Response to the reviewers

I appreciate very much the comments that were very helpful in improving the manuscript. Below
I have copied all the comments and have inserted my replies in italics. I believe that this revision
adequately addresses most concerns. Nonetheless, since this is a major revision, minor revisions
may still be needed. I hope that the Reviewers will be available for a subsequent revision round.

Before addressing the comments one-by-one, I would like to address thoroughly the main
concern of the reviewers. It seems that the main concern of the reviewers is that the results and
conclusions as presented in the manuscript are either not novel or irrelevant. Later on I will
refer to the response to this main concern as the main response.

Main response.

To address main concern of the reviewers, I have revised the manuscript in the following ways.
Firstly, I have changed the title. Following the comments, I realized that the original title is
misleading (A consistent implementation of the dual node approach for coupling surface-
subsurface flow and its comparison to the common node approach). Namely, it may imply that
this implementation is a novelty which is not the case. The new title is: New insights into the
differences between the dual node approach and the common node approach for coupling
surface-subsurface flow. Secondly, I have revised the manuscript thoroughly to make clearer
what those insights are. Also, I have decreased the number of model scenarios and figures. I
hope that this will help to keep more focus on the most important insights provided in this study
and to make the manuscript easier to read.

Nonetheless, I disagree that that most of the conclusions in this study are not novel. To convince
the Reviewers, I here summarize the novel insights provided in the revised manuscript:

1)

According to commonly held views the common node approach is more physically-based. This
view is based on the idea that the dual node approach introduces an additional parameter in the
form of a coupling length. Typically, this coupling length is thought of as the thickness of layer in
between the surface and the subsurface domain. I show that the dual node approach can be
formulated such that this coupling length is fully defined by the grid topology. This results in
what I call a consistent dual node approach. In this approach, the coupling length is not a non-
physical model parameter.

2)

In comparison to the common node approach the head continuity as implemented in the
consistent dual node approach is more correctly formulated in the consistent dual node
approach

3)

The manuscript explains in detail the comparison between the common node approach and the
consistent dual node approach. Such a comparison has not been published as far as I know.
Instead, most comparison studies between the dual node approach and the common node



approach are based on alternative dual node approaches. The comparison in this study
considers accuracy as well as numerical efficiency. I think that this comparison is a valuable
contribution to the scientific literature.

4)

Although the scheme is not new, the scheme is typically not being recognized as a dual node
approach. Instead, it is taken as being equivalent to the common node approach (An and Yu,
Kumar et al.). Even if it is recognized as a dual node scheme, it is not recognized that this is a
particularly advantageous scheme (Panday and Huyakorn). This study shows that models that
already use this scheme should display some advantages in terms of accuracy as well as
efficiency with respect to models that use the common node approach.

5)

The manuscript explains that to understand how the approaches work, it is important to consider
the meaning of nodal values. Although, this may seems trivial to a numerical modeler, it seems
that this point is often overlooked. Moreover, the consistent dual node approach is derived in the
manuscript from basic flow equations using finite differences. Again, this may seem trivial to a
numerical modeler, but I think it is important because it leads to a conceptualization of the dual
node approach, which is very different from the one in existing literature. Namely, it is not an
approach that needs an additional non-physical model parameter. The manuscript also provides
an explanation how the dual nodes can be separated in a vertex-centered scheme to obtain a
consistent dual node scheme.

Except for not presenting new results or conclusions, another comment is that the differences
between the approaches are irrelevant because they all yield accurate results if the spatial
resolution is chosen carefully.

1t is indeed true that all coupling approaches can yield accurate results if the vertical
discretization is sufficiently fine and if the coupling length (when using a dual node approach) is
carefully chosen. I made revisions such that this point is acknowledged clearer and to be more
objective. It is also true that the advantages in accuracy are limited to simulating excess
infiltration using a relatively coarse grid. Thus it is true as mentioned by Reviewer 1 that
problems related to a difference in accuracy are not a problem if the model setup is defined
carefully. However, in my opinion this does not mean that the difference in accuracy when using
a relatively coarse resolution is not interesting or irrelevant. In essence, from a practical point
of view, I can understand the argument why this could be irrelevant. Namely, one would wish a
very fine vertical discretization irrespective of the chosen coupling approach to simulate
accurately the movement of saturation fronts. But there are different coupling schemes in use
today to solve surface-subsurface flow. I think it is important to understand when and why these
schemes yield different results. If scientists cannot answer this question, I think that that would
be a problem.

Moreover, the idea that a dual node approach can be more accurate than a common node
approach is new and the current consensus is very different. Namely, the commonly held view is
that the maximum accuracy of the dual node approach is reached when it mimics a common
node approach. Also, studies based on models that use a consistent dual node approach (i.e. An



and Yu, Kumar et al.) did not recognize that there is a difference in accuracy with respect to the
common node approach. In the study of An and Yu it was found that their model is less sensitive
to the vertical discretization in comparison to ParFlow (which uses the common node approach,).
However, they did not recognize that this difference is related to using a different coupling
approach.

The difference in accuracy also shows the consequence of how the head continuity is formulated
in the common node approach. Namely, this formulation is only correct if the discretization is
very fine and thus if a coarser vertical resolution is used, the common node approach can
become less accurate than the consistent dual node approach (i.e. the formulation of head
continuity in the consistent dual node approach is correct irrespective of the vertical
discretization).

Overall, it seems that the disagreement on whether the difference in accuracy is relevant or not,
depends on whether one takes a practical or theoretical view point. Obviously, I look at it from a
more theoretical perspective.

But suppose for the sake of argument that the difference in accuracy is completely irrelevant to
the scientific community. (Although as argued I do not think that is true). Then I still do not see
why this would make the manuscript irrelevant in its totality. Namely, there is also the case of
numerical efficiency. And the manuscript indicates quite clearly that the consistent dual node
approach can be advantageous in terms of efficiency. Moreover, the case of accuracy can also
be regarded as simply being an important issue to be considered when comparing two different
approaches.

Anonymous Referee #1
Received and published: 12 May 2017

I have carefully read the manuscript called “A consistent implementation of the dual node
approach for coupling surface-subsurface flow and its comparison to the common node
approach” by Rob De Rooij. This paper raises important issues regarding the application of
integrated hydrological models through the examination of the possible influence of the coupling
strategy and the vertical discretization. It especially investigates the following scientific
questions (i) what is the proper coupling length to be used for the so-called dual node approach;
(i1) how to formulate the dual node approach to conserve the physically based nature of the
model; (iii) how does the coupling strategy influence the simulated dynamics when the vertical
resolution is coarsened and (iv) how do the common node and the dual node approaches compare
on synthetical test cases.

I appreciate the careful reading and interest of the reviewer.

Before going to my comments of the paper, [ want to stress out that these issues are critical and
barely discussed in the integrated hydrologic modeling literature. Integrated hydrologic models
are more and more used to investigate hydrologic behaviors but the questions of the appropriate



scale, spatial resolutions (both horizontal and vertical), the crucial modeling choices that are to
be made (coupling length for instance) and their effect on the simulated dynamics are too often
forgotten although in my opinion of primary importance. I especially believe that there is a need
to keep the physical meaning of integrated hydrological models through the use of appropriate
spatial resolutions. This point is made very clear in the paper and is in a way the starting point of
the research presented.

I agree with the reviewer that it is important to keep the physical meaning of a model trough
appropriate spatial resolutions. Indeed, this becomes a critical issue if non-linearity is
significant. And this is typically the case in integrated surface-subsurface models.

The consistent dual node approach proposed in the paper is clearly exposed and is a way to
properly account for infiltration, especially in partially ponded cells. This approach for coupling
allows preserving the physics of infiltration across the land surface if numerical parameters and
spatial resolution are chosen adequately. A detailed analysis on the surface and subsurface
pressure values, on the infiltration flux and on the time to ponding is provided. This analysis
demonstrates the added-value of this method mainly (and only?) to describe the infiltration
excess process. Although the issues tackled are of interest and the method proposed seems
appropriate, I have serious concerns with the paper and I am not sure that the material presented
is enough for a research paper. It seems that the added value of the approach proposed is not so
important compared to the classical coupling approaches if the classical approaches are used in a
relevant way. I hope that the following comments will somehow help improving the manuscript
and maybe help in the publication process.

Major comments:

(1) One of my major concern deals with the fact that most of the conclusions of the research
proposed in this paper are not novel and already documented in the literature. For instance, it has
already been demonstrated that when using a proper discretization both coupling approaches
gives very similar results and that a relatively small coupling length needs to be used with the
dual node approach to conserve the physical meaning. It is true that integrated models tend to be
used out of their proper application domain with coarse vertical discretization but it is more than
intuitive that the vertical resolution should be small to properly capture the non-linear dynamics
of infiltration fronts (especially when infiltration excess occurs). If the integrated models are
properly applied, most of the questions that are tackled in the paper are not a problem anymore.
In a way, the paper aims at determining which method is the less inaccurate (see line 554 to 556)
when using a coarse vertical discretization, which is in a way irrelevant as both approaches are
acceptable when using a proper resolution. These comments are illustrated through the
conclusion that is short and not so much informative.

I have addressed this concern by acknowledging in the conclusions more clearly that the
advantages in terms of accuracy of the consistent dual node approach versus the common node
approach are indeed limited.



Although I understand the reviewer’s concern, I do not agree that the most conclusions are
already documented nor that the differences in between the approaches are in a way irrelevant. [
refer to my main response as to why I disagree.

(2) The second main concern is linked to the tone and the phrasing of the paper that are not
always adapted especially when reference models of the literature — i.e. Hydrogeosphere,
MODHMS or Parflow — are criticized. I acknowledge that the coupling in Parflow is not well
described in Kollet and Maxwell (2006) and that as a consequence some important aspects of
Parflow turn out to be unclear. But I don’t feel like there is a need to point out in details what the
author think is not done properly by others. Once again, if an integrated model is used carefully
with proper discretization and coupling length, it will produce consistent (with the physics)
results regardless if it is a common node or a dual node approach. As a consequence, it is
preferable to highlight what the consistent dual node approach brings than to denigrate the other
approaches. I think that part 5 should be removed or at least strongly modified.

I have changed the explanation of the coupling in ParFlow. However, Section 5 (now section
4.3) is in my opinion essential. This section does not aim to denigrate other models. Namely, the
shortcomings of inconsistent dual node approaches have already been discussed elsewhere. As
such I do not heavily criticize other models here. I merely contrast the shortcomings with the
consistent dual node. Nonetheless, I have tried to change the tone and the phrasing in this
section.

(3) I have serious concern about the result regarding the numerical efficiency. First I don’t
understand the arguments presented at the beginning of the part 7.2 that directly link the
infiltration rate and the gradient across land surface with the numerical efficiency. It is a problem
for me as all the following discussion on the efficiency is related to that argument. I feel like this
point should be explained better. Moreover, the efficiency of the resolution is highly linked to
the numerical procedure (numerical scheme, time integration,....) that is used to solve the
common node approach. In the paper by De Rooij (2013) it is explained that the model uses a
dual node approach. But the common node approach is not described. Either I missed something
or this should be detailed somewhere so that the reader can have all the needed information.
Finally, for some test cases the difference in the number of Newton iteration is rather limited
when using a proper discretization and coupling length making it difficult to say in a general way
that the dual node approach is more efficient that the common node approach.

1 have made major revisions in the discussions to explain better the differences in efficiency.
Moreover, I also added an explanation about how the common node approach is implemented.

(4) Regarding the efficiency, I also believe that the tighter the coupling, the more difficult the
resolution will be. Considering the experience I have in the domain, it is much harder to impose
continuity through a common node type of approach than to impose a first order coupling
through a dual node approach (if the numerical resolution is the same). As a consequence, it is
for me logical that convergence is harder to obtain for some test cases with the common node
approach.



In the literature the difference in efficiency havs indeed been explained in terms of tight or less
tight coupling (i.e. Ebel et al.).I think that my explanations of why the consistent dual node
approach can be more efficient are more detailed and add some significant understanding on
why the efficiency can be different. Namely, it is shown that this difference can be tied to how
fast water depths are changing at the moment of ponding. These rates are different depending on
the approach.

(5) The paper is quite clear but some parts are too long. This makes the paper sometimes hard to
read. Part 4 is an example. This part is very long and the first conclusions are deceiving — i.e the
proper implementation has already been proposed by other (Line 240) and the proposition of a
numerical trick to properly implement dual node in vertex-centered scheme (line 256 to 259).
Maybe this can be improved.

1 shortened this section considerably. I have tried to re-phrase this part a bit to be clearer.

(6) The part that presents the results is also hard to follow. I believe that there are too many test
cases presented and that all of them are not needed. The saturation excess test cases may be
removed as they are only illustrative for the efficiency. Maybe only the infiltration excess should
be kept as it is for this process that the added-value of the method proposed is the most
important. The consequence of multiple test cases per hydrological processes is that the reader
has to jump from one figure to another which is not convenient at all. The number of figure
presenting the results is also quite high.

Instead of removing the saturation excess cases, I have removed the column experiments. In fact,
the hillslope experiments are enough to make my points.

(7) Regarding hydrological processes, it seems that the differences between both approaches are
very small when dealing with the saturation excess process, which is the dominant process of
streamflow generation in most temperate region. The main problems/conclusions are linked to
the infiltration excess process. The findings for both processes are rather limited as (i) for
saturation excess both approaches are OK and (ii) it is well-known that using the Richards
equation infiltration excess cannot be properly capture with a 20 cm or a 50 cm resolution.

I acknowledge more clearly that indeed, the advantage in accuracy is limited. But the fact that a
dual node approach can be at least or more accurate in comparison to the common node
approach is significant in my opinion as it illustrates that it matters how the head continuity is
implemented. Moreover, the findings in this study contrast to commonly held views, according to
which the dual node approach is only more efficient with respect to the common node approach
at the expense of accuracy. Namely, the consistent dual node approach can be more efficient as
well as more accurate for certain simulation scenarios. See also my main response for additional
arguments why I think the difference in accuracy is actually quite relevant.

The point of the manuscript is not only that the consistent dual node approach can be more
accurate. Efficiency is also considered. In a more general sense, the manuscript simply
compares in detail the consistent dual node approach with a common node approach. The fact



that both approaches can yield similar results and that the differences in accuracy or efficiency
are not extreme does not make this comparison study irrelevant.

(8) The coupling between surface and subsurface strongly depends on the numerical schemes use
for resolution. This point is clear on the paper (especially through the explanations related to
figure 1) but the paper — although using 2 different schemes — is not exhaustive. Some published
models using other resolution schemes are built using a properly implemented dual node
approaches and this point should be fairly mentioned somewhere.

1 only found that the model of Kumar et al. is also in essence based on a consistent dual node
approach. In addition, I also point out that CATHY as well as the model of Morita and Yen share
characteristics with the consistent dual node approach.

(9) I am a bit uneasy with the concepts of elegance and generality when considering physically-
based modelling. In my opinion, the main question is whether the modelling approach chosen
allows for a proper description of the physics considered. I believe that it is an endless debate to
determine which approach is the more elegant or the more general and I would suggest the
author to remove the sentences related to that and focus on the accuracy and/or the efficiency
that are can be somehow measured.

Corrected in the revised manuscript.
Other comments:

- Some parts of the paper are only about interpretation and as a consequence are very subjective.
See for instance from line 274 to line 283.

Removed
- Line 45: hillslopes not hill slopes
Corrected

- Line 50: the reference paper for CATHY is rather Camporese et al, WRR, 2010 than Weill et
al, AWR, 2011.

Corrected

- Line 60: the interface is not always saturated. Its property is constant but saying that it is
always saturated can be misunderstood regarding the infiltration process.

Corrected

-From line 191 to line196: this part is not clear and needs to be improved. To my knowledge and
in most of the integrated models mentioned in the paper, when a cell is not ponded, all the
rainfall infiltrates. When the cell is ponded or partially ponded, infiltration occurs under the
ponded area. I agree that infiltration under the non-ponded fraction of a partially ponded area
should be theoretically accounted for, but the sentences in the paper could lead to
misunderstandings.



Rephrased paragraph

- Line 223: I don’t understand why it is mentioned here that the surface head can be used as a
Dirichlet boundary condition. I agree that it can be done but not in the context of a coupling
through a dual node approach. Maybe this is linked to the implementation of the common node
approach.

Corrected

- Line 326: typo - Figure 1c

Corrected

- Line 365-368: Repetition of things already said from line 274 to 283
Removed

- Line 395-397: I quickly checked in de Rooij et al (2013) and this paper only describe the dual
node approach for coupling. Some results with the common node approach are presented later in
the paper. The way the common node approach is implemented should be presented somewhere.

Corrected in revised manuscript, added explanation in section 5 (numerical experiments)

-Line 464 to 478: this part does not bring anything to what is already well known and described
in the literature. Just say that the reference is computed using a fine resolution.

This is not completely true (already known), because I compare with a consistent dual node
approach which is different. But the overall idea does indeed remain the same. I have shortened
the paragraph.

- Line 498-500: Please explain before in the paper how the inconsistent dual node approach was
implemented.

I have removed this approach from the experiments (Note that it would be quite simple. Namely
a simple change in elevation heads of the surface nodes).

- It is strange that figure 2 d and 4d shows so different results. We would expect that the behavior
between different coupling approach/resolution provides same trends regarding the reference and
it’s not the case. Can you explain?

These figures are removed. But the difference is related to a difference in the effective rainfall
rate, Namely, when simulating excess infiltration, the inconsistent dual node approach requires
a water depth greater than the coupling length for top-down saturation to occur. Thus, if the
effective rainfall rate is large enough then this is more likely to be the case.

- Test cases with excess infiltration: even though the dual node approach displays “more
desirable behavior” (line 521), the results with coarse discretizations are far from the reference.
Meaning that a consistent implementation of the dual node approach is not sufficient enough if
the resolution is not well chosen.



I have changed the phrasing. But, the finding that the consistent dual node approach is less
sensitive to the vertical discretization remains a significant insight. Indeed, I think that it can be
argued well that the dual node approach displays more desirable behavior. Namely, ponding
starts before the topmost subsurface node is saturated. Since this represents a value at some
depth below the surface, it is logical to assume that this node should reach fully saturated
conditions some time after reaching fully saturated conditions at the surface. Of course, this does
not mean that the consistent dual node approach is accurate for any discretization. More in
terms of comparing the two approaches I think it is fair to say that the consistent dual node
approach displays more desirable behavior.

- Figure 10 c and 10 d: it is hard to say who the best is between the common node and the dual
node. Needs to be discussed.

I have removed the simulations with the coarsest discretizations. Also because Reviewer 2 stated
that such a coarse discretization is rarely used.

- Figure 13: why is there so much difference for this test case only? When the discharge are so
close and match pretty well, the efficiency seems very different between the coupling
approaches.

Added further and better explanation.

- Line 538-539 (excess infiltration): all the simulations are far from the reference. The argument
presented in this sentence is not valid in my opinion.

Corrected

- Line 553: typo “understimates or overestimates”
Corrected

- Line 671: Figure 9 not 10

Corrected

- Line 635: Figure 6 not 7

Corrected

Anonymous Referee #2
Received and published: 16 May 2017

R. deRooij (RdR) presents the dual node approach for coupling surface and groundwater flow
including a comparison to the common node approach and other dual node approximations based



on synthetic numerical experiments and also numerical measures (i.e. number of non-linear
iterations).

I have two major points of concern with the manuscript. While I like and appreciate the effort by
RdR to clarify general misperceptions and confusion of different common and dual nodes
approaches, the manuscript reads more like a reckoning with numerical, hydrologic scientific
software than a research paper. It is important to keep in mind that we are dealing with a highly
non-linear problem ultimately cast in discrete mathematics that a computer can understand. As
such there will always be ambiguities and errors. For example, I was always wondering, how
these models handle the following situation. Imagine the following thought experiment of model
with a cell-centered grid,where the top layer is just under tension saturation. Adding an
incremental amount of water will switch the pressure value at the cell center from some negative
value to ~dz/2. A dual node right at the land surface interface would switch from some negative
value to ~0. In both cases surface runoff is initiated. Thus, there is something like a discontinuity
in pressure due to the discrete mathematics, which will lead to errors under both excess
infiltration and saturation conditions for both the dual and common node approach, which can
only be resolved with very high spatial discretization. This can be nicely seen, in my opinion in
the results of the numerical experiments presented here and have been shown before in
publications related to the simulation of coupled groundwater-surface water flow and the
development of integrated hydrologic scientific software. Looking at the results presented here,
these types of problems are still not resolved by the proposed dual node approach, and probably
never will be because of the limitations of discrete mathematics.

The idea or objective of this paper is not to find a panacea for all these problems. Instead I show
how the consistent dual node approach compares to the common node approach, which has not
been done to the best of my knowledge. While I use similar experiments as previous studies, the
results are thus novel. I use similar experiments as it is common practice to make comparisons
on benchmark tests if available.

I have changed the tone of the paper to make it look less than a reckoning with other models.
Nonetheless, to make clear that this paper contains novel insight, I do need to discuss the
differences with respect to other numerical models.

I hope that the new figures in the manuscript will help the reviewer in finding an answer to his
thought experiment. In general, the pressure head will never make an abrupt jump as long there
is a specific storage greater than zero. Instead the pressure head can change very fast from 0 to
a value equal to half the thickness of the topmost cell. How fast this change occurs depends on
the coupling scheme as it is now explained in more detail in the manuscript. Also, when using the
consistent dual node approach ponding will only start if the infiltrability is exceeded. The
computation of this infiltrability depends on the vertical discretization. But in case of excess
saturation, this does not matter since the ponding is merely governed by the time it takes to
saturate the subsurface which depends on the initial water content and the applied flux rate.

Therefore, because of numerical aspects, it is also not appropriate to compare directly the non-
linear iterations for both coupling schemes. The common and dual node implementation are



different discrete approaches that of course will exhibit different non-linear convergence, and,
second, it is not clear from the presentation how the common node approach has been
implemented by RdR.

I have added an explanation of how the common node approach is implemented in the model
code. However, since all the flow computations (except for the exchange flow) are identical, 1
think it is fair to compare the non-linear iterations. I have added a remark that the iterations do
depend on how the model code is constructed. But that dependency is equal for both approaches
as they are implemented in the same code. Moreover, I explain in greater detail why there are
differences in efficiency. Since they can be tied to how abrupt the pressure heads are changing
near the surface at the moment of ponding, I think that any model will encounter similar
problems (i.e. more iterations and smaller time steps if the changes are more abrupt).
Considering the concern of comparing the number of iterations, I would be interested if the
Reviewer has alternative ideas of measuring the efficiency.

My second concern is related to the RdR’s dual node approach, which is not novel. As the author
acknowledges himself that “Nonetheless, their [An, H., and S. Yu (2014)] approach is actually a
properly implemented dual node approach practically similar to the one proposed in this paper.”
Thus, it appears that main contribution of the manuscript is the discussion of the difference
between the common and dual node approach and clarification of some of the applied concepts
in different scientific hydrologic software.

While I feel this is a valuable contribution to the scientific literature, the manuscript requires
major revisions and a more objective discussion. After all, for example, figure 2 suggests that for
coarse spatial resolution both the common and dual node approach are quite far off the reference
simulation. But in the past ten years or so, model implementations improved and a spatial
discretization of 0.5m at the land surface is rarely used in todays models that I read about.

I have tried to strike a more objective tone and to make clearer what the paper is about. 1
acknowledge in the revised conclusion section that the advantage in accuracy is limited. The
point that is being made in the paper is that the dual node approach should be perceived more
positively in comparison to the common node approach. Namely, the common view is that a) the
common node approach is more physically based, b) the common node approach is more
accurate (i.e. the common view is that a dual node approach is most accurate when it mimics a
common node approach), c) the dual node approach can be more efficient but at the expense of
accuracy vis-a-vis the common node approach. This paper shows that this is very different when
using a consistent dual node approach. Namely, in the dual node approach the head continuity is
actually more properly formulated, the approach is at least at accurate as the common node
approach and is often more efficient without a trade-off in accuracy. That the approach is not
new (which is acknowledged in the paper) does not change the fact that these are significant new
insights.

I also removed the spatial discretization of 0.5 m and now set the coarsest discretization to (.2
m. Again, I do not pretend that the consistent dual node approach is always better or that it can
be used with a very coarse vertical discretization. But it is interesting that the consistent dual



node approach is less sensitive to the vertical discretization when simulating excess infiltration
and that it can be more efficient for excess saturation as well as excess infiltration.
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Abstract

Commenly; The common node approach and the dual node approach fereeuphng-are two widely

applied approaches to couple surface-subsurface flow-is-econceptualized-as-a-hydraulic separation

ace-. In this

and-mnfiltrability: both approaches are analyzed for cell-centered as well as vertex-centered finite

difference schemes. It is shown that the dual node approach should be conceptualized and

implemented as a—s#nple one-sided first-order finite-difference to approximate the vertical

subsurface hydraulic gradient at the land surface-and-thatthere-isno-need-to-assumea-hydravle

implemented. This results in a consistent dual node approach in which the coupling length is

related to grid topology. In this coupling approach the coupling length is not to be interpreted as a

non-physical model parameter. Although, this particular coupling approach is technically not new,

the differences between this consistent dual node approach and the common node approach have

not been studied in detail. In fact, this coupling scheme is often believed to be similar to the
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common node approach. In this study it is illustrated that in comparison to the common node

approach, the head continuity at the surface-subsurface interface is formulated more correctly in

the consistent dual node approach. Numerical experiments indicate that the consistent dual node

approach is #rag

discretization when simulating excess infiltration. It is also found that the consistent dual node

approach—Cel-centered-as—wel-as-vertex—centered schemes-are-constdered— can be advantageous

in terms of numerical efficiency.

1 Introduction

There exists a variety of hydrogeological problems, such as the hydrologic response of kil
slepeshillslopes and river catchments, which requires an integrated analysis of surface and
subsurface flows. This has led to the development of physically-based, distributed parameter

models for simulating coupled surface-subsurface flows. Well-known examples of such models

include MODHMS Panday—and—Huyakorn—2004[Kollet and Maxwell, 2006, Panday and

Huyakorn, 2004] , InHM [Ebel et al., 2009], HydroGeoSphere [Therrien et al., 2010], CATHY
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[Weill et-al-20111-[Camporese et al., 2010], WASH123D [ Yeh et al., 2011], ParFlow [Kollet and

Maxwell, 2006] and OpenGeoSys [Kolditz and Shao, 2010]. Typically, subsurface flow is
governed by the Richards’ equation whereas surface flow is either governed by the kinematic wave

or the diffusive wave equation.

The coupling between subsurface and surface flow may be either based on the common
node approach [Kollet and Maxwell, 2006] or on the dual node approach [Ebel et al., 2009; Panday
and Huyakorn, 2004; VanderKwaak, 1999]. In the common node approach coupling is formulated
by a continuity in head between surface and subsurface nodes. The dual node approach is based
on formulating an exchange flux between the surface and subsurface nodes. Typically, the dual
node approach is conceptualized as a hydraulic separation of the surface and the subsurface by a
saturatedan interface with a given thickness [Liggett et al., 2012]. The thickness of this interface
defines a coupling length between the dual nodes to formulate the discrete exchange flux between

the dual nodes.

It has been argued that the coupling length isrepresents a non-physical model parameter,

because there is often no evidence to support the existence of a distinct interface between the two

flow domains [Kollet and Maxwell, 2006]. Assuch-it-appears-thatthe-common node-approachis

node approach is a more physically based coupling approach [Kollet and Maxwell, 2006; Liggett

et al., 2012]. It has also been found that accurate simulations based on the dual node approach

typically require a very small coupling length [Ebel et al., 2009; Liggett et al., 2012; Liggett et al.,




110  appreach. Since it is known that the dual node approach mimics the common node in the limit as

111 the coupling length goes to zero [Ebel et al., 2009], it thus seems that the dual node approach is

112  most accurate if it mimics the common node approach. Nonetheless, it has been argued that the

113 dual node approach remains an attractive alternative coupling approach since it offers more

114  flexibility than the common node approach. Namely, while it can mimic the common node

115 approach, the dual node approach offers the possibility to simulate a less tight coupling of surface-

116  subsurface flow which results in increased computational efficiency [Ebel et al., 2009]. fhasbeen
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In-this-study-the-both coupling approaches are-censideredis provided for cell-centered as
well as vertex-centered finite difference schemes. Theeretical-considerations—as—wel-as—This

analysis starts with the crucial observation that that the topmost subsurface nodal values as

computed by the finite difference schemes represent the mean values within the topmost discrete

control volumes. Numerical experiments indicate—that-the—dual node—appreach—when—properly

at——20+4-Thenumerical-experimentsto compare the coupling approaches are carried out with the

model code DisCo [de Rooij et al., 2013]._It is shown that the dual node approach should be

interpreted and implemented as a one-sided finite difference approximation of the vertical

hydraulic gradient at the land surface. This vields a consistent dual node scheme in which the

coupling length is defined by the half the thickness of the topmost subsurface cells. The scheme

of An and Yu [4n and Yu, 2014] as well as the scheme of Kumar et al. [ Kumar et al., 2009] are

essentially very similar to this consistent dual node scheme. In the work of Panday and Huyakorn

[Panday and Huyakorn, 2004], one of the suggestions to define the coupling length is to use half

the thickness of the topmost subsurface cells, which vields a consistent dual node scheme. While

the idea that the coupling length can be based on the grid topology is not new [Pandayv and

Huyakorn, 20041, the idea that it must be related to grid topology to obtain a consistent approach

is a significant new insight. Namely, since the coupling length in the consistent dual node approach
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1s not to be interpreted as the thickness of a layer that separates the subsurface from the surface,

the consistent dual node approach is not automatically less physically based than the common

node. In fact, as explained in this study in comparison to the common node approach the

implementation of a head continuity at the surface-subsurface interface is formulated more

correctly in the consistent dual node approach.

The current consensus about how the dual node approach compares to the common node

approach is based on alternative dual node approaches which as explained in this study are

different from the consistent dual node approach. In this study the consistent dual node approach

1s compared in detail with the common node approach. It is shown that if the vertical discretization

is sufficiently fine, then the common node approach and the consistent dual node approach are

equally accurate. However, when simulating excess infiltration the consistent dual node approach

is found to be less sensitive to the vertical discretization in comparison to the common node

approach. This advantage in accuracy is related to the fact that head continuity is more correctly

formulated in the consistent dual node approach. Moreover, it is also shown that the consistent

dual node approach can be advantages in terms of numerical efficiency when simulating runoff

due to both excess saturation as well as excess infiltration. The finding of this study show that the

consistent dual node approach compares more positively with respect to the common node

approach than other dual node approaches.

2 Interpretation of nodal values
As explained later on, a correct interpretation of nodal values is crucial for understanding the dual
and common node approach for coupling surface-subsurface flow. Moreover, both coupling

approaches depend on the configuration of surface and topmost subsurface nodes near the land
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surface. This configuration depends on whether cell-centered or vertex-centered schemes are used.
In this study both type of schemes will be covered, but for simplicity only finite difference schemes

are considered.

In both cell-centered as vertex-centered schemes the flow variables such as the heads and
the saturation are computed on nodes. In vertex-centered schemes these nodes coincide with the
vertices of mesh, whereas in cell-centered schemes the nodes coincide with the cell centers. When
employing a finite difference scheme, nodal values correspond to the mean value within
surrounding discrete control volumes. In cell-centered finite difference schemes these discrete
volumes are defined by the primary grid cells. In vertex-centered finite difference schemes these
discrete volumes are defined by the dual grid cells. Ideally, the mean values in the discrete control
volumes are derived by applying the midpoint rule for numerical integration such that their
approximation is second-order accurate. Therefore, the nodal values should ideally represent
values at the centroid of the surrounding discrete control volume [Blazek, 2005; Moukalled et al.,
2016]. In that regard, a cell-centered finite difference scheme is thus more accurate than a vertex-
centered finite difference scheme. Namely, in cell-centered finite difference schemes the nodal
values always correspond to the centroids of the cell whereas in vertex-centered finite difference
schemes nodes and centroids (of the dual cells) do not coincide at model boundaries and in model
regions where the primary grid is not uniform. It is well-known that this mismatch between nodes
and centroids can lead to inaccuracies since the mean values within affected discrete volumes are

not computed by a midpoint rule [Blazek, 2005; Moukalled et al., 2016].

Typically, vertex-centered schemes for simulating coupled surface-subsurface flow are
based on mass-lumped finite element schemes [Liggett et al., 2012]and not on finite difference

schemes. However, with respect to coupling surface-subsurface flow there is actually no difference
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between a mass-lumped finite element scheme and a vertex-centered finite difference scheme.
Similar as in vertex-centered finite difference schemes, the nodal values in mass-lumped finite
element schemes define the mean values inside dual grid cells [Zienkiewicz et al., 2005].
Moreover, the coupling approaches establish one-to-one relations between surface and topmost
subsurface nodes which do not depend on whether a finite difference or a finite element approach

is being used.

3 Common node approach

The common node approach defines a head continuity between the topmost subsurface nodes and
the surface nodes. This continuity requires that the topmost subsurface nodes and the surface nodes
are co-located at the land surface such that there exists a continuity in the elevation head. This

requirement is automatically full-filled in vertex-centered schemes. Figure la illustrates the

configuration of common nodes in ParFlow, a cell-centered scheme [personal communication

Maxwell, R. in relation to previous work of the author [ De Rooij et al., 2012]]. Figure 1c illustrates

the configuration of common nodes for vertex-centered schemes. This configuration is similar to

the configuration as used in HydroGeoSphere [ Therrien et al., 2010]. Hewever—in-ecell-centered
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Considering that nodal values represent ideally the mean values within discrete control

volumes as described in Section 2, it can be argued that the head continuity as implemented in the
common node approach is not in agreement with the physical principle of head continuity at the
land surface. Namely, the common node approach enforces a continuity between surface heads at
the land surface and the mean subsurface heads within the topmost subsurface discrete control
volumes which have a finite thickness. This is different from enforcing a continuity between

surface heads and subsurface heads within an infinitesimal thin subsurface layer directly below the

land surface. As such ineensistent-behavieris-expeeted-whenusieg-the common node approach-
To-effectivelyremove-this-ineconsisteney—a_is only numerically correct if the topmost subsurface
cells are very fine-vertical diseretizationisrequired-near-the land-surface-thin.
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4 Consistent-Dual node implementationapproach

4.1 Basics
Figure 1b and Ic illustrate the classical arrangement of surface and subsurface nodes in cell-
centered and vertex-centered finite difference schemes, respectively. Commonly, the dual node

approach is expressed in terms of an exchange flux ¢ ¢, [LT'] computed as [Liggett et al., 2012;

Panday and Huyakorn, 2004]:

K K
G="7; lz {(h—h>)q. :prz(hS —h) (1)

where /4, and hss are the hydraulic heads [L] associated with the surface node and the topmost

subsurface node, respectively,#- f, [-] the fraction of the interface that is ponded and / the

coupling length [L]. The ponded fraction of the interface is typically defined by a function that
varies smoothly between zero at the land surface elevation and unity at the rill storage height which
defines the minimum water depth for initiating lateral overland flow [Panday and Huyakorn,

2004]. In equation (H)(1) the term 7%1%4 SK. / [ is commonly referred to as the first-order

exchange parameter, where first-order means that the exchange flux depends linearly of the

hydraulic head difference.

Typically, equation (H(1) is not derived as a numerical approximation of basic flow
equations that govern the exchange flux, but is merely presented a numerical technique to couple
two different flow domains [Ebel et al., 2009; Liggett et al., 2012]. Subsequently, the dual node
approach is conceptualized by interpreting equation (H)(1) as an expression that describes

groundwater flow across a distinct interface separating the two flow domains [Ebel et al., 2009;
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Liggett et al., 2012; Liggett et al., 2013]. Evidentlyifthe-couphnglensthisassumed-to-beanon-

4.2 Consistent dual node approach

In the following, heweverit is illustrated that the dual node approach can and should be

derived from basic equations that describe infiltration into a porous medium. Fhis-derivationis

g, . [LT"'] can be written

-Using Darcy’s Law, the infiltration rate at the ponded land surface ¢

—>Ss

as a function of the vertical subsurface hydraulic gradient at the land surface:

(g o)y o qm:(kr&@j

yal %
Is—ss k Tz 82)) Z aZ|_ aZ

= KZ
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where 4 the hydraulic head [L], z the elevation head [L], 4: the relative hydraulic conductivity [-]
K, the saturated vertical hydraulic conductivity [LT '] and zs the elevation head at the land surface.
The relative hydraulic conductivity is unity because equation 2}(2) applies to the ponded land
surface which implies fully saturated conditions at the land surface (i.e. ponding means ps > 0,
where ps is the pressure head at the surface). Similarly, the infiltrability [LT"'], defined as the

infiltration rate under the condition of atmospheric pressure [ Hillel, 1982], can be written as:

I—(L;I(@“ —K @| 1:(/(1( @]
Y L

:Kah

. 3)

z=z,,p;=0 z=z,,p;=0 z=2zg

The relative hydraulic conductivity is again unity because the saturation equals unity under

atmospheric conditions (ps = 0). The infiltration rate at non-ponded land surface ¢;—— ¢, ... [LT

11 can be expressed as:

atm—»ss > sYR qatm—)ss

=min (max (1,0), ¢, ) “4)

where gr is the effective rainfall rate (i.e. the infiltration rate is limited by either the infiltrability
or the available effective rainfall rate). The total exchange flux across the surface-subsurface

interface can now be written as:

4= prqs—ms + (1 pr )qatm—>ss q. = qus—>ss + (1 - fp )qatm—>ss (5)

To approximate the vertical subsurface hydraulic gradient in equations (2)}-and-{(3)(2) and
(3).. it is crucial to recognize that according to the principle of head continuity at the land surface,

the surface hydraulic head at a surface node must also represent the subsurface head at the land

surface at that location. Fhus;—the-surface-hydraulic-head-canbe—used-as—aDirichlet-boundary

since the subsurface hydraulic heads at the topmost subsurface nodes are ideally associated with
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the centroids of the topmost subsurface discrete control volumes, these head values do not
represent values at the land surface but at some depth below the land surface. Because the
subsurface hydraulic heads at the dual nodes can be and should be associated with a different
elevation, the vertical subsurface head gradient between the dual nodes can be approximated by a
standard finite difference approximation. If this approximation is being used to approximate the
gradient at the land surface in equations 2}and—+3)2)_and (3), then this approximation is by

definition a one-sided first-order finite difference. Defining the coupling length by +=Az/ = Az

where A=Az, is the difference in the mean elevation head associated with the dual nodes, the

infiltration rate and infiltrability can thus be computed with the following one-sided finite

difference approximation:

z=2zg z=2zg

(6)

The above definition of the coupling length #=Az/ = Az ensures a proper approximation of the

vertical gradient in elevation head at the land surface:

A ot
0z / 0z /

Z=Zg Z=Zg

(7)

The above derivation of the consistent dual node approach from basic flow equations has

implications for how the dual node approach is conceptualized and how it should be implemented.

The idea that the coupling length must be directly related to the spatial discretization is an

important new insight. Namely. as the coupling length is related to grid topology, it does not
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represent a non-physical parameter associated with a distinct interface separating the two domains.

It is also crucial to observe the difference between the consistent dual node approach and the

common node approach regarding how the head continuity at the surface-subsurface interface is

formulated. As explained in Section 2, the formulation in the common node approach is only

correct if the topmost subsurface discrete volumes are very thin. In comparison, the formulation

in the dual node approach is correct irrespective of the vertical discretization. Namely., irrespective

of the vertical discretization the surface hydraulic heads equal the subsurface heads at the interface.

Since nodal values in cell-centered scheme are located at the centroids of the cells, the

coupling length is simply given by +==—=_/=z —z_where z; and z are the elevation heads

[L] associated with the surface node and the topmost subsurface node, respectively. This value has

for the coupling length in cell-centered schemes has also been prepesedsuggested by ethersPanday

and Huyakorn [Panday and Huyakorn, 2004]—Hewever,—in—vertex—centered—schemes—the

However, in their work, the particular advantage of choosing this value (i.e. maintaining a unit

oradient in elevation head) is not recognized. The coupling schemes as used by An and Yu [4#n
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and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are also in essence consistent dual node

schemes. However, these schemes are not recognized as a dual node scheme. Instead, An and Yu

[An and Yu, 2014] argue that their scheme is similar to the common node approach of Kollet and

Maxwell [Kollet and Maxwell, 2006]. Kumar et al. [Kumar et al., 2009] argue that their scheme is

similar to the dual node approach if the coupling length goes to zero which implies that their

scheme would be similar to the common node approach. However, contrary to the common node

approach the schemes of An and Yu [4n and Yu, 2014] and Kumar et al. [Kumar et al.. 2009]

compute exchange fluxes between surface and topmost subsurface nodes and therefore these

schemes are technically dual node schemes. As explained in this study, it is crucial to observe that

the schemes of An and Yu [4n and Yu, 2014] and Kumar et al. [Kumar et al., 2009] are actually

quite different from the common node approach. As already mentioned, the consistent dual node

scheme differs from the common node approach with respect to how the head continuity is

formulated at the surface-subsurface interface. As discussed later on, this difference has crucial

consequences in terms of accuracy as well as numerical efficiency.

In vertex-centered schemes the commonly used nodal configuration near the surface is such that

z, = z,,. However, even though the topmost subsurface node is located at the land surface in a

S

vertex-centered scheme, the elevation head at this node should ideally correspond to the mean

elevation head within the topmost subsurface discrete eentrol-volume-sueh-thatz_—<=z—volume.

This suggests that the topmost subsurface node should be moved to the centroid of the topmost
subsurface discrete volume. Although this is a possible solution, the drawback of this solution is
that the subsurface model ceases to be a purely vertex-centered scheme. Moreover, such an
operation cannot be performed in finite element schemes since ehanging-the nodal positions wewld

changedefine the geometry of the elements. Therefore, an alternative solution is proposed. Fe
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enforee 1 =—z——z_withoutaffectingtherelative pesitions—efnedesNamely, in the—subsurface

grid;vertex-centered schemes the elevation of the surface nodes are changed according to

z—==z_+4z =z +1 where [ is equals half the thickness of the topmost subsurface dual cell. Fhis

srid—The resulting

nodal configuration is illustrated in Figure 1d._When applying this solution, all the topmost

subsurface cells must have the same thickness, such that the topography is increased with the same

value everywhere. In essence, the motivation behind this solution is that a more accurate

approximation the hydraulic gradient (i.e. enforcing a unit gradient in elevation head) is more

important than the actual elevation of the land surface. fndeed-it-can-be-argued-that-Similar to the

change-in-land-elevation-will net-drastieallyaffeetnodal configuration in ParFlow, the timing-of

raneffresulting nodal configuration may not seem ideal. Namely, enece-the topmest—surface

elevation does not coincide with the top of the subsurface redereachesfully-saturated-conditions;

orid. Nonetheless,

asedillustrated
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node-is-always-satarated— are reasonable.

To illustrate that the presented dual node approach exhibits consistent behaviour, the
necessary conditions for ponding due to excess infiltration and exfiltration are considered. In
general ponding starts when gr > I [Hillel, 1982]. Setting gr =1, ps =0 and using h =p + z, it

follows from equation (6}(6) and (7) that at the moment of ponding:

(8)

Ponding due to excess infiltration occurs if ¢ /&.>+¢q, /K, >1 and implies that saturation in the
subsurface starts from the top down [Hillel, 1982]. Using ¢ /&—>+q, /K, >1it follows from

equation (8)(8) that ponding due to excess infiltration occurs whilep—<#0 p <0. This is

reasonable since this value represents the pressure head at a certain depth below the land surface.
Namely, if saturation occurs from the top-down then the saturation at a certain depth occurs later

than saturation at the land surface. It is noted that if the ratio¢x /- ¢, /K, is greater than but close

to unity or if the coupling length is very small, then this condition becomes p-=0- p  ~ 0. Once

ponding starts the total flux rate between the dual nodes equals

z S SS

K, (( D, — D ) / / +1). Top-down saturation requires that this flux exceeds the vertical hydraulic

conductivity. Reaching saturation at the topmost node (-p=0-)-+thus p_ =0 ) therefore requires

p—=0-p_>0. Thus, top-down saturation will occur after ponding is initiated. Ponding due to

excess saturation occurs if ¢/&<+¢, /K, <1 and implies that saturation in the subsurface starts
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from the bottom up [Hillel, 1982]. Ysingp—0;-It follows from equation (£)(8) that ponding due

to excess saturation occurs whileO<p_—<7-0< p_ </. Thus ponding starts after reaching fully

saturated conditions at the topmost subsurface node, which is again reasonable. Namely—the

ratiogr /&It is noted that if the ratio ¢, /K, is smaller than but close to unity or if the coupling

length is very small, then ponding occurs whenp_—=0-p =~ 0.

414.3 Comparison to ether-dual-node-implementationsalternative coupling approaches

To illustrate that it is crucial to account for the meaning of the values at the topmost subsurface
nodes, it is instructive to consider what happens if these values are not taken as the mean values
within discrete control volumes. As a first example, consider vertex-centered schemes where the

dual nodes are defined such that z——=-=z-z_ = z_as illustrated in Figure 2e—As-diseussedin-Seetion

41c. This is inconsistent because it defines a zero gradient in elevation head between the dual

nodes.Nen

af—20+2} Since the vertical gradient in elevation head between the dual nodes is zero the total

flux rate after ponding now equals—KAp—p /=K. (p, - p,,)/! . Top-down saturation requires

that this flux exceeds the vertical hydraulic conductivity. Thus, reaching saturation at the topmost

subsurface node (p=90-p, =0) requiresp—>+ p, > . Therefore, top-down saturation will not

occur if runoff occurs and if the surface water depths remains smaller than the chosen coupling
length. Indeed, it has been pointed out in other studies that the coupling length should be smaller
than the rill storage height [Delfs et al., 2009; Liggett et al., 2012]. The zero vertical gradient in

elevation head between the dual nodal also means that the required condition for ponding now
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becomesp—=—rtg K~ p,, =—Iq, /K. . This implies that ponding due to excess saturation occurs

while the topmost subsurface node is not yet saturated. This dual node approach has been compared

to the common node approach in vertex-centered schemes [Liggett et al., 2012].

A second example is the dual node approach for cell-centered schemes as implemented in
MODHMS which uses an adapted pressure-saturation relationship for the topmost subsurface
nodes such that the topmost subsurface node only becomes fully saturated if hydraulic head at the
node rises above the land surface [Liggett et al., 2013]. Since the topmost subsurface heads are
associated with the cell centroid, this dual node scheme defines a unit gradient in elevation head
at the land surface. However, the saturation value at the topmost node is associated with a location
at the land surface and not with the centroid of a discrete control volume. This has undesirable
consequences. Namely, saturating the topmost subsurface node (pss = /) due to excess infiltration

requires that—p—>-/~ p_>/. Indeed, when simulating excess infiltration with MODHMS, a very

small coupling length is needed to simulate top-down saturation due to excess infiltration.
[Gaukroger and Werner, 2011; Liggett et al., 2013]. It can also be shown that ponding due to

excess saturation occurs whileb<p_—</-0< p_ </. But, because of the adapted pressure-

saturation relationship this means that ponding starts while the topmost subsurface node is not yet

saturated. Cemparing—these—results—with—the—results—for—the—consistentThis dual node

hipapproach has

undesirable-consequenees:been compared to the common node approach in cell-centered schemes

[Liggett et al., 2013].
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comparison studies of Liggett et al. [Liggett et al., 2012; Liggett et al., 2013 ]|—Suech-stadies indicate

that the dual node approach is typically only competitive with the common node approach in terms

of accuracy once the coupling lengthsarelength is very small. However, the requirement for a very

small coupling lengths-however,are-a-direetlength, is a logical consequence efusinginconsistent
dual-node-appreaches—Namelbyif the topmost subsurface nodal values are not taken as the mean

values within discrete volumes. In essence, by choosing a very small coupling lensths—these

ineconsistencies—are—to—some—extent—length this inconsistency is minimized. At—best—this
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the-comparison-between-the-two-coupling-appreachesnumerically incorrect.

CATHY [Camporese et al., 2010] as well as the model of Morita and Yen [Morita and

Yen, 20021 are examples of models which are neither based on the common node approach, nor a

dual node approach. Both these models are conjunctive models in which the surface and subsurface

flow are computed separately in a sequential fashion and in which coupling is established by

matching the flow conditions along the surface-subsurface interface. A complete discussion is

outside the scope of this paper, but it is worthwhile to mention that these models share some crucial

characteristics with the consistent dual node approach. Although the two models are different, both

models switch between appropriate boundary conditions along the surface-subsurface interface,

such that infiltration fluxes are limited to the infiltrability. In both models the infiltration fluxes

are computed while accounting for the unit vertical gradient in elevation head near the surface-

subsurface interface. In addition, in both models ponding occurs when the infiltrability is

exceeded.
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5 Numerical experiments

5.1 Numerical model

To compare the eeuplingsehemesconsistent dual node approach with respect to the common node

approach in terms of accuracy and computational efficiency numerical experiments are presented.

These experiments are carried out with the model code DisCo-whiek. This model code can simulate

coupled surface-subsurface flow_with the dual node approach using a fully implicit or monolithic

scheme [de Rooij et al., 2013]. Fhis—means—thatSubsurface flow is governed by the

lnearizedRichards’ equation while surface flow is governed by the diffusive wave equation.

Starting from a dual node scheme, the implementation of a common node scheme is

relatively straightforward. If the surface nodes are numbered last, a permutation vector can be

constructed which gives the corresponding topmost subsurface node for each surface node. Then,

the node numbering as used in the original dual node scheme can still be used to compute the

surface and subsurface flow egquations-are-terms. Subsequently, using the permutation vector the

surface and subsurface flow terms associated with a common node can be combined into a

singlethe same row of the global matrix system. In addition, when using the common node

approach, there is no need to evaluate exchange flow terms between the two flow domains. It is

noted that the surface flow and subsurface flow computations are exactly the same irrespective of

the coupling approach. As such the model permits to compare the two approaches in terms of

accuracy as well as numerical efficiency.

An adaptive error-controlled predictor-corrector one-step Newton scheme [Diersch and

Perrochet, 1999] is used in which a single user-specified parameter controls the convergence as

well the time stepping regime. His—assumed-that-byusingthesame-error norms—and-thesame
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~Although, this

scheme may not be necessary the most efficient scheme, it ensures that time discretization error is

the same irrespective of the applied coupling approach. For brevity further details about the model

are not discussed here and can be found elsewhere [de Rooij et al., 2013].

5.2 Hillslope scenarios

The model code is applied to a set of three hillslope scenarios. Table 1 lists the abbreviations used

in the figures to distinguish between the coupling approaches, and to distinguish between cell-

centered and vertex-centered schemes—and-to—distinguish—between—meodels—based—on—a. FEach
scenarios is solved using different but uniform primarygrid-and-grids-that use-a—very-thinprimary

erids—n-medels-containing this-thinlayer-ef-eels-the-vertical discretizations and Az specifies the

discretization be
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Tn-the-foHewingof the primary grid. The first two simulation scenarios consider hillslope problems

as designed by Sulis et al. [Sulis et al., 2010]. For the purpose of this study, a third scenario is
considered in which the initial and boundary conditions are different to create a flooding wave
across an unsaturated hillslope. The problems consist of a land surface with a slope of 0.05 which
is underlain by a porous medium. The domain is 400 m long and 80 m wide. The subsurface is 5
m thick. In the direction of the length and in the direction of the width the discretization is 80 m.
Different vertical discretizations are considered. The van Genuchten parameters are given by s, =
0.2, ss= 1.0, a = 1 m"! and n = 2. The porosity is 0.4 and the specific storage is 10 m™. The

Bmin. The surface flow domain has a

manning’s roughness coefficients are given by 3.3 x 10* m’!
zero-gradient outflow condition. For the first two simulation scenarios the domain is recharged

with an effective rainfall rate of 3.3 x 10 m/min for a duration of 200 minutes and the initial water

table depth is at a depth of 1.0 m below the land surface.

The first scenario considers excess infiltration—and-the-saturated-hydraulicconduetivity
equals-6:94-x 10 m/min
steps;—respeetively—FHorthesecond seenario—which—econsiders—exeess—saturation, the saturated

conductivity equals 6.94 x 10 m/min. Figure 422 and 433 illustrates the simulated runoff and the

number of Newton steps, respectively. Figure 4 and 5 illustrate the subsurface pressure heads at

the topmost subsurface nodes and the water depths on the surface nodes. For the second scenario

which considers excess infiltration the saturated hydraulic conductivity equals 6.94 x 10”7 m/min.

Figure 6 and 7 show the simulated runoff and the number of Newton steps, respectively. Figure 8
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and 9 illustrate the subsurface pressure heads at the topmost subsurface nodes and the water depths

on the surface nodes for the finest and the coarsest vertical discretization, respectively. In the third

scenario a surface water flood wave crossing the hillslope in the downhill direction is simulated

by applying a Neumann boundary condition of 1.0 m?/s for a duration of 200 minutes to the surface

nodes with the highest elevation. The initial water table is located at a depth of 1.5 m. The vertical
saturated hydraulic conductivity equals 6.94 x 10 m/min. Figure 4410 illustrates the differences

in simulated runoff and Figure 4511 illustrates the number of Newton steps of the model runs.

Figure +6-compares]12 and 13 illustrate the evelutionin-subsurface pressure heads at the topmost

subsurface nodes and the water depthdepths on the surface nodes as—wel-as-thetimestep-sizes
Grebeoees b socnnes b seseceen oo op the e e b o b e oo oL

eoarsefinest and the coarsest vertical discretization-and-a-eceH-eentered-seheme, respectively.

6 Discussion

6.1 Accuracy
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As discussed by Ebel et al. [Ebel et al., 2009] and confirmed by others [Liggett et al., 2012] the

dual node approach mimics the common node approach if the coupling length becomes sufficiently

small. When comparing the consistent dual node approach and the common node approach a very

similar observation applies. If the topmost subsurface cells are very thin, then the coupling length

in the consistent dual node approach is very small. Also, if the topmost subsurface cells are

sufficiently thin then the formulation of head continuity at the surface-subsurface interface in the

common node approach is correct. Thus, the common node approach will mimic the consistent

dual node approach. Indeed, the simulations results indicate that a relatively fine vertical

discretization vields similar results for the common node approach as well as for the consistent

dual node approach (Figure 2a, 4a. 6a, 8a, 10a and 12a).

A relatively fine uniform vertical discretisation also enables to simulate sharp saturation

fronts with the Richards’ equation [Pan and Wierenga, 1995: Ross, 1990]. As such the simulation

results based on the finest vertical discretization can be taken as reference solutions that enables

comparisons of the coupling approaches when a coarser vertical discretization is used.
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6.1.1 Excess saturation

The simulation results of runoff due to excess saturation as obtained by the common node approach

and the consistent dual node approach_as depicted in Figure 2 illustrate that simulating excess

saturation runoff is not significantly affected by the vertical discretization{Figure 7and1+2)-. This
is because the time needed to reach fully saturated conditions in the subsurface is a simple function
of the flow boundary conditions and the initial water content. It is thus expected that the vertical
discretization does not significantly affect the simulation of excess saturation. Although the
vertical discretization may affect the computed initial water content, this effect is usually
negligible. It has been found in other studies that the vertical discretization has little effect on

simulated runoff due to excess saturation [Sulis et al., 2010].
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6.1.2 Excess infiltration

When simulating excess infiltration the common node approach requires fully saturated conditions

at the topmost subsurface node for ponding to occur. Fhis—is—adireet-consequence—ofthe head

—However, top-down
saturation associated with excess infiltration implies that reaching fully saturated conditions in the
topmost subsurface discrete volumes should requires more time than reaching fully saturated
conditions #rat the werysnearland surface, especially if the vertical discretization is relatively
coarse. It is thus expected that the common node approach delays runoff and that this delay
increases for a coarser vertical discretization. In addition, if the saturation fronts are less sharp due
to a relatively coarse vertical discretization, it takes more time to reach saturated conditions at the
common node. This will further delay runoff. Indeed, the simulation results indicate clearly that
runoff is delayed when using the common node approach, particularly if the vertical discretization
is relatively coarse (Figure 2,46, 9a, 10 and +413a). It has also been found in other studies that the

common node approach delays runoff due to excess infiltration if the vertical discretization is

relatively coarse [Sulis et al., 2010]. The-overestimation—of-the—infiltration-assectated-with-the

In-eomparison;As explained in Section 4.2, when using the consistent dual node displays

more-desirable-behaviour—Namely,—as—explained-in—Seetion—<4approach, ponding due to excess
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infiltration occurs before reaching fully saturated conditions at the topmost subsurface node-which

pending-depends-on-the-computation-of the-infiltrability-. More specifically, ponding occurs when

the infiltrability is exceeded. Compared to the condition for ponding in the common node approach

this is arguably more correct. Namely, if saturation occurs from the top-down then the saturation

at a certain depth occurs later than saturation at the land surface. Indeed, simulation results indicate

that when simulating excess infiltration the consistent dual node approach is less sensitive to the

vertical discretization in comparison to the common node approach. This is clearly indicated in

Figure 6b-d, 9a. 10b-d and 13a. To further explain this difference in accuracy, it is emphasized

that the spatial resolution only affects the accuracy of the flow computations when using the

consistent dual node approach and that the formulation of head continuity at the interface remains

correct. In contrast, when using the common node approach, if the spatial resolution is too coarse

then this does not only affect the accuracy of the flow computations but in addition the formulation

of head continuity becomes incorrect. It must be emphasized, however, that regardless of the

applied coupling approach, the vertical discretization must be relatively fine. As indicated by

Figure 6b-d, 9a. 10b-d and 13a the difference between the simulated results and the reference

solution increase for a coarser discretization. Eventually such differences will lead to unreasonable

results regardless of the coupling approach.

It is interesting to note that An and Yu [4n and Yu, 2014] also found that their model was

less sensitive to the vertical discretization in comparison to ParFlow when simulating runoff due

to excess infiltration. Whereas An and Yu [A4n and Yu, 2014] hypothesized that this difference in

performance was related to using irregular grids instead of orthogonal grids as in ParFlow, it is
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argued here that this difference can be explained by the fact that both models use a different

coupling approach.

Although the consistent dual node approach is less sensitive to the vertical discretization

in_comparison to the common node approach, it is useful to explain in detail how the vertical

discretization affects the accuracy of the consistent dual node approach to the vertical

discretization. A relatively coarse vertical discretization may result in an underestimation of the
vertical pressure gradient at the land surface. This is because in a soil close to hydrostatic
conditions the pressure heads increase with depth. Therefore, the infiltrability during the early
stages of infiltration may be underestimated. If the applied flux rate is sufficiently large such that

the underestimated infiltrability is exceeded, then this—underestimation—will—resultin—an

underestimation—of-the-timing-of runoffJt-may— during the early stages will be ebservedfrom
(o (8)-that if o an i ] Line leneth i hiciently large. 4 ine
inttiated-immediately-overestimated. Figure +0e-andt4e-Hustrate6d illustrates that the timingof

runoff ean-indeed-be-underestimated-due-toas simulated with the cell-centered scheme, a relatively

coarse vertical discretization when—using-theand a consistent dual node approach—Hewever;_is

indeed overestimated at early times. During the later stages of infiltration the pressure head at the

topmost subsurface node will be underestimated due to the combined effect of an underestimated
infiltration rate and the overly diffused saturation fronts. This results in an overestimation of the

infiltration rate in the later stages. Thus at some time after ponding has started, it is expected that

the amount of runoff is underestimated. Centrary-to-the-commeon node-approach;-however-there
n . hicl f i simulated s (E; : | 14e)

If the apphiedHuxrate-isnotsufficienthylargethenthe-underestimated infiltrability #-the
earhy—stages—ofinfiltration—will net-be-is not exceeded—n—thatease;, then the overly diffused
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saturation fronts resulting from a relatively coarse vertical discretization will eventually lead to an
underestimation of pressure head at the topmost subsurface node and as such the infiltrability may

be overestimated at later times. Consequently, when using the consistent dual node approach the

ratio—grik.

consistentdualnede-approach-runoff due to excess infiltration may be delayed. However, the delay

in runoff as simulated by the consistent dual node approach will only equal the delay in runoff as
simulated by the common node approach in the limit when qr/K: goes to unity. Namely, as

explained in Section 4.2 if qr/K: goes to unity, then the consistent dual node approach behaves

similar as a common node approach. However, in general, if the consistent dual node approach

delays runoff, this delay will be smaller than the delay in runoff as simulated by the common node

Comparing Figure 12a and 13a it can be observed that if the vertical discretization is

relatively coarse then a common node can act as an artificial barrier for a surface water wave

advancing across an initially unsaturated subsurface domain. Namely, as the wave travels

downstream the wave can only advance to the next common node once it is fully saturated. The

effect of this artificial barrier is that the front of the surface water wave is steepened. In contrast,
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the consistent dual approach simulates a wave that becomes less steep as it advances downstream

for relatively fine as well as relatively coarse vertical discretizations as depicted in Figure 13a.

As illustrated in Figure 2b;4b;6b-d, and 10b-and14b-d, if the coupling approach and the
vertical discretization are identical-and-ifthe-thinlayeris-absent, then the vertex-centered schemes

are more-acenratecloser to the reference solution with respect to the cell-centered schemes. This

difference-in-aeeuraey results solely from the fact the primary mesh is the same for both schemes.
As such the vertical extent of the topmost subsurface volumes is twice as small when using the

vertex-centered scheme. This difference in vertical grid resolution near the land surface explains

the differences in-aeceuracy-between the schemes.
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The computational efficiency of the schemes is measured in terms of the number of Newton steps.
The number of Newton steps equals the number of times that the linearized system of equations is
solved and this number depends on the time step sizes as well as the number of failed Newton

steps._It is emphasized that the measured efficiency depends crucially on the applied model code.

Nonetheless, as shown in the following, the measured differences in efficiencies can be explained

in terms of abrupt changes in how fast pressure heads near the surface-subsurface interface are

evolving with time. Regardless of the type of scheme used to solve the non-linear flow equations,

such abrupt changes are difficult to solve.

Once ponding occurs a surface-subsurface flow model will encounter significant numerical

difficulties as surface flow terms are activated. In essence, the activation of these terms represents

a discontinuity in flow behaviour which is challenging to resolve [Osei-Kuffuor et al., 2014].

Indeed, the Newton steps as depicted in Figure 3 and 7 indicate that simulations encounter

difficulties at the moment of ponding. These figures also indicate that the consistent dual node

approach can be more efficient in comparison to the common node approach.

6.2.1 Excess saturation

When-stmulating-exeess-saturation-the subsurface-isfulbypressurized-atJust before the moment of

ponding due to excess saturation, the rate of change in pressure heads at the topmost subsurface

nodes is relatively high for both coupling approaches. This high rate is related to the shape of the

water retention curve. Typically, the derivative of the saturation with respect to the pressure head

goes to zero when approaching fully saturated conditions. Once ponding starts, the surface flow

terms are activated and ean-enly-accommeodatetherefore the rate of changes in pressure heads at

the topmost subsurface nodes decreases drastically. Both approaches must handle this drastic
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change. However, from Figure 4b and 5b it can be observed that the rate of change decreases more

abruptly when using the common node approach.

When using the common node approach the vertical hydraulic gradients in the subsurface

are close to zero at the moment of ponding, since additional water volumes can only be

accommodated by means of the-specific storage. -As-suech-the-colomn-wil be-elose-to-hydrostatie

This implies

very-close-to-zero—When-using the-consistent-infiltration rate drops instantaneously at the moment

of ponding. In contrast, in the dual node approach ponding due-to-execesssataration-oceursstarts

when 0<-p_—~<--the infiltrability is exceeded. Thus; at the moment of ponding, the infiltration rate

1s higher in comparison to the common node approach. After ponding this infiltration rate will

decrease quickly as the hydraulic headheads at the dual nodes equilibrate. This difference in the

infiltration rate at the moment of ponding explains why the topmost subsurface hydraulic heads

change more smoothly when using the dual node approach. If the vertical discretization is

senerally—stil-belowtheland-surface—This—means—thatcoarser, then the infiltration rate at the

moment of ponding as computed

effictentthenthe-even higher and this results in a lower initial rate initial rate of change in water

depth as depicted in Figure 5a.

The more abrupt changes in pressure heads at the common node in comparison to the

changes in pressure heads at the dual nodes mean that solving the activation of ponding with the
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common node approach-—Figs

as-1s more difficult. It is noted that the differences in the infiltration rates between the two coupling

approaches only occur at the moment of ponding and directly thereafter when water depths are

relatively small. Namely, quickly after ponding, the hydraulic heads at the dual nodes will

equilibrate and after that the two coupling approaches will behave similar. This explains why these

differences in infiltration rates do not significantly affect the accuracy of simulated by-the-meodels
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Figure 8. 9, 12 and 13 illustrate the evolution of pressure heads at dual nodes and common nodes

when simulating excess infiltration. When applying the consistent dual approach, the net flux into

a topmost subsurface cell will decrease once ponding occurs, because the applied flux rate will be

partitioned between dual nodes (i.e. between the surface flow and subsurface flow domain). This

occurs while the topmost subsurface node is not vet fully saturated. After ponding the infiltration

rate decreases such that if the topmost subsurface node reaches fully saturated conditions the net

flux into the topmost subsurface node is relatively small. In contrast, partitioning of the applied

flux rate on a common node between the surface flow and subsurface domain starts when the

common node reaches fully saturated conditions at this node. This means that just before ponding

the rate of change in pressure head is relatively high as the common node is driven towards fully

saturated conditions while the infiltration rate is relatively high. This means that similar to the

excess saturation scenario the rate of change in pressure head at the common node is high just

before ponding. At the moment of ponding, this rate must drop abruptly as surface flow terms are

activated. This abrupt change explains why the common node approach is less efficient.

Figures 7 and 11 also indicate that a coarser vertical discretization only provides a

significant gain in efficiency in terms of Newton steps when using the consistent dual node

approach. When using the common node approach., a coarser discretization does not change the

fact that the topmost subsurface node must reach fully saturated conditions for ponding to occur

and that the infiltration rate is relatively high just before ponding. When using the consistent dual
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node approach, a coarser vertical discretization means that the saturation fronts are more diffused

such that the flow problem becomes easier to solve.

Figure 8a and 9a illustrate that for the second simulation scenario, ponding occurs almost

simultaneously at all the surface nodes. Figure 12a and 13a show that this is different for the third

scenario where ponding occurs at different times as the flooding wave travels downstream. When

Figure 11a is compared with Figure 12a and when Figure 11d is compared with Figure 13a. it is

clear that the common node approach encounters difficulties around each time ponding starts at a

surface node. Figure 11 shows that these difficulties are encountered for all discretizations. In

contrast the consistent dual node approach has much less difficulties solving these difficulties. As

discussed in Section 6.1.2. the common node approach may result in steepening the advancing

wave. This implies that water depths will be changing more quickly. This presents an additional

difficulty for solving this flow problem with the common node approach.

7  Conclusions

In this study it is shown that

nfiltrability—attheland surface—usingthe dual node approach should be conceptualized and

implemented as a one-sided finite differences approximation of the vertical hydraulic gradient at

the land surface. Inboth-cel-centered-as—vertex—centered schemesThis provides an important new

insight into the coupling length. Namely, if the dual node approach is properly implemented then
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common—noede—approach—is—noet—unless—the—vertical diseretizatton—isgrid resolution. Thus, the

coupling length does not represent an additional non-physical model parameter and therefore the

dual node approach is not automatically a less physically based approach in comparison to the

common node approach. Actually, this study shows if the vertical discretization is not sufficiently

fine then the head continuity at the surface-subsurface interface is formulated more correctly in

the consistent dual node scheme. This difference in formulation has consequences for how both

approaches compare in terms of accuracy and efficiency.

Numerical experiment indicate that #-the-vertical-diseretization-isrelatively-coarse;-then
the-the consistent dual node approach is eftenless—inaceurate-as—well-as—mere-computationally

effictent-equally accurate or more accurate than the common node approach. It has been shown

that in comparison to the common node approach fer-the consistent dual node approach is less

sensitive to the vertical discretization when simulating excess infiltration. Eersimulating-exeess

the practical advantage of the consistent dual node approach in terms of accuracy is limited.

Namely, if the vertical discretization is sufficientlyfine-sueh-thatrefined, both approaches will

converge to more accurate and eventually similar results when simulating excess infiltration. When

simulating excess saturation both approaches yield similar results even if the vertical discretization

is relatively coarse.
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Nonetheless, even though the advantage of the consistent dual node approach in terms of

accuracy is limited, the fact that the consistent dual node approach is equally or more accurate than

the common node approach is a significant finding. Namely, this finding is different from the

commonly held view that a dual node approach is most accurate if it mimics the common node

approach. Moreover, it also illustrates clearly that the consistent dual node approach is not similar

to a common node approach.

Numerical experiment indicate that the consistent dual node approach can be more efficient

than the common node approach while being equally or more accurate than the common node

approach. It has been shown that this difference in efficiency is related to abrupt changes in the

evolution of pressure heads around the moment that ponding is initiated.

Based on the findings in this study the models of An and Yu [4n and Yu, 2014] and Kumar

et al. [Kumar et al., 2009] are expected to have some advantages with respect to models that are

based on the common node approach. This is because these models are based on a consistent dual

node approach. Moreover, given a model that uses an alternative dual node approach, it is relatively

straightforward to implement the numerically more correct consistent dual node approach.
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abbreviation

meaning

cc cell-centered
Ve vertex-centered
dn dual node

cn common node
e tinylayer

Table 1: Abbreviations as used in the figures.
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Figure 1: a) Common nodes and-co-located-dualnodes-in cell-centered schemes. bb) Dual nodes

in cell-centered-centered schemes. ¢) Common nodes and co-located dual nodes in vertex-centered

schemes.—e}yPual-nodes—in—eel-centered-centered-schemes—{(not-ecel-Hoeated): d) Dual nodes in

vertex-centered schemes (not co-located). The white squares and white circles represent surface
and subsurface nodes, respectively. The solid and dashed lines represent the primary mesh and the
dual mesh, respectively. The grey-shaded area is a topmost discrete volume as associated with a
topmost subsurface node. The black dot represents the centroid of this volume. The coupling length

[ as depicted in this figure applies to the consistent dual node approach.
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Figure 10 Outflowresponsel 2: Simulated values for excess infiltration (third scenario) on a hilt
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