illustrates the pressure heads at the nodes near the land surface as simulated by the cell-centered 887 

schemes based on the coarsest vertical discretization. It can be observed that the pressure head 888 

gradient at the moment of ponding is larger when using the consistent dual node approach. This 889 

implies a higher infiltration rate and a lower rate of change in water depth. Figure 11 also illustrates 890 

that the consistent dual node approach is more efficient when handling the activation of ponding. 891 

However, considering the entire simulation period, the dual node approach is not always more 892 

efficient. As illustrated by Figure 11b and 11c, when the discretization is relatively coarse the 893 

common node approach is sometimes more efficient during the later stages of the simulation. 894 

However, in these cases the common node approach is only more efficient, because its inaccuracy 895 

leads to an easier flow problem to be solved. Namely, the underestimation of runoff results in more 896 

diffused saturation fronts in the subsurface.    897 

 Figure 2, shows that if the ratio qR/Kz is relatively small, then the differences in 898 

computational efficiency are relatively small. As discussed in section 4 this is because the 899 

consistent dual node approach behaves very similar to the common node approach if the ratio qR/Kz 900 

is relatively small.     901 

Another factor that affects the efficiency of the common node approach is that the delay in 902 

ponding can act as an artificial barrier for a surface water wave advancing across an initially 903 

unsaturated subsurface domain. The effect of this artificial barrier is that the front of the surface 904 

water wave is steepened. This steepening of the surface wave front results in higher rates at which 905 

the water depth is changing and is undesirable because it decreases the computational efficiency. 906 

This is clearly illustrated in Figure 15. Figure 16 illustrates the evolution of water depth at the land 907 

surface for the cell-centered schemes using the coarsest vertical discretization. As shown, the 908 

common node approach delays and steepens the surface water front. This results in relatively high 909 



rates of change in water depth at the moment of ponding. Consequently, the common node 910 

approach is less efficient than the dual node approach. It is noted that for this scenario the 911 

consistent dual node approach is more efficient as well as more accurate.  912 

Figure 8, 9, 12 and 13 illustrate the evolution of pressure heads at dual nodes and common nodes 913 

when simulating excess infiltration. When applying the consistent dual approach, the net flux into 914 

a topmost subsurface cell will decrease once ponding occurs, because the applied flux rate will be 915 

partitioned between dual nodes (i.e. between the surface flow and subsurface flow domain). This 916 

occurs while the topmost subsurface node is not yet fully saturated. After ponding the infiltration 917 

rate decreases such that if the topmost subsurface node reaches fully saturated conditions the net 918 

flux into the topmost subsurface node is relatively small. In contrast, partitioning of the applied 919 

flux rate on a common node between the surface flow and subsurface domain starts when the 920 

common node reaches fully saturated conditions at this node. This means that just before ponding 921 

the rate of change in pressure head is relatively high as the common node is driven towards fully 922 

saturated conditions while the infiltration rate is relatively high. This means that similar to the 923 

excess saturation scenario the rate of change in pressure head at the common node is high just 924 

before ponding. At the moment of ponding, this rate must drop abruptly as surface flow terms are 925 

activated.  This abrupt change explains why the common node approach is less efficient.    926 

 Figures 7 and 11 also indicate that a coarser vertical discretization only provides a 927 

significant gain in efficiency in terms of Newton steps when using the consistent dual node 928 

approach. When using the common node approach, a coarser discretization does not change the 929 

fact that the topmost subsurface node must reach fully saturated conditions for ponding to occur 930 

and that the infiltration rate is relatively high just before ponding. When using the consistent dual 931 



node approach, a coarser vertical discretization means that the saturation fronts are more diffused 932 

such that the flow problem becomes easier to solve.   933 

 Figure 8a and 9a illustrate that for the second simulation scenario, ponding occurs almost 934 

simultaneously at all the surface nodes. Figure 12a and 13a show that this is different for the third 935 

scenario where ponding occurs at different times as the flooding wave travels downstream. When 936 

Figure 11a is compared with Figure 12a and when Figure 11d is compared with Figure 13a, it is 937 

clear that the common node approach encounters difficulties around each time ponding starts at a 938 

surface node. Figure 11 shows that these difficulties are encountered for all discretizations. In 939 

contrast the consistent dual node approach has much less difficulties solving these difficulties. As 940 

discussed in Section 6.1.2. the common node approach may result in steepening the advancing 941 

wave. This implies that water depths will be changing more quickly. This presents an additional 942 

difficulty for solving this flow problem with the common node approach.  943 

7 Conclusions 944 

In this study it is shown that contrary to the common held view, the dual node approach if properly 945 

implemented is actually the more general, the more elegant as well as the more accurate coupling 946 

approach in comparison to the common node approach. This consistent dual node approach is 947 

implemented in cell-centered as well as vertex-centered finite difference schemes.  948 

The consistent dual node approach is derived from basic equations that govern infiltration and 949 

infiltrability at the land surface usingthe dual node approach should be conceptualized and 950 

implemented as a one-sided finite differences approximation of the vertical hydraulic gradient at 951 

the land surface. In both cell-centered as vertex-centered schemesThis provides an important new 952 

insight into the coupling length. Namely, if the dual node approach is properly implemented then 953 



the coupling length is related to the grid geometry. As discussed, the dual node approach should 954 

not be conceptualized as a distinct interface between the surface and the subsurface. Moreover, 955 

this approach is in agreement with principle of head continuity along the land surface whereas the 956 

common node approach is not, unless the vertical discretization isgrid resolution. Thus, the 957 

coupling length does not represent an additional non-physical model parameter and therefore the 958 

dual node approach is not automatically a less physically based approach in comparison to the 959 

common node approach. Actually, this study shows if the vertical discretization is not sufficiently 960 

fine then the head continuity at the surface-subsurface interface is formulated more correctly in 961 

the consistent dual node scheme. This difference in formulation has consequences for how both 962 

approaches compare in terms of accuracy and efficiency. 963 

Numerical experiment indicate that if the vertical discretization is relatively coarse, then 964 

the the consistent dual node approach is often less inaccurate as well as more computationally 965 

efficient equally accurate or more accurate than the common node approach. It has been shown 966 

that in comparison to the common node approach for the consistent dual node approach is less 967 

sensitive to the vertical discretization when simulating excess infiltration. For simulating excess 968 

saturation both coupling approaches are more or less equally accurate, but the consistent dual node 969 

approach was found to be more computationally efficient. Therefore, overall it can be argued that 970 

the consistent dual node approach is to be preferred to the common node approach unlessHowever, 971 

the practical advantage of the consistent dual node approach in terms of accuracy is limited. 972 

Namely, if the vertical discretization is sufficiently fine such that refined, both approaches will 973 

converge to more accurate and eventually similar results when simulating excess infiltration. When 974 

simulating excess saturation both approaches yield similar results even if the vertical discretization 975 

is relatively coarse.  976 



Nonetheless, even though the advantage of the consistent dual node approach in terms of 977 

accuracy is limited, the fact that the consistent dual node approach is equally or more accurate than 978 

the common node approach is a significant finding. Namely, this finding is different from the 979 

commonly held view that a dual node approach is most accurate if it mimics the common node 980 

approach. Moreover, it also illustrates clearly that the consistent dual node approach is not similar 981 

to a common node approach.  982 

Numerical experiment indicate that the consistent dual node approach can be more efficient 983 

than the common node approach while being equally or more accurate than the common node 984 

approach. It has been shown that this difference in efficiency is related to abrupt changes in the 985 

evolution of pressure heads around the moment that ponding is initiated.   986 

Based on the findings in this study the models of An and Yu [An and Yu, 2014] and Kumar 987 

et al. [Kumar et al., 2009] are expected to have some advantages with respect to models that are 988 

based on the common node approach. This is because these models are based on a consistent dual 989 

node approach. Moreover, given a model that uses an alternative dual node approach, it is relatively 990 

straightforward to implement the numerically more correct consistent dual node approach. 991 
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abbreviation meaning 

cc cell-centered 

vc  vertex-centered  

dn dual node  

cn common node  

TL tiny layer  

 1082 

Table 1: Abbreviations as used in the figures. 1083 
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Figure 1: a) Common nodes and co-located dual nodes in cell-centered schemes. bb) Dual nodes 1112 

in cell-centered-centered schemes. c) Common nodes and co-located dual nodes in vertex-centered 1113 

schemes. c) Dual nodes in cell-centered-centered schemes (not col-located). d) Dual nodes in 1114 

vertex-centered schemes (not co-located). The white squares and white circles represent surface 1115 

and subsurface nodes, respectively. The solid and dashed lines represent the primary mesh and the 1116 

dual mesh, respectively. The grey-shaded area is a topmost discrete volume as associated with a 1117 

topmost subsurface node. The black dot represents the centroid of this volume. The coupling length 1118 

l as depicted in this figure applies to the consistent dual node approach. 1119 
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Figure 2: Simulated runoffOutflow response for excess infiltration insaturation on a vertical soil 1133 

columnhillslope (first scenario) using different vertical discretizations (qR = 1.1 md-1).. 1134 
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Figure 3: Number of Newton steps for excess infiltration in a vertical soil columnsaturation on a 1142 

hillslope (first scenario) using different vertical discretizations (qR = 1.1 md-1).. 1143 
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 1150 

Figure 4: Simulated runoffvalues at the common nodes for excess saturation on a hillslope (first 1151 

scenario) with a cell-centered scheme and Δz = 0.0125 m. a) Water depths. b) Pressure heads. 1152 

Nodes are numbered 1-5 in the down-slope direction. 1153 
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 1154 

Figure 5: Simulated values for excess saturation on a hillslope (first scenario) with a cell-centered 1155 

scheme and Δz = 0.2 m. a) Water depths at the surface nodes. b) Pressure heads at the topmost 1156 

subsurface nodes. Nodes are numbered 1-5 in the down-slope direction. 1157 
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 1159 

Figure 6: Outflow response for excess infiltration in a vertical soil columnon a hillslope (second 1160 

scenario) using different vertical discretizations (qR = 10.608 md-1)..  1161 
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 1170 

Figure 5:7: The total number of Newton steps for excess infiltration in(second scenario) on a 1171 

vertical soil columnhillslope using different vertical discretizations (qR = 10.608 md-1).. 1172 
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 1178 

Figure 6: Changes in pressure heads near the surface-subsurface interface8: Simulated values at 1179 

the common nodes for excess infiltration inon a vertical soil column (qR = 10.608 md-1). Left: 1180 

dn(cc)hillslope (second scenario) with a cell-centered scheme and Δz = 0.50125 m. Right: cn(cc) 1181 

Δz = 0.5 ma) Water depths. b) Pressure heads. Nodes are numbered 1-5 in the down-slope 1182 

direction. 1183 
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Figure 7: Simulated runoff for excess saturation in a vertical soil column1197 

 1198 

Figure 9: Simulated values for excess infiltration on a hillslope with a cell-centered scheme 1199 

(second scenario) and Δz = 0.2 m. a) Water depths at the surface nodes. b) Pressure heads at the 1200 

topmost subsurface nodes. Nodes are numbered 1-5 in the down-slope direction. 1201 
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 1203 

Figure 10: Outflow response for flooding an unsaturated hillslope using different vertical 1204 

discretizations. 1205 

 1206 

 1207 

 1208 

 1209 

 1210 



 1211 

 1212 



 1213 

 1214 

Figure 8: The total11: Number of Newton steps for excess saturation in a vertical soil 1215 

columnflooding an unsaturated hillslope using different vertical discretizations. 1216 
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 1221 

 1222 

Figure 9: Changes in pressure heads near the surface-subsurface interface for excess saturation in a vertical 1223 

soil column. Left: dn(cc) Δz = 0.5 m. Right: cn(cc) Δz = 0.5 m. 1224 
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 1234 



Figure 10: Outflow response12: Simulated values for excess infiltration (third scenario) on a hill 1235 

hillslope with a cell-centered scheme and Δz = 0.0125 m. a) Water depths at the surface nodes. b) 1236 

Pressure heads at the topmost subsurface nodes. Nodes are numbered 1-5 in the down-slope using 1237 

different vertical discretizations. direction). 1238 
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 1246 

 1247 

Figure 11: The total number of Newton steps13: Simulated values for excess infiltration on a hill slope 1248 

using different vertical discretizations. 1249 
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 1255 

Figure 12: Outflow response for excess saturation(third scenario) on a hill slope using different vertical 1256 

discretizations. 1257 
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 1265 

Figure 13: Number of Newton steps for excess saturation onhillslope with a hill slope using different 1266 

vertical discretizations. 1267 
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 1274 

Figure 14: Outflow response for flooding an unsaturated hill slope using different vertical discretizations. 1275 
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 1283 

Figure 15: Number of Newton steps for flooding an unsaturated hill slope using different vertical 1284 

discretizations. 1285 
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 1289 

 1290 

Figure 16: Response in water depth at the fivecell-centered scheme and Δz = 0.2 m. a) Water 1291 

depths at the surface nodes (numbered from upstream to downstream) for flooding an unsaturated 1292 

hill slope. Left: dn(cc) Δz = 0.5 m. Right: cn(cc) Δz = 0.5 m. . b) Pressure heads at the topmost 1293 

subsurface nodes. Nodes are numbered 1-5 in the down-slope direction). 1294 
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