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1.0 Abstract.  1 

 2 
 The National Flood Insurance Program (NFIP) debt has accelerated research into private 3 

flood insurance options. Offering this coverage begins with the ability to transfer the risk to the 4 

reinsurance market. Within the industry perils such as hurricanes and earthquakes have standard 5 

definitions but no such definition exists for flood. An event definition must examine the spatial 6 

and temporal aspects of the flood as well as the complexities of individual events. In this paper 7 

we were able to apply a data driven methodology to capture and aggregate flood peaks into 8 

independent events. To aggregate flood peaks into independent events we needed to define what 9 

constituted a basin as our area of aggregation. The USGS utilizes the Hydrological Unit Code 10 

(HUC) a 2 – 12 digit code that follows the Pfafsetter Coding System. The HUC code is used to 11 

identify varying levels of basin sizes ranging from Region (2 digits) to Sub-Watershed (12 12 

digits). Choosing to analyze both the HUC8 and HUC6 a total of 7,932 HUC8 events and 8,444 13 

HUC6 events were recorded during the 15 water years used in our study. Each event was 14 

characterized by duration, magnitude and severity. Focusing on the HUC8, events were unevenly 15 

distributed nationally while severity was relatively evenly distributed. The goal for our study was 16 

to take a method and be able to apply it to basins of varying characteristics. This framework 17 

relied on the ability to analyze the individual processes related to each individual basin.  18 

19 

Comment [EM1]: Included the HUC definition 
here. 
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2.0 Introduction: 20 

 Throughout the world, flood events are one of the most destructive natural disasters. 21 

Floods occur for a variety of reasons, and risk factors such as total rainfall, soil types and land 22 

use can contribute to the complexity of events, in particular impacted area and event duration 23 

(Uhlemann 2010). Every year, major and minor floods contribute to economic and insured losses 24 

(Joyce 2014, FEMA). In the United States, the National Flood Insurance Program (NFIP) is the 25 

primary provider for residential flood insurance. Since its inception in 1968, the NFIP premiums 26 

have largely covered the amount paid out in losses (NFIP Act of 1968). However, the 2005 27 

Hurricane season, including Hurricane Katrina, which was the costliest storm in the program’s 28 

history costing more than 16 Billion USD, pushed the NFIP into debt (Fig.C1). The NFIP debt 29 

was exacerbated by the significant property damage experienced during Superstorm Sandy in 30 

2012. Currently, the NFIP debt is estimated at $24 Billion as of 2014 (Joyce 2014).  31 

This extreme debt has accelerated research into a number of different private flood 32 

insurance options. One necessary issue to address before primary flood insurance can become a 33 

more standard offering is the ability to transfer risk to the reinsurance community. A challenge 34 

specific to flood is the complexity of individual events. Unlike the perils with an unambiguous 35 

event definition, such as hurricanes and earthquakes, there is no standard definition for a flood 36 

event, which can range in length from hours to months. The problem for flooding is not specific 37 

to the United States. In fact, reinsurers have offered flood risk transfer products in Europe and 38 

Asia for a number of years. For example, (re)insurers in Spain have provided flood insurance 39 

since 1971 (Barredo et al. 2012). Typically, reinsurance contracts define a flood event using an 40 

hour’s clause ranging between 168 hours in the UK to 504 hours in Germany. Using the hour’s 41 

clause insurance companies are able to aggregate claims during this period of time to limit 42 



3 

 

cumulative losses from multiple events (Munich Re. 2005). Defining events this way allows for 43 

providers to aggregate claims that can be associated with the same temporal event.  44 

However, the hour’s clause definition lacks the ability to discern between the shorter and 45 

longer events. Not all events can fit into a single defined time frame. If there are multiple short 46 

duration events occurring in quick succession then the claims from those events may be 47 

aggregated together. The hour’s clause also lacks the ability to determine spatial aspects of each 48 

flood event. If events occur within the same window of time but in two different areas those 49 

flood are still attributed to one event. Aggregating these events limits the ability to understand 50 

the spatial extent based on impacted areas and the severity of each of the individual flood 51 

occurrences.     52 

While research into flood event definitions is accelerating, it is not a novel topic. 53 

Research into event definitions has primarily focused on single site analysis (Bačová-Mitková & 54 

Onderka 2010, Mallakpour & Villarini 2016 and Kahana et al. 2002). However, as flood events 55 

are spatially complex, they often impact many locations limiting the use of single site definitions 56 

for reinsurance contract definitions. When events impact larger areas, multiple locations or entire 57 

basins, there is currently no method that can properly group flood peaks to the same event.  58 

Public entities have complied databases of flood occurrences to assist in frequency and 59 

severity analyses (NCDC). One goal of this type of analysis is to determine if floods are 60 

occurring more often and with increased severity due to climate change or other anthropogenic 61 

causes (Himmelsbach et al. 2015).  Public databases are comprised of documentary sources and 62 

trained spotter observations (NCDC, EM-Dat, and DFO). The major downside of using this type 63 

of database to assist with reinsurance contracts is that they are based on subjective measures such 64 

as spotter definitions. Definitions follow a series of guidelines but varying flood characteristics 65 
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between regions can categorize flooding differently between these two regions. Variations in 66 

categorization have an impact on event durations and impacted areas. In addition to the 67 

definitions themselves, trained spotters respond to citizens reports of the peril. Depending on the 68 

area, what is considered abnormal flooding, in terms of standing water or bankfull discharge, 69 

may be reported in one area compared to another. For example an area such as Florida 70 

experiences significant precipitation year round which may contribute to minor flooding that is 71 

considered normal and thus not reported. However in an area like Los Angeles that similar minor 72 

flooding may be reported, which affects the frequencies of flooding in each area. Another source 73 

of flood occurrence information is using a documentary source, which involves examining media 74 

sources as well as government reports to comprise a set of occurrences across a state, country or 75 

globe (Himmelsbach et al. 2015 and Doocy et al. 2013). These sources rely heavily on the 76 

quality of the reporting, using the reports to assign severity and frequency estimates to cover an 77 

expansive region.  78 

Relying solely on visual reports can lead to three main areas of inconsistencies in flood 79 

observations. Firstly, multiple sources can report statistics about an individual event that 80 

drastically vary in the event details and determining the accuracy of conflicting points is 81 

challenging without additional information. Secondly, relying on trained spotter reporting to 82 

accurately defining an event is problematic. In many cases the reports cover the first instance of 83 

flood and damages associated but do not report flood on subsequent days which should logically 84 

define the event duration. Finally, determining the size of event requires insight from the entire 85 

domain that was flooded. Relying solely on trained spotters may only confirm flooding in areas 86 

that contain the most crucial infrastructure or areas of interest leading to underestimating the 87 

entire flood extents.  88 Comment [EM2]: Re-worked sentences with 

respects to comment 6 from the referee 
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EM-DAT and National Climatic Data Center (NCDC) Storm Data databases are the two 89 

that are most commonly used datasets for this type of analysis. EM-DAT uses official records of 90 

areas affected, persons killed, disaster declarations issued and calls for international assistance 91 

made (EM-Dat, Doocy et al. 2013). The NCDC Storm Data database is a compiled set of 92 

observations from National Oceanic and Atmospheric Administration (NOAA) trained spotters. 93 

NCDC events are categorized by county and then separated by dates (Dobour and Noel 2005, 94 

Gaffin and Hotz 2000). EM-DAT catalogues events by year with summary statistics detailing 95 

frequency and overall event impacts (i.e. deaths and losses) from that year. Such summary 96 

statistics include injured, affected, total deaths and total damage. Both methods contain a number 97 

of different biases preventing use in reinsurance contracts including population biases, frequency 98 

biases and reporting biases. Due to the incomplete and often inconsistent reporting, 99 

implementing this method to formulate an event definition for reinsurance contracts presents a 100 

challenge. Despite their limitations, these datasets are useful first checks when developing a 101 

more robust method to define flood events as historical events can be compared to.  102 

Many authors have shifted toward a data driven approach using the peaks over threshold 103 

analysis to examine changes in flood event frequency (Mallakpour and Villarini 2016, Bačová-104 

Mitková & Onderka 2010), as well seasonality (Black and Werritty 1997). A data driven 105 

approach allows for the definition of an event to encompass a variety of basin characteristics. 106 

Authors choose a somewhat arbitrary threshold where if a peak observation exceeds the 107 

threshold, it is considered to be a peak over threshold (POT). A subsequent step for this method 108 

was to determine a metric for identifying independent peaks. Varying windows of time were 109 

used to identify the independence between the individual POT. Mallakpour and Villarini (2016) 110 

used an arbitrary window of 15 days, where any peak that occurs within this period is aggregated 111 

Comment [EM3]: Year added: Comment 7 
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to a single event. Black and Werrity (1997) determined their window by calculating the “time to 112 

rise” and identifying when the discharge dropped below 2/3
rd’s

 of the previous peak. Authors 113 

using these windows then looked at all individual peaks occurring within these windows to 114 

attribute them to the same event.  115 

Site specific event identification is the base in developing a consistent method of event 116 

identification. However, our method will address the window of independence through an 117 

observational approach. Event independence should not be based on a standard window 118 

(Mallakpour and Villarini 2016). It must be based on how each site reacts to the flood waves. 119 

Implementing a concept similar to time to rise and a drop in discharge (Black and Werritty 1997) 120 

was the first of many steps taken toward resolving this. The window must cover the time before 121 

and after a peak, as previous peaks have an influence on succeeding peaks. Incorporating this 122 

into our definition will reflect the individuality of each site and the flexibility of our definition to 123 

cover a wider range of sites.  124 

 The primary goal of this research is to expand our definition to an entire basin or 125 

catchment area. These regionally impacting events are titled basin or “trans-basin” events (Nied 126 

et al. 2014, Uhlemann et al. 2010). Both papers used the POT method as well. Starting with a 127 

single site, individual events were identified (Uhlemann et al. 2010) and then all mutually 128 

dependent events were identified from a moving temporal window. The window defined from 129 

previous literature provides a solid structure but categorizes catchments and basins into an all-130 

encompassing time frame. A more basin specific time frame is measurable and would not 131 

underestimate the smaller basins or overestimate the larger basins.    132 

This paper seeks to define events through a data driven approach aimed at accounting for 133 

the individuality of flood waves and the basins they impact. Our main goal is to develop a 134 
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consistent definition in order to examine how frequency and severity vary regionally. Looking at 135 

frequency regionally provided us with a clearer picture of the specific areas that were more at 136 

risk for flooding. Severity allowed us to look at how areas with similar frequencies were 137 

experiencing events in terms of impacted areas and overall magnitude. Severity will factor into 138 

future implementation of risk mitigating factors that can look at two areas and determine the 139 

steps needed to protect a certain area. It also allowed us to determine if our method is 140 

representing more local or extreme flooding across the various basins.  141 

Methods implementing the hour’s clause or standard event windows lack the ability to 142 

interpret how each individual flood wave progresses. Understanding the individuality of the 143 

flood is the basis for how our method will tackle a standard event definition. This paper will be 144 

structured as follows: Section 2 will cover the data availability as well as the data selection 145 

process along with which tools were used to analyze the data. The concepts that feed into our 146 

method as well as our method itself will be discussed in Section 3. Section 4 will provide the 147 

results of the analysis from our methodology with comparisons to methodologies exhibited in 148 

previous research. Section 5 will provide the discussion and concluding remarks regarding our 149 

results within this study.        150 

2.0 Site Selection: 151 

 This research focuses on expanding the definition of a flood event from an individual site 152 

to river basin. As this research focuses on the United States, USGS daily flow gauges stations 153 

were used to identify individual sites and USGS Hydrological Unit Codes (HUC) were used to 154 

define river basins. River basins can be defined in a number of ways and determining the 155 

appropriate size can be a non-trivial task. For use in reinsurance contracts, river basin should be 156 

defined in such a way that flooding events within a portion of the basin show a correlation to 157 
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events in other portions of the same basin. Basins will also need to be defined in such a way that 158 

we can see how flood waves impact the entire basin and not individual sections of that basin. The 159 

USGS HUC codes follow the concept of the Pfafstetter Coding System meaning that each unit 160 

code is delineated in a hierarchical fashion ranging from larger to smaller. Drainage areas are 161 

defined on a continental scale and then divided and subdivided into 6 levels. Each level is 162 

associated with number of digits corresponding to size. The USGS utilizes a 2 digit system that 163 

defines each basin level by the number of digits each code contains. HUC Codes range from 2 – 164 

12 digits, largest to smallest (USGS). For example, each basin defined as a HUC8 (Subbasin) has 165 

a unique 8 digit code. Based on this system as well as past research, the 8 & 6 digit HUC’s were 166 

chosen as the basin levels that we would analyze. A majority of the papers that we referenced in 167 

this study have dealt with European or Asian basin definitions and were focused on one or two 168 

basins within a finite area. With our broad scope of study, we needed to look at basins across a 169 

variety of characteristics so a common basin code was needed for comparisons of frequency. 170 

Other research of flood frequency did not yield any references to the HUC basin codes so as 171 

authors we developed our own criteria that we felt best represented the size of the basins most 172 

applicable for our methodology. Our decision to use these two size HUC’s relied on looking for 173 

a basin size that allowed us to observe how the events would aggregate to a basin level event 174 

rather than being identified as two separate events. We wanted our dataset to contain the largest 175 

percentage of HUC’s possible after our site selection criteria to get a better nationwide picture of 176 

how our method observed basin wide flood events. With the HUC8 we were able to get 177 

approximately 20% of coverage across the United States with a basin contained all 20 HUC2’s 178 

(Fig.1). With any HUC size below the HUC8 such as the HUC10 we were left with a much 179 

lower coverage percentage, roughly less than 10% for the HUC10, which would not accurately 180 

Comment [EM4]: Clarified the HUC Code 

selection process and why 8/6 were used based on 
the definition from the USGS and not 5/7 – 

Comment: 8 
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represent the methodology across the country. When we look at the upper end of our HUC size 181 

for the HUC6, we when look at how frequency compares with site count above the HUC6 we 182 

saw that frequencies were heavily affected by site count. From these two factors we felt that the 183 

HUC8 and HUC6 were the most applicable basin sizes. Daily mean discharge as well as Annual 184 

peak streamflow was used for all sites, which provided data for those parameters.  185 

From all available HUC’s, sites and basins were selected based on a number of selection 186 

criteria. The first criteria removed sites with less than 5 years of daily discharge data. The second 187 

criteria required sites to occur along natural rivers and streams; gauges impacted by reservoirs 188 

and other impediments to natural flow were excluded. Following site removal, HUC’s with less 189 

than 5 sites were excluded. Finally, HUC’s were required to have at least 3 sites that overlapped 190 

with 70% of the data during each individual year that was examined. Due to the nature of our 191 

method seeking to aggregate peaks from multiple sites, the sites needed to overlap or else that 192 

method would be looking primarily at individual site events instead of the basin events. Of the 193 

2,300 HUC8’s and 387 HUC6’s available, 462 HUC8’s and 276 HUC6’s were used (Fig.1) with 194 

a total of 3,121 and 4,919 gauge stations within the HUC8 and HUC6 respectively. Both HUC 195 

sizes were analyzed for initial frequencies and the most applicable HUC was chosen for 196 

subsequent analyses. 197 

3.0 Methodology: 198 

 Daily discharge data from 8,084 river gauge stations was obtained from the USGS 199 

(http://nwis.waterdata.usgs.gov/nwis/dv/?referred_module=sw). A study period of 15 water 200 

years between 2000 and 2015 was selected for this analysis. Initial attempts to expand the period 201 

of analysis severely reduced the number of basins that met the criteria for analysis. The peak 202 

over threshold method outlined in Uhlemann et al. (2010) was conducted on all basins that fit the 203 
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criteria for analysis. The peak over threshold method consists of identifying individual 204 

observations over a specified threshold within a particular time window. The procedure was split 205 

into 4 major steps: (1) identifying peaks occurring at each site within each basin and the 206 

subsequent peaks over threshold; (2) applying a window of independence at each site to 207 

determine independent site specific events; (3) compiling all independent site specific events and 208 

applying a secondary window of independence to determine independent basin specific events; 209 

(4) applying multiple characteristics to determine a severity score to compare differing events 210 

from one another.   211 

 The first step involved selecting a minimum threshold. The median of annual maximums 212 

was chosen as the threshold in which a flood peak must exceed. The median of annual 213 

maximums was chosen because it corresponds to the 2-year quantile, or Q2. Uhlemann et al. 214 

(2010) states that the “Q2 is a rough estimation for bankfull discharge on naturally occurring 215 

streams.” For sites with at least 5 years of annual peak streamflow data, their Q2 was calculated 216 

by taking the median across the entire time series. As peak discharges are determined by 217 

instantaneous measurements, small catchments can exhibit extreme values, which are rarely 218 

observed in the daily record. The extreme values may lead to a minimum threshold that may not 219 

be a representative measurement of flooding for that catchment area. The discharge at each of the 220 

peaks recorded, were then compared to their respective sites Q2 value to determine all of the 221 

peaks over threshold.  222 

The next step in identifying site specific events is to determine a time criteria that defines 223 

independent site events. Two metrics were calculated for all peaks over threshold to determine 224 

the duration of each event: base to peak (BtoP) and peak to base (PtoB). Base to peak is the time 225 

it takes for the discharge to reach the peak after it has crossed the minimum threshold. Peak to 226 
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base is the amount of time it takes for the discharge to return to the minimum threshold 227 

following a peak (Fig.2a). In the case where there are multiple peaks before the discharge returns 228 

to base, the peak was selected as the observation that experienced the maximum discharge. Each 229 

peak over threshold has a unique BtoP and PtoB that could have a significant range. To 230 

standardize the windows of independence for each site the median of both metrics was calculated 231 

and then the peaks start and end times were recalculated. Our window of time was aimed at 232 

eliminating the extreme events on either end of the temporal distribution to determine a window 233 

that reflected the time it would take for a flood wave progress through a site.  234 

After the windows were recalculated, combining peaks with overlapping or consecutive 235 

windows into a single site specific peak consolidated peaks. All peaks over thresholds with 236 

windows that did not overlap were treated as independent events. Each event was characterized 237 

by, site number, start time, peak time, end time and peak discharge. For the peaks, which 238 

overlapped, the start time was defined as the earliest start day and end time was the latest end 239 

date. The peak discharge from each event was then scaled by the Q2 at each site. Scaling each 240 

peak discharge reduced the impact of catchment size when comparing magnitude of discharge 241 

and made the different sites comparable.  242 

A similar methodology of consolidating overlapping observations was applied to define 243 

basin specific events from the site specific events (Fig.2b). The basin specific events used the 244 

start and end time of each site specific events that occurred within the basin. If the windows of 245 

time between the start and end of the site specific events overlapped or were consecutive (i.e. 246 

occurred within 1 day of another peak), then these events comprised one basin specific event.  247 

The start of the event was the earliest start time recorded at any site and the end of the event was 248 
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the final end time recorded. Each event was defined by start time, end time, peak time, and peak 249 

discharge for all events from the desired HUC’s.  250 

The final step involved determining a severity score for each basin event. Defining 251 

severity allowed us to compare areas of like frequency. From these we were able to see the 252 

certain areas that are more vulnerable during flooding. Severity scores in future analyses will 253 

also factor into pricing of reinsurance contracts. Severity of each event was designed to include 254 

elements of the spatial extent as well as the magnitude of the flooding experienced in the basin 255 

by the affected sites during each event. The severity score represents a number between 0 and 256 

infinity where the high value indicates a more severe event. The affected sites were defined as 257 

the number of sites within the desired HUC, which recorded a peak over threshold during the 258 

event. Total discharge was the sum of the discharges, scaled by their corresponding minimum 259 

threshold, observed at all the affected sites. Severity was calculated by taking the sum of all 260 

scaled discharges and dividing by the total number of sites within the basin, EQ.A1. If a site was 261 

impacted more than once during a basin event, the maximum-scaled discharge was selected to 262 

calculate the severity score. Scores less than one are expected when looking at the minimum 263 

threshold as it represents small scale and localized flooding, in terms of discharge and the 264 

percentage of sites it may impact within the individual HUC. 265 

From the analyses, we compared the HUC6 and the HUC8 frequencies, event duration 266 

and severity distributions. With our goal of a basin wide definition, it is imperative to compare 267 

these two basin sizes and determine the most appropriate basin level for our methodology. To 268 

compare, we looked at the differences between the statistics listed previously as well as the 269 

distribution of the percentage of impacted sites by event for each HUC. The distribution of the 270 
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percentag of impacted sites was used to determine whether events in each basin level are being 271 

aggregated to a basin event or if they are being segmented due to the size of the basin.  272 

Two comparisons were made to the NCDC Storm Data. The first method looks at all 273 

reports of flooding and aggregates them by county. The second method used a standard 13-day 274 

independence window, 3 days pre-peak and 10 days post-peak (Uhlemann et al. 2010). A 275 

standard window was used because the NCDC observations are unable to provide a site specific 276 

window of independence.  277 

4.0 Results: 278 

 A total of 7,932 and 8,444 events were calculated for basins defined by the HUC8 and 279 

HUC6 respectively. Table B1 provides the frequency summary statistics for both the HUC8 and 280 

HUC6 basins. Comparing the frequency distribution of events between the two selected basins 281 

sizes suggests that frequencies within basins defined by the HUC6 are higher than frequencies 282 

defined by the HUC8 (Fig.3 & Fig.4). We can see that from Figure 3, the frequencies in each 283 

HUC8 are typically lower than the frequencies found each HUC6. This is highlighted in Figure 284 

4, where we focus on 6 HUC8’s that make up 1 HUC6 (Outlined in Blue). From here the 285 

individual basins in the HUC8 indicate a lower basin level frequency than at the HUC6. This 286 

comparison is important because the aim of this paper is to define events at a basin level by 287 

aggregating individual events into basin wide events. To explore this concept more we wanted to 288 

look at the impacted sites during the events compared to the total number of sites within the 289 

basin to get a sense of how many events are being determined as local when they should be 290 

aggregated. While there will be a number of small local floods that this methodology captures, 291 

we looked at this to provide us with an indication of whether the HUC8 is too small of a basin to 292 

use or the HUC6 is too large.  293 

Comment [EM5]: Included a paragraph discussing 

the selection process in the Methodology section in 
reference to comment 2 
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We looked at the distribution of the percentage of impacted sites by event for each HUC 294 

(Fig.5). We took each event within our catalog and identified how many sites were impacted. 295 

The percent impacted was calculated by taking the number of sites impacted and dividing by the 296 

total number of sites within the basin. For the events within the HUC8 on average 36% of the 297 

sites were impacted compared to 21% for the HUC6. When you look at the CDF of the events of 298 

HUC6 and HUC8 (Fig.5), we can clearly see that the HUC6 events impact a fewer percentage of 299 

sites. While HUC6 does have more sites, due to our methods intended aggregation of events we 300 

would expect a similar percentage of sites impacted between the two. However, because the 301 

HUC6 is showing a lower percentage of sites impacted during the events in their catalog this is 302 

an indication that the HUC6 does not aggregate individual events as well as the HUC8. 80% of 303 

the events within the HUC6 have % impacted <40% compared to the the HUC8 where 304 

approximately 50% of their events are impacting 50% of the sites. Due to the size of the HUC6, 305 

the basin is being segmented during our method and is not capturing events that should be attributed 306 

to the same event. The segmentation of the events within the basin will lead to an overstating of the 307 

frequencies. Overall, the HUC8 is showing a higher percentage of events in the higher percentages of 308 

sites impacted meaning that our method is aggregating more individual events into basin events at 309 

this basin level when compared to the HUC6. From both the CDF and the average we have 310 

concluded that the HUC8 is a more applicable basin size due to its ability to aggregate the events 311 

within the basin rather than segmenting them.  312 

Nationally, the median frequency of events HUC8 basins was 1.00 events per year while 313 

the mean was 1.14 events per year (Fig.6). This frequency varied regionally with some areas 314 

experiencing higher frequencies (Fig.1 Left Panel). Notable population centers that experience 315 

elevated frequencies include the Upper Midwest (south of Lake Michigan), Southern California 316 

and Southern Florida. For the HUC6 basins, the median frequency of events was 1.87 events per 317 
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year with a mean of 2.03 events per year (Fig.7). Similarly to the HUC8 basins, the frequencies 318 

varied regionally with some areas of elevated frequencies (Fig.1 Right Panel).  319 

To investigate how event duration varies nationally, we calculate the mean event duration 320 

for each basin. Nationally, the mean event duration ranged from two to 79 days for the basins 321 

defined by the HUC8 and two to 73 days for the basins defined by the HUC6. The mean event 322 

duration for 95% of HUC8 and HUC6 basins is less than 14 and 17 days respectively (Fig.8 and 323 

Fig.9). The minimum event duration was two days and was observed at 336 HUC8’s and 227 324 

HUC6’s. The maximum event duration for HUC8’s was 232 days and occurred in the 10160003 325 

basin. For HUC6 basins that maximum event duration was 237 days occurring in the 101600 326 

basin. When we look at the shape of both curves, we can see that there is a higher percentage of 327 

HUC8’s that have shorter mean and maximum durations, as the curves approach the lower event 328 

durations more rapidly leading to a steep curve when compared to the curves for the HUC6. 329 

However, when we look at the minimum duration, a larger percentage of the HUC6’s have a 330 

minimum duration of 2 days when compared to the HUC8 which is an indication that there is a 331 

larger number of events that are impacting only one site. While both the HUC6 and the HUC8 332 

tapper of towards the higher event durations, there is a lower percentage of the HUC8’s that have 333 

event durations greater than 20 days. With those two factors we can see that durations within 334 

each HUC6 have a wider range than those compared to the HUC8.  335 

 Figure 10 represents two sites that reflect longer recession periods following their peaks. 336 

With a data driven approach identifying the generation and recession of the events, certain 337 

extreme events may show increased event durations. The extreme durations are a reflection of 338 

the minimum threshold as well as the hydrological processes at hand. Looking at the two sites, 339 

the left is located in South Dakota and the right is located in Florida; both of the extreme events 340 
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that are observed have certain factors that impacted their recessions. The site in South Dakota 341 

experienced an event that was impacted by the melting of an ice jam represented by the quick 342 

generation. Following the melt there was a significant rain event as well as a release of water 343 

from a dam further upstream. The site on the right is located on a natural tourist spring. These 344 

springs contain a significant amount of ground water. Following an intense rain event the 345 

buildup of water caused the increased recession. When we define an events’ duration as the first 346 

occurrence of discharge above the Q2 to the final occurrence of discharge below the Q2, if our 347 

site is impacted by a natural occurrence, events will reflect longer than expected durations. These 348 

durations are longer than we would expect and further analysis will be conducted to examine 349 

changes to the minimum threshold to examine the influence of these natural processes. While a 350 

majority of the durations reflect reasonable time frames for flooding events that exceed the Q2 it 351 

is important to note that the method might not be appropriate for all streams.  352 

 When looking at the distribution of severity scores there is a slight skew towards the 353 

extreme events. Severity scores ranged from the least severe, 0.032 to the most severe, 26.9 354 

(Fig.11) with a median severity score of 0.32 and a mean of 0.57. While the range in severity 355 

scores is quite large, a majority of the events received a score less than 1. Regionally the severity 356 

scores are generally distributed evenly throughout the country (Fig.12). There appear to be 357 

pockets of higher severities but across the country there does not appear to be a pattern within 358 

the regional distribution.  While it is evenly distributed regionally, within the regions we can see 359 

the wide range in severity that was observed in the distribution of frequency.   360 

 Finally, comparisons were made to other methodologies applied to the same dataset as 361 

well as other publically accessible datasets. The first comparison examined a method used by 362 

FEMA to estimate floods using NCDC Storm Events Database (Fig.13). The distribution of 363 
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events was broken down into total event frequency by county ranging from one to 4,114. While 364 

the trained spotters follow guidelines in identifying events, the method lacks a way to group 365 

events. The inability to group events that would otherwise be considered a single event, leads to 366 

an overestimation of events. This overestimation is evident when it is noted that the maximum 367 

frequency of events for a specific county was 4,114.  368 

 The final comparison was made to the NCDC applying a 13-day standard window. While 369 

the NCDC map provides a more complete national coverage two patterns occur (Fig14). Within 370 

the 5-boxed areas, either the NCDC frequency is far greater or the daily discharge frequency was 371 

far greater. For example, in Florida, we see frequency range from 6 to 25 events for NCDC 372 

observations but events observed through daily discharge range from 26 to 45. The opposite 373 

occurs in Missouri with NCDC estimates ranging from 16 to 85 events with events observed 374 

through daily discharge ranging from 6 to 15.   375 

 From these estimates there is no obvious reason for the discrepancies in frequencies but 376 

we can speculate. For example Florida experiences significantly fewer events using NCDC data 377 

than the daily discharge data. A possible explanation could be how trained spotters define events. 378 

An area in Florida may experience a peak over the threshold triggering our event definition, yet 379 

that peak may not be recorded as an NCDC observation based on the spotters perspective. 380 

Another reason could be due to the fact that these trained spotters respond to citizen’s reports 381 

and, due to the frequency of flooding in an area like Florida, the citizen may not call and the 382 

peak may not be recorded.  383 

However a similar thought process can be applied to our threshold selection. As stated 384 

the minimum threshold was selected as a representation of bankfull discharge. While this 385 

assumption was the basis for our method, in certain areas it is conceivable that the threshold may 386 
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be lower than bankfull discharge which could possibly lead to an over estimation of flooding 387 

events in certain areas. There is no certain explanation for the discrepancies in the results. With 388 

no certain explanation for the results from this comparison, the assumptions that define the 389 

compared methodologies will be explored in future analyses.  390 

5.0 Discussion:    391 

 This study was able to provide a data driven approach in attempts to solve the issues of 392 

inconsistent event definitions within the (re)insurance industry. We derived a methodology based 393 

on a peak over threshold analysis that was able to capture and aggregate multiple occurrences of 394 

flooding at various locations. Using physical assumptions, our minimum threshold and window 395 

of independence were able to capture each individual sites reaction to passing flood waves. An 396 

approach identifying windows based on the impacted site allows for each site to represent their 397 

individual characteristics of flooding rather than applying standard metrics throughout. Each 398 

event was defined through their duration, impacted area and magnitude. The development of a 399 

severity index examines overall impacted areas as well as individual flood magnitudes.  400 

 Analyses were conducted on both HUC8 and HUC6 to determine which size of 401 

Hydrological Unit Code was more applicable for further analysis. 7,932 HUC8 and 8,444 HUC6 402 

events were identified during our study. Understanding the applicability of different basin sizes 403 

is important because it aids in our main goal of applying a consistent definition to reinsurance 404 

contracts. From our definition our goal was to understand the frequency that represents an entire 405 

basin or area. We also hope to use the definition to define a parametric trigger or an alternative 406 

form of defining the event. All of this is possible when we know what basin size is the most 407 

applicable. The HUC8 was chosen as a more applicable basin size as it was a better 408 

representation of site interaction during flooding events.  409 
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Nationally, there are areas with large discrepancies between the HUC6 and HUC 8 410 

frequencies. One explaination of this discrepency is represented by HUC6: 071200 (Fig. 4). The 411 

area of this HUC6 is 28,309.78km
2
 and contains 6 HUC8s. The annual frequency of events of 412 

the HUC8 ranges between 1 and 2.33, while the HUC6 produces 5 events per year. Although it is 413 

expected that the larger basin will have a slightly higher frequency due to some events occuring 414 

in one part of the basin and not impacting the other, a more than doubling of events per year 415 

indicates that a large number of events do not interact with other sites in the basin. This lack of 416 

interaction is inconsistent with the goal of this research to identify basinwide event frequencies. 417 

The inconsistencies and lack of interaction are represented by the relationship between site count 418 

on frequency.  419 

Based on our analysis of two levels of HUC’s, determining which basin size was the most 420 

appropriate was a crucial portion of our analysis. To determine which was more appropriate 421 

distributions of the percentage sites impacted were analyzed in order to see how sites were 422 

interacting during events. When examining the cdf of percentage of sites impacted (fig. 5), we 423 

can see that the HUC 8 is the more applicable basin level to use for our analysis. HUC8’s showed 424 

a higher percentage of events had a higher percentage of sites impacted that were impacted during 425 

each event when compared to the HUC6.With this comparison we can see that there are more 426 

individual events that are being aggregated to basin events rather than those events being segmented 427 

into multiple events. With this aggregation we are seeing a more complete picture of frequencies at 428 

the HUC8 than the HUC6.     429 

 We found that HUC8 frequencies are relatively normally distributed but are unevenly 430 

distributed regionally. For all HUC8’s a median of 15 events (1 event per year) and mean of 431 

17.21 events (1.14 events per year) were recorded. In a number of areas there were pockets of 432 

elevated frequencies. Durations for all events ranged from 2 – 232 days with a mean duration of 433 

Comment [EM7]: Discussion about which HUC 
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6.34 days. The wide range of event durations prompts further investigation into events with 434 

durations in the positive tail of the distribution. For example, we considered two HUC8’s, one in 435 

South Dakota (10160003) and another in Florida (03100207), that are impacted by natural events 436 

leading to longer durations. Some sites within these two basins were affected by ice jams as well 437 

as natural springs, which have contributed to significant recessions of their events. While these 438 

events are natural, the resulting event durations should prompt examination into the selection of 439 

thresholds for the sites, as an assumption of bankfull discharge might be slightly lower than a 440 

threshold that produces flooding. Investigation into the bankfull discharge assumption is 441 

necessary when determining appropriate level of flooding to conduct our methodology. Analyses 442 

will be conducted testing our methodology using varying levels of flooding, comparing our 443 

estimates using the Q2 to Q5 and Q10. In addition to testing the various levels of flooding based 444 

on return period, we will examine the impact of the estimated bankfull discharge to the observed.    445 

Severity scores calculated for all events in the dataset showed a slight skew toward the 446 

more extreme events. The smaller and local events are represented by the median of 0.32 and 447 

mean of 0.57, as we can expect events slightly above the threshold to not necessarily affect all 448 

the sites in the basin, producing a score less than 1. Regionally severity is relatively evenly 449 

distributed nationally.  450 

6.0 Conclusion:    451 

With a data driven approach to our methodology, a focus on the individual site 452 

parameters shifts the focus from generalities about events to site specific understanding leading 453 

to an applicable method regionally. A fundamental aspect of this research is to understand spatial 454 

extent of flooding and we were able to expand from single gauge stations to entire basins. The 455 

data driven approach allowed us to apply the methodology to a number of basins with varying 456 
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characteristics. The final advantage to our method is that when looking at flood severity we do 457 

not look at exclusively magnitude but the addition of spatial extent adds an element to 458 

differences in severity regionally.  459 

While there are a number of advantages that come from this method, relying on public 460 

data have revealed drawbacks in its application. Being a data driven method limits our ability to 461 

estimate frequencies in areas that do not have data. Across all USGS gauges there is no 462 

uniformity in data availability for number of years or number of stations within a basin. Through 463 

our site selection process we were only able to use 20% of all available HUC8’s, which limits 464 

national coverage in our estimates.  465 

The minimum threshold for flooding is based on the assumption that it is a representation 466 

of bankfull discharge; in certain areas this may not be accurate. Riverbanks are not uniform so 467 

how bankfull discharge is recognized at each site is dependent on that location, which may lead 468 

to underestimation or overestimation of flood stage at that site. The final drawback we observed 469 

was that when taking the median of the BtoP and PtoB slight variations in the event window 470 

occurred on the more extreme events. Instead of median other statistics will be tested to 471 

determine the most applicable way to represent the basin flood generation and recession. 472 

 For further research a comparative analysis will be conducted altering the threshold to 473 

examine how that might affect frequency as well as severity. Increasing the time frame will also 474 

provide insight as to whether or not this 15-year period is representative of the entire time frame 475 

of data or if we see a significant increase in events during certain subsections. Seasonality tests 476 

will be run to observe areas more frequent and more severe times of year which may also 477 

provide insight for risk managers. The final test that will need to be conducted is a sensitivity 478 
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analysis on the threshold selected to prove which threshold is the most reasonable for an analysis 479 

such as this.  480 

481 
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Code Availability: 482 

 All calculation and download scripts have been included in the supplemental folder. All 483 

scripts were written using R-Studio. 484 

 485 

Data Availability:  486 

 487 
 All data is publically available from the NCDC Storm events database as well as the USGS 488 

stream gauge data sites. A list of sites and a list of the years used will be included as well as the 489 

compiled file of the data, added to the supplemental files. 490 
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Appendices:  522 

 523 

Appendix A. 524 
 525 

 526 
EQ.A1. Severity Score 527 

Appendix B.  528 

HUC 
Total 

HUCS 

Selected 

HUCS 

Minimum 

Freq. 

1st 

Quantile 

Median 

Freq. 

Mean 

Freq. 

3rd 

Quantile 

Maximum 

Freq. 

08 2300 462 0 10 15 17.17 21 63 

06 387 276 0 19 27 30.59 38 145 

Table.B1. HUC8 and HUC6 Frequency Summary Statistics 529 
Appendix C. 530 

 531 
Fig.C1 NFIP Cumulative Debt, Total Payments and Total Premiums, 1978-2012 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 
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Figures: 542 

 543 
Fig.1. A map of the selected HUC8 and HUC6 544 

 545 

 546 
Fig.2a. Site Event Identification (Top Panel) and Fig.2b. Basin Event Identification (Bottom Panel) 547 

 548 

B 
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 549 
Fig3. HUC 8 and HUC6 Frequency Comparison, National 550 

                    551 
  552 

 553 
Fig.4. HUC 8 and HUC 6 Frequency Comparison, Upper Midwest  554 

Blue Outline (HUC6: 071200, HUC8: 07120001---07120007) 555 
  556 



27 

 

 557 
Fig.5. CDF of the percentage of sites impacted during each event within our catalog. Mean % of the entire 558 

distribution is noted and split by HUC. 559 
 560 

 561 
Fig6. HUC8 Frequency Distribution 562 
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 563 

 564 
Fig.7. HUC6 Frequency Distribution 565 

                       566 

 567 
Fig.8. HUC8 Event Duration CDF 568 
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 569 
Fig.9. HUC6 Event Duration CDF 570 

                                                               571 

 572 
Fig.10. Example Sites for Event Duration Concerns 573 

               574 
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 575 
Fig.11. Severity Score Distribution 576 

  577 

 578 
Fig.12. Regional Distribution of Severity                                                     579 
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 580 
Fig.13 FEMA Flood Frequency Estimates 581 

                                                  582 

 583 
Fig.14. Frequency Comparisons with a 13 Day Window (NCDC & Daily Discharge) 584 

 585 

 586 

 587 

 588 

 589 

 590 
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 592 
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 594 
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